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Abstract

Network slicing represents a substantial technological advance in 5G
mobile network, greatly expanding the variety and manifoldness of net-
work services to be supported. Additionally, 3GPP 5G New Radio (NR)
has introduced novel features such as mixed numerology and mini-slots,
which can be harnessed by network slicing to cater to the diverse require-
ments of 5G services. While however the co-existence of multiple network
slices leads to a challenging resource allocation problem, these new fea-
tures also severely complicate the management of radio resources. As a
further point of attention, the virtualization of radio functions may exact
a significant toll from the, already limited, computing resources at the net-
work edge. It follows that a cost-efficient resource allocation across all the
slices becomes crucial. In this paper, we address the above-mentioned is-
sues by modeling a cost-efficient radio resource management in 5G NR fea-
turing network slicing, through a Mixed Integer Quadratically constrained
Program (MIQCP). We maximize the profit of all slices simultaneously
guaranteeing the target data rate and delay specified in the service level
agreements (SLAs) fo the different traffic flows. To reduce the complexity
of the MIQCP problem, we decompose it into two sub-problems, namely,
the scheduling problem of eMBB UEs on a time-slot basis and of uRLLC
UEs on a mini-slot basis, while keeping the objective unchanged. To ad-
dress the scheduling issue of eMBB UEs, we employ a heuristic technique,
and, by leveraging the outcome of this heuristic, we derive an optimal
solution for the problem of uRLLC UEs. The significance of the pro-
posed approach over a baseline approach is evaluated through extensive
numerical simulations in terms of the number of allocated uRLLC RBs
per mini-slot. We also assess our approach by measuring the impact of
the uRLLC slice changes on the eMBB slice, and vice versa, including
delay for uRLLC users and data rates for eMBB users.
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1 Introduction

Massive and highly heterogeneous network slicing is a key feature of beyond-5G
and 6G networks (B5G/6G), where tenants are not solely focused on vertical
industries but are also extending digitalization to the final consumer through
new services such as holographic communication, multi-sensory experience, and
robotics [1]. In the realm of 6G, networks must effectively handle vast end-to-end
slices spanning various technological domains, including radio access network
(RAN), edge, cloud, and core, and effectively address the challenges they pose
in terms of low-latency communication, high data rate, and increased reliability.

A network slice refers to a virtual network constructed atop a physical net-
work corresponding to a network service, designed to give the slice tenant the
perception of operating their dedicated physical network. It provides the flexi-
bility to customize slices, ensuring the fulfillment of various SLAs through the
implementation of isolation techniques [2, 3]. Considering the concept of net-
work slicing, 3GPP has classified 5G services into three distinct classes accord-
ing to their communication service requirement: (i) eMBB, (ii) uRLLC, and
(iii) massive Machine Type Communications (mMTC) [4]. In this context, net-
work slicing can help to reduce CAPital EXpenditure (CAPEX)/ OPerating
EXpenditure (OPEX) as one physical infrastructure is shared efficiently to ful-
fill the heterogeneous communication service requirements of emerging network
services.

Although network slicing is well-researched, slicing (sharing) the RAN re-
sources is still challenging. Indeed, the new features introduced by 5G NR
such as the concept of numerology [5], mini-slot based transmission [6], and
punctured scheduling [7] make the management of radio resources more com-
plex. Numerology in 5G NR entails the provision of various frequency domain
subcarrier spacings (SCSs) and time domain symbol lengths within the time-
frequency orthogonal frequency division multiplexing (OFDM) grid. Numerol-
ogy flexibility allows for efficient scheduling of eMBB and uRLLC users, selecting
SCS and OFDM symbol lengths to meet service requirements.Additionally, the
mini-slot approach supports transmission shorter than the regular slot duration.
A mini-slot (or the smallest scheduling time unit) occupies 2, 4, or 7 OFDM
symbols (regardless of numerology). Finally, the punctured scheduling enables
non-orthogonal slicing of radio resources and facilitates the uRLLC traffic to
preempt resources that have already been allocated to the eMBB users Taking
into account these three techniques, and their potentiality in fulfilling service
requirements, makes the RAN slicing a multi-timescale, non-trivial problem.

As an example, using a numerology (µ), the time duration of the physi-
cal resource blocks (PRB) is scaled down by a factor 2µ while the frequency
is scaled up by 2µ. Thus, using higher numerology and shorter mini-slot du-
ration decreases the RAN latency, but it increases the amount of processing,
hence the system energy consumption, since UEs and gNB execute a number
of RAN functions 2µ more times per time unit. The trade-off between spectral
efficiency and the consumption of data processing resources presents a complex
scheduling dilemma. To elaborate, the scarcity of radio spectrum necessitates
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efficient spectrum sharing to meet the SLAs of each slice. Simultaneously, the
limited computing resources at the network’s edge underscore the importance
of allocating resources in a computationally aware manner across all slices. In-
deed, if a slice’s service exhibits elasticity [8], the resource demand of the slice
can dynamically change based on the operational computational cost, aiming to
maximize the slice’s profit. This observation prompts a thorough exploration
of the intricate relationship between the cost of computing resources and slice
dimensioning.
While the existing state-of-the-art research on 5G NR RAN slicing [9, 10, 11, 12,
13, 14] predominantly concentrates on delivering a satisfactory level of quality of
service (QoS) or user’s quality of experience (QoE), none of the current studies
devises a slicing strategy that is both cost-efficient and considers the real-world
interdependence between the cost of computing resources at the network edge
and the RAN’s capability to support diverse network slices.

To summarize our contributions are as follows.

• We address the challenging problem of cost-efficient resource management
in 5G NR featuring network slicing by first formulating it as a mixed-
integer quadratically constrained program (MIQCP) taking into account
(i) different values of numerology, (ii) different mini-slot durations, (iii)
different throughput and latency requirements per slice. Our goal is to
maximize the expected long-term profit of all slices. Such profit is defined
as the difference between the sum of the utility of all eMBB UEs across
t time-slots and the normalized cost of computing resource consumption
due to the slices supported on the RAN. Importantly, the above problem
is NP-hard.

• In light of the problem complexity, we decouple the original problem (P)
into two sub-problems, one tackling the resource allocation for eMBB UEs
on a time-slot basis (P1), and the other addressing the resource allocation
for uRLLC UEs on a mini-slot basis (P2). We then redefine the first sub-
problem into a maximization problem for each time slot, and the second
sub-problem as a maximization problem for each mini-slot within every
time-slot.

