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DETERMINISTIC CONTROL OF SDES WITH STOCHASTIC DRIFT AND

MULTIPLICATIVE NOISE: A VARIATIONAL APPROACH

GIACOMO ASCIONE∗ AND GIUSEPPE D’ONOFRIO†

Abstract. We consider a linear stochastic differential equation with stochastic drift and multiplicative
noise. We study the problem of approximating its solution with the process that solves the equation where
the possibly stochastic drift is replaced by a deterministic function. To do this, we use a combination of
deterministic Pontryagin’s maximum principle approach and direct methods of calculus of variations. We
find necessary and sufficient conditions for a function u ∈ L1(0, T ) to be a minimizer of a certain cost
functional. To overcome the problem of the existence of such minimizer, we also consider suitable families
of penalized coercive cost functionals. Finally, we consider the important example of the quadratic cost
functional, showing that the expected value of the drift component is not always the best choice in the mean
squared error approximation.

1. Introduction

Optimal control of dynamical systems consists in the optimization, via a suitable control, of certain
measures of performance of the system. Precisely, assuming that the state of the system is described by
a differential equation, we want to modifiy the equation with a function (called control) belonging to a
suitable class in order to minimize a certain functional depending on both the controlled state of the system
and the control itself. In the context of stochastic calculus this problem extends naturally to the case in
which the system is described through a controlled stochastic differential equation (SDE). Historically, the
latter is addressed by two main theoretical approaches that have been developed starting from Bellman’s
and Pontryagin’s optimality principles (see for instance the comprehensive survey by Pham [36]). The first
one is called the dynamic programming principle, based on Bellman’s optimality principle [8]: it consists
in defining a dynamic value function by using the cost functional and then trying to describe it via partial
differential equations (PDEs). This method relies on a class of nonlinear PDEs called Hamilton-Jacobi-
Bellmann equations [25, 27]. Let us emphasize that one can also adapt the latter to more complex situation
(e.g. [7]). The second approach, instead, is based on a stochastic generalization of Pontryagin’s maximum
principle [35]. While the deterministic version can be expressed, in some suitable cases, via a forward-
backward differential system, the stochastic one led to the definition of backward stochastic differential
equations (BSDEs) [34]. Let us also stress that the stochastic maximum principle usually works with second
variations (while the deterministic one only with first) due to the presence of the white noise. This branch
of control theory considerably developed over the last years [1, 11, 14, 20, 21, 29, 33, 41]. Here we want to
address an approximation problem concerning a linear SDE. Indeed, the tools coming from optimal control
theory have been already used to approach some approximation problems. This is done, for instance, in
[23] where a stochastic control problem is approximated by a sequence of deterministic control problems,
obtaining a Wong-Zakai like ([45]) convergence result. Actually we are interested in approximating an SDE
admitting a stochastic drift with another one in which such drift is replaced by a deterministic one.

More precisely, in this paper we consider the following type of linear SDEs

(1.1)

{
dX(t) = [a(t)X(t) + z(t)]dt+X(t)dW (t), t ∈ [0, T ]

X(0) = X0,

with multiplicative noise and where z(t), appearing in the drift term, is a suitable stochastic process. This
kind of equations arises in many applications ranging from finance [32] to neuronal modeling [18, 22] or
quickest detection [24]. Moreover, if z(t) is itself the solution of an SDE, Eq.(1.1) plays a role in many
systems of equations used in epidemiology, climate models, game theory and others [3, 10, 19].
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2 GIACOMO ASCIONE∗ AND GIUSEPPE D’ONOFRIO†

We are interested in finding the best approximation for a solution of Eq.(1.1) obtained by substituting
the possibly stochastic drift with a deterministic function. A measure of goodness of the approximation is
expressed via the cost functional

(1.2) J : u ∈ L1(0, T ) → E

[∫ T

0

F (t, |X(t)−Xu(t)|)dt
]
,

where F is a suitably regular function depending on the distance between X(t) and Xu(t), that is the solution
of Eq.(1.1) where we replace z by u. Let us underline that the Lagrangian function F does not depend directly
on u. Usually, this could lead to a trivial solution of a control problem. Triviality is avoided since we are
constraining u to be deterministic. Our aim is to find, if it exists, a function u ∈ L1(0, T ) that minimizes J .
In the literature, to the best of our knowledge, few contributions on purely deterministic controls of stochastic
equations are available [4, 40].

In [4] we considered the problem of approximating the solution of an SDE with stochastic drift and ad-
ditive noise through an Ornstein–Uhlenbeck type process, by using direct methods of calculus of variations.
Conditions for existence and uniqueness of the approximation and bounds on the goodness of the correspond-
ing approximations are given for some examples. However, in that work, the presence of just additive noise
allowed us to reformulate the problem on the class of absolutely continuous functions and led to a purely
deterministic treatment. The multiplicative noise, on the other hand, requires a different approach.

Here we find necessary and sufficient conditions for a function u in L1(0, T ) to be a minimizer of J , while
we are not able to prove the existence of such a solution in a general setting. To overcome this problem
we consider suitable families of penalized cost functionals and we prove that they always admit minimizers.
With this property in mind we are able to exploit a sufficient (and necessary) condition for the existence of a
solution of the original problem. If the latter condition is not clearly satisfied, then, in any case, the original
cost functional evaluated in the solutions of the penalized problems converges towards its infimum as the
penalization constant goes to zero. On the other hand, if the condition is satisfied, we can guarantee only weak
L1 convergence of the penalized solution towards the actual solution, but under further regularity assumptions
we still have convergence in distribution of the corresponding approximated processes. In the overall, the
method we present here can be considered as a combination of deterministic Pontryagin’s maximum principle
approach and direct methods of calculus of variations.

The paper is structured as follows: in Section 2 we first show some basic properties of the solution of
Eq.(1.1) and then we introduce the approximation problem. Section 3 is devoted to obtaining the Euler-
Lagrange equation of the functional; i.e we give necessary conditions for a function u to be a minimizer of
J . In Section 4 we prove that, under suitable convexity assumptions, the aforementioned Euler-Lagrange
equation is also a sufficient condition. In Section 5 we study the penalized problems and we address the
problem of existence of a solution and convergence of the penalized solutions to the actual one. Finally, in
Section 6, we consider the important example of the quadratic cost functional. While on one hand we are
able to show that if z is independent of W a solution exists and it is trivially the expected value of z, on
the other hand we also provide an example in which it is not a minimizer for the quadratic cost functional.
This result can be reformulated saying that, in the multiplicative noise case, the expected value of z is not
always the best choice in the mean squared error approximation. Due to the non-trivial nature of the Euler-
Lagrange equation, all the examples provided in the section have been obtained by using numerical methods
for solution of integral equations via MATLAB R2021a [28].

2. The linear equation with multiplicative noise and the approximation problem

2.1. The linear equation. Let us consider a filtered probability space (Ω,F ,P,F t) and a F t-Brownian
motion {W (t), t ≥ 0}. Fix T > 0 and consider {z(t), t ≥ 0} a F t-adapted process such that

(H1 ) There exists p ≥ 2 such that for any fixed t ∈ [0, T ], z(t) ∈ Lp(Ω,P) and
∫ T

0

E[|z(t)|p] 2p dt < +∞.

Let us stress out that last condition implies, by Hölder inequality, that
∫ T

0

E[|z(t)|2]dt ≤
∫ T

0

E[|z(t)|p] 2p dt < +∞.
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On the other hand, let us observe that, denoting U = {t ∈ [0, T ] : E[|z(t)|p] ≥ 1} and U c = [0, T ] \ U ,
∫ T

0

E[|z(t)|p] 1p dt =
∫

U

E[|z(t)|p] 1p dt+
∫

Uc

E[|z(t)|p] 1p dt

≤
∫

U

E[|z(t)|p] 2p dt+ |U c| ≤
∫ T

0

E[|z(t)|p] 2p dt+ T < +∞.

Finally, let us observe that

E

[∫ T

0

|z(t)|dt
]
=

∫ T

0

E[|z(t)|]dt ≤
∫ T

0

E[|z(t)|p] 1p dt < +∞,

hence
∫ T

0 |z(t)|dt is P-almost surely finite and z ∈ L1(0, T ) P-almost surely. Let us denote by L2
p(Ω,P; [0, T ])

the space of F t-adapted processes {z(t), t ≥ 0} satisfying (H1 ). The notation is justified by the fact that
(H1 ) can be also written as ∥∥∥‖z(·)‖Lp(Ω,P)

∥∥∥
L2(0,T )

< +∞.

Let us also consider a function a : [0, T ] → R in L∞(0, T ). We focus on the linear SDE

(2.1)

{
dX(t) = [a(t)X(t) + z(t)]dt+X(t)dW (t), t ∈ [0, T ]

X(0) = X0,

where X0 ∈ L2(Ω,P). In particular the following result holds.

Proposition 2.1. Let L2
1([0, T ]; Ω,P) be the space of F t-adapted processes {z(t), t ≥ 0} such that z(·) ∈

L1(0, T ) P-almost surely and

E



(∫ T

0

|z(t)|dt
)2

 < +∞.

Then the map SX0 : L2
1([0, T ]; Ω,P) 7→ L2

2(Ω,P; [0, T ]), such that for any z ∈ L2
1([0, T ]; Ω,P) the process SX0 z

is solution of (2.1), is well-defined and it holds

(2.2) SX0 z(t) = G(t)eA(t)

(
X0 +

∫ t

0

e−A(s)

G(s)
z(s)ds

)
, ∀z ∈ L2

1([0, T ]; Ω,P),

where A(t) =
∫ t

0
a(s)ds and G(t) is the geometric Brownian motion associated to W (t), i.e.

(2.3) G(t) = eW (t)− 1
2 t

Proof. By a simple adaptation of the proof of [31, Theorem 5.2.1], the SDE (2.1) admits a unique strong
solution in L2

2(Ω,P; [0, T ]) whenever z ∈ L2
1([0, T ]; Ω,P).

Let us prove Equation (2.2). To do this, let us consider the linear SDE
{
dY (t) = (1− a(t))Y (t)dt− Y (t)dW (t), t ∈ [0, T ]

Y (0) = 1

and define Z(t) = log(Y (t)). By Itô’s formula we have
{
dZ(t) =

(
1
2 − a(t)

)
dt− dW (t), t ∈ [0, T ]

Z(0) = 0

and then, integrating

Z(t) =
1

2
t−W (t)−

∫ t

0

a(s)ds, t ∈ [0, T ].

Recalling the definition of Z(t), we have

(2.4) Y (t) =
e−A(t)

G(t)
, t ∈ [0, T ].

Let X(t) = SX0 z(t). By Itô’s formula we have

d(X(t)Y (t)) = Y (t)dX(t) +X(t)dY (t)−X(t)Y (t)dt = z(t)Y (t)dt.
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Integrating the previous relation we have

X(t)Y (t) = X0 +

∫ t

0

Y (s)z(s)ds.

Equation (2.4) concludes the proof. �

Remark 2.2. Since Equation (2.1) is linear, one could explicitly write the solution in terms of z(t) apparently
just supposing that z ∈ L1(0, T ) P-almost surely. However, this does not guarantee that X(t) is regular
enough to admit an Itô integral, which is instead needed to express the equation itself.
Let us also observe that L2

p(Ω,P; [0, T ])∪L1(0, T ) ⊂ L2
1([0, T ]; Ω,P), where with L

1(0, T ) we denote the space
of absolutely integrable deterministic functions, considered as degenerate stochastic processes.

As a direct consequence of the previous result we obtain the following.

Corollary 2.3. The solution map SX0 is affine, i.e. for any n ∈ N, (a1, . . . , an) ∈ R
n such that

∑n
i=1 ai = 1

and z1, . . . , zn ∈ L2
1([0, T ]; Ω,P) it holds

SX0

(
n∑

i=1

aizi

)
=

n∑

i=1

ai SX0 zi.

Moreover, for any X1, X2 ∈ L2(Ω,P) and z1, z2 ∈ L2
1([0, T ]; Ω,P) it holds

SX1 z1 − SX2 z2 = SX1−X2(z1 − z2).

Finally, S0 is linear.

Proof. Let us just observe that

SX0

(
n∑

i=1

aizi

)
(t) = G(t)eA(t)

(
X0 +

∫ t

0

e−A(s)

G(s)

(
n∑

i=1

aizi(s)

)
ds

)

= G(t)eA(t)

(
n∑

i=1

aiX0 +

n∑

i=1

ai

∫ t

0

e−A(s)

G(s)
zi(s)ds

)

=
n∑

i=1

aiG(t)e
A(t)

(
X0 +

∫ t

0

e−A(s)

G(s)
zi(s)ds

)
=

n∑

i=1

ai SX0 zi(t).

The second and third statements can be proved in an analogous way. �

Next, we want to underline some properties of the moments of SX0 z(t) when z belongs to a certain Banach
space. To do this, let us introduce the Banach space L1

p(Ω,P; [0, T ]) of the F t-adapted processes {z(t), t ≥ 0}
such that ∫ T

0

E[|z(t)|p] 1p dt < +∞.

Clearly, we have L2
p(Ω,P; [0, T ])∪L1(0, T ) ⊂ L1

p(Ω,P; [0, T ])∩L2
1([0, T ]; Ω,P). On the other hand, let us also

recall the following moment estimate for linear SDEs (see [46, Chapter 3, Lemma 4.2]).

Lemma 2.4. Consider κ ≥ 1 and let Y (t) be a strong solution of
{
dY (t) = [a1(t)Y (t) + a2(t)]dt+ [b1(t)Y (t) + b2(t)]dW (t), t ∈ [0, T ]

Y (0) = Y0

where Y0 ∈ L2κ(Ω,P), a1, b1 : [0, T ] → R are functions in L∞(0, T ) withM ≥ max{‖a1‖L∞(0,T ) , ‖b1‖L∞(0,T )}
and ∫ T

0

E[|a2(t)|2κ]
1
2κ dt+

∫ T

0

E[|b2(t)|2κ]
1
κ dt < +∞.

Then there exists a constant K(κ,M, T ) > 0 such that

sup
t∈[0,T ]

E[|Y (t)|2κ] ≤ K(κ,M, T )


E[|Y0|2κ] +

(∫ T

0

E[|a2(t)|2κ]
1
2κ dt

)2κ

+

(∫ T

0

E[|b2(t)|2κ]
1
κ dt

)κ

 .

Moreover, for fixed κ ≥ 1 and M > 0, the function T > 0 7→ K(κ,M, T ) is increasing.
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Remark 2.5. Actually, the last statement of the Lemma is a direct consequence of the constructive proof
presented in [46, Chapter 3, Lemma 4.2].

By using the previous Lemma, we have the following result.

Lemma 2.6. Let z ∈ L1
p(Ω,P; [0, T ]) ∩ L2

1([0, T ]; Ω,P) and X0 ∈ Lp(Ω,P) for some p ≥ 2. Then it holds

sup
t∈[0,T ]

E[| SX0 z(t)|p] < +∞.

Moreover, if X0 = 0 almost surely and u ∈ L1(0, T ), then

sup
t∈[0,T ]

E[| S0 u(t)|p] ≤ K
(p
2
,M, T

)
‖u‖p

L1(0,T ) ,

where M = ‖a‖L∞(0,T ) and K is defined in Lemma 2.4.

Proof. Being p ≥ 2, we can consider κ = p
2 ≥ 1. By using Lemma 2.4 we have

sup
t∈[0,T ]

E[| SX0 z(t)|p] ≤ K
(p
2
,M, T

)(
E[|X0|p] +

(∫ T

0

E[|z(t)|p] 1p dt
)p)

< +∞.

The second part of the statement easily follows by the fact that E[|X0|p] = 0 and E[|u(t)|p] 1p = |u(t)|. �

Remark 2.7. The arguments in the paper can be carried on without the hypothesis (H1 ), but just con-
sidering z ∈ L1

p(Ω,P; [0, T ]) ∩ L2
1([0, T ]; Ω,P). Here, for the ease of the reader, we will directly consider

z ∈ L2
p(Ω,P; [0, T ]).

2.2. Some properties of the Geometric Brownian Motion. As we have seen in the previous subsection,
the Geometric Brownian Motion G(t) defined in Equation (2.3) will play a major role. Let us first recall
that, it being a Doleans-Dade exponential (see [26, Chapter 1]) with G(0) = 1, it is a F t-martingale. On the
other hand, we can consider the process

G′(t) =
e−t

G(t)
= e−W (t)− 1

2 t.

