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Abstract
A p-Kähler structure on a complex manifold of complex dimension n is given by a d-closed
transverse real (p, p)-form. In the paper, we study the existence of p-Kähler structures on
compact quotients of simply connected Lie groups by discrete subgroups endowed with an
invariant complex structure. In particular, we discuss the existence of p-Kähler structures on
nilmanifolds, with a focus on the case p = 2 and complex dimension n = 4. Moreover, we
prove that a (n − 2)-Kähler almost abelian solvmanifold of complex dimension n ≥ 3 has
to be Kähler.

Keywords p-Kähler structure · Nilmanifold · Almost abelian solvmanifold

1 Introduction

A p-Kähler structure on a complex manifold (X , J ) of complex dimension n is given by a
d-closed transverse real (p, p)-form �. The p-Kähler structures have been introduced and
studied in [2–4]. Recently, their behavior under small deformations of the complex structure
has been studied in [20].

Some obstructions to their existence were determined in [14], where the authors extended
the definition to non-integrable almost complex manifolds, and in [22], on nilmanifolds with
nilpotent complex structures. In [5], Alessandrini and Bassanelli conjectured that if X is
p-Kähler then it is q-Kähler for all p ≤ q < n.

For p = 1, n − 1, transversality is equivalent to positive definiteness, so in the first case
we find the Kähler condition, whereas in the latter this property is equivalent to the balanced
one. In complex dimension 3, these are all the possible cases, and both have been thoroughly
studied, so we will consider higher dimension, where more cases arise.
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2112 A. Fino, A. Mainenti

Examples of 2-Kähler structures on compact non-Kähler complex manifolds were con-
structed in complex dimension 5, using a smooth proper modification of P5 [5, Section 4],
and lately, it was proved that non-compact examples exist in any dimension greater than 2, as
products ofCm and a balanced complex manifold of complex dimension 3 [1, Theorem 5.3].
On the other hand, the existence of a 2-Kähler structure on a compact (non-Kähler) complex
manifold of complex dimension 4 is quite restrictive. As a far as we know, no examples in
the literature are known.

In Sect. 2, after recalling a few definitions and some known results on p-Kähler struc-
tures, we use the symmetrization process described in [7] (see also [8, 23]), to prove that
on compact quotients of simply connected Lie groups by lattices, endowed with invariant
complex structures, the existence of p-Kähler structures implies the existence of invariant
ones (Lemma 2.4). By invariant p-Kähler structure, we mean one induced by a left-invariant
one on G or, equivalently, by a p-Kähler structure on the Lie algebra g of G. Furthermore,
we find some necessary conditions to the existence of p-Kähler structures on Lie algebras
endowed with a complex structure J such that there exists a J -invariant ideal of codimension
2 (Proposition 2.5) that we will use in the nilpotent case.

Section 3 is devoted to the nilpotent case. We show some obstructions to the existence
of p-Kähler structures when the nilmanifold is endowed with a quasi-nilpotent complex
structure J , namely such that the center of the associated nilpotent Lie algebra has a non-
trivial J -invariant subspace, with a focus on p = 2 (Proposition 3.3). Later on, we study
nilmanifolds of complex dimension 4 and prove that they do not admit 2-Kähler structures,
unless they are tori (Theorem 3.7).We use this result as the first step of induction to prove that
a nilmanifold of complex dimension greater then 3 endowedwith an invariant quasi-nilpotent
complex structure cannot admit 2-Kähler structures unless it is a torus (Theorem 3.8).

Finally, we consider the almost abelian case. We recall that a Lie group is called almost
abelian if its Lie algebra has a codimension one abelian ideal. In Sect. 4, we prove that for
almost abelian solvmanifolds of complex dimension n ≥ 3, the (n − 2)-Kähler condition
impliesKähler (Theorem4.2). This gives yet another case in complex dimension 4 of compact
complex manifolds for which the existence of a 2-Kähler structure forces the manifold to be
Kähler.

2 Preliminaries on p-Kähler structures

Let V be a complex vector space of dimension n, and let us denote by �p,q := �p,qV ∗ the
space of (p, q)-forms over V . In the following lines, we will recall a few positivity notions
for differential forms.

Definition 2.1 (1) A (n, n)-form ν on V is positive if ν = c iα1∧α1̄∧· · ·∧ iαn ∧αn̄ , where
c ∈ R≥0 and

{
α j

}n
j=1 is a basis of �1,0. If c > 0, we will call ν a volume form.