• Due to the NP-hardness of P1, we envision a low-complexity heuristic to
solve it, thus improving the minimum expected achieved rate (MEAR)
among eMBB users (providing the eMBB users with the target). Next,
we leverage a M/M/1/k queue to model the delay of the uRLLC users
and a utility function for eMBB users to represent the network resources
utilization and the target data rate. In so doing, we reformulate P2 taking
into account both the decision made by solving P1 and the computing cost
associated with the slices. Finally, at every time slot, we solve the new
formulation of P2 to maximize the efficiency in resource utilization, while
meeting the target eMBB data rate and uRLLC delay.

• We perform a comprehensive experimental analysis for the proposed schedul-
ing approach. We also compare the results in terms of average number
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of occupied uRLLC RBs per mini-slot and average delay of uRLLC UEs,
against the Static Resource Slicing (SRS) approach [15, 12] where slice
requests are processed without considering the CPU cost of the gNB due
to slicing. Notice that, to the best of our knowledge, no prior work ex-
ists that has developed a cost-efficient/computational-aware RAN slicing
strategy for allocating radio resources, allowing for a direct comparison
with our proposed CERS approach. More precisely, no prior work has
demonstrated the cost-effectiveness in radio resource slicing within the
context of 5G NR. We also evaluate the performance of our proposed
approach in terms of delay experienced by the uRLLC users and the ob-
served data rates of eMBB users, by measuring the impact that changes
occurring in uRLLC slice have on the eMBB slice and vice-versa.

The rest of the paper is organized as follows. Sec. 2 discusses some relevant
work while highlighting the novelty of our contribution. Sec. 3 introduces the
RAN slicing model and the problem formulation. Sec. 4 describes the proposed
solution approach, while Sec. 5 presents pur performance evaluation. Finally,
Sec. 6 draws some conclusions and discusses directions for future research.

2 Related Work

Network Slicing has received a great deal of attention owing to its relevance in
the support of highly demanding mobile services and applications. In particular,
multiplexing between eMBB and uRLLC traffic in a shared RAN has been
tackled in [9, 10, 16, 11]. Indeed, given the limited radio resources (e.g., PRBs,
transmit power) in a RAN, an efficient resource allocation among eMBB and
uRLLC slices is crucial to satisfy the QoS requirements of the users. To facilitate
the support of the slices, 5G NR standardized the techniques of numerology
[17], mini-slot based transmission [6], and punctured scheduling [7] to be used
for service multiplexing in a RAN. Taking into account these three techniques,
the RAN slicing has become a multi-timescale problem.

The existing body of work can be categorized into two main lines of research.
The former pertains to the orthogonal slicing approach, where the wireless ser-
vice provider reserves a portion of bandwidth for the eMBB users, and another
portion of bandwidth for the uRLLC users. In this approach, which is consid-
ered for instance in [18, 19, 20, 21, 22], service isolation among network slices
is provided. However, the allocated resources to uRLLC slice may be underuti-
lized due to the uRLLC traffic dynamics. Conversely, the latter line of research
uses non-orthogonal slicing with punctured scheduling. This approach, which is
used in [9, 10, 11, 12, 13, 14, 23], can provide an efficient use of radio resources
for uRLLC users. However, punctured scheduling may degrade the performance
of eMBB slice due to the potential reduction of the eMBB users’ data rate.

More in details, an example of the first approach can be found in [24] where
we designed a cost-efficient slicing strategy, named CES, that minimizes the
computing cost due to slicing, while guaranteeing the target data rate for eMBB
users and delay of uRLLC users specified in the SLA. Looking at the second
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approach, instead, Bairagi et al. [9] considered the network slicing problem in
a downlink orthogonal frequency division multiple access (OFDMA) system by
maximizing the spectral efficiency, while guaranteeing the required data rate
for the eMBB users and latency for uRLLC users, based upon puncturing tech-
nique. Anand et al. [10] considered a joint eMBB/uRLLC scheduling problem
for various eMBB rate loss models while the uRLLC traffic is dynamically multi-
plexed with the eMBB traffic through punctured scheduling. Alsenwi et al. [11]
proposed a risk-sensitive punctured scheduling approach, where the radio re-
sources used by the eMBB users can be reallocated to the uRLLC users. Also,
[12] proposed Mixed numerology Mini-slot based Resource Allocation [MiMRA]
that guarantees that the loss in eMBB data rate due to the co-existing uRLLC
traffic is minimal. The work in [13], instead, aims to maximize the minimum ex-
pected achieved rate of eMBB users (MEAR), and fairness among them, by em-
ploying a one-to-one matching game to compute appropriate eMBB and uRLLC
pairs for uRLLC resource allocation. Finally, [25] studied the resource slicing
problem and formulated it as an optimization problem that aims at maximizing
the eMBB data rate subject to a uRLLC reliability constraint, while accounting
for the variance of the eMBB data rate to reduce the impact of immediately
scheduled uRLLC traffic on the eMBB reliability.

Novelty. Compared to the works presented above, in this paper we apply
a non-orthogonal slicing approach with punctured scheduling that accounts for
both the transmission priority of the uRLLC traffic and its dynamics, and,
even more importantly, the computational cost of such non-orthogonal slicing.
Specifically, we study the radio resource slicing problem for serving eMBB and
uRLLC users in a downlink OFDMA-based RAN by leveraging numerology and
punctured scheduling through mini-slot based transmission to serve uRLLC
users. It is worth noting that, although some of the recent related work, such
as [12, 9, 13, 26, 27], address the technical challenges in the eMBB and uRLLC
co-existence problem, no existing work considers both the co-existence problem
and cost-efficient slicing strategies. Instead, by a tractable methodology, we
are able to address, and effectively reduce, the computing cost due to slicing
with respect to traditional approaches while guaranteeing the target data rate
of eMBB users and delay of uRLLC users specified in the SLA.