It is not difficult to check that G′(t) is still a Geometric Brownian motion (by the fact that −W (t) is still a
Brownian motion) and it is given by the Doleans-Dade exponential of −W (t). Thus, in particular, also G′(t)
is a F t-martingale.
Concerning the distribution of G(t), let us call back that it is a log-normal process such that, for fixed t > 0,
log(G(t)) ∼ N

(
− 1

2 t, t
)
. By using the formula of the moment generating function of a Gaussian random

variable, it is easy to show that, for any q ≥ 0,

(2.5) E[G(t)q ] = e
q(q−1)

2 t, t ≥ 0.

The same relation holds for G′(t). Combining Equation (2.5) and Doob’s maximal inequality (see [38,
Theorem II.1.7]) we get the following bound on the supremum of G and G′.

Lemma 2.8. Let p1, p2 ≥ 0 and T > 0. Then there exists a constant C(p1, p2, T ) such that

E

[(
sup

t∈[0,T ]

G(t)

)p1
(

sup
t∈[0,T ]

G′(t)

)p2
]
≤ C(p1, p2, T ).

Proof. By the Cauchy-Schwartz inequality, we have

E

[(
sup

t∈[0,T ]

G(t)

)p1
(

sup
t∈[0,T ]

G′(t)

)p2
]
≤ E



(

sup
t∈[0,T ]

G(t)

)2p1



1
2

E



(

sup
t∈[0,T ]

G′(t)

)2p2



1
2

.

Since 2p1 ≥ 0, we can use Doob’s maximal inequality in Lp form to achieve

E



(

sup
t∈[0,T ]

G(t)

)2p1

 = E

[
sup

t∈[0,T ]

G2p1 (t)

]
≤
(

2p1
2p1 − 1

)2p1

sup
t∈[0,T ]

E[G2p1(t)] =

(
2p1

2p1 − 1

)2p1

ep1(2p1−1)T ,
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where we also used equation (2.5). In the same way we have

E



(

sup
t∈[0,T ]

G′(t)

)2p2

 ≤

(
2p2

2p2 − 1

)2p2

ep2(2p2−1)T .

Setting

C(p1, p2, T ) =

(
2p1

2p1 − 1

)p1
(

2p2
2p2 − 1

)p2

e
p1(2p1−1)+p2(2p2−1)

2 T

we conclude the proof. �

From now on, we will use the symbol C to denote a generic positive constant whose value is not important
in our arguments. Whenever we need to underline the dependence of C on some parameters p1, . . . , pn we
will denote it as C(p1, . . . , pn). The only exception is Theorem 5.15, in which the constants are indexed to
keep track of the dependence on the involved parameters.

2.3. The approximation problem. We are interested in finding the best approximation for a solution of
Equation (2.1), obtained by substituting the possibly stochastic drift with a deterministic function. To do
this, let us first introduce a cost functional

J : u ∈ L1(0, T ) → E

[∫ T

0

F (t, ξu(t))dt

]
,

where F is a suitable function and ξu = S0(z − u). Let us consider the following assumptions on F :

(H2 ) It holds F (t, ξ) ≥ 0 for any t ∈ [0, T ] and ξ ∈ R;

(H3 ) F (t, ξ) is twice continuously differentiable in the ξ variable and ∂F
∂ξ

(t, ξ) and ∂2F
∂ξ2

(t, ξ) are continuous

functions of both variables;
(H4 ) There exist α ∈ (0, p) and a non-negative function L ∈ L1(0, T ) such that

|F (t, ξ)|+
∣∣∣∣
∂F

∂ξ
(t, ξ)

∣∣∣∣ +
∣∣∣∣
∂2F

∂ξ2
(t, ξ)

∣∣∣∣ ≤ L(t)(1 + |ξ|α), t ∈ [0, T ], ξ ∈ R .

Our aim is to find, if it exists, a function u ∈ L1(0, T ) such that

J [u] = min
u∈L1(0,T )

J [u].

We can consider the functional J [u] to be a cost functional for an approximation problem. Indeed, we want
to find a deterministic function u(t) that we can substitute to the process z(t) in X(t) = SX0 z(t) to obtain
the best possible approximation under the cost J . For this reason we expect the cost functional to depend
in some sense on the gap between X(t) and the approximating process Xu(t) = SX0 u(t). By affinity of the
solution map, we have that ξu(t) := X(t) −Xu(t) = S0(z − u)(t). With this idea in mind, the function F
can be seen as a running cost.
Hypothesis (H2 ) is natural as we want to consider J [u] as a cost functional for an approximation problem,
while (H3 ) is just a regularity assumption. Hypothesis (H4 ) implies some form of controlled growth for
both the running cost F and its first and second derivatives with respect to the gap process ξu. The growth
assumption on F can be justified by means of the following non-triviality result.

Lemma 2.9. For any u ∈ L1(0, T ) it holds J [u] < +∞.

Proof. We have

J [u] = E

[∫ T

0

F (t, ξu(t))dt

]
≤
∫ T

0

L(t)(1 + E[|ξu(t)|α])dt.

Now let us estimate E[|ξu(t)|α]. To do this, let us consider p̃ = p
α
> 1 and let us apply Hölder inequality to

achieve

E[|ξu(t)|α] ≤ E[|ξu(t)|p]
α
p .

Let C = supt∈[0,T ] E[|ξu(t)|p], that is finite by Lemma 2.6. Then we have

E[|ξu(t)|α] ≤ C
α
p .
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Thus we have

J [u] ≤ (1 +K
α
p )

∫ T

0

L(t)dt < +∞,

being L ∈ L1(0, T ). �

The previous result and hypothesis (H2 ) guarantee that

inf
u∈L1(0,T )

J [u] ∈ [0,+∞)

thus it makes sense to search for a minimizer (if it exists) of J [u]. Next section will clarify the role of the
first and second derivatives in hypothesis (H4 ).

3. Necessary optimality conditions

Now let us focus on necessary optimality conditions, i.e. conditions that a global minimizer u ∈ L1(0, T ) of
the functional J [u] has to satisfy. Let us stress out that, in order to discuss necessary optimality conditions,
we assume that we already have a minimizer u. In particular, necessary optimality conditions are needed to
find at least a set of candidate minimizers.
Before going into details, let us introduce some notation. Let f ∈ L1(0, T ). We denote the set of its Lebesgue
points as Ef (see [17, Section 1.7]). From now on, since f ∈ L1(0, T ) is almost everywhere finite, we will
always consider a version that is everywhere finite, so that, for each t ∈ Ef , it holds

lim
ε→0+

1

ε

∫ t+ ε
2

t− ε
2

f(τ)dτ = f(t)

and we set, for each t 6∈ Ef , f(t) = 0. Such version of f(t) is called precise representative of f . To obtain
necessary optimality conditions we need the following property:

Proposition 3.1. Let f ∈ L1(0, T ) and g : [0, T ] → R be a continuous function. Define h(t) = g(t)f(t) for
any t ∈ [0, T ]. Then h ∈ L1(0, T ) and Ef ⊆ Eh.

The previous statement is classical, but, for completeness, we add its proof in Appendix A.
Now we are ready to prove the main result of this section.

Theorem 3.2. Suppose hypotheses (H1) to (H4) are satisfied. Let u ∈ L1(0, T ) be a global minimum of the
functional J over L1(0, T ). Then it holds

(3.1)

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))

G(t)

G(t0)
e(A(t)−A(t0))

]
dt = 0, t0 ∈ [0, T ].

Proof. Let us consider Eu the set of Lebesgue points of u in (0, T ), EL the set of Lebesgue points of L
in (0, T ), E = Eu ∪ EL and let t0 ∈ E. Fix any real number u ∈ R and ε0 > 0 small enough to have(
t0 − ε0

2 , t0 +
ε0
2

)
⊂ (0, T ). Now let us define, for any ε ∈ (0, ε0), Iε :=

(
t0 − ε

2 , t0 +
ε
2

)
, the following needle

variation

uε(t) =

{
u t ∈ Iε,

u(t) otherwise.

and, denoting ξε(t) := ξuε
(t), the value of the cost corresponding to a certain choice of ε

g(ε) = J [uε] = E

[∫ T

0

F (t, ξε(t))dt

]
.

We want to show that g is right differentiable in 0.
Let us consider the auxiliary function

h : θ ∈ (0, 1) 7→ F (t, θξu(t) + (1− θ)ξε(t))

for fixed t ∈ [0, T ] and ε ∈ (−ε0, ε0). Let us observe that, by hypothesis (H3 ), h is twice differentiable and

h′(θ) =
∂F

∂ξ
(t, θξu(t) + (1 − θ)ξε(t))(ξu(t)− ξε(t))

h′′(θ) =
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))(ξu(t)− ξε(t))

2.
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By using the Fundamental Theorem of Calculus and then integrating by parts, we have

h(0)− h(1) = −
∫ 1

0

h′(θ)dθ = −h′(1) +
∫ 1

0

θh′′(θ)dθ

that is to say

F (t, ξε(t))− F (t, ξu(t)) =
∂F

∂ξ
(t, ξu(t))(ξε(t)− ξu(t))

+

∫ 1

0

θ
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))(ξu(t)− ξε(t))

2dθ.

We can use the previous representation of F (t, ξε(t)) to rewrite the incremental ratio of g in 0. Indeed,
denoting ηε(t) := ξu(t)− ξε(t), we get

g(ε)− g(0)

ε
=

1

ε
E

[∫ T

0

(
−∂F
∂ξ

(t, ξu(t))ηε(t)

+

∫ 1

0

θ
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))η

2
ε (t)dθ

)
dt

]
.

(3.2)

By the properties of the solution map S0 given in Corollary 2.3, we have that

ηε(t) = S0(uε − ū)(t) =





0 t ≤ t0 − ε
2

G(t)eA(t)
∫ t

t0−
ε
2

e−A(s)

G(s) [u− u(s)]ds t ∈ Iε

G(t)eA(t)
∫
Iε

e−A(s)

G(s) [u− u(s)]ds t ≥ t0 +
ε
2

On the other hand, let us observe that

‖uε − ū‖L1(0,T ) =

∫

Iε

|u− ū(τ)|dτ

and then, by the second part of Lemma 2.6 we have, for any exponent κ ≥ 2,

(3.3) sup
t∈[0,T ]

E[|ηε(t)|κ] ≤ C

(∫

Iε

|u− ū(τ)|dτ
)κ

.

Going back to Equation (3.2), let us split the integral as

g(ε)− g(0)

ε
= −1

ε
E

[∫

Iε

∂F

∂ξ
(t, ξu(t))ηε(t)dt

]

− 1

ε
E

[∫ T

t0+
ε
2

∂F

∂ξ
(t, ξu(t))ηε(t)dt

]

+
1

ε
E

[∫ T

0

∫ 1

0

θ
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))η

2
ε (t)dθdt

]

=: I1(ε) + I2(ε) + I3(ε),

(3.4)

where we used the fact that ηε(t) = 0 as t ≤ t0 − ε
2 . Now we want to take the limit as ε→ 0.

First of all, let us show that limε→0 I1(ε) = 0. To do this, let us observe that

|I1(ε)| ≤
1

ε
E

[∫

Iε

∣∣∣∣
∂F

∂ξ
(t, ξu(t))ηε(t)

∣∣∣∣ dt
]

=
1

ε

∫

Iε

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))ηε(t)

∣∣∣∣
]
dt.

Bringing back the exponent α ∈ (0, p) in hypothesis (H4 ), let us consider any p̃ ∈
(
1,min

{
2, p

α

})
. Let q̃ be

its conjugate exponent, i.e. such that 1
p̃
+ 1

q̃
= 1. Being p̃ < 2 we have q̃ > 2 . By Hölder’s inequality it holds

|I1(ε)| ≤
1

ε

∫

Iε

(
E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣
p̃
]) 1

p̃ (
E

[
|ηε(t)|q̃

]) 1
q̃

dt.(3.5)
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Using the growth hypothesis (H4 ) we have

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣
p̃
]
≤ Lp̃(t)E

[
(1 + |ξu(t)|α)p̃

]

≤ Lp̃(t)2p̃−1(1 + E[|ξu(t)|αp̃])

≤ Lp̃(t)2p̃−1(1 + (E[|ξu(t)|p])
αp̃
p ),

where we used the convexity of the function x 7→ xp̃ and applied Hölder’s inequality a second time with the
exponent p

αp̃
> 1. Taking the supremum as t ∈ [0, T ] on the right-hand side and using Lemma 2.6 we finally

achieve

(3.6) E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣
p̃
]
≤ CLp̃(t)

where C is a positive constant. On the other hand, by Equation (3.3), we get

(3.7)
(
E

[
|ηε(t)|q̃

]) 1
q̃ ≤ C

(∫

Iε

|u− ū(τ)|dτ
)
.

Combining equations (3.5), (3.6) and (3.7) we get

|I1(ε)| ≤ Cε

(
1

ε

∫

Iε

L(t)dt

)(
1

ε

∫

Iε

|u− ū(t)|dt
)
.

It is not difficult to see that if t0 ∈ Eū, then it is also a Lebesgue point for |u − ū(t)|. Thus, being t0 ∈ E,
we conclude that limε→0 I1(ε) = 0.
Now let us show that limε→0 I3(ε) = 0. Arguing as before we have

|I3(ε)| ≤
1

ε

∫ T

0

∫ 1

0

θE

[∣∣∣∣
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))η

2
ε (t)

∣∣∣∣
]
dθdt

≤ 1

ε

∫ T

0

∫ 1

0

θ

(
E

[∣∣∣∣
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))

∣∣∣∣
p̃
]) 1

p̃ (
E

[
|ηε(t)|2q̃

]) 1
q̃

dθdt,

(3.8)

where we used Hölder’s inequality with the exponent p̃. Again, using Hypothesis (H4 ),

E

[∣∣∣∣
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))

∣∣∣∣
p̃
]
≤ Lp̃(t)E[(1 + |θξu(t) + (1− θ)ξε(t)|α)p̃]

≤ Lp̃(t)2p̃−1(1 + E[|θξu(t) + (1− θ)ξε(t)|αp̃])

≤ Lp̃(t)2p̃−1(1 + E[|θξu(t) + (1− θ)ξε(t)|p]
αp̃
p ),

where we also used the convexity of the function x 7→ |x|p̃ and Hölder’s inequality with the exponent p
αp̃

> 1.

Moreover, by the properties of the solution map S0 as in Corollary 2.3,

θξu(t) + (1− θ)ξε(t) = S0(θu+ (1 − θ)uε)(t)

and then, by Lemma 2.6, we conclude

E

[∣∣∣∣
∂2F

∂ξ2
(t, θξu(t) + (1− θ)ξε(t))

∣∣∣∣
p̃
]
≤ Lp̃(t)E[(1 + |θξu(t) + (1− θ)ξε(t)|α)p̃]

≤ Lp̃(t)2p̃−1(1 + E[|θξu(t) + (1− θ)ξε(t)|αp̃])
≤ CLp̃(t).

(3.9)

On the other hand, by Equation (3.3) we know that

(3.10)
(
E

[
|ηε(t)|2q̃

]) 1
q̃ ≤ K

(∫

Iε

|u− ū(τ)|dτ
)2

.
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Combining Equations (3.8), (3.10) and (3.9) we obtain

|I3(ε)| ≤
C

ε

(∫

Iε

|u− ū(τ)|dτ
)2 ∫ T

0

∫ 1

0

θL(t)dt ≤ Cε ‖L‖L1(0,T )

(
1

ε

∫

Iε

|u− ū(τ)|dτ
)2

.