(2) A (q, 0)-form ψ on V is called simple if ψ = μ1 ∧ · · · ∧ μq , with μ1, . . . , μq ∈ �1,0.
A (k, k)-form � is called transverse if for every nonzero simple (n − k, 0)-form ψ ,

i (n−k)2 � ∧ ψ ∧ ψ̄ = � ∧ iμ1 ∧ μ̄1 ∧ · · · ∧ iμn−k ∧ μ̄n−k

is a volume form.
(3) A (k, k)-form � on V is said to be positive definite if for all 0 �=η ∈ �n−k,0, the (n, n)-

form

i (n−k)2 � ∧ η ∧ η̄

is a volume form.
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(4) A (k, k)-form � on V is strongly positive if it can be written as

� = i k
2 ∑

j

ψ j ∧ ψ̄ j ,

with ψ j ∈ �k,0 simple.

It follows from Definition 2.1 that every strongly positive form is positive definite and
every positive definite form is transverse. Moreover, every transverse form is real. Notice
that for k = 1, n − 1, a (k, 0)-form is always simple (see for example [13]). In fact, for
k = 1, n − 1, (2), (3) and (4) in Definition 2.1 are all equivalent.

Using the previous notion of tranversality, one can introduce the following

Definition 2.2 Let (X , J ) be a complexmanifold of complex dimension n and let 1 ≤ p < n.
A p-Kähler structure on X is given by a d-closed real (p, p)-form� such that, at every point
x ∈ X , �x ∈ �p,p(Tx X) is transverse.

For p = 1, a transverse form is nothing but the fundamental form associated with a
Hermitian metric on (X , J ). This means that a 1-Kähler structure actually gives a Kähler
metric on (X , J ). On the other hand, when p = n − 1, we know by [18] that every strongly
positive (n − 1, n − 1)-form can be written as the (n − 1)th power of a strongly positive
(1, 1)-form and so determines a Hermitian metric. It follows that the datum of a (n − 1)-
Kähler structure is equivalent to that of a balanced Hermitian metric. Note that these are the
only two cases where p-Kähler structures have metric meaning (cf. [4, Proposition 2.1]).

The following result gives an obstruction to the existence of p-Kähler structures on com-
pact complex manifolds.

Proposition 2.3 ([14]) Let (X , J ) be a compact complex manifold. Suppose there exists a
(2n − 2p − 1)-form β on X such that

0 �= (dβ)n−p,n−p =
∑

j

c j ψ j ∧ ψ j ,

where c j ∈ R have the same sign and ψ j are simple (n − p, 0)-forms. Then (X , J ) does not
admit any p-Kähler structure.

Let now consider as a complex manifold (X , J ) the compact quotient X = 	\G of a
simply connected Lie group G by a discrete subgroup 	 endowed with an invariant complex
structure J , i.e., a complex structure induced by a complex structure on g.

Next we prove that the existence of a p-Kähler structure on (X = 	\G, J ) implies the
existence of an invariant one.

Lemma 2.4 If (X = 	\G, J ) admits a p-Kähler structure �, then (g, J ) has a p-Kähler
structure.

Proof Let ν be a volume element on X induced by a bi-invariant one on the Lie group G (the
existence of such a volume form was proved in [19]). After rescaling, we can suppose that
X has volume equal to 1. Given the p-Kähler structure �, by symmetrization, we can define
the (p, p)-form �ν on g, given by

�ν(Y1, . . . , Y2p) =
∫

x∈X
�x (Y1|x , . . . , Y2p|x )ν,

for every Y j ∈ g, where Y j |x is the value at the point x ∈ X of the projection on X of the
left-invariant vector field Y j on the Lie groupG. By [7] (see also [8, 23]), the symmetrization
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2114 A. Fino, A. Mainenti

commuteswith the differentiald , sod�ν = 0.Weonly need to show that�ν is still transverse,
i.e., that i (n−p)2 �ν ∧ ψ ∧ ψ̄ is a volume form on g, for every simple (n − p, 0)-form ψ on
g. This follows from the fact that for every differential forms α and β on X we have

(αν ∧ β)ν = αν ∧ βν.

In fact, using ψ = ψν we find that i (n−p)2 �ν ∧ ψ ∧ ψ̄ is a volume form, as it is the integral
on X of i (n−p)2 � ∧ ψ ∧ ψ̄ , positive by hypothesis. �	

We now state some general restriction to the existence of a p-Kähler structure on a Lie
algebra. From now on, g1,0 (respectively, g0,1) will denote the i-eigenspace (respectively,
−i-eigenspace) of J as an endomorphism of g∗.

Proposition 2.5 If a p-Kähler Lie algebra (g, J ,�) of complex dimension n ≥ 3, with
p < n − 1, admits a closed nonzero (1, 0)-form α, then it has a p-Kähler J -invariant ideal
of codimension 2.

