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Abstract
Wecompare ground states for the nonlinear Schrödinger equation onmetric graphs, defined as
globalminimizers of the action functional constrainedon theNeharimanifold, and least action
solutions, namely minimizers of the action among all solutions to the equation. In principle,
four alternative cases may take place: ground states do exist (thus coinciding with least action
solutions); ground states do not exist while least action solutions do; both ground states and
least action solutions do not exist and the levels of the two minimizing problems coincide;
both ground states and least action solutions do not exist and the levels of the two minimizing
problems are different. We show that in the context of metric graphs all four alternatives do
occur. This is accomplished by a careful analysis of doubly constrained variational problems.
As a by-product, we obtain new multiplicity results for positive solutions on a wide class of
noncompact metric graphs.

Mathematics Subject Classification 35R02 · 35Q55 · 49J40 · 58E30

1 Introduction

Nonlinear Schrödinger equations on metric graphs have attracted the interest of a large—
and increasing—number of researchers in the last few years. As the literature on the subject
witnessed a massive growth, we refrain from overviewing it here, redirecting e.g. to [1, 3,
9–16, 21, 26, 29, 32, 33, 38–41] for some of the most recent developments and to the reviews
[2, 34] for more comprehensive discussions. Within the whole theory, prominent efforts have
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been devoted to the analysis of existence of positive standingwave solutions, with a particular
focus on ground states.

The notion of ground state however, albeit often suggested unequivocally by the specific
problem under study, is by no means univocally defined. This aspect is of course not specific
to Schrödinger equations on metric graphs, but is a general feature appearing in the study of
various types of scalar field equations on a variety of domains, from open subsets of RN to
Riemannian manifolds.

To describe it more concretely, we consider a metric graph G and the NLS equation

u′′ + |u|p−2u = λu on G (1.1)

where λ > 0 and p > 2. As usual, it is required that (1.1) be satisfied pointwise on every edge
of G, while additional matching conditions have to be imposed at the vertices of the structure.
In this paper, equation (1.1) is coupled with the so–called natural, or Kirchhoff, boundary
conditions, prescribing that on every vertex v of G the sum of the outgoing derivatives of
u along every edge incident at v is zero. Thus, defining a coordinate xe ∈ (0, |e|) on every
edge e of G (where |e| is the length of edge e), the problem we are addressing reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′ + |u|p−2u = λu on every edge e of G
u is continuous at every vertex v of G
∑

e�v

du

dxe
(v) = 0 at every vertex v of G,

(1.2)

where λ > 0, p > 2, the symbol e � vmeans that the sum is extended to all edges emanating
fromv andwhere du

dxe
(v) is the outward derivative of u atv. In this framework, the solutions to

(1.2) can be characterized variationally as the critical points of the standard action functional
Jλ : H1(G) → R

Jλ(u) := 1

2
‖u′‖2L2(G)

+ λ

2
‖u‖2L2(G)

− 1

p
‖u‖p

L p(G), (1.3)

where
H1(G) = {

u : G → R | u is continuous and u, u′ ∈ L2(G)
}
.

In the search for ground states, as Jλ is not bounded from below, one may impose extra con-
straints to recover boundedness andmake aminimization proceduremeaningful. For instance
one could restrict Jλ to the unit sphere of L p(G) or to the Nehari manifold associated with
Jλ (this second approach has the advantage that the nonlinearity need not be homogeneous).
Both procedures make Jλ bounded from below on these sets and one then defines ground
states as the functions that achieve the infimum of Jλ on the constraint. Specifically, for our
problem, the Nehari manifold is the set

Nλ(G) := {
u ∈ H1(G) \ {0} | J ′

λ(u)u = 0
}

=
{
u ∈ H1(G) \ {0} | ‖u′‖2L2(G)

+ λ‖u‖2L2(G)
= ‖u‖p

L p(G)

}
. (1.4)