Table 1: Parameters of different 5G numerology settings [26]

Numerology 0 1 2 3

Subcarrier spacing (SCS) 15 kHz 30 kHz 60 kHz 120 kHz
PRB bandwidth 180 kHz 360 kHz 720 kHz 1.44MHz

Time slot duration 1ms 0.5ms 0.25ms 0.125ms
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Table 2: 5G numerology and the considered uRLLC transmission duration

µ uRLLC transmission duration Blocklength per PRB

0 2 24
1 4 48
2 8 96

Table 3: Summary of notations

Symbol Meaning

S Set of slices
E Set of eMBB users
U Set of uRLLC users
F Set of RBs of uniform bandwidth B
U Set of numerologies
Bµ Bandwidth of an RB in numerology µ
τµ Duration of a time-slot in numerology µ
ω Duration of a mini-slot
M No. of mini-slots in a time-slot
T Total number of time-slots

Rm,t
u Achieved data rate of an uRLLC user at mini-slot m of time-slot t
rte PRB rate for eMBB user e
Rt

e Achieved data rate of an eMBB user at time-slot t
Rmin Minimum expected achieved rate (MEAR) among all eMBB users
U Utility function for an eMBB user
ϕs CPU cost function for deploying slice s
λ arrival rate of uRLLC traffic in a mini-slot m of time-slot t

Dmax Maximum tolerable uRLLC delay
xth Target data rate of an eMBB user
α Resource allocation vector for an eMBB user
ζ Resource allocation vector for punctured eMBB and uRLLC pairs
C Constant number of RBs
γt
e SNR of eMBB user e in time-slot t

γm,t
u SNR for uRLLC user u from gNB at mini-slot m of time-slot t

3 System Model and Problem Formulation

For simplicity, we start by considering a scenario with one gNB serving two user
groups: E , which requires eMBB service, and U , which demands uRLLC service.
In our simplified notation, we have a set of slices S, consisting of a single eMBB
slice and a single uRLLC slice, although the extension to multiple eMBB and
uRLLC slices is straightforward. Radio resources in the frequency domain are
divided into RBs j ∈ F = {1, 2, 3, ..F}, each with a bandwidth B determined by
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the numerology (µ) chosen (as shown in Table 1). The time domain is divided
into time slots T = {1, . . . t}, each with a duration τ depending on µ. These
time slots are further subdivided into mini-slots M = {1, . . .m}, with each
mini-slot duration ω calculated based on the number of OFDM symbols. The
arrival of uRLLC traffic at the gNB follows a Poisson distribution and occurs
during any mini-slot m of a given time slot t. Each uRLLC UE u∈U requests a
payload of size Lm,t

u (varying from 32 to 200 bytes). gNB allots the RBs to the
eMBB UEs at the commencement of any time slot t ∈ T .

The achievable data rate of an uRLLC user among overlapped RBs when
multiple RBs are allocated at a mini-slot m of time-slot t is given as:

Rm,t
u =

∑
j∈F

∑
e∈E

ζm,t
e,u,j · r

m,t
u,j . (1)

where ζm,t
e,u,j=1 indicates that j∈F RB of eMBB UE e∈E pairs with an URLLC

user u∈U using puncturing at a mini-slot m∈M of time-slot t∈T , and ζm,t
e,u,j=0

otherwise. rm,t
u,j is the achievable rate of an RB j of an uRLLC user u. The data

rate falls in the finite block length channel coding regime due to short-sized
packet transmission of uRLLC and is approximated as, [28]

rm,t
u,j = Bµ log2(1 + γm,t

u,j )−

√√√√Cm,t
u,j

lm,t
u,j

Q−1(ϵ) log2 e) (2)

where lm,t
u,t represents the length of the codeword block in symbols and can be

obtained according to Table 2 based on the selected µ for the uRLLC slice.
γm,t
u,j is the signal-to-noise ratio (SNR) of UE u, Cm,t

u,j is the channel dispersion,
representing the stochastic variability of the channel compared to a deterministic
channel with the same capacity, given by Cm,t

u,j = 1 − 1

(1+γm,t
u,j )

2 , Q−1(·) is the

inverse of the Gaussian Q-function, ϵ is the transmission error probability.
For conventional services, such as eMBB with large transmitted packet size,

the achievable data rate of an eMBB user e for a given RB at time slot t can
be directly estimated according to Shannon’s capacity as,

rte,j = Bµ log2(1 + γt
e,j) (3)

where γt
e,j =

Pe·|ht
e,j |

2

Ne
represents the SNR. Pe, he, and Ne indicate the transmis-

sion power, channel gain, and channel noise, respectively, for user e ∈ E . The
achievable rate of the eMBB UE, e ∈ E , in Transmission Time Interval (TTI) t
is given by:

Rt
e =


F∑

j=1

αt
e,j −

F∑
j=1

∑
u∈U

∑
m∈M

ζm,t
e,u,j

 · rte,j (4)

where binary variable αt
e,j = 1 indicates that the j-th RB is allocated to UE e

at TTI t, and αt
e,j = 0 otherwise,
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The average achievable data rate for the eMBB user e ∈ E is then given by,

Re =
1

|T |

|T |∑
t=1

Rt
e . (5)

Crucially, the eMBB data rate loss is linked to the overlapping technique (punc-
turing) of uRLLC. Thus, eMBB users that lose their resources by sharing their
allocated resources with uRLLC users should be guaranteed a more significant
proportion of resources in the long run. We therefore consider as primary perfor-
mance metric for eMBB users the Minimum Expected Achieved Rate (MEAR)
[13, 9], i.e.,

Rmin = min
e∈E

(Re) . (6)

Next, we introduce the SLA model, which includes both data rate and packet
latency as performance metrics. While the former can be derived by aggregating
the amount of data that is successfully transmitted over time, a queuing model
of UEs’ packets is needed to derive the latter. To this end, we assume that each
uRLLC slice has its down-link queue at the gNB, and all packets belonging to a
slice share the same queue. We then model the uRLLC slice queue at the gNB
as an M/M/1/K queue with service rate σ and traffic arrival rate λ [22]. As σ
depends upon the scheduling process at the MAC layer, while λ corresponds to
the traffic rate of the users running on top of the slice, we write:

σu,m,t =

∑
j∈F ζm,t

e,u,j ·Rm,t
u

L
(7)

λ =
|U| · du,m,t

L
(8)

where L is the packet size of the uRLLC application, |U| is the number of UEs
belonging to the uRLLC slice, du,m,t is the traffic arrival rate of uRLLC service
per user in each mini-slot m of time-slot t. The average number of customers
in an M/M/1/K system is:

qu,m,t =
1− ρu,m,t

1− ρK+1
u,m,t

K∑
k=0

kρku,m,t (9)

where ρu,m,t =
λ

σu,m,t
. The average number of customers waiting in the queue

is:
Lu,m,t = qu,m,t − (1− p0) (10)

Little’s law can then be applied to estimate the latency experienced by uRLLC
packets in the corresponding queue:

δu,m,t =
Lu,m,t

λ
(11)
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where, λ =
∑K−1

n=0 λ ∗ pn, pn is the probability of n customers in the system.
At mini-slot m of time-slot t, the delay of a packet arriving at the u-th UE is
given by the sum of transmission delay and queuing delay,

Du,m,t = Wu,m,t + δu,m,t (12)

where the transmission delay, Wu,m,t, is the queue service time, which depends
upon the data-rate used to transmit towards the UE (see (2)).