Proof Let {α1, . . . αn} be a basis of g1,0 such that α1 := α. Consider its dual basis
{Z1, . . . , Zn}. Consider a basis {e1, . . . , e2n} of g such that Z1 = e1− i e2. Clearly, Je1 = e2
and the dual elements of e1, e2 in g∗ are closed differential 1-forms on g, so that the subspace
h := span {e3 . . . , e2n} is a J -invariant ideal of g and h1,0 is generated by α2, . . . , αn . Let
us denote with dh the exterior derivative of h. Then, for every form β ∈ �h one has that

dβ = dhβ + d̃β, with d̃β ∈ I
(
α1, α1̄

)
. Let � be a p-Kähler structure on (g, J ). We will

prove that its restriction �h ∈ �
p,p
h to h is a p-Kähler structure on (h, J |h). We can write

� = �h + α1 ∧ η + α1̄ ∧ η̄ + i α11̄ ∧ ϑ,

with η ∈ �
p−1,p
h , ϑ ∈ �

p−1,p−1
h , �h and ϑ real. Therefore,

d� = d�h − α1 ∧ dη − α1̄ ∧ dη̄ + i α11̄ ∧ dϑ

= dh�h + d̃�h − α1 ∧ dη − α1̄ ∧ dη̄ + i α11̄ ∧ dϑ,

with dh�h ∈ �
2p+1
h and d� − dh�h ∈ I

(
α1, α1̄

)
, so that if � is d-closed, �h must be

dh-closed. It remains to prove that �h is transverse, namely that, for all

φ = iμ1 ∧ μ1 ∧ · · · ∧ iμn−1−p ∧ μn−1−p, μ j ∈ h1,0,

the (n − 1, n − 1)-form �h ∧ φ is a volume form on h. Since � is transverse, � ∧ i α11̄ ∧ φ

is a volume form on g. One easily sees that

� ∧ i α11̄ ∧ φ = �h ∧ i α11̄ ∧ φ,

yielding that �h ∧ φ is a volume form on h, as wanted. �	

3 p-Kähler structures on nilmanifolds

We will now discuss the case where X is a nilmanifold, i.e., a compact quotient 	\G of a
simply connected nilpotent Lie group G by a lattice 	 endowed with an invariant complex
structure. Lemma 2.4 allows us to restrict to the study of p-Kähler structures on the nilpotent
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A note on p-Kähler... 2115

Lie algebra g of G. From [21], we know that for every complex structure J on a nilpotent
Lie algebra g, there exists a basis {α1, . . . , αn} of g1,0 such that for all j ,

dα j+1 ∈ I
(
α1, . . . , α j

)
.

In particular, dα1 = 0, so Proposition 2.5 holds.
We recall that given a complex structure J on a real nilpotent Lie algebra g of dimension

2n, one can define the ascending series adapted to J as follows

a0(J ) = {0} ,

ak(J ) = {X ∈ g : [X , g] ⊆ ak−1(J ), [J X , g] ⊆ ak−1(J )} , for k ≥ 1.

Then J is said to be:

• strongly non-nilpotent (SnN) if a1(J ) = {0};
• quasi-nilpotent if a1(J ) �= {0}. In this case, the ascending series adapted to J stabilizes,

namely there exists a positive integer t such that at (J ) = al(J ) for all l ≥ t and we can
distinguish between two subcases:

– J is weakly non-nilpotent if at (J ) �= g;
– J is nilpotent if at (J ) = g, or equivalently, if there is a basis {α1, . . . , αn} of g1,0

satisfying
{
dα1 = 0,

dα j ∈ �2
〈
α1, . . . , α j−1, α1, . . . , α j−1

〉
, j = 2, . . . , n.

The following result is a consequence of Proposition 2.3 and it gives an obstruction to the
existence of p-Kähler structures.

Proposition 3.1 ([22]) Let g be a nilpotent Lie algebra of complex dimension n endowed
with a nilpotent complex structure J . Given a basis {α1, . . . , αn} of g1,0, let t be the positive
integer such that

dα j = 0, for j = 1, . . . , t, and dα j �= 0 for j = t + 1, . . . , n.

Then, there are no (n − t)-Kähler structures on (g, J ).

3.1 Quasi-nilpotent complex structures

We will now consider quasi-nilpotent complex structures, namely the case where the center
ζ of g has a J -invariant non-trivial subspace. We recall the following

Definition 3.2 ([15]) Let g be a nilpotent Lie algebra endowedwith a quasi-nilpotent complex
structure J and b be a J -invariant subspace of ζ of real dimension 2. If k is a nilpotent Lie
algebra of real dimension 2(n − 1) endowed with a complex structure K such that (k, K ) is
isomorphic to (g/b, J |g/b), the pair (g, J ) is called a b-extension of (k, K ).