Taking the limit as ε→ 0 we conclude that limε→0 I3(ε) = 0.
Finally, we need to evaluate limε→0 I2(ε). To do this, let us first show that we can use Fubini’s theorem to
exchange the order of expectation and Lebesgue integral. Indeed we have

∫ T

t0

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))ηε(t)

∣∣∣∣
]
1[t0+ ε

2 ,T ]
(t)dt ≤

∫ T

t0

(
E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣
p̃
]) 1

p̃

E

[
|ηε(t)|q̃

] 1
q̃

dt

≤ C

(∫

Iε

|u− ū(τ)|dτ
)
‖L‖L1(0,T )

≤ C ‖u− ū‖L1(0,T ) ‖L‖L1(0,T ) ,

where, for any B ⊆ [0, T ], 1B is the indicator function of the set B and we used again Equations (3.6) and
(3.7). Hence, by Fubini’s theorem, we have

I2(ε) = −1

ε

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))ηε(t)

]
1[t0+ ε

2 ,T ]
(t)dt

= −
∫ T

t0

E

[
1[t0+ ε

2 ,T ]
(t)
∂F

∂ξ
(t, ξu(t))G(t)e

A(t) 1

ε

∫

Iε

e−A(s)

G(s)
[u− u(s)]ds

]
dt,

(3.11)

where we explicitly wrote ηε(t). Now let us show that we can take the limit inside both the integral and the
expectation sign. To do this, we want to use dominated convergence theorem. Let us observe that

∣∣∣∣1[t0+ ε
2 ,T ]

(t)
∂F

∂ξ
(t, ξu(t))G(t)e

A(t) 1

ε

∫

Iε

e−A(s)

G(s)
[u− u(s)]ds

∣∣∣∣

≤ eT

(
sup

t∈[0,T ]

e2A(t)

)(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

)(
1

ε

∫

Iε

|u− ū(s)|ds
) ∣∣∣∣

∂F

∂ξ
(t, ξu(t))

∣∣∣∣

= C

(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

)(
1

ε

∫

Iε

|u− ū(s)|ds
) ∣∣∣∣

∂F

∂ξ
(t, ξu(t))

∣∣∣∣ .

In particular we have

lim
ε→0

(
1

ε

∫

Iε

|u − ū(s)|ds
)

= |u− ū(t0)|,

hence we can suppose ε is small enough to have
(
1

ε

∫

Iε

|u − ū(s)|ds
)

≤ 2|u− ū(t0)|.

This implies
∣∣∣∣1[t0+ ε

2 ,T ]
(t)
∂F

∂ξ
(t, ξu(t))G(t)e

A(t) 1

ε

∫

Iε

e−A(s)

G(s)
[u− u(s)]ds

∣∣∣∣

≤ C

(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

) ∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣ .
(3.12)

Now let us show that the stochastic process on the right-hand side is integrable. Observe that

E

[(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

) ∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣

]

≤ E



(

sup
t∈[0,T ]

G(t)

)q̃ (
sup

t∈[0,T ]

G′(t)

)q̃



1
q̃

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣
p̃
] 1

p̃

≤ CL(t),



DETERMINISTIC CONTROL OF SDES WITH STOCHASTIC DRIFT AND MULTIPLICATIVE NOISE 11

where we used Equation (3.6) and Lemma 2.8. Integrating on [t0, T ] we conclude that

∫ T

t0

E

[(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

) ∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣

]
≤ C ‖L‖L1(0,T ) .

We only need to show that the integrand in Equation (3.11) converges almost everywhere. Recalling that
t 7→ G(t) is almost surely continuous, fix ω ∈ Ω such that G(·, ω) is a continuous function, then t0 ∈ E is a

Lebesgue point for e−A(t)

G(t,ω) [u− u(t)] by Proposition 3.1. Hence we have

lim
ε→0

1[t0+ ε
2 ,T ]

(t)
∂F

∂ξ
(t, ξu(t))G(t)e

A(t) 1

ε

∫

Iε

e−A(s)

G(s)
[u − u(s)]ds

=
∂F

∂ξ
(t, ξu(t))G(t)e

A(t) e
−A(t0)

G(t0)
[u− u(t0)] a.s.

Thus, by Dominated Convergence Theorem, we get

lim
ε→0

I2(ε) = −(u− u(t0))

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt.

In conclusion, from Equation (3.4) we have

(3.13) lim
ε→0

g(ε)− g(0)

ε
= −(u− u(t0))

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt.

However, by definition of u, we know that 0 is a minimum point for g, and then

lim
ε→0

g(ε)− g(0)

ε
≥ 0,

that implies

u

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt ≤ u(t0)

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt.

Define H(u) := u
∫ T

t0
E

[
∂F
∂ξ

(t, ξu(t))e
A(t)−A(t0) G(t)

G(t0)

]
dt and observe that u(t0) is a maximum point for H(u).

Hence, by Fermat’s theorem, we get H ′(u(t0)) = 0, that is to say, being t0 ∈ E arbitrary,

(3.14)

∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt = 0, ∀t0 ∈ E.

Now we want to extend E to the whole interval [0, T ]. Let us show that

(3.15) t0 ∈ [0, T ] →
∫ T

t0

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t0)
G(t)

G(t0)

]
dt

is continuous. To do this, consider t1 ∈ [0, T ] and t2 = t1 + δ for some δ small enough to have t2 ∈ [0, T ]. To
fix the ideas, let us suppose δ > 0, since the arguments for δ < 0 are the same. We have

∣∣∣∣∣

∫ T

t1

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t1)
G(t)

G(t1)

]
dt−

∫ T

t2

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t2)
G(t)

G(t2)

]
dt

∣∣∣∣∣

≤
∫ t2

t1

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t1)
G(t)

G(t1)

∣∣∣∣
]
dt

+

∫ T

t2

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t1)
G(t)

G(t1)
− ∂F

∂ξ
(t, ξu(t))e

A(t)−A(t2)
G(t)

G(t2)

∣∣∣∣
]
dt

:= I4(δ) + I5(δ).

Let us consider I4(δ). The exact same argument we considered for I2(ε) leads to

E

[∣∣∣∣
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t1)
G(t)

G(t1)

∣∣∣∣
]
≤ CL(t)
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and then

I4(δ) ≤ C

∫ t2

t1

L(t)dt.

By absolute continuity of the Lebesgue integral, we have limδ→0 I4(δ) = 0.
Concerning I5(δ), we have to use dominated convergence theorem. To do this, let us just observe that, as in
Equation (3.12),

∣∣∣∣
∂F

∂ξ
(t, ξu(t))e

A(t)−A(t1)
G(t)

G(t1)

∣∣∣∣ ≤ C

∣∣∣∣
∂F

∂ξ
(t, ξu(t))

∣∣∣∣

(
sup

t∈[0,T ]

G(t)

)(
sup

t∈[0,T ]

G′(t)

)

where the right-hand side is independent of t1 and integrable. The same can be done with t2 and then, by
triangular inequality, we have that the integrand in I5(δ) is dominated. By dominated convergence theorem,
since G(t) is almost surely continuous, we have limδ→0 I5(δ) = 0.
Hence, the function in Equation (3.15) is continuous and, since |[0, T ] \E| = 0 and thus E is dense in [0, T ],
we can extend Equation (3.14) to the whole interval [0, T ], concluding the proof. �

Remark 3.3. Let us observe that, with the same arguments, we can actually show that J is Gateaux differ-
entiable (see [9]) in any u ∈ L1(0, T ) with Gateaux derivative given by

∂uJ [v] = −
∫ T

0

v(s)

∫ T

s

E

[
∂F

∂ξ
(t, ξu(t))e

A(t)−A(s)G(t)

G(s)

]
dtds, v ∈ L1(0, T )

and then Equation (3.1) can be restated as

∂ūJ [v] = 0, ∀v ∈ L1(0, T ).

From this point of view, Equation (3.1) is a consequence of Fermat’s theorem applied directly on J . For
this reason, we can refer to Equation (3.1) as the Euler-Lagrange equation for the functional J . In the same
fashion, we can recognize H as the Hamiltonian function of the cost functional J .
Moreover, let us stress out that, by the absolute continuity of Lebesgue’s integral, for any δ > 0 there exists
ε0 > 0 such that for any ε < ε0 it holds

‖uε − ū‖L1 =

∫

Iε

|u− ū(τ)|dτ < δ,

being |Iε| < ε0. Thus, defining the ball

Bδ(ū) = {u ∈ L1(0, T ) : ‖u− ū‖L1 < δ}
we know that, for any fixed δ > 0, there exists ε0 > 0 such that uε ∈ Bδ(ū) for any ε < ε0. Last observation
leads to the fact that Theorem 3.1 holds also for local minimizers of J , i.e. for functions ū for which there
exists δ > 0 such that

J [u] ≥ J [ū], ∀u ∈ Bδ(ū).

4. Sufficient optimality conditions

In the previous section we obtained a necessary optimality condition given in terms of Equation (3.1).
Now we want to investigate whether such condition is also sufficient, i.e. any solution of Equation (3.1) is
actually a minimizer of the functional J on L1(0, T ). To do this, we need some additional hypotheses:

(H5 ) For any fixed t ∈ [0, T ], the function x 7→ F (t, x) is convex.
(H5+) For any fixed t ∈ [0, T ], the function x 7→ F (t, x) is strictly convex.

Theorem 4.1. Suppose Hypotheses (H1) to (H5) are satisfied. Let ū ∈ L1(0, T ) be a solution of Equation
(3.1). Then ū is a global minimizer of J .

Proof. Let us consider ū ∈ L1(0, T ) solution of Equation (3.1) and let u ∈ L1(0, T ) be any other function.
Then we have

J [u]− J [ū] =

∫ T

0

E[F (t, ξu(t))− F (t, ξū(t))]dt
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where we already used Fubini’s theorem, by means of hypotheses (H2 ). By hypothesis (H3 ) and (H5 ) we
have

F (t, ξu(t))− F (t, ξū(t)) ≥
∂F

∂ξ
(t, ξū(t))(ξu(t)− ξū(t))

=
∂F

∂ξ
(t, ξū(t))S0(ū− u)

=
∂F

∂ξ
(t, ξū(t))G(t)e

A(t)

∫ t

0

e−A(s)

G(s)
(ū(s)− u(s))ds

=

∫ t

0

∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)
(ū(s)− u(s))ds

and then

(4.1) J [u]− J [ū] ≥
∫ T

0

E

[∫ t

0

∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)
(ū(s)− u(s))ds

]
dt.

Now we want to exchange the order of the integrals. To do this, observe that
∣∣∣∣
∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)
(ū(s)− u(s))

∣∣∣∣

≤
∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ1,τ2∈[0,T ]

eA(τ1)−A(τ2)

)
eT

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)
|ū(s)− u(s)|

= C

∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)
|ū(s)− u(s)|.

Let us consider the process on the right-hand side of the previous inequality. Integrating with respect to s
and applying the expectation operator we have

E

[∫ T

0

∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)
|ū(s)− u(s)|ds

]

= ‖ū− u‖L1 E

[∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)]
.

(4.2)

Now let us fix p̃ ∈
(
1,min

{
2, p

α

})
, where α is defined in hypothesis (H4 ), and q̃ such that 1

p̃
+ 1

q̃
= 1. By

Hölder’s inequality we have

E

[∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)]

≤ E

[∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣
p̃
] 1

p̃

E



(

sup
τ∈(0,T )

G(τ)

)q̃(
sup

τ∈(0,T )

G′(τ)

)q̃



1
q̃

≤ CL(t)E
[
(1 + |ξū(t)|α)p̃

] 1
p̃

≤ CL(t)21−
1
p̃ (1 + E[|ξū(t)|αp̃]

1
p̃ )

≤ CL(t)21−
1
p̃ (1 + E[|ξū(t)|p]

α
p ),

where we used hypothesis (H4 ), Lemma 2.8 and Hölder’s inequality a second time with exponent p
αp̃

> 1.

By Lemma 2.6 we conclude that

E

[∣∣∣∣
∂F

∂ξ
(t, ξū(t))

∣∣∣∣

(
sup

τ∈(0,T )

G(τ)

)(
sup

τ∈(0,T )

G′(τ)

)]
≤ CL(t).
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Going back to Equation (4.2) we have

E

[∫ T

0

∣∣∣∣
∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)
(ū(s)− u(s))

∣∣∣∣ ds
]
≤ C ‖ū− u‖L1 L(t)

and then, integrating with respect to t,

∫ T

0

E

[∫ T

0

∣∣∣∣
∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)
(ū(s)− u(s))

∣∣∣∣ ds
]
dt ≤ C ‖ū− u‖L1 ‖L‖L1 .

Hence, we can use Fubini’s theorem in Equation (4.1) to achieve

J [u]− J [ū] ≥
∫ T

0

(ū(s)− u(s))

∫ T

s

E

[
∂F

∂ξ
(t, ξū(t))e

A(t)−A(s)G(t)

G(s)

]
dtds = 0,

ū being a solution of (3.1). The fact that u ∈ L1 is arbitrary concludes the proof. �

The previous result is strictly linked with the convexity hypothesis (H5 ). Indeed, such hypothesis actually
implies the convexity of the operator J .

Proposition 4.2. Suppose Hypotheses (H1) to (H5) are satisfied. Then J is convex. Moreover, if (H5+) is
satisfied, J is strictly convex.

Proof. Let us consider u1, u2 ∈ L1(0, T ) and θ ∈ [0, 1]. Then we have

J [θu1 + (1− θ)u2] = E

[∫ T

0

F (t,S0(z − (θu1 + (1− θ)u2))(t))dt

]

= E

[∫ T

0

F (t, θ S0(z − u1)(t) + (1− θ)S0(z − u2)(t))dt

]

≤ θE

[∫ T

0

F (t,S0(z − u1)(t))dt

]
+ (1− θ)E

[∫ T

0

F (t,S0(z − u2)(t))dt

]

= θJ [u1] + (1− θ)J [u2],

where we used hypothesis (H5 ) and the third statement of Corollary 2.3. This proves that J is convex. Now
let us suppose u1 6= u2 (that is to say there exists a set E ⊆ (0, T ) with |E| > 0 and u1 6= u2 on E), θ ∈ (0, 1)
and (H5+) holds. By definition of the solution map, there exists Ω such that

I P(Ω) > 0;
II for any ω ∈ Ω, S0(z − ui)(·, ω) is continuous in [0, T ] for i = 1, 2;
III for any ω ∈ Ω, there exists t(ω) such that S0(z − u1)(t(ω), ω) 6= S0(z − u2)(t(ω), ω).

In particular, combining II and III we have that for any ω ∈ Ω there exists an interval I(ω) such that
S0(z − u1)(t, ω) 6= S0(z − u2)(t, ω) for any t ∈ I(ω). By using the third statement of Corollary 2.3 we get

J [θu1 + (1− θ)u2] = E

[∫ T

0

F (t,S0(z − (θu1 + (1− θ)u2))(t))dt

]

= E

[∫ T

0

F (t, θ S0(z − u1)(t) + (1− θ)S0(z − u2)(t))dt

]

= E

[∫

I(·)

F (t, θ S0(z − u1)(t) + (1− θ)S0(z − u2)(t))dt; Ω

]

+ E

[∫

[0,T ]\I(·)

F (t, θ S0(z − u1)(t) + (1− θ)S0(z − u2)(t))dt; Ω

]

+ E

[∫ T

0

F (t, θ S0(z − u1)(t) + (1− θ)S0(z − u2)(t))dt; Ω \ Ω
]
,
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where for any random variable Z and any event B ∈ F we use the notation E[Z;B] = E[Z1B]. Now let us
observe that by Hypothesis (H5+) we have

F (t, θ S0(z − u1)(t, ω) + (1− θ)S0(z − u2)(t, ω))

≤ θF (t,S0(z − u1)(t, ω)) + (1− θ)F (t,S0(z − u2)(t, ω)), ∀ω ∈ Ω, ∀t ∈ [0, T ],

and the inequality is strict for any ω ∈ Ω and t ∈ I(ω). Thus we get

J [θu1 + (1− θ)u2] < θE

[∫

I(·)

F (t,S0(z − u1)(t))dt; Ω

]
+ (1− θ)E

[∫

I(·)

F (t,S0(z − u2)(t))dt; Ω

]

+ θE

[∫

[0,T ]\I(·)

F (t,S0(z − u1)(t))dt; Ω

]
+ (1 − θ)E

[∫

[0,T ]\I(·)

F (t,S0(z − u2)(t))dt; Ω

]

+ θE

[∫ T

0

F (t,S0(z − u1)(t))dt; Ω \ Ω
]
+ (1− θ)E

[∫ T

0

F (t,S0(z − u2)(t))dt; Ω \ Ω
]

= θJ [u1] + (1 − θ)J [u2],

concluding the proof. �

Remark 4.3. Let us observe that Theorem 4.1 can be seen as a direct consequence of Proposition 4.2 and
Remark 3.3, by using the inequality

J [u]− J [ū] ≥ ∂ūJ [u− ū],

implied by the convexity of J [u].

Another direct consequence of Proposition 4.2 is given by the following Corollary.