3.1 The Cost-Effective RAN Slicing (CERS) Strategy

Our objective is to derive an optimal RAN slicing control strategy in 5G NR
that maximizes the long-term profit of all slices. This profit is defined as the
difference between the utility of eMBB UEs across t time-slots and the normal-
ized cost attributed to the computational resource consumption arising from the
supported slices on the RAN. The utility of eMBB users is given by:

U =

{
1− erf(xth − xo) if xo ≥ xth

erf(xth − xo) otherwise
(13)

where xth is the target per-UE data rate for eMBB traffic and xo is the observed
minimum expected achieved data rate (MEAR) over all eMBB users (i.e., the
observed value of Rmin). To meet SLAs, in this case, the observed data rate,
it is crucial to allocate radio resources so that the observed data rate consis-
tently meets or stays below target values (thresholds). Moreover, it is crucial
to maintain the observed data rate as close as possible to the respective target,
avoiding overshooting it for optimal utilization of network resources. Therefore,
our selection of the utility function takes into account these essential properties.

The computing resource consumption for deploying slice s ∈ S, denoted with
ϕs, is instead based on our experimental findings [29, 30] and is given by:

ϕs = 3.9 · ns + 0.44 · as + 30 ∀s ∈ S (14)

where ns is the number of users served by slice s and as is the number of RBs
allocated to the slice.

By taking αt
e,j and ζm,t

e,u,j , indicating the RBs allocation for the eMBB and
uRLLC slices (resp.), as decision variables, the CERS problem formulation can
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then be written as:

P0 : max
{α},{ζ}

U({α}, {ζ})− Et∈T

[∑
s∈S

ϕt
s({α}, {ζ})

]
(15)

s.t. Du,m,t ≤ Dmax, ∀u ∈ U ,m ∈M, t ∈ T (15a)∑
e∈E

αt
e,j ≤ 1, ∀j ∈ F ,∀t ∈ T (15b)∑

e∈E

∑
u∈U

ζm,t
e,u,j ≤ 1, ∀j ∈ F ,m ∈M, t ∈ T (15c)∑

j∈F

∑
e∈E

αt
e,j ≤ |F|,∀t ∈ T (15d)

∑
j∈F

∑
e∈E

∑
u∈U

ζm,t
e,u,j ≤ |F|,∀m ∈M, t ∈ T , (15e)

∑
j∈F

ζm,t
e,u,j ≥ 1,∀e ∈ E , u ∈ U ,m ∈M, t ∈ T (15f)

αt
e,j , ζ

m,t
e,u,j ∈ {0, 1} ,∀u ∈ U , e ∈ E , j ∈ F m ∈M, t ∈ T (15g)

where, for clarity, in the objective function we highlighted the dependency of the
utility and of the computational cost of a slice on the number of radio resources
({α} and {ζ}) allocated to eMBB and uRLLC users (resp.).

The uRLLC latency constraint is established in (15a), which guarantees that
the uRLLC users’ packet delay will not exceed the target value Dmax. Con-
straint (15b) states that every RB can be allocated to at most one eMBB user,
while (15c) ensures that every RB is used by at most one uRLLC user. The total
number of resources allocated to all eMBB users in the system is constrained by
(15d). Additionally, (15e) places a limit on the maximum number of RBs that
can be allocated to arriving uRLLc users within a mini-slot. Constraint (15f)
guarantees the allocation of at least one RB to a uRLLC user. Constraint (15g)
specifies that each vector element of α, ζ is binary.

The problem formulation, along with the constraints, results in a mixed-
integer quadratically constrained problem (MIQCP), which is NP-hard. It is
thus essential to simplify the problem to reduce its computational complexity
and make it solvable in a reasonable time in practical system scenarios.

3.2 Proof

The problem (P0) can be proved to be NP-hard by using a reduction from the
knapsack problem (PK), a combinatorial optimization problem, known to be
NP-hard.
Definition (P0): Cost-efficient radio resource slicing in 5GNR involves allocating
the finite radio spectrum into multiple slices in a cost-efficient manner to meet
diverse and conflicting service requirements within the constraints of limited
resources and a target delay.
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Known NP-Hard problem (PK): In the classic knapsack problem, the objective
is to select items, each with a given weight and value, to maximize the total
value without surpassing a weight limit.
Reduction Mechanism: To effectuate this reduction, we conceptualize the knap-
sack’s capacity constraints as analogous to the bandwidth (Total number of
available RBs) and timing constraints (a target delay) in P0. The items in PK ,
with their respective weights and values, are paralleled to the number of RBs
allocated per slice in P0, where the objective morphs into maximizing the profit
of slices within the predefined constraints of bandwidth and timing.
Contradiction Argument: If P0 is solvable in polynomial time (i.e., not NP-
hard), then so would be PK , contradicting PK ’s NP-hardness.
Conclusion: The polynomial-time reducibility of PK to P0 implies P0 is also NP-
hard, as solving it efficiently would inadvertently solve the knapsack problem,
an NP-hard problem, efficiently.

4 Optimization Method

In light of the complexity of the optimization problem P0, we envision a lower-
complexity solution strategy by leveraging the concept of divide-and-conquer
[31]. We thus divide P0 into two sub-optimization problems and solve the new
problems as set forth below:

• Subproblem 1 (P1) – Resource allocation for eMBB UEs on a time-slot
basis

• Subproblem 2 (P2) – Resource allocation for uRLLC UEs on a mini-slot
basis.