We can prove the following.

Proposition 3.3 If g is a nilpotent Lie algebra of real dimension 2n ≥ 6 endowed with a
quasi-nilpotent complex structure J and admitting a p-Kähler structure, then (g, J ) is the
b-extension of a (p − 1)-Kähler nilpotent Lie algebra.
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2116 A. Fino, A. Mainenti

Proof In [15], it was proved that for every pair (g, J ), where g is a nilpotent Lie algebra and
J is quasi-nilpotent complex structure, there exists a two-dimensional J -invariant subspace
b of a1(J ) = ζ ∩ Jζ , where ζ is the center of g, such that (g, J ) is the b-extension of some
nilpotent Lie algebra k of codimension 2 endowedwith a complex structure K .We can choose
a basis {α1, . . . , αn} of g1,0 such that b1,0 is generated by αn . In this way,

{
α1, . . . , αn−1

}
is

a basis of k1,0 and dα j ∈ �2
k, for all j . Let � be a p-Kähler structure on g. Then there exist

�k ∈ �
p,p
k and ω ∈ �

p−1,p−1
k real, η ∈ �

p−1,p
k such that

� = �k + η ∧ αn + η̄ ∧ αn̄ + ω ∧ i αnn̄ . (3.1)

Wewill prove thatω is a (p−1)-Kähler form for (k, K ). The closure of the (p−1, p−1)-form
ω follows from the fact that � is closed and

0 = d� =d�k − η ∧ dαn − η̄ ∧ dαn̄

+
(
dη + iω ∧ dαn̄

)
∧ αn + (

dη̄ + iω ∧ dαn) ∧ αn̄

+ dω ∧ i αnn̄ .

(3.2)

To prove that ω is transverse, fix a simple form ψ ∈ �(n−1)−(p−1),0 = �n−p,0. For dimen-
sional reasons, �k ∧ ψ ∧ ψ̄ = η ∧ ψ ∧ ψ̄ = 0, giving

i (n−p)2� ∧ ψ ∧ ψ̄ = i (n−p)2ω ∧ ψ ∧ ψ̄ ∧ i αnn̄ .

This is a volume form on g because � is transverse, so i (n−p)2ω ∧ ψ ∧ ψ̄ is a volume form
on k. �	

As a consequence, we have the following

Corollary 3.4 Let g be a nilpotent Lie algebra of real dimension 2n endowed with a quasi-
nilpotent complex structure J . If (g, J ) admits a 2-Kähler structure, then (g, J ) must be the
b-extension of the 2(n−1)-dimensional abelian Lie algebra.Moreover, the complex structure
J has to be nilpotent.

Proof The first part of the statement is given by Proposition 3.3 for p = 2. It follows that the
complex structure equations of (g, J ) must be

{
dα j = 0, j = 1, . . . , n − 1,

dαn ∈ �2
k,

with �2
k = �2

〈
α1, . . . , αn−1, α1, . . . , αn−1

〉
, meaning that J has to be nilpotent. �	

3.2 2-Kähler structures on nilmanifolds of real dimension 8

In real dimension 8, we can actually prove that 2-Kähler nilmanifolds endowed with an
invariant complex structures must be Kähler.

Proposition 3.5 A (non-abelian) eight-dimensional nilpotent Lie algebra g endowed with a
quasi-nilpotent complex structure J does not admit 2-Kähler structures.

Proof We only have to prove the statement for b-extensions (g, J ) of the six-dimensional
abelian Lie algebra k. Namely, we can suppose to have a basis {α1, . . . , α4} of g1,0 such that
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A note on p-Kähler... 2117

dα j = 0 for j = 1, 2, 3 and dα4 ∈ �2
k. If ∂α4 �= 0, it is in particular a (2, 0)-form on a space

of complex dimension 3, hence simple, so that α4 ∧ ∂α4 is a 3-form as in Proposition 2.3
and (g, J ) is not 2-Kähler. It remains to consider the case where dα4 ∈ �

1,1
k . Suppose there

exists a 2-Kähler form � on (g, J ).
We can write � as in (3.1) and because k is abelian, (3.2) reduces to

0 = d� = −η ∧ dα4 − η̄ ∧ dα4̄+i ω ∧ dα4̄ ∧ α4 + i ω ∧ dα4 ∧ α4̄.

Since −η ∧ dα4 − η̄ ∧ dα4̄ ∈ �5
k, we have ω ∧ dα4 = 0. We already proved that since � is

transverse, ω is a transverse (1, 1)-form, hence strongly positive, giving a contradiction. �	
Strongly non-nilpotent complex structures on eight-dimensional nilpotent Lie algebras

were classified in [15] and then refined in [16]. In particular, it turns out that, depending on
the ascending type of g, the admissible complex structures are divided into two families as
follows.