As is well known, the Nehari manifold contains all nonzero critical points of Jλ and is a
natural constraint, in the sense that constrained critical points are in fact true critical points
of Jλ. This leads to a first definition of ground state. Defining

cλ(G) = inf
u∈Nλ(G)

Jλ(u),

it is customary to set the following
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Definition 1.1 An action ground state for (1.2) is a function u ∈ Nλ(G) such that

Jλ(u) = cλ(G). (1.5)

Clearly any action ground state is a constant sign solution to (1.2), often referred to also
as a “solution of minimal action”, though we adopt here a different terminology (see Defini-
tion 1.2). In applications, action ground states play a prominent role for various reasons,which
fully justifies the preceding definition. In practice, however, one is very often confronted with
the following inconvenience: there need not exist any function u in Nλ(G) satisfying (1.5)
(a frequent fact in many noncompact settings). Thus, the existence of a ground state is not
guaranteed in general.

To overcome this obstacle, sometimes one assumes a different definition of ground state.
Let

Sλ(G) = {u ∈ H1(G) \ {0} | u solves (1.2)}
be the set of nonzero solutions to (1.2) and set

σλ(G) = inf
u∈Sλ(G)

Jλ(u). (1.6)

Although it is common use to call ground states too the functions described in the following
definition, we prefer to label them with a different name, to avoid misunderstandings.

Definition 1.2 A least action solution for (1.2) is a function u ∈ Sλ(G) such that

Jλ(u) = σλ(G). (1.7)

The two points of viewmotivating the above definitions are clearly different. In the former
case one fixes the attention on the level cλ(G), and tries to prove that it is attained, obtaining
in this way a solution that has minimal action among all functions inNλ(G). In the latter the
aim is to ascertain if, among solutions of (1.2), there is one of least action; in this case there
might be plenty of functions with lesser action (and none of them will solve problem (1.2) if
cλ(G) is not attained).

Although Sλ(G) is a much smaller set than Nλ(G) it is not at all clear, in general, that
there exist any functions in Sλ(G) that achieve σλ(G). Thus, even with the second definition,
the existence of “ground states” is not guaranteed a priori.

The aim of this paper is to analyze the relations among cλ(G) and σλ(G) and in particular
to investigate if all the theoretical cases can actually take place. To make this point clear we
start by observing that, trivially,

cλ(G) ≤ σλ(G), (1.8)

without any further assumption. Furthermore, if cλ(G) is attained by some function u ∈
Nλ(G), then u ∈ Sλ(G), the equality cλ(G) = σλ(G) holds, and σλ(G) is attained too. In view
of these preliminary considerations, the possibilities to consider are exactly the following
four:

(A1) cλ(G) = σλ(G), and they are attained;
(A2) cλ(G) = σλ(G), and they are not attained;
(B1) cλ(G) < σλ(G), σλ(G) is attained and cλ(G) is not;
(B2) cλ(G) < σλ(G), and neither is attained.

To prove or disprove the actual occurrence of these situations then amounts, for each A1–B2,
to produce an example of a graph G where the behavior is exactly the one prescribed by the
alternative in question.
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We wish to make very clear that the previous discussion is completely independent of
the domain on which the NLS equation is set. For instance, replacing G by an open subset
� of RN (and the second derivative by the Laplacian, and so on, e.g. H1(G) by H1(�)

or H1
0 (�),....), every issue described so far can be stated in the new context without any

modification except notation. In particular, the four alternatives listed above remain and it
would be extremely interesting to understand if they really occur. While this can be easily
achieved in some of the alternatives (A1, for instance), some of them appear rather difficult
to deal with when considering the NLS equation on subsets of RN and are currently out of
reach.

Our present contribution aims at shedding some light on this problem starting from the con-
text ofmetric graphs,where one can profitably use the advantage of the local one–dimensional
nature of the ambient space to obtain sharper results. Even in this setting, though, the con-
structions we will provide are quite involved, very specific to the metric graph environment
and do not seem to be extendable to other frameworks.