Subproblem 1. Given the short duration of a time slot, it is fair to assumed
that eMBB UEs have a high demand for data over the whole considered slot.
Consequently, at the beginning of every time slot, t ∈ T , the eMBB users are
allocated with RBs, and the allocated resources remain unchanged throughout
the time slot. Then, by setting, in this first stage, all ζm,t

e,u,j ’s equal to zero, we
formulate the first sub-problem as:

P1 : max
{α}

U({α})− Et∈T

[∑
e∈E

ϕt
e({α})

]
(16)

s.t.
∑
e∈E

αt
e,j ≤ 1, ∀j ∈ F ,∀t ∈ T (16a)∑

j∈F

∑
e∈E

αt
e,j ≤ |F|, ∀t ∈ T (16b)

αt
e,j ∈ {0, 1} , ∀e ∈ E , j ∈ F t ∈ T . (16c)

Subproblem 2. When uRLLC traffic requests arrive during any mini-slot
m of time slot t, the scheduler aims to fulfill these requests in the subsequent

11



mini-slot (m + 1). The task involves evaluating suitable eMBB users to pair
with the set of arrived uRLLC users while maintaining fairness among eMBB
users. We then set in P0 all αt

e,j ’s to the values obtained by solving P1, and
we formulate the second sub-problem as follows:

P2 : max
{ζ}

U({ζ})− Et∈T

[∑
u∈U

ϕt
u({ζ})

]
(17)

s.t. Du,m,t ≤ Dmax, ∀u ∈ U ,m ∈M, t ∈ T (17a)∑
e∈E

∑
u∈U

ζm,t
e,u,j ≤ 1, ∀j ∈ F ,m ∈M, t ∈ T (17b)∑

j∈F

∑
e∈E

∑
u∈U

ζm,t
e,u,j ≤ |F|, ∀m ∈M, t ∈ T . (17c)

To further clarify the above solution approach, let us refer to the following
simple example. Consider that, at the beginning of time slot t − 1, there are
3 eMBB UEs and each is assigned 4RBs. Within t − 1, a service request for
uRLLC UEs arrives and the necessary RBs are allocated as overlapped uRLLC
traffic in the mini-slots. For instance, during this time, 4, 7, and 2 RBs of eMBB
UEs 1, 2, and 3 are allocated to uRLLC UEs, respectively. Therefore, the data
rate of eMBB UEs 1, 2, and 3 drops by 4RBs·1 mini-slot, 7RBs·1 mini-slot,
and 2RBs·1 mini-slot, respectively. At the start of the next time slot, t, the
gNB acknowledges the resource scheduling of uRLLC UEs in time slot t− 1 to
compensate eMBB UE 1, 2, and 3 for their reduced data rate. In particular,
the gNB will allocate more RBs to such eMBB users in a fair manner, that is,
with, e.g., UE 2 receiving a higher number of additional allocated RBs than 3.

4.1 Low-Complexity Heuristic for Sub-Problem P1

To ensure a fair share of resources among the eMBB users, resource allocation
at a given time slot t has to account for the data rate such users experienced
in the previous time slot (t−1). As P1 (16) is still an NP-hard problem, a low-
complexity resource allocation algorithm has to be used. To this end, we draw
on the solution proposed in [9, 13] and enhance it to adapt it to our specific
problem. The algorithm we apply consists of the following steps:

1. Initialization: A fixed number of RBs, N , are initially allocated to every
eMBB user e ∈ E , so that the target eMBB data rate is fulfilled.

2. At the beginning of slot t ∈ T , evaluate previously achieved data rates of
all eMBB users. That is, get Rt−1

e ,∀e ∈ E from eMBB-uRLLC pairing
and uRLLC resource allocation by solving P2.

3. For each RB j∈J , with |J | = |F|−N · |E|, compute the rationality factor
for every eMBB user e, defined as

H(e) =
Rt

e +Rt−1
e

R
t−1 . (18)
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4. Assign RB j∈J to the user with the least value of E(e).

5. Repeat step 3 to 4 for all the available RBs in J .

Algorithm 1 Heuristic Algorithm for Solving P1

Input: Rt−1
e for each e in E .

Output: E(idx)-updated resource allocation for each e in E .
1: Initialize:

i = 1, E(e)← N, ∀e ∈ E
2: while i ≤ |T | do
3: Get Rt−1

e ,∀e ∈ E from eMBB-uRLLC pairing and uRLLC resource allo-
cation (Solve P2).

4: remRB ← |F| −N · |E|
5: for j = 1 : remRB do
6: for k = 1 : |E| do
7: H(k)← nRB·rtk+Rt−1

e

R
t−1

8: end for
9: idx← {e : e = argminEH(e)}

10: E(idx)← E(idx) + 1
11: end for
12: i← i+ 1
13: end while

To summarize, at t=1, the algorithm allocates resources equally (i.e., N RBs
to each eMBB user). Then, it allocates resources to eMBB UEs in the rest of the
time slots depending on the previous time slot. More specifically, it considers
the rationality H(e), which is the fraction of the sum of achieved data rate
of a given eMBB user involving the current time-slot t (Rt

e = N · rte) and the
previous time slot (t−1) (Rt−1

e ) relative to the average achieved data rate across

all eMBB users (R
t−1

). A low achieved eMBB data rate in the previous time
slot results in a lower rationality for a particular eMBB user. Thus, the eMBB
user with the least achieved data rate due to uRLLC puncturing of eMBB RBs
or weak channel conditions in time slot t−1 has higher priority to be allocated
the RB. In this way, the algorithm can accommodate the MEAR of eMBB UEs
in the long run adequately and in a fair manner.

Complexity analysis. For each time slot, let N be the number of RBs
assigned initially to all eMBB UE whereN ≤ |F|. The remaining number of RBs
to be allocated to the most suffering eMBB users is (|F| −N). The complexity
required for each RB allocation is O(|E|). The eMBB resource allocation in
each time slot takes ((|F| − N)|E|). It follows that the overall complexity is
O(|T |F||E|).
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4.2 Solving Sub-Problem P2

We reformulate the second sub-problem (17) to take into account the CPU cost
associated with both the eMBB and the uRLLC slice. Thus, we write P2 as:

max
{ζ}

∑
e∈E

U({ζ})− Et∈T

[∑
s∈S

ϕt
s({ζ})

]
. (19)

In contrast to the definition of U in Eq. (13), xo here is the average achievable
data rate of an eMBB user e in time-slot t and is given by Eq. (4).

Complexity analysis. The problem formulation (19), along with the con-
straints (17a–17c), results in an MIQCP problem, which can be solved using
Gurobi [32]. To solve the model, the non-linear functions (objective function and
quadratic constraints) are approximated as piece-wise linear functions. Then,
a feasible solution is found, either by a MIP heuristic or by branching. When
the gap between the best feasible solution and the best bound is smaller than
the default MIPGap parameter (set to 10−4), it is considered that the optimal
solution has been attained.