Proposition 3.6 [16, Thm. 3.3] Let J be a strongly non-nilpotent complex structure on an
eight-dimensional nilpotent Lie algebra g. Then, there exists a basis {α1, . . . , α4} of g1,0

such that the complex structure equations are either given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dα1 = 0,

dα2 = ε α11̄ ,

dα3 = α14 + α14̄ + a α21̄ + i δ ε b α12̄ ,

dα4 = i ν α11̄ + b α22̄ + i δ
(

α13̄ − α31̄
)

,

(3.3)

where δ = ±1, (a, b) ∈ R
2 \{(0, 0)}, a ≥ 0 and the tuple (ε, ν, a, b) is one of the following:

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1),

(
0, 1, 0,

b

|b|
)

, (0, 1, 1, b),

(1, 0, 0, 1), (1, 0, 1, |b|), (1, 1, a, b),

or given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dα1 = 0,

dα2 = α14 + α14̄ ,

dα3 = a α11̄ + ε
(
α12 + α12̄ − α21̄

)
+ i μ

(
α24 + α24̄

)
,

dα4 = i ν α11̄ − μα22̄ + i b
(

α12̄ − α21̄
)

+ i
(

α13̄ − α31̄
)

,

(3.4)

where a, b ∈ R, and the tuple (ε, μ, ν, a, b) is one of the following:

(1, 1, 0, a, b), (1, 0, 1, a, b), (1, 0, 0, 0, b), (1, 0, 0, 1, b), (0, 1, 0, 0, 0), (0, 1, 0, 1, 0).

For both of the families (3.3) and (3.4), we can find a 3-form β as in Proposition 2.3 that
gives us an obstruction to the existence of 2-Kähler forms on (g, J ). In the case of the family
(3.3), we can take β = b α141̄ − a α132̄ . This gives

dβ = (a2 + b2) α121̄2̄ ,

never zero because (a, b) ∈ R
2 \ {(0, 0)}. If J belongs to the family (3.4), we choose

β = α141̄ + (1 − μ) α123̄ , giving

dβ = (ε − εμ − μ) α121̄2̄ ,

123



2118 A. Fino, A. Mainenti

where ε, μ ∈ {0, 1} and (ε, μ) �= (0, 0); hence, dβ is a nonzero (2, 2)-form as wanted.
We have proved the following.

Theorem 3.7 A nilpotent Lie algebra g of real dimension 8 endowed with a complex structure
admits a 2-Kähler structure if and only if it is abelian.

This result can actually be generalized to any dimension, when g is endowed with a
quasi-nilpotent complex structure J .

Theorem 3.8 A non-abelian nilpotent Lie algebra of real dimension 2n ≥ 8 endowed with a
quasi-nilpotent complex structure cannot be 2-Kähler.

Proof We will prove the statement by induction on n ≥ 4. The base of the induction is true
by Theorem 3.7. Suppose the theorem is proved for every nilpotent Lie algebra of dimension
2(n − 1) and consider (g, J ), with g nilpotent and J quasi-nilpotent, admitting a 2-Kähler
structure. We want to prove that g is abelian. From Corollary 3.4, we know that the complex
structure equations must be

{
dα j = 0, j = 1, . . . , n − 1,

dαn ∈ �2
k = �2

〈
α1, . . . , αn−1, α1, . . . , αn−1

〉
.

(3.5)

for some basis
{
α1 . . . αn

}
of g1,0. Fix the dual basis

{
Z j , Z j

}n
j=1 of gC dual to

{
α j , α j̄

}n

j=1

and consider the ideal h of g such that hC = span
{
Z2, . . . , Zn, Z2, . . . , Zn

}
. Proposition 2.5

also holds so h, endowed with the complex structure J̃ := J |h, must be 2-Kähler as well. If
J̃ is quasi-nilpotent, we can use the inductive hypothesis on h to conclude that it is abelian.
From (3.5), we know that the complex structure equations of (h, J̃ ) are

dhα j = 0, j = 2, . . . , n − 1, dhαn ∈ �2
h∩k = �2

〈
α2, . . . , αn−1, α2, . . . , αn−1

〉
,

so J̃ is actually nilpotent and h must be abelian. This, together with (3.5), gives

dαn = α1 ∧ γ1 + α1̄ ∧ γ2 + c α11̄ ,

for some γ1 ∈ �1
h∩k, γ2 ∈ �

1,0
h∩k and c ∈ C. We already saw that a 2-Kähler structure � on

(g, J ) can be written as

� = �h + α1 ∧ η + α1̄ ∧ η + i α11̄ ∧ ϑ,

with �h ∈ �
2,2
h real and transverse, η ∈ �

1,2
h , ϑ ∈ �

1,1
h . Moreover, d� = 0 if and only if

d�h = α1 ∧ dη + α1 ∧ dη ∈ I
(

α11̄
)

.