Stated in a compact form, our main result is the following. In a nutshell, as far as action
ground states are concerned, “anything can happen” on metric graphs.

Theorem 1.3 For every p > 2, every λ > 0 and every choice of an alternative among A1,
A2, B1, B2, there exists a metric graph G where that alternative takes place.

As the proof of Theorem 1.3 will be carried out case by case, let us briefly comment here
on A1–B2, postponing the technical issues to subsequent sections.

Case A1 corresponds to problems where the infimum cλ(G) is achieved. This is what one
normally tries to obtain in the existence results and it is the case for all compact graphs and
for some noncompact ones (see e.g. [6–8, 22, 23, 25, 35, 37, 38, 42], works that deal with still
a slightly different notion of ground state, but whose techniques adapt easily to the present
setting). The theory in this framework is rather well developed, not only on metric graphs of
course, and there is not much to add.

In case A2 the graph is necessarily noncompact. There are plenty of examples where
it is known that cλ(G) is not attained, and this is due to topological or metric obstructions
on the graph that have been widely described in the literature (see again e.g. [6–8, 25]).
Nonetheless, this leaves open the question of the existence of a least action solution in the
sense of Definition 1.2. As far as we know, examples of this kind, where cλ(G) coincides
with σλ(G) but the level is not achieved, have never been described before. The construction
of a graph with this property will be the object of Sect. 4.2 (Theorem 4.1) and is one of the
principal proofs of the paper.

Due to existing results, it is easy to produce an example where alternative B1 occurs.
We will briefly describe it anyway for completeness in Sect. 4.3, since it has never been
considered under this perspective.

Case B2 is the hardest one and will be treated in Sect. 4.4 (Theorem 4.2). It is well known
that, typically, the lack of a function attaining cλ(G) is due to the presence of a “problem at
infinity” that attracts nonconvergent minimizing sequences. This is a standard phenomenon
in problemswith lack of compactness and is essentially what takes places in cases A2 and B1.
The main novelty in B2, which is what makes this case rather delicate, is that the infimum
over solutions is not attained due to the presence of a second problem at infinity, at level
σλ(G) > cλ(G). By this we do not mean a problem at infinity with loss of compactness
at different levels, but rather the presence of two distinct problems: the first, as we said,
attracting nonconvergent minimizing sequences for Jλ and preventing at the same time the
existence of solutionswith action arbitrarily close to such infimum level; the second attracting
nonconvergent sequences of solutions of lower and lower level. In fact, the gap between cλ(G)
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and σλ(G) reflects the coexistence of this pair of necessarily different problems at infinity.
This seems to be a new phenomenon and it is what makes quite involved the construction of
a graph exhibiting it.

As a byproduct, we notice that in cases A2 and B2, the fact that σλ(G) is not attained
immediately implies the existence of infinitely many positive solutions for (1.2), which we
believe to be a remarkable fact.

From the technical point of view, the proofs of the aforementioned results exploit deeply
the role of both the topology and themetric of graphs to determine existence/non–existence of
solutions to specific variational problems. On the one hand, non–existence of ground states is
obtained via by–now standard arguments in the theory of NLS onmetric graphs. On the other
hand, the construction of noncompact sequences of solutions in Sλ(G) with specific action
level is achieved, in both cases A2 and B2, through a careful analysis of doubly–constrained
minimization problems in the form

inf
u∈Nλ(G)∩Xe

Jλ(u) (1.9)

where

Xe = {
u ∈ H1(G) : ‖u‖L∞(G) = ‖u‖L∞(e)

}

is the subset of H1 functions attaining their L∞ normon a given bounded edge e ofG. A rather
general existence result of independent interest is derived for this kind of problems in Sect. 3.
Precisely, for a wide class of noncompact graphs, given λ > 0 we show that the infimum
in (1.9) is attained whenever the length of e is larger than a threshold depending only on λ

and p (Theorem 3.2). Moreover, such a minimizer is a solution of problem (1.2) provided
e is sufficiently long (Theorem 3.3), the threshold depending this time also on infe∈E |e|,
where E is the set of all edges of G. This approach was originally introduced for mass–
constrained critical points of the energy functional in [5], where it proved suitable to obtain
multiplicity results. However, in that paper a crucial assumption is that the (prescribed) mass
be sufficiently large. By scaling properties, this is equivalent to the assumption that the length
of all bounded edges is large. Here, on the contrary, it is sufficient that a single edge is long
enough. A direct consequence of these results is the existence of multiple positive solutions,
each attaining its maximum on one of the edges longer than the threshold (Theorem 3.5).