Corollary 4.4. Suppose Hypotheses (H1) to (H5+) are satisfied. Then Equation (3.1) admits at most one
solution.

Proof. Let us suppose ū1 and ū2 are two solutions of Equation (3.1). Then, by Theorem 4.1 we know that
both ū1 and ū2 are global minimizers of J . However, Proposition 4.2 tells us that J is strictly convex, hence
it admits a unique global minimizer and then ū1 = ū2. �

5. Minimizing families

Up to now we are not able to show that J is coercive, which should be the main ingredient, together
with lower semicontinuity, to prove the existence of a minimizer. This is due to the fact that, since ξu(t) =
S0(z − u)(t) depends on a sort of primitive function of u, classical lower bounds such as F (t, ξ) ≥ L(1+ |ξ|p)
are not enough to guarantee coercivity. For this reason, we focus instead on exploiting some minimizing
families for J , i.e. a family of functions {uδ}δ>0 with the property that, for any ε > 0, there exists δ0 > 0
such that if δ ∈ (0, δ0) it holds

m ≤ J [uδ] ≤ m+ ε

where m = infu∈L1(0,T ) J [u].

First of all, we observe that J is a continuous functional on L1(0, T ).

Proposition 5.1. Let hypotheses (H1) to (H4) hold. Then J : L1(0, T ) → R is continuous, i.e. for any fixed
u1 ∈ L1(0, T ), for any ε > 0 there exists r > 0 (possibly depending on u1) such that

∀u2 ∈ Br(u1), |J [u2]− J [u1]| < ε,

where Br(u1) = {u2 ∈ L1(0, T ) : ‖u2 − u1‖L1(0,T ) < r}.

Proof. Fix ε > 0 and let u1, u2 ∈ L1(0, T ) with ‖u1 − u2‖L1(0,T ) < r, where r will be defined in what follows.

Then

|J [u2]− J [u1]| ≤ E

[∫ T

0

|F (t, ξu2(t)) − F (t, ξu1(t))|dt
]

≤ E

[∫ T

0

∫ 1

0

∣∣∣∣
∂F

∂ξ
(t, θξu2 (t) + (1− θ)ξu1 (t))

∣∣∣∣ |ξu2 (t)− ξu1(t)|dt
]
,

(5.1)
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where we used hypothesis (H3 ). Let us consider p as in (H1 ) and α as in (H4 ) and, let p̃ ∈
(
1,min

{
2, p

α

})

and q̃ such that 1
p̃
+ 1

q̃
= 1. By Hölder’s inequality we have

(5.2) E

[∣∣∣∣
∂F

∂ξ
(t, θξu2 (t) + (1− θ)ξu1 (t))

∣∣∣∣ |ξu2(t)− ξu1 (t)|
]

≤ E

[∣∣∣∣
∂F

∂ξ
(t, θξu2(t) + (1 − θ)ξu1(t))

∣∣∣∣
p̃
] 1

p̃

E[|ξu2(t)− ξu1(t)|q̃]
1
q̃ .

Concerning the first term, we have, by hypothesis (H4 )

E

[∣∣∣∣
∂F

∂ξ
(t, θξu2(t) + (1 − θ)ξu1(t))

∣∣∣∣
p̃
] 1

p̃

≤ L(t)E[(1 + |θξu2(t) + (1 − θ)ξu1(t)|α)p̃]
1
p̃

≤ 21−
1
p̃L(t)(1 + E[|θξu2 (t) + (1− θ)ξu1 (t)|αp̃]

1
p̃ )

≤ 21−
1
p̃L(t)(1 + E[|θξu2 (t) + (1− θ)ξu1 (t)|p]

α
p ),

where we used again Hölder’s inequality with exponent p
αp̃

> 1. Next, since ξui
= S0(z − ui), by Corollary

2.3 and Lemma 2.4 we get

E

[∣∣∣∣
∂F

∂ξ
(t, θξu2(t) + (1 − θ)ξu1(t))

∣∣∣∣
p̃
] 1

p̃

≤ 21−
1
p̃L(t)(1 + E[|S0(z − θu2 − (1− θ)u1)|p]

α
p )

≤ CL(t)

(
1 +

(∫ T

0

E[|z(t)− (θu2 + (1 − θ)u1)|p]
1
p

)α)

≤ CL(t)

(
1 + 2α−

α
p

(∫ T

0

E[|z(t)|p] 1p dt+
∫ T

0

|θu2(t) + (1− θ)u1(t)|dt
)α)

≤ CL(t)

(
1 + 22α−

α
p
−1

((∫ T

0

E[|z(t)|p] 1p dt
)α

+

(∫ T

0

|θu2(t) + (1− θ)u1(t)|dt
)α))

≤ CL(t)

(
1 +

(∫ T

0

|θu2(t) + (1− θ)u1(t)|dt
)α)

≤ CL(t)
(
1 + θ ‖u2‖αL1(0,T ) + (1− θ) ‖u1‖αL1(0,T )

)

where C is independent of u1 and u2, and we used the fact that
(∫ T

0 E[|z(t)|p] 1p dt
)α

< +∞ and that

t ≥ 0 7→ tα is a convex function. We can assume, without loss of generality, that r ≤ 1. Since ‖u2 − u1‖L1(0,T ) <

r ≤ 1, we achieve

E

[∣∣∣∣
∂F

∂ξ
(t, θξu2(t) + (1− θ)ξu1 (t))

∣∣∣∣
p̃
] 1

p̃

≤ CL(t)
(
1 + θ2α−1 ‖u2 − u1‖αL1(0,T ) + (1− θ + 2α−1) ‖u1‖αL1(0,T )

)

< CL(t)
(
1 + ‖u1‖αL1(0,T )

)
.

(5.3)

On the other hand, still recalling that ξui
= S0(z − ui) and by Corollary 2.3 and Lemma 2.6, we get

(5.4) E[|ξu2(t)− ξu1(t)|q̃ ]
1
q̃ = E[| S0(u2 − u1)(t)|q̃]

1
q̃ ≤ C ‖u2 − u1‖L1(0,T ) < Cr.

Combining Equations (5.3) and (5.4) in Equation (5.2) we get

E

[∣∣∣∣
∂F

∂ξ
(t, θξu2(t) + (1 − θ)ξu1(t))

∣∣∣∣ |ξu2(t)− ξu1(t)|
]
< CL(t)

(
1 + ‖u1‖αL1(0,T )

)
r.
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Using the previous inequality in (5.1) together with Fubini’s theorem, since the integrand is non-negative,
we know there exists a constant C > 0, independent of u1 and u2, such that

|J [u2]− J [u1]| < C
(
1 + ‖u1‖αL1(0,T )

)
r,

Setting

r = min



1,

ε

C
(
1 + ‖u1‖αL1(0,T )

)





we conclude the proof. �

Remark 5.2. If, moreover, Hypothesis (H5 ) holds, then J is also weakly lower semicontinuous in L1. This is
a direct consequence of Mazur’s theorem [15, Theorem 3.9].

Let us introduce the set of simple functions:

S =

{
u ∈ L1(0, T ) : ∃N ∈ N, {Bi}i≤N ⊆ B([0, T ]), {bi}i≤N ⊆ R, u =

N∑

i=1

bi1Bi

}
,

where B([0, T ]) is the Borel σ-algebra on the interval [0, T ]. As a direct consequence of Proposition 5.1 we
have the following Corollary.

Corollary 5.3. Let hypotheses (H1) to (H4) hold. Then

inf
u∈L1(0,T )

J [u] = inf
u∈S

J [u].

Proof. It follows from the fact that J : L1(0, T ) → R is continuous (by Propostion 5.1) and the fact that S
is dense in L1(0, T ) (see, for instance, [39, Theorem 3.13]). �

Now we want to penalize our functional J to obtain a coercive functional. To do this, let us first give the
following definition.

Definition 5.1. A function Ψ : [0,+∞) → [0,+∞) is called a Young function (see [37]) if there exists a
function ψ : [0,+∞) → [0,+∞) such that

Ψ(t) =

∫ t

0

ψ(s)ds, t ≥ 0

and ψ satisfies the following properties:

• ψ(0) = 0;
• ψ(s) > 0 for any s > 0;
• ψ is right-continuous;
• ψ is non-decreasing;
• lims→+∞ ψ(s) = +∞.

Young functions satisfy different important properties. Here we recall some of them (see [37, Lemma
4.2.2]).

Lemma 5.4. Any Young function Ψ is continuous, non-negative, strictly increasing and convex. Moreover
it holds Ψ(0) = 0, limt→0+ t

−1Ψ(t) = 0 and limt→+∞ t−1Ψ(t) = +∞.

Remark 5.5. Let us observe that if Ψ is a Young function then the function u ∈ R 7→ Ψ(|u|) is differentiable.
Indeed this is clearly true for u 6= 0 with derivative

dΨ(|u|)
du

=
u

|u|ψ(|u|), u 6= 0.

Observing that −1 ≤ u
|u| ≤ 1 and that, ψ being right-continuous with ψ(0) = 0, it holds limu→0

dΨ(|u|)
du

= 0

and then Ψ(|u|) is differentiable at 0 with derivative 0. We will use the notation u
|u|ψ(|u|) for any u ∈ R,

implying the 0 value as u = 0.
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Fix any Young function Ψ, δ > 0 and define the following functional

Jδ,Ψ : L1(0, T ) → J [u] + δFΨ[u]

where

FΨ[u] =

∫ T

0

Ψ(|u(t)|)dt.

Remark 5.6. There exist some u ∈ L1(0, T ) such that Jδ,Ψ[u] = +∞ (see, for instance, [37, Remark 4.2.4]).
In particular we can define the Orlicz class

LΨ(0, T ) =

{
u ∈ L1(0, T ) :

∫ T

0

Ψ(|u(t)|)dt < +∞
}

and observe that Jδ,Ψ[u] < +∞ if and only if u ∈ LΨ(0, T ). Let us stress out that LΨ(0, T ) is in general not

a vector space. Actually, LΨ(0, T ) is a vector space if and only if Ψ ∈ ∆2, i.e. there exists a constant k > 0
such that Ψ(2t) ≤ kΨ(t) for any t ≥ 0 (see [37, Theorem 4.5.3]). In particular, if Ψ ∈ ∆2, we have that

LΨ(0, T ) = LΨ(0, T ), where LΨ(0, T ) is defined as

LΨ(0, T ) =

{
u ∈ L1(0, T ) : ∃λ > 0 :

∫ T

0

Ψ

( |u(t)|
λ

)
dt < +∞

}

and is a Banach space when equipped with the norm

‖u‖LΨ(0,T ) := inf

{
λ > 0 :

∫ T

0

Ψ

( |u(t)|
λ

)
dt ≤ 1

}
.

See [37, Chapter 4] for further details.

First of all, we want to show that for any δ > 0 and any Young function Ψ, the functional Jδ,Ψ admits a
minimum. To do this, we need the following preliminary result.

Proposition 5.7. For any Young function Ψ ∈ ∆2, the functional FΨ : L1(0, T ) 7→ R∪{+∞} is weakly
lower semicontinuous.

The previous result relies on classical arguments in Calculus of Variation (see [2, 16, 42]). We provide its
proof in Appendix B for completeness.
Now we are ready to show that Jδ,Ψ admits a minimum.

Theorem 5.8. Let δ > 0 and Ψ ∈ ∆2 be a Young function. Suppose hypotheses (H1) to (H5) hold. Then
there exists a function ūδ,Ψ ∈ L1(0, T ) such that

min
u∈L1(0,T )

Jδ,Ψ[u] = Jδ,Ψ[ūδ,Ψ].

Moreover, if hypothesis (H5+) holds or if Ψ is strictly convex, then ūδ,Ψ ∈ L1(0, T ) is unique.

Proof. Let us first observe that Jδ,Ψ is weakly lower semicontinuous. To do this, observe that Jδ,Ψ is the sum
of two convex functionals J and δFΨ, thus it is convex. Moreover, J is continuous by Proposition 5.1 and
then, in particular, lower semicontinuous, while δFΨ is lower semicontinuous by Proposition 5.7. Thus Jδ,Ψ
is convex and lower semicontinuous and then weakly lower semicontinuous by a direct application of Mazur’s
theorem [15, Theorem 3.9].
Now let us consider a minimizing sequence {un}n∈N ⊂ L1(0, T ) of Jδ,Ψ, i.e. {un}n∈N is such that
Jδ,Ψ[un] ↓ infu∈L1(0,T ) Jδ,Ψ[u]. Let us consider any function f ∈ LΨ(0, T ). Then Jδ,Ψ[f ] < +∞ by defi-

nition of LΨ. In particular this implies that infu∈L1(0,T ) Jδ,Ψ[u] < +∞ and we can suppose Jδ,Ψ[u1] < +∞.
Let us observe that

δFΨ[un] ≤ Jδ,Ψ[un] ≤ Jδ,Ψ[u1], ∀n ∈ N

and then there exists a constant C(δ) =
Jδ,Ψ[u1]

δ
such that

FΨ[un] ≤ C(δ), ∀n ∈ N .

By the de la Vallée-Poussin theorem (see [30, Theorem T22]), we know that the sequence un is uniformly
integrable. By the Dunford-Pettis theorem (see [13, Theorem 4.30]) we have that the sequence {un} is
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weakly relatively compact in L1(0, T ) and then there exists uδ,Ψ ∈ L1(0, T ) such that un ⇀ uδ,Ψ. By weak
semicontinuity of Jδ,Ψ we have

inf
u∈L1(0,T )

Jδ,Ψ[u] = lim
n→+∞

Jδ,Ψ[un] ≥ Jδ,Ψ[uδ,Ψ] ≥ inf
u∈L1(0,T )

Jδ,Ψ[u],

concluding the proof of the first statement. Concerning the second statement, it follows from the fact that
if hypothesis (H5+) holds or if Ψ is strictly convex, then Jδ,Ψ is a strictly convex functional and then the
minimum is unique. �

Remark 5.9. Let us first observe that for any δ > 0 it holds uδ,Ψ ∈ LΨ(0, T ).
Moreover, we can prove that the functional Jδ,Ψ is coercive with respect to the weak topology in L1(0, T ),
i.e. for any M > 0 there exists a weakly compact set KM ⊂ L1(0, T ) such that u ∈ L1(0, T ) \KM implies
Jδ,Ψ[u] > M . Precisely, if Jδ,Ψ[u] ≤M , we have

δFΨ[u] ≤ Jδ,Ψ[u] ≤M

and then FΨ[u] ≤ M/δ. The set UM = {u ∈ L1(0, T ) : FΨ[u] ≤ M/δ} is uniformly integrable by the
de la Vallée-Poussin theorem and then it is weakly relatively compact by the Dunford-Pettis theorem. Let
KM = UM , where the closure is taken in the weak topology of L1(0, T ), so that KM is weakly compact. Then
Jδ,Ψ[u] ≤M implies u ∈ KM and, by contrapositive, we have that u ∈ L1(0, T ) \KM implies Jδ,Ψ[u] > M .

Now we want to show that the penalization procedure (i.e. defining the functional Jδ,Ψ as J plus a
penalization term δFΨ) generates a minimizing family for J .

Theorem 5.10. Let hypotheses (H1) to (H5) hold and consider a Young function Ψ ∈ ∆2. The family of
functions {uδ,Ψ}δ>0 defined in Theorem 5.8 constitute a minimizing family for J .

Proof. Set m = infu∈L1(0,T ) J [u]. Let us first observe that S ⊂ LΨ(0, T ). Indeed, if u ∈ S then there exist

N ∈ N, {Bi}i≤N ⊂ B([0, T ]) and {bi}i≤N ⊂ R such that u =
∑N

i=1 bi1Bi
. We can suppose, without loss of

generality, that
⋃

i≤N Bi = [0, T ] and that Bi ∩Bj = ∅ for any i 6= j. Hence we have

∫ T

0

Ψ(|u(t)|)dt =
N∑

i=1

∫

Bi

Ψ(|bi|)dt =
N∑

i=1

Ψ(|bi|)|Bi| ≤ T max
i≤N

Ψ(|bi|) < +∞.

Now let us consider any u ∈ S and observe that Jδ,Ψ[u] < +∞. Moreover, we have

m ≤ J [uδ,Ψ] ≤ Jδ,Ψ[uδ,Ψ] ≤ Jδ,Ψ[u] = J [u] + δFΨ[u].