Similarly to Proposition 3.3, if �h∩k is the restriction of �h to k, we have

�h = �h∩k + β ∧ αn + β ∧ αn̄ + ω ∧ i αnn̄ ,

with �h∩k ∈ �
2,2
h∩k and ω ∈ �

1,1
h∩k real and transverse and β ∈ �

1,2
h∩k. We get

d�h = −β ∧ dαn − β ∧ dαn̄ + iω ∧ dαn ∧ αn − iω ∧ dαn ∧ αn

= α1 ∧
(
β ∧ γ1 + β ∧ γ2 + iω ∧ γ1 ∧ αn + iω ∧ γ2 ∧ αn

)

+ α1 ∧
(
β ∧ γ2 + β ∧ γ1 + iω ∧ γ2 ∧ αn + iω ∧ γ1 ∧ αn

)

+ c α11̄ ∧
(
−β + β ∧ γ1 + iω ∧ αn − iω ∧ αn

)
.

(3.6)
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We know that d�h must be in the ideal generated by α11̄ , so the second and third lines in
(3.6) should vanish, giving

β ∧ γ1 + β ∧ γ2 + iω ∧ γ1 ∧ αn + iω ∧ γ2 ∧ αn = 0.

Notice that β ∧ γ1 + β ∧ γ2 lies in �4
h∩k, so this is equivalent to

⎧
⎪⎨

⎪⎩

β ∧ γ1 + β ∧ γ2 = 0,

ω ∧ γ1 = 0,

ω ∧ γ2 = 0.

(3.7)

Recall that ω is a transverse (1, 1)-form, hence positive definite. A direct consequence is that
the last condition in (3.7) is equivalent to γ2 = 0. This holds because if the (1, 0)-form γ2 is
nonzero, for any fixed ψ ∈ �n−2,0 the positive definiteness of ω implies

0 = ω ∧ γ2 ∧ ψ ∧ γ2 ∧ ψ = c̃Volg,

for some positive constant c̃ ∈ R, giving a contradiction. We can also prove that the second
condition in (3.7) is equivalent to γ1 being zero. Indeed, the 1-form γ1 can be written as
γ
1,0
1 + γ

0,1
1 , and ω ∧ γ1 = 0 is equivalent to

ω ∧ γ
1,0
1 = 0, ω ∧ γ

0,1
1 = 0.

The same argument used for γ2 can then be used for γ
1,0
1 and γ

0,1
1 , to conclude that (3.7)

implies γ
1,0
1 = γ

0,1
1 = 0, namely γ1 = 0. It follows that dαn = c α11̄ , so in particular

dη ∈ I
(

α11̄
)
and

d�h = α1 ∧ dη + α1 ∧ dη = 0.

From the first line of (3.6), we get ω ∧ dαn = 0. Using again the positive definiteness of ω,
we obtain that dαn = 0 and g is abelian. �	

4 (n− 2)-Kähler almost abelian solvmanifolds

In this section, we will discuss the case where (X , J ) is an almost abelian solvmanifold, i.e.,
a compact quotient 	\G of a simply connected almost abelian Lie group G by a lattice 	

endowed with an invariant complex structure J . Lemma 2.4 allows us to restrict to the study
of p-Kähler structures on unimodular almost abelian Lie algebras.

Let g be an almost abelian Lie algebra of real dimension 2n and denote with a its
codimension one abelian ideal. Let (J , g) be a Hermitian structure on g and denote by
a1 the J -invariant space a ∩ Ja. Then there exists a unitary basis {e1, . . . , e2n} such that
a = span {e1, . . . , e2n−1}, a1 = span {e2, . . . , e2n−1} and Je j = e2n+1− j , for j = 1, . . . , n.
The matrix associated with ade2n

∣∣
a
in this basis can be written as

(
λ 0
v A

)
,

with λ ∈ R, v ∈ a1, A = (a j,k)
2n−1
j,k=2 ∈ gl (a1). We will refer to such a basis {e1 . . . e2n} as

adapted to the Hermitian structure (J , g). By [6, 17], the integrability of J is equivalent to
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AJ1 = J1A, with J1:= J |a1 , so that A must satisfy

a2n+1− j,k =
{

−a j,2n+1−k k = 2, . . . , n

a j,2n+1−k k = n + 1, . . . , 2n − 1
j = 2, . . . , n.