To conclude this introduction, let us point out that, as is well known, to look at solutions
of (1.2) as critical points of the action functional (1.3) is not the unique variational char-
acterization at disposal. In particular, moving from the seminal papers [20, 30], in the past
decade a lot of attention has been devoted, both on metric graphs and on domains in R

N , to
normalized solutions, i.e. critical points of the energy functional E : H1(G) → R

E(u) := 1

2
‖u′‖2L2(G)

− 1

p
‖u‖p

L p(G)

constrained to the space of functions with prescribed mass μ

H1
μ(G) :=

{
u ∈ H1(G) : ‖u‖2L2(G)

= μ
}

.

In this setting, the parameter λ appearing in (1.2) is not known a priori and pops up as
a Lagrange multiplier associated to the mass constraint. It is well known that the energy
functional is bounded from below in H1

μ(G) for every μ when p ∈ (2, 6). In these cases, it is
evident that one can consider definitions of energy ground states and least energy solutions
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analogous to those given above when dealing with Jλ. Precisely, letting

ĉμ(G) = inf
u∈H1

μ(G)
E(u)

and

σ̂μ(G) = inf
u∈Ŝμ

E(u),

where

Ŝμ(G) := {
u ∈ H1

μ(G) : u solves (1.2) for some λ ∈ R
}
,

one has the following mutually exclusive four alternatives (the analogue of A1–B2)

(Â1) ĉμ(G) = σ̂μ(G), and they are attained;
(Â2) ĉμ(G) = σ̂μ(G), and they are not attained;
(B̂1) ĉμ(G) < σ̂μ(G), σ̂μ(G) is attained and ĉμ(G) is not;
(B̂2) ĉμ(G) < σ̂μ(G), and neither is attained.

As a matter of fact, the analysis we develop here for Jλ can be naturally adapted to prove
(with the very same constructions) that also in the context of normalized critical points of E
all cases Â1 − B̂2 do actually occur. Note that, even though both the approaches have been
widely exploited in the literature, a detailed discussion of the relation between ground states
(and more generally local minima) of Jλ and E was started only recently in [24, 31].

The paper is organized as follows. Section2 recalls some preliminary results, whereas
Sect. 3 deals with doubly–constrained variational problems for the action functional in a
general setting, proving the existence results in Theorems 3.2–3.3-3.5. Section4 is devoted
to the proof of Theorem 1.3.
Notation. In what follows, we will write e.g. ‖u‖p, . . . , in place of ‖u‖L p(G), . . . , whenever
possible. When needed, the full notation will be used to indicate explicitly the domain of
integration.

2 Preliminaries

In this paper we use a number of properties and results that have been established (mostly)
in the recent literature. For the ease of the reader we collect them in the present section,
referring each time to the original papers where proofs can be found.

We assume that the reader is familiar with the concept of metric graph. However, we make
precise that in this paper we consider metric graphs G = (V,E) satisfying the following
definition.

Definition 2.1 We denote by G the class of metric graphs G = (V,E) such that

• G is connected and has an at most countable number of edges;
• G has at least one unbounded edge (i.e. a half-line);
• deg(v) < ∞ for every v ∈ V, where deg(v) denotes the degree of the vertex v, i.e. the

number of edges emanating from it;
• ∀v ∈ V, deg(v) �= 2;
• infe∈E |e| > 0, where |e| denotes the length of e.