Taking the limit superior and inferior as δ → 0 we get

m ≤ lim inf
δ→0

J [uδ,Ψ] ≤ lim sup
δ→0

J [uδ,Ψ] ≤ J [u].

Being u ∈ S arbitrary, we can take the infimum on S and use Corollary 5.3 to achieve

m ≤ lim inf
δ→0

J [uδ,Ψ] ≤ lim sup
δ→0

J [uδ,Ψ] ≤ m,

obtaining limδ→0 J [uδ,Ψ] = m and concluding the proof. �

Last theorem provides a theoretical way to construct a minimizing family for the functional J . Let us
first stress out that, under an additional regularity assumption, the previous approach actually proves the
existence of a minimizer for J .

Theorem 5.11. Let hypotheses (H1) to (H5) hold and suppose there exist two Young functions Ψi ∈ ∆2,
i = 1, 2, and two constants C, δ0 > 0 such that

(5.5) FΨ2 [uδ,Ψ1 ] ≤ C

for any δ ∈ (0, δ0), where the functions uδ,Ψ1 are defined in Theorem 5.8. Then there exists u ∈ L1(0, T )
such that

inf
u∈L1(0,T )

J [u] = J [u]

and uδ,Ψ1 ⇀ u as δ → 0.
Moreover, if hypothesis (H5+) holds, then u is unique.
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Proof. Let us consider any sequence δn ↓ 0 with δ1 < δ0. Equation (5.5) implies, via the de la Vallée-Poussin
theorem, that the sequence {uδn,Ψ1}n∈N is uniformly integrable and then the Dunford-Pettis theorem ensures
that it is weakly relatively compact. Hence, there exists u such that uδn,Ψ1 ⇀ u.
By Theorem 5.10 we know that limn J [uδn,Ψ1 ] = infu∈L1(0,T ) J [u] =: m. On the other hand, being J convex

and continuous in L1(0, T ), we know that it is weakly lower semicontinuous and then

m = lim
n
J [uδn,Ψ1 ] ≥ J [u] ≥ m

thus J [u] = m, concluding the first part of the proof. The second statement follows from the strict convexity
of J . �

Remark 5.12. The previous theorem can be proved directly by using the fact that Jδn,Ψ is a monotone
sequence of operators pointwise converging to J , that is convex and lower semicontinuous, thus it also Γ-
converges towards J in the weak topology of L1(0, T ) (see [12, Remark 1.40]). Let us also recall that, being
L∞(0, T ) not separable, the weak topology of L1(0, T ) is not metrizable on closed balls, hence the more
general definition of Γ-convergence on topological spaces has to be considered.

Let us stress out that if a minimizer of J exists in the right space, then we are under the hypotheses of
the previous theorem.

Corollary 5.13. Let hypotheses (H1) to (H5) hold and consider a Young function Ψ ∈ ∆2. Suppose there
exists u ∈ LΨ(0, T ) such that

J [u] = min
u∈L1(0,T )

J [u].

Then, the family {uδ,Ψ}δ>0 defined in Theorem 5.8 satisfies the hypotheses of Theorem 5.11 with Ψ1 = Ψ2 =
Ψ. Moreover, if hypothesis (H5+) holds, then uδn,Ψ ⇀ u for some sequence δn → 0.

Proof. We have to show that there exists a constant C > 0 such that FΨ[uδ,Ψ] ≤ C for any δ > 0. To do
this, let us recall that uδ,Ψ is a global minimizer of Jδ,Ψ, thus we have

J [uδ,Ψ] + δFΨ[uδ,Ψ] = Jδ,Ψ[uδ,Ψ] ≤ Jδ,Ψ[u] = J [u] + δFΨ[u].

On the other hand, being u the global minimizer of J , we have

J [uδ,Ψ] + δFΨ[uδ,Ψ] ≤ J [u] + δFΨ[u] ≤ J [uδ,Ψ] + δFΨ[u],

that is to say
FΨ[uδ,Ψ] ≤ FΨ[u].

Setting C = FΨ[u], since C < +∞ by hypothesis, we conclude the proof. �

Remark 5.14. Actually, de la Vallée-Poussin theorem tells us that if we have a global minimizer u ∈ L1(0, T )

for J , then there exists a Young function Ψ such that u ∈ LΨ(0, T ). In such case, the previous theorem holds
by choosing Ψ as Young function even if Ψ 6∈ ∆2. In conclusion, if J admits a global minimizer u ∈ L1(0, T ),
then there exists a Young function Ψ such that uδ,Ψ weakly converge towards a (possibly different) minimizer
of J and, if u is unique, then uδ,Ψ ⇀ u.

As a consequence of the weak convergence of the minimizers we obtain a form of weak convergence of the
approximating processes.

Theorem 5.15. Let hypotheses (H1) to (H5+) hold and suppose J admits a global minimizer u ∈ Lp̃(0, T ) for

some p̃ > 2
√
2 and consider Ψ(t) = tp̃. Let {uδ,Ψ}δ>0 be the family defined in Theorem 5.8. Let X0 ∈ L2(0, T ).

Then there exists a sequence δn → 0 such that SX0 uδn,Ψ ⇒ SX0 u in C([0, T ]) in distribution.

Proof. Let A = {ω ∈ Ω : G(·, ω) ∈ C([0, T ])} and recall that P(A) = 1. Fix t > 0, ω ∈ A and observe that,
by Corollary 2.3 and Equation (2.2),

| SX0 uδ,Ψ(t, ω)− SX0 u(t, ω)| = | S0(uδ,Ψ − u)(t, ω)| = G(t, ω)eA(t)

∣∣∣∣
∫ t

0

e−A(s)

G(s, ω)
uδ,Ψ(s)ds−

∫ t

0

e−A(s)

G(s, ω)
u(s)ds

∣∣∣∣ .

Consider δn → 0 as in Corollary 5.13, so that uδn,Ψ ⇀ u. Since e−A(·)

G(·,ω) is a continuous function, we have that

∫ t

0

e−A(s)

G(s, ω)
uδn,Ψ(s)ds→

∫ t

0

e−A(s)

G(s, ω)
u(s)ds
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and then

(5.6) lim
n→+∞

| SX0 uδn,Ψ(t, ω)− SX0 u(t, ω)| = 0, ∀ω ∈ A,

that is to say that, for fixed t ∈ [0, T ], it holds SX0 uδn,Ψ(t) → SX0 u(t) almost surely. Let us observe that
this is enough to guarantee the convergence in any finite-dimensional distribution. Indeed, consider N ∈ N

and t1, . . . , tN ∈ [0, T ] and fix ω ∈ A. Since Equation (5.6) holds for any ti, i = 1, . . . , N , we have that for
any fixed ε > 0 there exists νi ∈ N such that if n ≥ νi it holds

| SX0 uδn,Ψ(ti, ω)− SX0 u(ti, ω)| <
ε

N
.

Let ν = max{ν1, . . . , νN} and consider n ≥ ν. By the triangular inequality we get

|(̧SX0uδn,Ψ(ti, ω))i≤N − (SX0 u(ti, ω))i≤N | ≤
N∑

i=1

| SX0 uδn,Ψ(ti, ω)− SX0 u(ti, ω))i≤n| < ε,

so that

lim
n→+∞

|(SX0 uδn,Ψ(ti, ω))i≤N − (SX0 u(ti, ω))i≤N | = 0, ∀ω ∈ A.

This implies that (SX0 uδn,Ψ(ti))i≤N → (SX0 u(ti))i≤N almost surely and thus in distribution. To extend
the convergence in distribution to the whole paths, we need to show that the sequence SX0 uδ,Ψn

is tight.
Let us denote, for simplicity, Xδ = SX0 uδ,Ψ. Consider 0 ≤ t1 < t2 ≤ T and observe that, by Equation (2.2),
it holds

Xδ(t2)−Xδ(t1) = (G(t2)e
A(t2) −G(t1)e

A(t1))

∫ t2

0

e−A(s)

G(s)
uδ,Ψ(s)ds+G(t2)e

A(t1)

∫ t2

t1

e−A(s)

G(s)
uδ,Ψ(s)ds.

Being p̃ > 2
√
2, we have

4 + p̃

3p̃− 1
<

4 + p̃

4
<

4

p̃
<
p̃

2
< p̃− 1.

Hence, we can consider p1 ∈
(

4
p̃
, p̃2

)
, so that

1 <
p1 + 1

p1
< 2 <

p̃

p1
<

4p̃

4 + p̃
,

and p ∈
(
2,min

{
p̃
p1
, 4
})

. By convexity inequality,

E[|Xδ(t2)−Xδ(t1)|p] ≤ 2p−1

(
E

[
|G(t2)eA(t2) −G(t1)e

A(t1)|p
∣∣∣∣
∫ t2

0

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣
p
]

+E

[
Gp(t1)e

pA(t1)

∣∣∣∣
∫ t2

t1

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣
p
])

= 2p−1(I1 + I2).

(5.7)

Let us first work with I2. Using Hölder’s inequality with exponent p1 (and q1 such that 1/p1+1/q1 = 1) and
Jensen’s inequality we achieve

I2 ≤ E[Gpq1(t1)e
pq1A(t1)]

1
q1 (t2 − t1)

p
E

[∣∣∣∣
1

(t2 − t1)

∫ t2

t1

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣
pp1
] 1

p1

≤ E[Gpq1(t1)e
pq1A(t1)]

1
q1 (t2 − t1)

p− 1
p1 E

[∫ t2

t1

e−pp1A(s)

Gpp1(s)
|uδ,Ψ(s)|pp1ds

] 1
p1

.

(5.8)
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Set γ1 = p− 1
p1

with γ1 > 1 by the choice of p and p1. Now observe that

E[Gpq1(t1)e
pq1A(t1)]

1
q1 ≤

(
sup

t∈[0,T ]

epA(t)

)
E

[
sup

t∈[0,T ]

|G(t)|pq1
] 1

q1

≤
(

sup
t∈[0,T ]

epA(t)

)(
pq1

pq1 − 1

)p

e
p(pq1−1)

2 T =: C1(T, p, p1),

where we also used Doob’s maximal inequality. On the other hand, we have

E

[∫ t2

t1

e−pp1A(s)

Gpp1(s)
|uδ,Ψ(s)|pp1ds

] 1
p1

≤ E

[∫ T

0

epp1(s−A(s))(G′(s))pp1 |uδ,Ψ(s)|pp1ds

] 1
p1

≤
(

sup
t∈[0,T ]

ep(t−A(t))

)(∫ T

0

|uδ,Ψ|pp1(s)ds

) 1
p1

E

[
sup

t∈[0,T ]

|G′(t)|pp1

] 1
p1

≤
(

sup
t∈[0,T ]

ep(t−A(t))

)
e

p(pp1−1)

2 T

(∫ T

0

|uδ,Ψ|pp1(s)ds

) 1
p1

.

(5.9)

Concerning the last remaining integral in the previous inequality, let us observe that, by definition of p and
p1, it holds

p̃
pp1

> 1 hence, we can use it as exponent in Hölder’s inequality, obtaining

(∫ T

0

|uδ,Ψ|pp1(s)ds

) 1
p1

≤
(∫ T

0

|uδ,Ψ|p̃(s)ds
) p

p̃

T
p̃−pp1

p̃ .

Arguing as in Corollary 5.13, we know that FΨ[uδ,Ψ] ≤ FΨ[u] and then

(∫ T

0

|uδ,Ψ|pp1(s)ds

) 1
p1

≤
(∫ T

0

|u|p̃(s)ds
) p

p̃

T
p̃−pp1

p̃ =: C2(T, p̃, p, p1, u).

Plugging last inequality in Equation (5.9) we get

E

[∫ t2

t1

e−pp1A(s)

Gpp1(s)
|uδ,Ψ(s)|pp1ds

] 1
p1

≤
(

sup
t∈[0,T ]

ep(t−A(t))

)
e

p(pp1−1)
2 TC2(T, p̃, p, p1, u) =: C3(T, p̃, p, p1, u).

Setting then C4(T, p̃, p, p1, u) := C3(T, p̃, p, p1, u)C1(T, p, p1) we obtain, from Equation (5.8),

(5.10) I2 ≤ C4(T, p̃, p, p1, u)(t2 − t1)
γ1 .

Now let us consider I1. By Hölder’s inequality with exponent 4
p
> 1 we get

(5.11) I1 ≤ E

[
|G(t2)eA(t2) −G(t1)e

A(t1)|4
] p

4

E



∣∣∣∣
∫ t2

0

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣

4p
4−p




4−p
4

.

Let us first consider the first factor of I1. Let Y (t) = G(t)eA(t) and observe, by Itô’s formula, that

dY (t) = a(t)Y (t)dt + Y (t)dW (t)

in [t1, t2], that is to say

Y (t) = Y (t1) +

∫ t

t1

a(s)Y (s)ds +

∫ t

t1

Y (s)dW (s).
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For any t ∈ [0, t2 − t1] it holds

Y (t+ t1) = Y (t1) +

∫ t+t1

t1

a(s)Y (s)ds+

∫ t+t2

t2

Y (s)dW (s)

= Y (t1) +

∫ t

0

a(s+ t1)Y (s+ t1)ds+

∫ t

0

Y (s+ t1)dW̃ (s)

= Y (t1) +

∫ t

0

a(s+ t1)(Y (s+ t1)− Y (t1))ds+

∫ t

0

a(s+ t1)Y (t1)ds

+

∫ t

0

(Y (s+ t1)− Y (t1))dW̃ (s) +

∫ t

0

Y (t1)dW̃ (s),

where we used the change of variables s 7→ s−t1 and we set W̃ (t) :=W (t+t1)−W (t), that is still a Brownian

motion. Hence, the process Ỹ (t) = Y (t+ t1)− Y (t1) solves the SDE

dỸ (t) = a(t+ t1)
(
Ỹ (t) + Y (t1)

)
dt+ (Ỹ (t) + Y (t1))dW̃ (t), Ỹ (0) = 0

with t ∈ [0, t1 − t2]. We can extend the process by setting Ỹ (t) = Y (t2)− Y (t1) as t ∈ [t2 − t1, T ] so that:

dỸ (t) = ã(t)
(
Ỹ (t) + Y (t1)

)
dt+ (Ỹ (t) + Y (t1))1[0,t2−t1]dW̃ (t), Ỹ (0) = 0,

where ã(t) = a(t+ t1) if t ∈ [0, t2 − t1] and ã(t) = 0 if t ∈ (t2 − t1, T ]. Now set M = ‖a‖L∞(0,T ) ≥ ‖ã‖L∞(0,T )

and observe that by Lemma 2.4,

sup
t∈[0,t2−t1]

E[|Ỹ (t)|4] ≤ K(2,M, t2 − t1)

((∫ t2−t1

0

E[|ã(t)Y (t1)|4]
1
4 dt

)4

+

(∫ t2−t1

0

E[|Y (t1)|4]
1
2 dt

)2
)

≤ K(2,M, T )

(
E[|Y (t1)|4]

(∫ t2−t1

0

|ã(t)|dt
)4

+ E[|Y (t1)|4](t2 − t1)
2

)

≤ K(2,M, T )E[|Y (t1)|4](t2 − t1)
2
(
MT 2 + 1

)
,

where we used the fact that T 7→ K(2,M, T ) is increasing and t2 − t1 ≤ T . Calling back that

E[|Y (t1)|4] = e4A(t1) E[G4(t1)] ≤
(

sup
t∈[0,T ]

e4A(t)

)
e6T

by Equation (2.5) and setting C5(M,T ) :=
(
MT 2 + 1

)
K(2,M, T )

(
supt∈[0,T ] e

4A(t)
)
e6T we get

E[|Y (t2)− Y (t1)|4] = E[|Ỹ (t2 − t1)|4] ≤ sup
t∈[0,t1−t2]

E[|Ỹ (t)|4] ≤ C5(M,T )(t2 − t1)
2.

Going back to Equation (5.11), setting γ2 = p
2 , where γ2 > 1 since p > 2, we have

(5.12) I1 ≤ (C5(M,T ))
p
4 (t2 − t1)

γ2 E



∣∣∣∣
∫ t2

0

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣

4p
4−p




4−p
4

.