5 Numerical Analysis

In this section, we first describe the scenario we use for our performance evalua-
tion. Then we show the performance of our proposed approach, CERS, through
an extensive experimental analysis, and compare it against the Static Resource
Slicing (SRS) approach [15, 12] where slice requests are processed without con-
sidering the CPU cost of the gNB due to slicing. As mentioned, SRS has been se-
lected as benchmark, since, to the best of our knowledge, no existing scheme for
radio resource allocation accounts for cost-efficient/computational-aware RAN
slicing.

Table 4: Simulation parameters

Parameter Value

Total channel bandwidth 20MHz
Carrier frequency 2.62GHz

Maximum BS transmission power 24 dBm
BS coverage radius 500m

Noise spectral density -114 dBm
Channel Model FSPL
Numerology(µ) {0, 1, 2}

Mini-slot duration 0.25ms
Target uRLLC delay 1ms

uRLLC packet size (bytes) 32
Number of UEs 6 (eMBB (3), uRLLC (3))
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5.1 Reference Scenario

In our study, we consider a shared 5G NR infrastructure with coexisting uRLLC
and eMBB users. We consider one gNB operating in the Frequency Range
(FR)-1, with a maximum transmission power of 24 dBm and covering a radius
of 500m. The transmission occurs at the 2.5GHz frequency band with a total
channel bandwidth of 20MHz. The arrival of uRLLC traffic at mini-slot m of
time-slot t follows a Poisson distribution with mean λ, and the uRLLC packet
size is set to 32 bytes. We adopt a full buffer model for eMBB buffers at the
base station, assuming a continuous data flow. The gNB utilizes numerology
µ = 0, 1, 2 to transmit eMBB and uRLLC traffic over all of the available RBs
in each numerology. The corresponding time slots for each numerology, tµ=0 =
1ms, tµ=1 = 0.5ms, and tµ=1 = 0.25, are sub-divided into a number of M0, M1,
and M2 mini-slots, respectively. The mini-slot duration (ω) is 250µs, which is
sufficient to meet the latency requirement for uRLLC traffic, and it is kept the
same for all considered numerologies. Additionally, the simulation incorporates
a maximum tolerable delay of 1ms, with the consideration that eMBB traffic is
not as time-sensitive as uRLLC traffic.

5.2 CERS Performance Evaluation

We showcase the effectiveness of our proposed slice-dimensioning method, CERS,
taking into account the performance requirements of the eMBB and uRLLC
slices. We configure the system parameters as outlined in Table 4, and we com-
pare the slice profit of CERS to static resource slicing (SRS), as shown in Fig. 1,
where minimizing the number of RBs assigned to a slice leads to higher slice
profit. In SRS, slice requests are processed without considering the CPU cost
of the gNB due to slicing. The objective of the SRS scheduler (similar to the
Sum-Rate [15] scheduler, MiMRA [12]) is to maximize the average sum rate of
eMBB users using the puncturing strategy. In our analysis, we consider two
distinct slices namely, eMBB and uRLLC.
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Figure 1: Comparison of the number of RBs allocated to the uRLLC slice at
each mini-slot of a time-slot, under CERS and SRS for different uRLLC traffic
demands (λ). The traffic demand of each eMBB UE is set to 4Mbps and the
numerology (µ) considered is 0, 1, 2 in (a) (b), and (c), respectively.
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Comparison of slice profit. Fig. 1 represents the number of RBs allocated
to the uRLLC slice every mini-slot, under our proposed scheme (CERS) and
under the considered benchmark (SRS). The target data rate of every eMBB
user is set to 4Mbps and the traffic demand (λ) of every uRLLC user is varied.
The results depict that the number of RBs allocated to uRLLC users in every
mini-slot is always lower under CERS compared to SRS for every uRLLC traffic
demand in Numerology 0 (1a) and 1 (1b), while it is the same for Numerology
2 (1c). CERS indeed maximizes the slice profit by allocating a lower number
of RBs than SRS while satisfying the SLAs: the higher the number of RBs
allocated to a slice, the higher the CPU cost/utilization of the RAN due to
slicing of the radio resources, and the lower the slice profit.

To further illustrate the comparison based on the numerology schemes, it is
worth mentioning that in higher numerology schemes (e.g., µ=1 and µ=2) the
number of allocated uRLLC RBs is noticeably less compared to lower numerol-
ogy scheme (µ=0). This reduction is due to the higher PRB rate, scaled up
by a factor of 2µ, in the higher numerology schemes. For instance, when the
traffic demand λ is set to 3, the allocated RBs in µ=1 and µ=2 are significantly
fewer than those in µ=0. Building on our earlier discussion regarding our pro-
posed cost-efficient scheme (CERS), it becomes evident that the impact on CPU
cost/consumption increases with the rising number of required RBs. In the case
of Numerology 2 (1c), where the required RBs are fewer, CERS experiences a
reduced impact on CPU cost, ultimately resulting in the number of allocated
RBs being equivalent to that of SRS. To showcase/demonstrate the effectiveness
of our proposed approach, specifically in terms of the number of allocated RBs,
in Fig. 1b and Fig. 1c, we deliberately select higher values of traffic demand (λ).
We remark that we evaluated the performance of CERS only in terms of the
number of allocated radio resources, since, as it can be noted in our earlier work
[29, 30], the dominant impact on the CPU consumption is represented by the
number of connected UEs, rather than by the number of allocated RBs. In
addition, we would like to highlight that further considerations about the CPU
consumption can be made starting from the results in Fig. 1a and Fig. 1b, which
show how CERS allocates a lower number of RBs, with respect to SRS. The
smaller the number of radio resources allocated, the lower the CPU utilization
of the virtual gNB according to Eq. 3 in [30].

eMBB and uRLLC Slice Performance. The performance of slices can
be effectively evaluated by gauging the influence that alterations, such as shifts
in traffic demand, in one slice exert on another. In our assessment of the pro-
posed approach CERS, we focused on measuring performance in terms of the
delay encountered by uRLLC users and the observed data rates of eMBB users.
This evaluation was conducted by varying the uRLLC traffic demand and ad-
justing the target data rate of eMBB users.