There is no loss of generality in assuming that deg(v) �= 2 since every vertex of degree
two can a priori be eliminated from any metric graph, by melting the two edges incident at v
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into a single edge. Note that every G ∈ G is noncompact. Further assumptions will be made
when needed in the course of the paper.

In the study of the NLS equation on a metric graph in class G, a fundamental tool is
provided by the Gagliardo–Nirenberg inequalities (see [8])

‖u‖qq ≤ K‖u‖
q
2 +1
2 ‖u′‖

q
2 −1
2 , K = 2

q
2 −1, (2.1)

that hold for every u ∈ H1(G) and every q ≥ 2, and their L∞ version

‖u‖2∞ ≤ 2‖u‖2‖u′‖2. (2.2)

A second fundamental tool that we will use very frequently in the next sections is provided
by the rearrangement techniques of H1 functions on a generic graph G, for the details of
which we refer to Sect. 3 of [7]. For the reader’s convenience we recall here that, given a
nonnegative function u ∈ H1(G) on a graph G with total length |G|, the decreasing rear-
rangement of u is the unique nonincreasing function u∗ ∈ H1(0, |G|) equimeasurable with
u. The equimeasurability property entails that

‖u∗‖Lq (0,|G|) = ‖u‖Lq (G), for every q ∈ [1,+∞]. (2.3)

Moreover, by the classical Pólya–Szegő inequality, we have

‖(u∗)′‖L2(0,|G|) ≤ ‖u′‖L2(G). (2.4)

Similarly, the symmetric rearrangement û ∈ H1(−|G|/2, |G|/2) of u is û(x) = u∗(2|x |).
By definition, û is symmetric, nonincreasing on [0,−|G|/2) and equimeasurable with u.
Furthermore, it iswell known (see e.g. [7]) that if #u−1(t) ≥ 2 for almost every t ∈ (0, ‖u‖∞),
then

‖û′‖L2(−|G|/2,|G|/2) ≤ ‖u′‖L2(G), (2.5)

where equality implies that #u−1(t) = 2 for almost every t ∈ (0, ‖u‖∞).
The following result, that will be used in Sect. 4, is essentially a refinement of the Pólya–

Szegő inequality and its proof follows combining results of [27] and [28].

Proposition 2.2 Let G be any metric graph and let u be a nonnegative function in H1(G).
Let T ⊂ [0,+∞[ of positive measure. Assume that, for some integer K ≥ 1,

#u−1(s) ≥ K for a.e. s ∈ T .

Then the decreasing rearrangement u∗ of u satisfies

‖u∗‖Lq ((u∗)−1(T )) = ‖u‖Lq (u−1(T )), for every q ∈ [1,+∞]
and

‖(u∗)′‖L2((u∗)−1(T )) ≤ 1

K
‖u′‖L2(u−1(T )).

Next, if G is a metric graph in class G and λ > 0, we define the action functional
Jλ ∈ C1(H1(G),R) as

Jλ(u) := 1

2
‖u′‖22 + λ

2
‖u‖22 − 1

p
‖u‖p

p

and the Nehari manifold associated to Jλ,

Nλ(G) := {
u ∈ H1(G) \ {0} | J ′

λ(u)u = 0
}
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= {
u ∈ H1(G) \ {0} | ‖u′‖22 + λ‖u‖22 = ‖u‖p

p
}
.

It is well known that there exists a natural projection of H1(G)\{0} on Nλ. Defining πλ :
H1(G)\{0} → R by

πλ(u) =
(

‖u′‖22 + λ‖u‖22
‖u‖p

p

) 1
p−2

, (2.6)

we have u ∈ Nλ(G) if and only if πλ(u) = 1. We will also need the functional
L : H1(G)\{0} → R defined by

L(u) = ‖u‖p
p − ‖u′‖22
‖u‖22

. (2.7)

If u solves problem (1.2), then L(u) = λ and, more generally, L(u) = λ if and only if
u ∈ Nλ(G).