Now we have to estimate the second factor. Let us first use Jensen’s inequality (observing that 4p
4−p

> 1) to
get

E



∣∣∣∣
∫ t2

0

e−A(s)

G(s)
uδ,Ψ(s)ds

∣∣∣∣

4p
4−p


 ≤ t

4p
4−p

−1

2 E

[∫ t2

0

e−
4p

4−p
A(s)

G
4p

4−p (s)
|uδ,Ψ(s)|

4p
4−p ds

]

≤ T
4p

4−p
−1

E

[∫ T

0

e
4p

4−p
(s−A(s))|G′(s)| 4p

4−p |uδ,Ψ(s)|
4p

4−p ds

]

≤ T
4p

4−p
−1

(
sup

t∈[0,T ]

e
4p

4−p
(s−A(s))

)
E

[
sup

s∈[0,T ]

|G′(s)| 4p
4−p

]∫ T

0

|uδ,Ψ(s)|
4p

4−p ds.
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By Doob’s maximal inequality we have

E

[
sup

s∈[0,T ]

|G′(s)| 4p
4−p

]
≤
(

4p

5p− 4

) 4p
4−p

e
2p

4−p (
4p

4−p
−1)T .

On the other hand, let us observe that, being p < 4p̃
4+p̃

, it holds p̃(4−p)
4p > 1, thus we can use it as exponent

for Hölder’s inequality, obtaining

∫ T

0

|uδ,Ψ(s)|
4p

4−p ds ≤
(∫ T

0

|uδ,Ψ(s)|p̃ds
) 4p

p̃(4−p)

T 1− 4p
p̃(4−p) ≤

(∫ T

0

|u(s)|p̃ds
) 4p

p̃(4−p)

T 1− 4p
p̃(4−p) .

Hence we get, from Equation (5.12),

I1 ≤ (C5(M,T ))
p
4 (t1 − t2)

γ2T p− p
p̃

(
sup

t∈[0,T ]

e−pA(s)

)(
4p

5p− 4

)p

e
p
2 (

4p
4−p

+1)T

(∫ T

0

|u(s)|p̃ds
) p

p̃

=: C6(M,T, p̃, p, p1, u)(t2 − t1)
γ2 .

(5.13)

Now set γ = min{γ1, γ2} > 1 and combine Equations (5.10) and (5.13) with (5.7) to conclude that there
exists C7(M,T, p̃, p, p1, u) > 0 (notice that C7 does not depend on t1, t2) such that

E[|Xδ(t2)−Xδ(t1)|p] ≤ C7(M,T, p̃, p, p1, u)(t2 − t1)
γ .

This, together with the fact that Xδ(0) = 0 for any δ > 0, guarantees that {Xδ}δ>0 is tight (see, for instance,
[43, Theorem 11.6.5]). Thus, by a Corollary of Prohorov’s theorem (see, for instance, [43, Corollary 11.6.2]),
we know that Xδn ⇒ SX0 u in C([0, T ]), concluding the proof. �

Remark 5.16. The previous theorem clearly holds even if Ψ(t) = Ctp̃ for some constant C > 0.

Theorem 5.15 guarantees that even if uδ,Ψ does not converge strongly to u (due, for instance, to a highly
oscillatory behaviour), it can be still used to approximate the process SX0 u. This comes in handy in
the application context, whenever one has to numerically determine some functional properties of SX0 u.
Moreover, in the proof of the previous theorem, we have also shown that if Ψ ∈ ∆2 is a Young function and
‖uδ,Ψ‖Lp̃(0,T ) is uniformly bounded for some p̃ > 2

√
2, then the family {Xδ}δ>0 is tight. This means that,

in this case, by Prohorov’s theorem, {Xδ}δ>0 is relatively compact, i.e. there exists a process X with a.s.
continuous sample paths and a sequence δn → 0 such that Xδn ⇒ X . Combining the latter observation with
Theorem 5.11 we have that not only in this case J admits a minimizer, but there exists a sequence δn → 0
such that uδn,Ψ ⇀ u, Xδn ⇒ X and X = SX0 u.
Let us now exhibit a necessary and sufficient condition for a function uδ,Ψ to be a minimizer of Jδ,Ψ, given
in terms of an Euler-Lagrange type equation.

Theorem 5.17. Let hypotheses (H1) to (H5) hold and Ψ be a Young function with strictly increasing con-
tinuous derivative ψ. Then uδ,Ψ is the unique solution of

(5.14) δ
uδ,Ψ(t0)

|uδ,Ψ(t0)|
ψ(|uδ,Ψ(t0)|) =

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt, ∀t0 ∈ [0, T ].

Proof. The proof follows as in Theorem 3.2. Precisely, let Eu be the set of Lebesgue points of uδ,Ψ in (0, T ),
EL the set of Lebesgue points of L in (0, T ) and E = Eu ∪ EL. Let t0 ∈ E, fix a real number u ∈ R and
ε0 > 0 small enough to have

(
t0 − ε0

2 , t0 +
ε0
2

)
⊂ (0, T ). Define, for any ε ∈ (0, ε0), Iε :=

(
t0 − ε

2 , t0 +
ε
2

)
,

uε(t) =

{
u t ∈ Iε

uδ,Ψ(t) otherwise,

g1(ε) := Jδ,Ψ[uε], g2(ε) := J [uε] and g3(ε) := FΨ[uε], so that g1 = g2 + δg3 and

g1(ε)− g1(0)

ε
=
g2(ε)− g2(0)

ε
+ δ

g3(ε)− g3(0)

ε
.

Let us only study the second incremental ratio. It holds

g3(ε)− g3(0)

ε
=

1

ε

∫ T

0

(Ψ(uε(t))−Ψ(uδ,Ψ(t)))dt =
1

ε

∫

Iε

(Ψ(u)−Ψ(uδ,Ψ(t)))dt.
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Being Ψ ∈ ∆2, Ψ(u)−Ψ(uδ,Ψ(t)) belongs to L
1(0, T ), hence we can consider EΨ as the set of Lebesgue points

of Ψ(uδ,Ψ(t)) and E
′ = E ∩EΨ. From now on, let us assume that t0 ∈ E′. Taking the limit we obtain

lim
ε→0

g3(ε)− g3(0)

ε
= Ψ(u)−Ψ(uδ,Ψ(t0)).

On the other hand, we have, from Equation (3.13),

lim
ε→0

g2(ε)− g2(0)

ε
= −(u− uδ,Ψ(t0))

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt,

with the notation introduced in Theorem 3.2. Hence we conclude that

lim
ε→0

g1(ε)− g1(0)

ε
= δΨ(u)− δΨ(uδ,Ψ(t0))− (u− uδ,Ψ(t0))

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt.

However, we know that 0 is a minimum point of g1, thus it holds

(5.15) δΨ(|u|)− δΨ(|uδ,Ψ(t0)|)− (u − uδ,Ψ(t0))

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt ≥ 0.

Setting

H(u) := −δΨ(|u|) + u

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt,

by Equation 5.15 it holds maxu∈RH(u) = H(uδ,Ψ(t0)). By Remark 5.5 we know that H is differentiable and
then by Fermat’s theorem H ′(uδ,Ψ(t0)) = 0, that is to say

δ
uδ,Ψ(t0)

|uδ,Ψ(t0)|
ψ(|uδ,Ψ(t0)|) =

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt, ∀t0 ∈ E′.

Finally, the right-hand side being continuous (as we have shown in the proof of Theorem 3.2), we achieve
Equation (5.14).

Now we have to show that the latter is also a sufficient condition. To do this, let uδ,Ψ ∈ L1(0, T ) be a
solution of its and u ∈ L1(0, T ) be any other function. If u 6∈ LΨ(0, T ), then +∞ = Jδ,Ψ[u] ≥ Jδ,Ψ[uδ,Ψ].
Thus, let us consider u ∈ LΨ(0, T ). Observe that

Jδ,Ψ[u]− Jδ,Ψ[uδ,Ψ] = J [u]− J [uδ,Ψ] + δ(FΨ[u]−FΨ[uδ,Ψ]).

We already know, as it is shown in Theorem 4.1, that

(5.16) J [u]− J [uδ,Ψ] ≥
∫ T

0

(u(s)− uδ,Ψ(s))

(
−
∫ T

s

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(s)G(t)

G(s)

]
dt

)
ds.

Moreover, by the convexity of Ψ, we get

Ψ(|u(s)|)−Ψ(|uδ,Ψ(s)|) ≥
uδ,Ψ(s)

|uδ,Ψ(s)|
ψ(|uδ,Ψ(s)|)(u(s) − uδ,Ψ(s)), ∀s ∈ (0, T ),

and then

(5.17) FΨ[u]−FΨ[uδ,Ψ] ≥
∫ T

0

uδ,Ψ(s)

|uδ,Ψ(s)|
ψ(|uδ,Ψ(s)|)(u(s) − uδ,Ψ(s))ds.

Combining Equation (5.16) and (5.17) we get

Jδ,Ψ[u]− Jδ,Ψ[uδ,Ψ] ≥
∫ T

0

(u(s)− uδ,Ψ(s))

×
(
uδ,Ψ(s)

|uδ,Ψ(s)|
ψ(|uδ,Ψ(s)|)−

∫ T

s

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(s)G(t)

G(s)

]
dt

)
ds = 0,

that is to say that uδ,Ψ is a minimizer for Jδ,Ψ in L1(0, T ).
Hence we conclude that any solution of Equation (5.14) is a minimizer for Jδ,Ψ in L1(0, T ). However, being Ψ
strictly convex, uδ,Ψ is the unique minimizer of Jδ,Ψ. Thus uδ,Ψ is the unique solution of equation (5.14). �
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Remark 5.18. Let us stress out, as we did for J , that FΨ is Gateaux-differentiable in LΨ(0, T ) with Gateaux
derivative

∂u F [v] =

∫ T

0

u(s)v(s)

|u(s)| ψ(|u(s)|)ds, v ∈ LΨ(0, T ).

One can show that the previous quantity is finite for any v ∈ LΨ(0, T ) by means of Hölder’s inequality for
Orlicz spaces [37, Theorem 4.7.5]. As a consequence, we obtain that also Jδ,Ψ[u] is Gateaux-differentiable in
LΨ(0, T ) with Gateaux derivative

∂uJδ,Ψ[v] = ∂uJ [v] + δ∂u FΨ[v]

and Equation (5.14) follows from Fermat’s theorem. For this reason, we can refer to (5.14) as the Euler-
Lagrange equation for Jδ,Ψ. Let us emphasize that the function H(u) defined in the proof of Theorem 5.17
is, in some sense, the Hamiltonian function associated to Jδ,Ψ.

With a suitable choice of the Young function Ψ, we can guarantee better regularity for uδ,Ψ.

Corollary 5.19. Let hypotheses (H1) to (H5) hold and set Ψ(t) = t2n

2n for any n = 1, 2, 3, . . . . Then uδ,Ψ is
continuous.

Proof. With this choice, we have ψ(t) = t2n−1 and then Equation (5.14) becomes

δ
uδ,Ψ(t0)

|uδ,Ψ(t0)|
|uδ,Ψ(t0)|2n−1 =

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt, ∀t0 ∈ [0, T ],

that can be recast as

uδ,Ψ(t0) =
2n−1

√
1

δ

∫ T

t0

E

[
∂F

∂ξ
(t, ξuδ,Ψ

(t))eA(t)−A(t0)
G(t)

G(t0)

]
dt, ∀t0 ∈ [0, T ].

Being the right-hand side continuous, as proved in Theorem 3.2, we conclude the proof. �

6. Examples

In this section we provide some examples, to highlight on one hand some expected features of the approx-
imation problem while, on the other hand, show some unexpected behaviours even in the easier cases. First
we consider the general case of power costs. Then we will focus on the quadratic cost, that is to say the
mean squared error approximation functional. In this specific case we are able to restate the Euler-Lagrange
equation as a first kind Fredholm equation. The latter property allows us to give some explicit examples via
numerical methods.

6.1. Power cost functionals. Let us consider F (p)(ξ) = |ξ|p

p
for any p ≥ 2 and the cost functional J (p)[u] =

E[
∫ T

0
F (p)(ξu(t))dt]. For such cost functionals, we are able to prove the following Proposition.

Proposition 6.1. Fix p ≥ 2 and let z ∈ L2
p̃(Ω,P; [0, T ]) for some p̃ > p. Then J (p) satisfies hypotheses (H1)

to (H5+).

Proof. Being z ∈ L2
p̃(Ω,P; [0, T ]), hypothesis (H1 ) is satisfied with exponent p̃ > p ≥ 2. Clearly, F (p)(ξ) ≥ 0

and hypothesis (H2 ) is satisfied. Moreover, since p ≥ 2, F (p) is twice continuously differentiable in ξ with

dF (p)

dξ
(ξ) = |ξ|p−2ξ

d2F (p)

dξ2
(ξ) = (p− 1)|ξ|p−2,

thus we get hypothesis (H3 ). Next, there exists a constant L > 0 such that

F (p)(ξ) +

∣∣∣∣
dF (p)

dξ
(ξ)

∣∣∣∣ +
∣∣∣∣
d2F (p)

dξ2
(ξ)

∣∣∣∣ ≤ L(1 + |ξ|p).

As p < p̃, we achieve hypothesis (H4 ) with exponent α = p. Finally, hypothesis (H5+) is satisfied due to the
fact that F (p)(ξ) is strictly convex. �
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The Euler-Lagrange equation (3.1) for the functional J (p) can be stated as

(6.1)

∫ T

t

E

[
|ξu(τ)|p−2ξu(τ)e

A(τ)−A(t)G(τ)

G(t)

]
dτ = 0, ∀t ∈ [0, T ].

To introduce a penalization on the functional J (p), let us consider Ψ(2)(x) = x2

2 , F (2) := FΨ(2) and

J
(p,2)
δ := J (p) + δF (2). Its Euler-Lagrange equation (5.14) can be recast as

(6.2) uδ(t) =
1

δ

∫ T

t

E

[
|ξuδ

(τ)|p−2ξuδ
(τ)eA(τ)−A(t)G(τ)

G(t)

]
dτ, ∀t ∈ [0, T ].

Due to the nature of such equation, we speculate that, for p > 2, iteration methods to obtain its solution
could be developed. Further investigation on the topic is needed.
In the next subsections, we will focus on the case p = 2, in which, as we said before, we are able to restate
both equations (6.1) and (6.2) in a more tractable form.

6.2. The least mean squared error approximation: reduction to Fredholm equations. Indeed, let

us mainly focus on the case F (2)(ξ) = ξ2

2 , i.e. the least mean squared error approximation. In particular, let

us denote by J (2) the cost functional defined as

J (2)[u] = E

[∫ T

0

ξ2u(t)

2
dt

]
.

By Proposition 6.1 we know that, if z ∈ L2
p(Ω,P; [0, T ]) for any p > 2, then hypotheses (H1 ) to (H5+) are

satisfied and the Euler-Lagrange equation is given by (6.1). Actually, in this case, we can restate the equation
as a Fredholm integral equation of the first kind.

Proposition 6.2. Let z ∈ L2
p(Ω,P; [0, T ]) for some p > 2. Then u ∈ L1(0, T ) is the unique solution of the

minimization problem

(6.3) J (2)[u] = min
u∈L1(0,T )

J (2)[u]

if and only if

(6.4)

∫ T

0

k(t0, s; a)u(s)ds = Z(t0), ∀t0 ∈ [0, T ],

where

(6.5) k(t, s; a) = e−A(t)−A(s)−max{t,s}

∫ T

max{t,s}

e2A(τ)+τdτ

and

(6.6) Z(t) = e−A(t)

∫ T

t

∫ τ

0

e2A(τ)−A(s)
E

[
G2(τ)

G(t)G(s)
z(s)

]
dsdτ.

Proof. We already know that u is the unique solution of the minimization problem (6.3) if and only if it
solves

(6.7)

∫ T

t0

E

[
ξu(t)G(t)

G(t0)
e(A(t)−A(t0))

]
dt = 0, ∀t0 ∈ [0, T ],

that is Equation (6.1). By the explicit definition of solution map given in Equation (2.2) we get

ξu(t) = S0(z − u)(t) = G(t)eA(t)

∫ t

0

e−A(s)

G(s)
(z(s)− u(s))ds

and then Equation (6.7) becomes

(6.8)

∫ T

t0

E

[∫ t

0

G2(t)

G(t0)G(s)
e2A(t)−A(t0)−A(s)(z(s)− u(s))ds

]
dt = 0, ∀t0 ∈ [0, T ].
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Now we want to show that we are under the hypotheses of Fubini’s theorem, so to exchange the order of the
inner integral and the expectation operator. Let us first rewrite

∫ t

0

G2(t)

G(t0)G(s)
e2A(t)−A(t0)−A(s)|z(s)− u(s)|ds =

∫ t

0

G2(t)G′(s)

G(t0)
e2A(t)−A(t0)−A(s)+s|z(s)− u(s)|ds

≤
(

sup
τ1,τ2,τ3∈[0,T ]

e2A(τ1)−A(τ2)−A(τ3)+τ3

)(
sup

s∈[0,T ]

G′(s)

)
G2(t)

G(t0)

(∫ T

0

|z(s)|ds+ ‖u‖L1(0,T )

)
.