Initially, we assess the delay experienced by uRLLC users under different
uRLLC traffic demands. For the first and second scenarios, illustrated in Fig-
ures ı̀2a and 2b the numerology considered is 0 and 1, respectively. In these
scenarios, the target eMBB data rate for each UE is fixed to 4Mbps while the
uRLLC traffic demand is varied for all the users. The results underline that,
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Figure 2: Average delay for uRLLC UEs [ms] for CERS and SRS, as uRLLC
traffic demand (λ) is varied for Numerology µ=0 in (a) and µ=1 in (b).

as the uRLLC traffic demand increases, the observed delay for different values
of λ always remains below the maximum tolerable delay value (set to 1ms).
However, the uRLLC delays in CERS are higher compared to SRS due to the
higher number of RBs allocated under SRS than under CERS. An important
result thus follows: at the cost of a slight increase in delay without overshooting
the maximum tolerable delay, CERS allows for a considerable reduction in the
overall CPU consumption of the RAN compared to its benchmark.
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Figure 3: Per-TTI average data rate of eMBB users with two target data rates
of 4 and 7Mbps, respectively, in Fig. 3a, and 4 and 8Mbps, respectively, in
Fig. 3b. The traffic demand of uRLLC users (λ) is varied in both cases.

In the subsequent analysis, we vary the traffic demand of the uRLLC slice
while maintaining a constant eMBB traffic demand, hence eMBB target perfor-
mance. The impact on the achieved data rate of eMBB users is then evaluated
for our proposed approach CERS. Fig. 3 illustrates the average observed data
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Figure 4: Average delay for uRLLC UEs [ms], as the eMBB target performance
(xth) [Mbps] is varied with λ = 3 and 6, respectively, for Numerology µ=0 in
(a), and with λ = 3 and 6, respectively, for Numerology µ=1 in (b).

rate of the eMBB users with respect to the uRLLC traffic load for two numerolo-
gies (namely, 0 and 1). We set xth=4 Mbps and 7 Mbps, respectively, as the
two target data rates for each eMBB user in µ=0 (see Fig. 3a).

Subsequently, we analyze the performance of CERS in managing incoming
uRLLC load. As observed in Fig. 3a, the eMBB users consistently maintain
their target data rate when uRLLC traffic demand (λ) is varied from 3 to 7.
However, when the incoming uRLLC traffic demand goes beyond λ=7, the gNB
adopts a strategy of puncturing eMBB users to prioritize serving the uRLLC
traffic. In this scenario, our proposed approach CERS strives to balance the
needs of uRLLC traffic users while minimizing the impact on eMBB users.
Consequently, the average achieved data rate of eMBB users is slightly below the
target (e.g., achieved eMBB data rate around 5.8Mbps for λ=8). The achieved
data rate may vary based on the considered number of TTIs for calculating the
achievable data rate per second. This outcome underscores CERS’s capability
to either maintain the target data rate or keep it marginally below the target
as uRLLC traffic demand rises. In the case of µ=1 (3b), we set a higher target
data for each eMBB user equal to 8Mbps (due to the higher PRB rate in µ=1).
Notably, CERS consistently maintains the target data rate even when faced
with increasing traffic demand for each uRLLC user. We remark that a lower
number of RBs allocated to uRLLC users (as in Fig. 1b) prevents the gNB
from puncturing RBs from eMBB users to make room for uRLLC traffic. This
strategic allocation ensures that the gNB fulfills the requirements of uRLLC
traffic users without compromising the resources allocated to eMBB users.

In our final evaluation, we scrutinize the delay experienced by uRLLC users
while varying the traffic demand of the eMBB slice, with the uRLLC slice de-
mand held constant. Fig. 4 illustrates the average delay of uRLLC users as the
eMBB traffic demand is varied. The scenarios consider constant uRLLC traf-
fic demand of λ=3 and 6 for Numerology µ=0 in (a) and Numerology µ=1 in
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(b), respectively. Remarkably, the observed delay consistently remains below
the maximum tolerable delay value of 1ms, and it remains constant even with
higher eMBB rates. It is worth highlighting that, by puncturing the neces-
sary number of RBs from eMBB users, CERS provides the uRLLC users with
the necessary RBs to meet their delay requirements while preserving the target
eMBB data rate. Also, the delay is consistently lower in higher numerology
schemes (Fig. 4b) due to the higher PRB rate in µ=1, and, as expected, the
delay increases as λ grows.

6 Conclusion

In this paper, we addressed the cost-efficient resource allocation problem in 5G
NR featuring network slicing. We formulated a resource allocation problem that
maximizes the slice profit while guaranteeing uRLLC constraints with respect
to latency as well as the target data rate of eMBB users. Given the prob-
lem inherent complexity, we introduced a strategic approach by decoupling the
original problem into two sub-optimization problems, eMBB resource allocation
and uRLLC resource allocation. We then used a simple, low-complexity heuris-
tic for the eMBB resource allocation that maximizes the MEAR among eMBB
users at time-slot boundaries. Meanwhile, for uRLLC resource allocation at
every mini-slot of a time slot, we maximized the slice profit while meeting slice-
specific SLAs. Our numerical results demonstrate that our approach achieves
cost-efficient resource slicing, and meets the data rate and delay requirements
outlined in the SLAs for both eMBB and uRLLC slices.

References

[1] W. Jiang, B. Han, M. A. Habibi, H. D. Schotten, The road towards 6g: A
comprehensive survey, IEEE Open Journal of the Communications Society
2 (2021) 334–366. doi:10.1109/OJCOMS.2021.3057679.

[2] S. Zhang, An overview of network slicing for 5g, IEEE Wireless Communi-
cations 26 (3) (2019) 111–117.

[3] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, G. S. Paschos, The algorithmic aspects of
network slicing, IEEE Communications Magazine 55 (8) (2017) 112–119.
doi:10.1109/MCOM.2017.1600939.

[4] P. Popovski, K. F. Trillingsgaard, O. Simeone, G. Durisi, 5g wireless net-
work slicing for embb, urllc, and mmtc: A communication-theoretic view,
IEEE Access 6 (2018) 55765–55779. doi:10.1109/ACCESS.2018.2872781.

[5] 3gpp ts 38.300 v16.8.0, “technical specification group radio access network;
nr; nr and ng-ran overall description; stage 2 (release 16),, Tech. rep. (Dec
2021).

19



[6] 5g america, “new services and applications with 5g ultra-reliable low la-
tency communications,” white paper,, Tech. rep. (Nov. 2018).

[7] 3gpp r1-1700374, “downlink multiplexing of embb and urllc transmission,”,
Tech. rep. (Jan. 2017).