If
{
e1 . . . e2n

}
is the dual basis to {e1 . . . e2n}, we have that α j = e j + ie2n+1− j , for j =

1 . . . n, is a basis of (1, 0)-forms on g and the complex structure equations of (g, J ) are
⎧
⎪⎪⎨

⎪⎪⎩

dα1 = i

2
λα11̄ ,

dα j = i

2
w j α

11̄ + α1 − α1̄

2
∧

n∑

k=2

b jkα
k, j = 2, . . . , n,

(4.1)

with w j = v j + i v2n+1− j and b jk :=i a j,k − a2n+1− j,k = i a j,k + a j,2n+1−k .

Remark 4.1 Notice that g is unimodular if and only if λ = −tr(A). Moreover, (J , g) is Kähler
if and only if v = 0 and A = −At (see [17] and [10, Lemma 3.6]), while it is balanced if
and only if v = 0 and tr(A) = 0 [9, Lemma 3.1].

We will now prove the following.

Theorem 4.2 Let (g, J ) be a unimodular almost abelian Lie algebra of real dimension 2n ≥ 6
endowed with a complex structure J . If (g, J ) admits a (n− 2)-Kähler structure, then (g, J )

is Kähler.

Proof We know that there exists a basis of (1, 0)-forms α j = e j + ie2n+1− j , for j = 1 . . . n,
such that the complex structure equations of (g, J ) are given by (4.1). Suppose that (g, J )

admits a (n − 2)-Kähler form �. Then, we can write

� = � + α1 ∧ η + α1̄ ∧ η + i α11̄ ∧ ϑ, (4.2)

with � ∈ �
n−2,n−2
a1 , ϑ ∈ �

n−3,n−3
a1 both real and transverse and η ∈ �

n−3,n−2
a1 . The

restriction � of � to a1 is a (n− 2, n− 2)-transverse form on a space of complex dimension
n − 1, so it is strictly positive and so there exists a new basis

{
β2, . . . , βn

}
of a1,01 such that

� =
(
i(β22 + · · · + βnn)

)n−2

[18]. We can then consider as basis { f j } of a1 the dual basis of the basis { f j } of a∗
1, given

by

f j :=β j + β j

2
, f 2n+1− j := − i

β j − β
j

2
, j = 2 . . . n.

Note that we still have J f j = f2n+1− j for j = 2 . . . n. We can complete { f2, . . . , f2n−1}
to a basis { f1, . . . , f2n} of g just taking f1 = e1 and f2n = e2n . Then we have a =
span { f1, . . . , f2n−1} and J f1 = f2n . Therefore, the complex structure equations of (g, J )

are still of the form
⎧
⎪⎪⎨

⎪⎪⎩

dβ1 = i

2
λ̃β11,

dβ j = i

2
w̃ jβ

11 + β1 − β 1̄

2
∧

n∑

k=2

b̃ jkβ
k, j = 2, . . . , n,
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with λ̃ = λ and β1 = α1. The pair (g, J ) is then determined by the matrix associated with
ade2n

∣∣
a
in this new basis

(
λ 0
ṽ Ã

)
,

with ṽ ∈ a1, Ã = (ã j,k)
2n−1
j,k=2 ∈ gl (a1), and with w̃ j = ṽ j + i ṽ2n+1− j and b̃ jk :=i ã j,k −

ã2n+1− j,k = i ã j,k+ã j,2n+1−k . Recall that the integrability of J is equivalent to the condition
Ã J1 = J1 Ã. Therefore, Ã must satisfy

ã2n+1− j,k =
{

−ã j,2n+1−k k = 2, . . . , n

ã j,2n+1−k k = n + 1, . . . , 2n − 1
j = 2, . . . , n.

Moreover,

d� = i
(
β1 − β 1̄

)
∧ ρ + iβ11 ∧ γ,

dη = i
(
β1 − β 1̄

)
∧ φ + β11 ∧ ψ

with ρ ∈ �
n−2,n−2
a1 and γ ∈ �2n−5

a1
real forms. Notice that ρ and φ depend on Ã, while γ

and ψ depend on ṽ. We have

0 = d� = d� + λ
i

2
β11 ∧ (η + η̄) − β1 ∧ dη − β 1̄ ∧ dη,

= iβ11 ∧
(

γ + λ

2
(η + η̄) + φ + φ̄

)
+

(
β1 − β 1̄

)
∧ ρ,

or equivalently

ρ = 0, γ + λ

2
(η + η̄) + φ + φ̄ = 0. (4.3)