Next, we take the expectation on both sides of the previous inequality to achieve

E

[∫ t

0

G2(t)

G(t0)G(s)
e2A(t)−A(t0)−A(s)|z(s)− u(s)|ds

]

≤ C E

[(
sup

s∈[0,T ]

G′(s)

)
G2(t)

G(t0)

(∫ T

0

|z(s)|ds+ ‖u‖L1(0,T )

)]
.

By the Cauchy-Schwartz inequality we get

E

[(
sup

s∈[0,T ]

G′(s)

)
G2(t)

G(t0)

(∫ T

0

|z(s)|ds+ ‖u‖L1(0,T )

)]

≤ E



(

sup
s∈[0,T ]

G′(s)

)2
G4(t)

G2(t0)




1
2

E



(∫ T

0

|z(s)|ds+ ‖u‖L1(0,T )

)2



1
2

.

(6.9)

To argue with the first factor of Equation (6.9), let us apply again the Cauchy-Schwartz inequality to obtain

E



(

sup
s∈[0,T ]

G′(s)

)2
G4(t)

G2(t0)


 ≤ E



(

sup
s∈[0,T ]

G′(s)

)4



1
2

E

[
G8(t)

G4(t0)

] 1
2

≤ C E

[
G8(t)

G4(t0)

] 1
2

,

where we also used Lemma 2.8. Noticing that

G8(t)

G4(t0)
= e8W (t)−4W (t0)−4t+2t0 ,

we recall that G8(t)
G4(t0)

is a lognormal random variable and then E

[
G8(t)
G4(t0)

]
is finite. Hence, the first factor of

Equation (6.9) is finite.
Concerning the second factor, it clearly holds

E



(∫ T

0

|z(s)|ds+ ‖u‖L1(0,T )

)2

 ≤ 2


E



(∫ T

0

|z(s)|ds
)2

+ ‖u‖2L1(0,T )


 < +∞,

since L2
p(Ω,P; [0, T ]) ⊂ L2

1([0, T ]; Ω,P). Hence, we can use Fubini’s theorem to rewrite Equation (6.8) as

∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)
E

[
G2(t)

G(t0)G(s)
(z(s)− u(s))

]
dsdt = 0, ∀t0 ∈ [0, T ],

that is equivalent to
(6.10)∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)
E

[
G2(t)

G(t0)G(s)

]
u(s)dsdt =

∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)
E

[
G2(t)

G(t0)G(s)
z(s)

]
dsdt, ∀t0 ∈ [0, T ].

Arguing as before, notice that G2(t)
G(t0)G(s) is a lognormal random variable with

E

[
log

(
G2(t)

G(t0)G(s)

)]
= E

[
2W (t)−W (t0)−W (s)− t+

t0 + s

2

]
=
t0 + s

2
− t

Var

[
log

(
G2(t)

G(t0)G(s)

)]
= E

[
(2W (t)−W (t0)−W (s))2

]
= 4t− 3t0 − 3s+ 2min{t0, s}
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where for any random variable X ∈ L2(Ω,P) we set Var(X) = E[(X − E[X ])2]. Hence we get

E

[
G2(t)

G(t0)G(s)

]
= et−t0−s+min{t0,s} = et−max{t0,s}

and then
∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)
E

[
G2(t)

G(t0)G(s)

]
u(s)dsdt =

∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)+t−max{t0,s}u(s)dsdt.

Being u ∈ L1(0, T ), it is clear that we can use Fubini’s theorem to achieve

∫ T

t0

∫ t

0

e2A(t)−A(t0)−A(s)+t−max{t0,s}u(s)dsdt =

∫ T

0

(∫ T

max{t0,s}

e2A(t)−A(t0)−A(s)+t−max{t0,s}dt

)
u(s)ds.

Setting k(t, s; a) and Z(t) as in Equations (6.5) and (6.6) we can rewrite Equation (6.10) as (6.4), concluding
the proof. �

An analogous result can be shown for Equation (6.2).

Proposition 6.3. Let z ∈ L2
p(Ω,P; [0, T ]) for some p > 2. Then uδ ∈ L1(0, T ) is the unique solution of the

minimization problem

(6.11) J
(2,2)
δ [uδ] = min

u∈L1(0,T )
J
(2,2)
δ [u]

if and only if

(6.12) δuδ(t0) +

∫ T

0

k(t0, s; a)uδ(s)ds = Z(t0), ∀t0 ∈ [0, T ],

where k and Z are defined in Equations (6.5) and (6.6).

We omit the proof since it is identical to the previous one.
Both Propositions 6.2 and 6.3 give us an alternative form of the Euler-Lagrange equation whose usefulness
is twofold: we can use some well-known numerical methods to exploit the solution and it can be also used to
determine the existence of the solution (and actually exhibit it) under an additional hypothesis. This is the
content of the next subsection.

6.3. The least mean squared approximation: the independence case. Now let us prove that if z is
independent of W , then we can exhibit the solution of the approximation problem.

Proposition 6.4. Let z ∈ L2
p(Ω,P; [0, T ]) for some p > 2 be independent of the Brownian motion W (t).

Then the minimization problem (6.3) admits as unique solution u(t) = E[z(t)]. Moreover, it holds

(6.13) J (2)[u] =
1

2

∫ T

0

∫ t

0

∫ t

0

e2A(t)−A(s)−A(τ)+t−max{s,τ}Cov(z(s), z(τ))dsdτdt,

where Cov is the covariance operator, i.e., for two random variables X,Y ∈ L2(Ω,P), Cov(X,Y ) = E[(X −
E[X ])(Y − E[Y ])].

Proof. By Proposition 6.2 we know that u is the unique solution of the minimization problem (6.3) if and
only if it solves equation (6.4). Thus, we only have to show that u(t) = E[z(t)] solves that equation. To do
this, just observe that, being z independent of W , by Equation (6.6) we get

Z(t) = e−A(t)

∫ T

t

∫ τ

0

e2A(τ)−A(s)+τ−max{t,s}
E[z(s)]dsdτ.

Since z ∈ L2
p(Ω,P; [0, T ]), we know that E[z(·)] ∈ L1(0, T ) and then we can use Fubini’s theorem in the

previous equation to achieve

Z(t) =

∫ T

0

(∫ T

max t,s

e−A(t)+2A(τ)−A(s)+τ−max{t,s}dτ

)
E[z(s)]ds =

∫ T

0

k(t, s; a)E[z(s)]ds,
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concluding the first part of the proof.
Now let us evaluate J (2)[u]. We have, by the definition of J (2) and Equation (2.2),

J (2)[u] =
1

2

∫ T

0

E

[
G2(t)e2A(t)

(∫ t

0

e−A(s)

G(s)
(z(s)− u(s))ds

)2
]
dt

=
1

2

∫ T

0

E

[∫ t

0

∫ t

0

G2(t)e2A(t)−A(s)−A(τ)

G(s)G(τ)
(z(s)− u(s))(z(τ) − u(τ))dsdτ

]
dt.

(6.14)

Now we want to show that we are under the hypotheses of Fubini’s theorem so that we can exchange the
inner double integral with the expectation operator. To do this, notice that

∫ t

0

∫ t

0

G2(t)e2A(t)−A(s)−A(τ)

G(s)G(τ)
|z(s)− u(s)||z(τ) − u(τ)|dsdτ

≤ G2(t)

(
sup

t,t0,s∈[0,T ]

e2A(t)−A(s)−A(τ)+s+τ

)(
sup

s∈[0,T ]

G′(s)

)(
sup

s∈[0,T ]

G′(τ)

)

×
∫ t

0

∫ t

0

|z(s)− u(s)||z(τ) − u(τ)|dsdτ.

Taking the expectation on both sides and using the fact that z is independent of W we have

E

[∫ t

0

∫ t

0

G2(t)e2A(t)−A(s)−A(τ)

G(s)G(τ)
|z(s)− u(s)||z(τ) − u(τ)|dsdτ

]

≤ E

[
G2(t)

(
sup

t,t0,s∈[0,T ]

e2A(t)−A(s)−A(τ)+s+τ

)(
sup

s∈[0,T ]

G′(s)

)(
sup

s∈[0,T ]

G′(τ)

)

×
∫ t

0

∫ t

0

|z(s)− u(s)||z(τ)− u(τ)|dsdτ
]

≤ C E

[
G2(t)

(
sup

s∈[0,T ]

G′(s)

)(
sup

s∈[0,T ]

G′(τ)

)]
E

[∫ t

0

∫ t

0

|z(s)− u(s)||z(τ)− u(τ)|dsdτ
]
.

Arguing exactly as in the proof of Proposition 6.2, we have

E

[
G2(t)

(
sup

s∈[0,T ]

G′(s)

)(
sup

s∈[0,T ]

G′(τ)

)]
≤ C,

while, on the other hand

E

[∫ t

0

∫ t

0

|z(s)− u(s)||z(τ)− u(τ)|dsdτ
]
=

∫ t

0

∫ t

0

E[|z(s)− u(s)||z(τ) − u(τ)|]dsdτ

≤
∫ t

0

∫ t

0

E[|z(s)− u(s)|2] 12 E[|z(τ)− u(τ)|2] 12 dsdτ

=

∫ t

0

E[|z(s)− u(s)|2] 12 ds
∫ t

0

E[|z(τ)− u(τ)|2] 12 dτ

≤
(∫ T

0

E[|z(s)− u(s)|2] 12 ds
)2

≤ T

∫ T

0

E[|z(s)− u(s)|2]ds,

where we used the Cauchy-Schwartz inequality and Jensen’s inequality. Now let us observe that

E[|z(s)− u(s)|2] = E[|z(s)|2]− E[z(s)]2 ≤ E[|z(s)|2],
and then, being z ∈ L2

p(Ω,P; [0, T ]), we know that

T

∫ T

0

E[|z(s)− u(s)|2]ds ≤ C.
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Hence we can use Fubini’s theorem and the fact that z is independent of W in Equation (6.14) to conclude
the proof. �

Remark 6.5. Last Proposition agrees, in some sense, with the classical idea that the expected value should
minimize the mean squared error under the hypothesis that z is independent of W . However, we cannot
remove this hypothesis, as we will see in the next subsection.

Let us use the previous Proposition to provide an example in which we already know that the minimizer
exists (and we know its exact form) and we can numerically solve the penalized equations. Precisely, let us
set z(t) as a geometric Brownian motion independent of W , so that u(t) = E[z(t)] ≡ 1. Let a(t) ≡ −1, and
then A(t) = −t, and T = 1. In this case we have

(6.15) k(t, s;−1) = e−|t−s| − e−1+min{t,s}

and

(6.16) Z(t) = e−1−t(−e+ et − 3e2t + 2e1+t + e2tt).

For any δ > 0, let uδ be the solution of Equation (6.12). To obtain a numerical evaluation of uδ for some
fixed δ > 0 we used Nyström method (see [6]). Since we expect an highly oscillatory behaviour for small
values of δ, we need to determine a big number of nodes. To do this, we adopted a composite Newton-Cotes
quadrature formula based on a 7-th order interpolating polynomial on equispaced nodes. Precisely, we divided
the interval [0, 1] in N subintervals and, on each interval, we applied the closed Newton-Cotes formula (on
equispaced nodes) with weights:

w =
1

840N
(41, 236, 27, 272, 27, 236, 41).

To be sure to avoid Runge’s phenomenon, one could also reduce the order of the interpolation while increasing
N . Such solutions are visualized in Figure 1. Evidently, uδ does not converge to 1 as δ → 0. Let us now
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Figure 1. Numerical solutions of Equation (6.12) with T = 1, Z(t) given in Equation (6.16)
and k(t, s; a) given in Equation (6.15), for different values of δ. Precisely, reading left-to-right
top-to-bottom we have uδ for δ = 10−n with n = 1, . . . , 9. N is fixed to 100, so that we have
601 nodes for each uδ.

denote un = u10−n . To show that J (2)[un] → J (2)[u], let us first evaluate J (2)[u]. This can be done by
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observing that
Cov(z(s), z(τ)) = emin{τ,s} − 1

and then, by Equation (6.13),

J (2)[u] =
1

2

∫ 1

0

∫ t

0

∫ t

0

e−t+min{τ,s}(emin{τ,s} − 1)dsdτdt =
e2 − 7

4e
≈ 0.0357814.

On the other hand, to evaluate J (2)[un], we adopted a numerical method based on a Monte-Carlo approach.
Precisely we simulated a skeleton of 6N + 1 nodes (ξi)0≤i≤6N for the process ξ := ξun

. To do this, first we
simulated a skeleton (zi)0≤i≤6N of 6N + 1 nodes for z as

{
z0 = 1,

zi = zi−1e
ζ̃i√
6N

− 1
12N , i = 1, . . . , 6N,

where ζ̃i ∼ N (0, 1) with ζ̃i independent of ζ̃j for each i 6= j. Once this is done, (ξi)0≤i≤6N can be obtained
by using an Euler scheme (see [5]):




ξ0 = 0

ξi = ξi−1 +
−ξi−1 + zi−1 − un(ti−1)

6N
+
ζiξi−1√
6N

, i = 1, . . . , 6N,

where ti = i
6N , un(ti−1) has been obtained previously via Nyström method and ζi ∼ N (0, 1) with ζi

independent of ζj for i 6= j. The value 1
2

∫ T

0
ξ2(t)dt is then approximated by a quadrature formula and

J (2)[un] by repeating the procedure for a fixed number Ntraj of trajectories and then taking the average.

While, on one hand, the convergence J (2)[un] → J (2)[u] is justified by Theorem 5.10, on the other hand the
stochastic differential equation could be stiff due to the highly oscillatory behaviour of un and the Euler
scheme could fail to catch ξ. The estimated values of J (2)[un] for n = 1, . . . , 5 are given in Table 1.

J (2)[u1] J (2)[u2] J (2)[u3] J (2)[u4] J (2)[u5] J (2)[u]

0.0462 0.0363 0.0361 0.0362 0.0358 0.0358

Table 1. Numerically estimated values of J (2)[un] for n = 1, . . . , 5, in comparison with
J (2)[u]. N is fixed to 100, while Ntraj = 100000.

To show a numerical evidence that un ⇀ u, we also numerically evaluated
∫ 1

0
tjun(t)dt for different values of

j and n and we compared it with
∫ 1

0
tjdt = 1/j in Table 2.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
∫ 1

0 x
jdx

j = 0 0.6141 0.8878 0.9670 0.9899 0.9968 0.9988 0.9991 0.9992 0.9992 1
j = 1 0.2535 0.4067 0.4690 0.4901 0.4968 0.4988 0.4991 0.4992 0.4992 1/2
j = 2 0.1431 0.2495 0.3034 0.3235 0.3301 0.3321 0.3325 0.3325 0.3325 1/3
j = 3 0.0930 0.1734 0.2211 0.2403 0.2468 0.2488 0.2491 0.2492 0.2492 1/4

Table 2. Numerically estimated values of
∫ 1

0 t
jun(t)dt for n = 1, . . . , 9 and j = 0, 1, 2, 3, in

comparison with
∫ 1

0 t
jdt = 1/j. N is fixed to 100 and the values of the integrals are obtained

by using the same quadrature formula as applied before to determine un.

With this example, we want to highlight the fact that even if the solution of the minimizing problem (6.3) is
known and quite regular, the solution of the penalized problem converge towards them only weakly. However,
this is a problem only in the case one wants to approximate the actual minimizer u. Indeed, usually one is
interested in properties of the approximating process SX0 u, that, despite the weak convergence of uδ towards
u, is in the overall approximated well enough by SX0 uδ, as shown in Theorem 5.15.
As already stated in Remark 6.5, Proposition 6.4 seems to suggest that the expected value should be, in some
sense, the minimizer of the mean squared error. However, as we will see in the following example, this is not
necessarily true if we suppose that z and W are dependent.
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6.4. The least mean squared error approximation: a dependence case. Now let us consider a
different example. Let z = G, a ≡ 1, so that A(t) = t, and T = 1. First of all, let us observe that, since
z(t) = f(t,W (t)) for some function f , we cannot use Proposition 6.4. Thus, let us first determine (at least
numerically) the solutions uδ of the penalized problem (6.11). According to Equation (6.5) we have

(6.17) k(t, s; 1) =
1

3

(
e3−min{t,s}−2max{t,s} − e|t−s|

)
.