[8] J. Huang, L. Gao, Wireless Network Pricing, Vol. 6, 2013.

[9] A. K. Bairagi, M. S. Munir, M. Alsenwi, N. H. Tran, S. S. Alshamrani,
M. Masud, Z. Han, C. S. Hong, Coexistence mechanism between embb and
urllc in 5g wireless networks, IEEE Transactions on Communications 69 (3)
(2021) 1736–1749. doi:10.1109/TCOMM.2020.3040307.

[10] A. Anand, G. De Veciana, S. Shakkottai, Joint scheduling of urllc
and embb traffic in 5g wireless networks, in: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, 2018, pp. 1970–1978.
doi:10.1109/INFOCOM.2018.8486430.

[11] M. Alsenwi, N. H. Tran, M. Bennis, A. Kumar Bairagi, C. S. Hong, embb-
urllc resource slicing: A risk-sensitive approach, IEEE Communications
Letters 23 (4) (2019) 740–743. doi:10.1109/LCOMM.2019.2900044.

[12] A. Esmaeily, H. V. K. Mendis, T. Mahmoodi, K. Kralevska, Beyond 5g
resource slicing with mixed-numerologies for mission critical urllc and embb
coexistence, IEEE Open Journal of the Communications Society 4 (2023)
727–747. doi:10.1109/OJCOMS.2023.3254816.

[13] Y. Prathyusha, T.-L. Sheu, Coordinated resource allocations for embb and
urllc in 5g communication networks, IEEE Transactions on Vehicular Tech-
nology 71 (8) (2022) 8717–8728. doi:10.1109/TVT.2022.3176018.

[14] Y. Huang, S. Li, C. Li, Y. T. Hou, W. Lou, A deep-reinforcement-
learning-based approach to dynamic embb/urllc multiplexing in 5g
nr, IEEE Internet of Things Journal 7 (7) (2020) 6439–6456.
doi:10.1109/JIOT.2020.2978692.

[15] M. Alsenwi, N. H. Tran, M. Bennis, A. Kumar Bairagi, C. S. Hong, embb-
urllc resource slicing: A risk-sensitive approach, IEEE Communications
Letters 23 (4) (2019) 740–743. doi:10.1109/LCOMM.2019.2900044.

[16] P. Yang, X. Xi, T. Q. S. Quek, J. Chen, X. Cao, D. Wu, How
should i orchestrate resources of my slices for bursty urllc service provi-
sion?, IEEE Transactions on Communications 69 (2) (2021) 1134–1146.
doi:10.1109/TCOMM.2020.3038196.

[17] S. Parkvall, E. Dahlman, A. Furuskar, M. Frenne, Nr: The new 5g radio
access technology, IEEE Communications Standards Magazine 1 (4) (2017)
24–30. doi:10.1109/MCOMSTD.2017.1700042.

20



[18] P. Yang, X. Xi, T. Q. S. Quek, J. Chen, X. Cao, D. Wu, How should i
orchestrate resources of my slices for bursty urllc service provision?, IEEE
Transactions on Communications 69 (2) (2021) 1134–1146.

[19] W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, X. Li, Dynamic
ran slicing for service-oriented vehicular networks via constrained learning,
IEEE Journal on Selected Areas in Communications 39 (7) (2021) 2076–
2089. doi:10.1109/JSAC.2020.3041405.

[20] Q. Liu, T. Han, N. Zhang, Y. Wang, Deepslicing: Deep reinforcement
learning assisted resource allocation for network slicing, in: GLOBECOM
2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
doi:10.1109/GLOBECOM42002.2020.9322106.

[21] H. Zhang, G. Pan, S. Xu, S. Zhang, Z. Jiang, A hard and soft hybrid slicing
framework for service level agreement guarantee via deep reinforcement
learning, in: 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-
Spring), 2022, pp. 1–5. doi:10.1109/VTC2022-Spring54318.2022.9860789.

[22] S. Bakri, P. A. Frangoudis, A. Ksentini, M. Bouaziz, Data-driven ran slicing
mechanisms for 5g and beyond, IEEE Transactions on Network and Service
Management 18 (4) (2021) 4654–4668. doi:10.1109/TNSM.2021.3098193.

[23] Y. Zhao, X. Chi, L. Qian, Y. Zhu, F. Hou, Resource allocation and
slicing puncture in cellular networks with embb and urllc terminals co-
existence, IEEE Internet of Things Journal 9 (19) (2022) 18431–18444.
doi:10.1109/JIOT.2022.3160647.

[24] S. Pramanik, A. Ksentini, C. F. Chiasserini, Cost-efficient slicing in vir-
tual radio access networks, Computer Communications 209 (2023) 349–358.
doi:https://doi.org/10.1016/j.comcom.2023.07.004.

[25] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi,
C. S. Hong, Intelligent resource slicing for embb and urllc coexistence
in 5g and beyond: A deep reinforcement learning based approach,
IEEE Transactions on Wireless Communications 20 (7) (2021) 4585–4600.
doi:10.1109/TWC.2021.3060514.

[26] M. Setayesh, S. Bahrami, V. W. Wong, Resource slicing for embb and
urllc services in radio access network using hierarchical deep learning,
IEEE Transactions on Wireless Communications 21 (11) (2022) 8950–8966.
doi:10.1109/TWC.2022.3171264.

[27] K. Boutiba, M. Bagaa, A. Ksentini, Optimal radio resource management
in 5g nr featuring network slicing, Computer Networks, Vol. 234, October
2023 (2023).

[28] H. Yang, K. Zheng, K. Zhang, J. Mei, Y. Qian, Ultra-reliable and low-
latency communications for connected vehicles: Challenges and solutions,
IEEE Network 34 (3) (2020) 92–100.

21



[29] S. Pramanik, A. Ksentini, F. Chiasserini, C. Characterizing the compu-
tational and memory requirements of virtual rans, in: 2022 17th Wireless
On-Demand Network Systems and Services Conference (WONS), 2022, pp.
1–8.

[30] S. Pramanik, A. Ksentini, C. F. Chiasserini, Cost-efficient slicing in vir-
tual radio access networks, Computer Communications 209 (2023) 349–358.
doi:https://doi.org/10.1016/j.comcom.2023.07.004.

[31] https://en.wikipedia.org/wiki/Divide-and-conquer algorithm.

[32] https://www.gurobi.com/.

22