As a first consequence, we have that the theorem is true when Ã = 0. In this case, ρ = 0,
φ = 0 and g is unimodular if and only if λ = 0, so that (4.3) reduces to γ = 0, namely
d� = 0. Because dβ11̄ = 0 and dϕ ∈ I (β11̄) for all ϕ ∈ �g, one has

0 = d� = d
(
i(β11 + · · · + βnn)

)n−2 ;

hence, d(β11 + · · · + βnn) = 0 (see [12]) and (g, J ) is Kähler. We can now prove that
when Ã �= 0 the vanishing of ρ implies that Ã = − Ãt . Indeed, we have d� = in−2(n −
2)

(
β22 + · · · + βnn

)n−3 ∧ d(β22 + · · · + βnn). For j = 2 . . . n,

dβ j j = i

2
β11 ∧

(
w̃ jβ j − w̃ jβ

j
)

+ β1 − β 1̄

2
∧

n∑

k=2

(
b̃ jkβ

k j − b̃ jkβ
jk

)
.

For some cn ∈ R, we can write

(
β22 + · · · + βnn

)n−3 = cn
∑

2≤l<m≤n

β22̄···l̂ l̄···̂mm̄···nn̄
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so that

d� = iβ11 ∧ γ + c̃n
(
β1 − β 1̄

)
∧

∑

2≤l<m≤n

β22̄···̂ll̄···̂mm̄···nn̄ ∧
n∑

j,k=2

(
b̃ jkβ

k j − b̃ jkβ
jk

)

with c̃n ∈ C. We can rewrite the last sum as

n∑

j=2

β i j
(
b̃ j j − b̃ j j

)
+

∑

2≤ j<k≤n

((
b̃ jk αk j̄ − b̃ jkβ

jk
)

+
(
bkjβ

jk − bkjβ
k j

))

=
n∑

j=2

β j j
(
b̃ j j − b̃ j j

)
+

∑

2≤ j<k≤n

(
β jk

(
b̃k j − b̃ jk

)
+ βk j

(
b̃ jk − b̃k j

))

=
n∑

j=2

2i ã j jβ
j j +

∑

2≤ j<k≤n

(
β jk

(
b̃k j − b̃ jk

)
+ βk j

(
b̃ jk − b̃k j

))
.

It follows that up to a complex constant, ρ equals

n∑

l �=m=2

2i ãllβ
22̄···̂mm̄···nn̄ +

∑

2≤l<m≤n

β22̄···l̂ l̄···̂mm̄···nn̄ ∧
(
βlm

(
b̃ml − b̃lm

)
+ βml

(
b̃lm − b̃ml

))
.

If ρ = 0, one gets
⎧
⎪⎨

⎪⎩

∑

l �=m

ãll = 0, m = 2 . . . n,

b̃lm = b̃ml , 2 ≤ l < m ≤ n,

namely

ãll = 0, ãlm = −ãml , ã2n+1−l,m = ã2n+1−m,l = −ãm,2n+1−l .

This, together with the conditions on Ã given by the integrability of the complex structure,
is enough to conclude that Ã = − Ãt . Therefore, the matrix associated with ade2n

∣∣
a
in the

basis { f1, . . . , f2n−1} is

C =
(

λ 0
ṽ Ã

)
,

with Ã antisymmetric. Because Ã �= 0, the Jordan form of C is

Jord(C) =
(

λ δ 0 · · · 0
0 Jord( Ã)

)
,

where Jord( Ã) is the Jordan form of Ã, δ = 0 if λ is an eigenvalue of Ã and δ = 1 otherwise.
It follows that C is similar to a matrix

D =
(

λ 0
0 D̃

)
,

with D̃ antisymmetric and Jord(D̃) = Jord( Ã). Consider the almost abelian Lie algebra
g̃ with abelian ideal ã = span {ẽ1 . . . ẽ2n−1} and such that the matrix of adẽ2n

∣∣
ã
is D. By

[11, Proposition 1], g̃ is isomorphic to g. As mentioned above (Remark 4.1), this gives the
existence of a Kähler metric on g̃. �	
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Remark 4.3 In complex dimension 4, the theorem states that there are no 2-Kähler almost
abelian solvmanifolds that are non-Kähler.

Remark 4.4 In the last part of the proof, we found a sufficient condition for an almost abelian
unimodular Lie algebra g to beKähler. Let (J , g) be aHermitian structure on g and {e1 . . . e2n}
be an adapted basis to (J , g). If ade2n

∣∣
a
is conjugated to a matrix of the form

(
λ 0
v A

)
,

with λ ∈ R, v ∈ a1, A ∈ so(a1),
[
A, J |a1

] = 0, and A has same rank of (v A), then (g, J )

is Kähler.
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