Concerning Z(t), starting from Equation (6.6), it holds

(6.18) Z(t) =

∫ 1

t

∫ τ

0

e2τ−t−s
E

[
G2(τ)

G(t)

]
dsdτ.

In particular, G2(τ)
G(t) = e2W (τ)−W (t)−τ+ t

2 is a lognormal random variable with

E

[
log

(
G2(τ)

G(t)

)]
= E

[
2W (τ)−W (t)− τ +

t

2

]
=
t

2
− τ

Var

[
log

(
G2(τ)

G(t)

)]
= E[(2W (τ) −W (t))2] = 4τ − 3t

hence

E

[
G2(τ)

G(t)

]
= eτ−t.

Thus Equation (6.18) becomes

(6.19) Z(t) =

∫ 1

t

∫ τ

0

e3τ−2t−sdsdτ =
1

6
(3 − 2et + e2−2t(2e− 3)).

As before, let us exploit some numerical solutions uδ of Equation (6.12) (with k and Z given in Equations
(6.17) and (6.19)) by using Nyström’s method, as shown in Figure 2. From now on let us denote un := u10−n .
We do not know if Equation (6.4) admits a solution. To have a qualitative idea on whether a solution of
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Figure 2. Numerical solutions of Equation (6.12) with T = 1, Z(t) given in Equation (6.19)
and k(t, s; a) given in Equation (6.17), for different values of δ. Precisely, reading left-to-right
top-to-bottom we have uδ for δ = 10−n with n = 1, . . . , 9. N is fixed to 100, so that we have
601 nodes for each uδ.
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

p = 2 1.0492 2.7499 8.1839 24.5822 86.3839 282.1855 367.4504 378.6386 379.7967
p = 1.5 0.7900 1.2318 2.0335 3.3589 5.8571 10.7897 12.8737 13.1871 13.2218
p = 1.25 0.7262 0.9220 1.1764 1.4681 1.8501 2.4278 2.6948 2.7466 2.7529
p = 1.1 0.7057 0.8139 0.9178 1.0014 1.0824 1.1826 1.2347 1.2472 1.2489
p = 1.01 0.6996 0.7701 0.8183 0.8402 0.8508 0.8584 0.8622 0.8632 0.8633

Table 3. Numerically estimated values of ‖un(t)‖pLp(0,1) for n = 1, . . . , 9 and p =

2, 1.5, 1.25, 1.1, 1.01. N is fixed to 100 and the values of the integrals are obtained by using
the same quadrature formula as before to determine un.

Equation (6.4) exists or not, we could evaluate ‖un‖Lp(0,T ) for some p > 1, as done in Table 3. From Table

3, we expect that ‖un‖Lp(0,1) ≤ C for some suitable choice of p > 1 (a good choice could be p = 1.01, but, for

a big value of C, also p = 2 seems to work). This numerical evidence lets us conjecture that un is uniformly
bounded in Lp(0, 1) for some p > 1 and then, by Theorem 5.11, that a solution u of the minimization problem
(6.3) exists. Since we can suppose ‖un‖L2(0,1) ≤ C, let us conjecture that u ∈ L2(0, 1).

With this idea in mind, let us evaluate numerically the solution of Equation (6.4). To do this, we cannot
use Nyström’s method, as it is well known that for Fredholm integral equations of the first kind the matrix
obtained with the quadrature formula is very ill-conditioned. Hence, we have to use a different method.
Precisely, we use a Galërkin-type method as follows (see [44, Section 6.3]). Let Pn(t) be the n-th degree
Legendre polynomial and define Qn(t) = Pn(2t − 1). Thus {Qn(t)}n∈N constitute an orthogonal system in
L2(0, 1) equipped with the usual scalar product 〈·, ·〉, i.e.

〈f, g〉 =
∫ 1

0

f(t)g(t)dt, ∀f, g ∈ L2(0, 1).

Thus, u =
∑+∞

i=0 〈u,Qi〉Qi and Z =
∑+∞

i=0 〈Z, Qi〉Qi. Moreover, for fixed s ∈ [0, 1], it holds k(·, s; 1) =∑+∞
i=0 〈k(·, s; 1), Qi〉Qi. Rewriting Equation (6.4) by using the series decomposition of u we have

+∞∑

i=0

〈u,Qi〉
∫ 1

0

k(t, s; 1)Qi(s)ds = Z(t).

Then, using the decomposition of Z and k(·, s; 1), we get



+∞∑

i,j=0

〈u,Qi〉
∫ 1

0

〈k(·, s; 1), Qj〉Qi(s)ds


Qj(t) =

+∞∑

j=0

〈Z , Qj〉Qj(t),

that is to say



+∞∑

i,j=0

〈u,Qi〉
∫ 1

0

∫ 1

0

k(τ, s; 1)Qj(τ)Qi(s)dτds


Qj(t) =

+∞∑

j=1

〈Z, Qj〉Qj(t).

Let us fix m ∈ N and consider Zm =
∑m

i=0〈Z, Qi〉Qi, that is a finite-dimensional approximation of Z. Let

also u(m) =
∑m

i=0〈u,Qi〉Qi be a finite-dimensional approximation of u satisfying equation (6.4) with Zm

in place of Z. Then, if we reduce the problem to finding the finite-dimensional approximation u(m), it is
equivalent to the problem of solving the following linear system

Ku = z,

where Ki,j =
∫ 1

0

∫ 1

0 k(τ, s; 1)Qj(τ)Qi(s)dτds, ui = 〈u,Qi〉 and zi = 〈Z, Qi〉, for i, j = 0, . . . ,m. The

approximation u(m) is shown in Figure 3. From now on we will refer to u(m) directly as u. Just looking at
the figure, it seems that u 6≡ 1 ≡ E[z(·)]. Indeed, in this case, E[z(·)] is not a solution of the minimization
problem (6.3), since

∫ 1

0

k(t, s; 1)ds = −1

6
e−3t(e3 − 4e3t + 2e4t − 2e3+t + 3e1+2t) 6≡ Z(t),
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Figure 3. The approximation u(m), with m = 5, of the solution of Equation (6.4) with
k(t, s; a) given in Equation (6.17) and Z given in Equation (6.19).

so that E[z(·)] does not solve Equation (6.4). Actually, the expected value seems to be quite far from the
optimal approximation. This can be observed by evaluating J (2)[un], J

(2)[u] and J (2)[E[z(·)]]. As before, to
evaluate J (2)[un] we use the Monte-Carlo approach presented in the previous subsection, with the following
set of nodes: {

z0 = 1,

zi = zi−1e
ζi√
6N

− 1
12N , i = 1, . . . , 6N,

and 


ξ0 = 0

ξi = ξi−1 +
ξi−1 + zi−1 − un(ti−1)

6N
+
ζiξi−1√
6N

, i = 1, . . . , 6N,

where ti = i
6N , un(ti−1) has been obtained previously via Nyström’s method and ζi ∼ N (0, 1) with ζi

independent of ζj for i 6= j. To evaluate J (2)[u] and J (2)[E[z(·)]] we can use the same exact scheme substituting

respectively u (obtained by Galërkin’s method) and 1 in place of un. Again, the evaluations of J (2)[un] for
big values of n are not reliable due to the stiffness of the underlying problem. The results are exposed in
Table 4: here it is evident that the expected value is not the optimal approximation.

J (2)[u1] J (2)[u2] J (2)[u3] J (2)[u] J (2)[E[z(·)]]
0.0836 0.0572 0.0510 0.0577 0.1505

Table 4. Numerically estimated values of J (2)[un] for n = 1, . . . , 3, in comparison with
J (2)[u] and J (2)[E[z(·)]]. N is fixed to 100, while Ntraj = 100000. Consider that, since we are
using a Monte-Carlo method, all the values in the table are subject to fluctuations, hence
results that are near to the best error J (2)[u] are still admissible, despite being inferior to
it. In some sense, this phenomenon, that is expected due to the stochastic approach used,
also evidence the speed of convergence of J (2)[un] to the best error.
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Remark 6.6. In the case of the additive noise, in [4] it has been shown that the expected value is always the
optimal approximation with respect to the quadratic cost (even if z and W are not independent). Clearly,
the presence of the multiplicative noise has a crucial effect in this sense.

Again, to have another numerical evidence of the fact that un ⇀ u, we compare
∫ 1

0 t
jun(t)dt with∫ 1

0 t
ju(t)dt for j = 0, 1, 2, 3 in Table 5.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
∫ 1

0 t
ju(t)dt

j = 0 0.6992 0.7661 0.8093 0.8262 0.8318 0.8333 0.8336 0.8336 0.8336 0.8336
j = 1 0.1838 0.2256 0.2657 0.2822 0.2877 0.2893 0.2896 0.2896 0.2896 0.2896
j = 2 0.0942 0.1510 0.1981 0.2175 0.2240 0.2260 0.2263 0.2264 0.2264 0.2264
j = 3 0.0606 0.1139 0.1580 0.1768 0.1833 0.1852 0.1856 0.1856 0.1856 0.1856

Table 5. Numerically estimated values of
∫ 1

0 t
jun(t)dt for n = 1, . . . , 9 and j = 0, 1, 2, 3, in

comparison with
∫ 1

0 t
ju(t)dt. N is fixed to 100 and the values of the integrals are obtained

by using the same quadrature formula as applied before to determine un.

Remark 6.7. Let us emphasize that one must pay attention to the choice of the numerical method to solve
Equation (6.12). Indeed, one cannot exclude a priori an highly oscillatory behaviour of the solution of (6.12),
as show by our first example. Thus, if a Galërkin-type method is adopted, then the family of independent
functions on [0, T ] should be chosen according to the expected behaviour of the solutions.

Appendix A. Lebesgue points

Let us recall the definition of Lebesgue point for a function f ∈ L1(0, T ).

Definition A.1. We say that t ∈ (0, T ) is a Lebesgue point for f if

lim
ε→0+

1

ε

∫ t+ ε
2

t− ε
2

f(τ)dτ = f(t).

We denote by Ef the set of Lebesgue points of f .

By Lebesgue’s differentiation theorem (see [17, Section 1.7, Theorem 1]) it is well known that
|[0, T ] \ Ef | = 0. Let us recall, in particular, the following convergence result (see [17, Section 1.7, Corol-
lary 2]).

Proposition A.1. Let f ∈ Lp(0, T ) for some 1 ≤ p < ∞ and t be a Lebesgue point for f . Let I(t) be the
family of all closed intervals in [0, T ] containing t. Then

lim
diam(I)→0

I∈I(t)

1

|I|

∫

I

|f(τ) − f(t)|pdτ = 0.

We can use last statement to prove the following result.

Proposition A.2. Consider 1 ≤ p ≤ ∞ and let f ∈ Lp(0, T ) and g ∈ Lq(0, T ) where 1
p
+ 1

q
= 1 and define

h = fg ∈ L1(0, T ). Consider versions of f and g that are everywhere finite. Then Ef ∩Eg ⊆ Eh. Moreover,
if p = 1 and g ∈ C([0, T ]), then Ef ⊆ Eh.
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Proof. Consider t ∈ Ef ∩ Eg and observe that, by Hölder’s inequality, it holds, for any closed interval I
containing t,

∣∣∣∣
1

|I|

∫

I

h(τ)dτ − h(t)

∣∣∣∣ ≤
1

|I|

∫

I

|h(τ) − h(t)|dτ

≤ 1

|I|

∫

I

|f(τ)||g(τ) − g(t)|dτ + 1

|I|

∫

T

|g(t)||f(τ) − f(t)|dτ

≤
(

1

|I|

∫

I

|f(τ)|pdτ
) 1

p
(

1

|I|

∫

I

|g(τ) − g(t)|qdτ
) 1

q

+ |g(t)|
(

1

|I|

∫

I

|f(τ)− f(t)|pdτ
) 1

p

.

(A.1)

Being |g(t)| <∞ and |f(t)| <∞, taking the limit as diam(I) → 0 in Equation (A.1), it holds

lim
diam(I)→0

I∈I(t)

∣∣∣∣
1

|I|

∫

I

h(τ)dτ − h(t)

∣∣∣∣ = 0,

so that t ∈ Eh.
Concerning the second part of the statement, just observe that if g is continuous, Eg = [0, T ] by the integral
mean value theorem. �

Appendix B. Lower semicontinuity of the functional F : Proof of Proposition 5.7

Proof. First, let us show that FΨ is lower semicontinuous in any y ∈ L1(0, T ). Hence, let us consider yn → y
in L1: we want to show that

lim inf
n→+∞

FΨ[yn] ≥ FΨ[y].

Without loss of generality, we can consider a non-relabelled subsequence yn that realizes the limit inferior.
Let us first consider the case FΨ[y] < +∞. Let ynk

be a subsequence of yn that converges almost everywhere
to y. By Egorov’s theorem (see [17, Theorem 1.2.3]) we know that for any δ > 0 there exists a compact set
H such that ynk

→ y uniformly on H and |[0, T ] \H | < δ. Moreover, let us define the measure µ on [0, T ]
such that for any Lebesgue-measurable set A ⊆ [0, T ] it holds

µ(A) =

∫

A

Ψ(y(t))dt,

that is to say the measure µ is defined via dµ
dt

= Ψ(y(t)). In particular, µ is absolutely continuous with respect
to the Lebesgue measure. Fix ε > 0. By absolute continuity there exists δ > 0 such that for any measurable
set A ⊆ [0, T ], |A| < δ implies µ(A) < ε. Let us consider the compact set H obtained by Egorov’s theorem
such that |[0, T ] \H | < δ. In particular, we get

FΨ[y] = µ(H) + µ([0, T ] \H) < µ(H) + ε.

Being FΨ[y] < +∞ we have that

µ(H) > FΨ[y]− ε.

On the other hand, it also holds

FΨ[ynk
] =

∫ T

0

Ψ(yn(t))dt ≥
∫

H

Ψ(ynk
(t))dt.

Since ynk
→ y uniformly on H and Ψ is continuous, we also have Ψ(ynk

) → Ψ(yn) uniformly on H and,
taking the limit, we achieve

lim inf
n→+∞

FΨ[yn] = lim
k→+∞

FΨ[ynk
] ≥

∫

H

Ψ(y(t))dt = µ(H) > FΨ[y]− ε.

Being ε > 0 arbitrary, we conclude the proof in the case FΨ[y] < +∞.
If FΨ[y] = +∞, let us consider the sequence of measurable sets Sm = {t ∈ [0, T ] : Ψ(y(t)) ≤ m} for m ∈ N,
so that ∫

Sm

Ψ(y(t))dt ≤ mT < +∞.
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However, by monotone convergence theorem

lim
m→+∞

∫

Sm

Ψ(y(t))dt = FΨ[y] = +∞.

Thus, for any M > 0 there exists m ∈ N such that

M <

∫

Sm

Ψ(y(t))dt < +∞.

For any Lebesgue-measurable set A ⊂ [0, T ] define σm(A) = |A ∩ Sm| and

µm(A) =

∫

A∩Sm

Ψ(y(t))dt

that are two positive measures with µm ≪ σm and σm([0, T ]) ≤ T < +∞. We can argue as before, applying
Egorov’s theorem to σm, to achieve

lim inf
n→+∞

∫

Sm

Ψ(yn(t))dt ≥
∫

Sm

Ψ(y(t))dt− ε > M − ε

for any ε > 0. On the other hand

FΨ[yn] ≥
∫

Sm

Ψ(yn(t))dt

and then

lim inf
n→+∞

FΨ[yn] > M − ε

for any ε > 0. Being ε > 0 arbitrary, we get

lim inf
n→+∞

FΨ[yn] ≥M.

that leads to

lim inf
n→+∞

FΨ[yn] = +∞ = F [y].

Finally, it is well-known that convex lower semicontinuous functions are also weakly lower semicontinuous,
as a consequence of Mazur’s theorem (see [15]). �
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