When u ∈ Nλ(G), the functional Jλ takes the simple form

Jλ(u) = κ‖u‖p
p = κ(‖u′‖22 + λ‖u‖22), κ = 1

2
− 1

p
, (2.8)

so that Jλ is positive on Nλ(G). Actually more can be said, and we summarize it in the next
proposition.

Proposition 2.3 There exists a constant C > 0 depending only on λ and p such that

inf
u∈Nλ(G)

‖u‖p ≥ C > 0. (2.9)

Moreover, if (un)n ⊂ Nλ(G) satisfies sup
n

Jλ(un) < ∞, then (un)n is bounded in H1(G) and

inf
n

‖un‖2 > 0, inf
n

‖un‖∞ > 0.

Proof Since
√

‖u′‖22 + λ‖u‖22 is equivalent to the usual H1(G) norm, Sobolev inequalities
imply the existence of C = C(p, λ) > 0 such that, for all u ∈ Nλ,

‖u‖p ≤ C(‖u′‖22 + λ‖u‖22)1/2 = C‖u‖p/2
p ,

whence

inf
u∈Nλ

‖u‖p ≥ C
2

2−p > 0

which proves (2.9).
From (2.8), as sup

n
Jλ(un) < ∞, we see that (un)n is bounded in H1(G), hence in L2(G)

and L∞(G). Observing that

‖un‖p
p ≤ ‖un‖p−2∞ ‖un‖22,

we see that ‖un‖2 and ‖un‖∞ are also uniformly bounded away from zero. ��
When G = R, the non-trivial solutions to (1.2) are called solitons, they are unique up to

translations and sign and they are the action ground states of Jλ over Nλ(R) (see e.g. [36,
Proposition 3.12]). Denoting by φλ the unique positive and even soliton, letting s1 := J1(φ1)

and

sλ := s1λ
α, α = p + 2

2(p − 2)
, (2.10)
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for λ > 0, there results
Jλ(φλ) = inf

u∈Nλ(R)
Jλ(u) = sλ. (2.11)

When G = R
+, for every λ > 0 there is a unique positive action ground state, given by the

restriction of φλ to R
+ and

inf
u∈Nλ(R+)

Jλ(u) = Jλ
(

φλ |
R+

)
= 1

2
sλ. (2.12)

The level sλ plays a fundamental role in many papers, including the present one.

Lemma 2.4 Let G be a metric graph. Assume that, for every 	 > 0, G has an edge e	 of length
at least 	. Then there exists a sequence of functions (u	)	∈N ⊆ Nλ, equal to zero outside e	,
and such that

lim
	→∞ Jλ(u	) = sλ.

In particular
inf

u∈Nλ(G)
Jλ(u) ≤ sλ. (2.13)

Remark 2.5 In the following, this lemma will be used in two ways. First, if G has at least
one half-line, one can take e	 to be the half-line for every 	. Second, if G has a sequence of
distinct edges e	 with diverging lengths, one can apply Lemma 2.4 to them. Note that the
fact that each function u	 in the statement is nonzero only on e	 is crucial for the arguments
in the following sections.

Proof Let φλ be the soliton in Nλ(R) and set δ	 = φλ(	/2) = o(1) as 	 → ∞. For every
	 > 0, identify the interval [−	/2, 	/2] with a subset of the edge e	 and define v	 ∈ H1(G)

as

v	(x) =
{

(φλ(x) − δ	)
+ if x ∈ e	,

0 elsewhere on G.

Since ‖v	‖H1(G) = ‖v	‖H1(e	) = ‖φλ‖H1(R) + o(1) as 	 → ∞, and likewise for all the Lq

norms, we see that πλ(v	) → 1 as 	 → ∞. Therefore, as πλ(v	)v	 ∈ Nλ(G),

Jλ(πλ(v	)v	) = Jλ(v	) + o(1) = Jλ(φλ) + o(1) = sλ + o(1)

as 	 → ∞, and we conclude. ��
In [7] the authors introduced a topological condition on G under which inequality (2.13)

is reversed. In our setting this condition, that we call assumption (H) as in [7], takes the
following form.

Definition 2.6 We say that a metric graph G ∈ G satisfies assumption (H) if, for every
point x0 ∈ G, there exist two injective curves γ1, γ2 : [0,+∞) → G parameterized by
arclength, with disjoint images except for an at most countable number of points, and such
that γ1(0) = γ2(0) = x0.

If a graph G ∈ G satisfies assumption (H), it is easy to see (and proved in [7]) that for
every nonnegative u ∈ H1(G)

#u−1(t) ≥ 2 for almost every t ∈ (0, ‖u‖∞).
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Therefore, letting û be the symmetric rearrangement of u, if u ∈ Nλ(G) we have πλ(̂u) ≤ 1
by (2.5). As πλ(̂u)̂u ∈ Nλ(R), we conclude by (2.11) and (2.8) that

sλ ≤ Jλ(πλ(̂u)̂u) = κπλ(̂u)p‖û‖p
L p(R)

≤ κ‖u‖p
L p(G) = Jλ(u)

and since this holds for every u ∈ Nλ(G), inequality (2.13) is in fact an equality.
As a consequence, with the same techniques as in [7], it is easy to prove the following

result.

Theorem 2.7 If G ∈ G satisfies assumption (H), then

inf
u∈Nλ(G)

Jλ(u) = sλ

but it is never achieved, unless G is isometric toR or to one of the exceptional graphs depicted
in Example 2.4 of [7].

If more is known on the number of preimages of a function u ∈ Nλ(G), one can obtain
sharper estimates. The following result will be used in Sect. 4.

Proposition 2.8 Let G ∈ G and assume that u ∈ Nλ(G) is nonnegative and satisfies

#u−1(t) ≥ K for a.e. t ∈ (inf
G

u, sup
G

u)

for some integer K ≥ 1. Then

Jλ(u) ≥ K
sλ
2

.

Proof Since G ∈ G we have |G| = +∞. By Proposition 2.2 applied to T =
(infG u, supG u) = (0, supG u), the decreasing rearrangement u∗ of u satisfies u∗ ∈ H1(R+)

and

‖u∗‖Lq (R+) = ‖u‖Lq (G), for every q ∈ [1,+∞], ‖(u∗)′‖L2(R+) ≤ 1

K
‖u′‖L2(G).

Setting uK (x) := u∗(Kx), a standard change of variable shows that

πλ(uK )p−2 =
‖u′

K ‖2
L2(R+)

+ λ‖uK ‖2
L2(R+)

‖uK ‖p
L p(R+)

=
K‖(u∗)′‖2

L2(R+)
+ λ

K ‖u∗‖2
L2(R+)

1
K ‖u∗‖p

L p(R+)

≤
‖u′‖2

L2(G)
+ λ‖u‖2

L2(G)

‖u‖p
L p(G)

= 1

and therefore, as πλ(uK )uK ∈ Nλ(R
+), by (2.12)

sλ
2

≤ Jλ(πλ(uK )uK ) = κπλ(uK )p‖uK ‖p
L p(R+)

≤ κ

K
‖u‖p

L p(G) = 1

K
Jλ(u).

��

3 A general existence result

In this section we prove a general existence result for positive solutions to (1.2) attaining their
maximum in the interior of a prescribed sufficiently long edge. Throughout this section, we
work with metric graphs in class G, most of the time requiring also that the graph satisfies
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assumption (H). However, the arguments described in this section can be adapted with minor
modifications to cover even broader classes of graphs.

Let G ∈ G satisfy assumption (H) and let e be one of its bounded edges. Set

Xe := {
u ∈ H1(G) | ‖u‖L∞(G) = ‖u‖L∞(e)

}

and consider the doubly–constrained minimization problem

cλ(G, e) := inf
u∈Nλ(G)∩Xe

Jλ(u). (3.1)

Remark 3.1 The set Xe is closed in the weak topology of H1(G). Indeed, if un ∈ Xe and
un⇀u in H1(G), then by semicontinuity

‖u‖L∞(G) ≤ lim inf
n

‖un‖L∞(G) = lim inf
n

‖un‖L∞(e) = ‖u‖L∞(e),

the last equality being justified by the uniform convergence of un to u on e.

The next two theorems state the main results of this section.

Theorem 3.2 There exists R > 0 depending only on λ and p such that, if G ∈ G satisfies
assumption (H) and has a bounded edge e of length R ≥ R, then cλ(G, e) is attained.

Theorem 3.3 Let G ∈ G satisfy assumption (H) and have a bounded edge e of length R. Let
	0 ≤ inf

e∈E |e|. Then there exists R̃ depending only on 	0, λ and p such that if R ≥ R̃ and u is

a minimizer for cλ(G, e), then u ∈ Sλ(G) and u > 0 or u < 0 on G. Moreover,

‖u‖L∞(e) > ‖u‖L∞(G\e).

Remark 3.4 It is interesting to observe the difference of dependence of the threshold in the
two previous results. In the first one, there is no dependence on the rest of the graph while in
the second one, there is a slight dependence on the infimum of the length of the other edges.

A straightforward consequence of the preceding theorems is the following multiplicity
result.

Theorem 3.5 Under the assumptions of Theorem 3.3, there exists R̃ > 0 depending only on
	0, λ and p such that for every bounded edge e of length larger than R̃, problem (1.2) has a
positive solution attaining its absolute maximum on e only. Hence, if G has n bounded edges
of length greater than R̃, then problem (1.2) has at least n distinct positive solutions.

For the proof of Theorems 3.2–3.3 we need the following lemmas.

Lemma 3.6 Let G ∈ G satisfy assumption (H). If (un)n is a bounded sequence in H1(G) such
that lim inf

n
‖un‖p > 0 and lim

n
L(un) = θ > 0, then

lim inf
n→∞ ‖un‖p

p ≥ sθ
κ

,

where sθ is defined in (2.10).

Proof Let θn := L(un), so that un ∈ Nθn (G) and θ = limn θn . Then, since (un)n is bounded
in L2(G), lim infn ‖un‖p > 0 and limn θn = θ , we have

πθ (un)
p−2 = ‖u′

n‖22 + θ‖un‖22
‖un‖p

p
= ‖u′

n‖22 + θn‖un‖22
‖un‖p

p
+ (θ − θn)

‖un‖22
‖un‖p

p
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= 1 + (θ − θn)
‖un‖22
‖un‖p

p
,

whence

lim
n

πθ (un) = 1.

By Theorem 2.7, we conclude that

sθ = inf
v∈Nθ (G)

Jθ (v) ≤ lim inf
n

Jθ (πθ (un)un) = lim inf
n

κπθ (un)
p‖un‖p

p = lim inf
n

κ‖un‖p
p

and the result follows. ��
The next result describes the behavior of minimizing sequences for problem (3.1).

Lemma 3.7 Let G ∈ G and let e ∈ G be a bounded edge. Let (un)n ⊂ Nλ(G) ∩ Xe be any
minimizing sequence for Jλ inNλ(G)∩ Xe. Then (un)n admits a subsequence (not relabeled)
such that

(1) un⇀u in H1(G), un → u in Lq
loc(G) for every q ∈ [1,+∞], inf ‖un‖p > 0;

(2) lim
n

‖un‖22 = μ > 0;

(3) u ∈ Xe \ {0};
(4) L(u) ≤ λ;
(5) if L(u) = λ, then u is a minimizer for Jλ on Nλ(G) ∩ Xe;
(6) if L(u) < λ, then m := ‖u‖22 < μ and

lim
n

L(un − u) = λ + m

μ − m
(λ − L(u)) . (3.2)

Proof Since (un)n is a minimizing sequence, up to subsequences, 1) and 2) can be deduced
from Proposition 2.3.

Notice that u �≡ 0 since if this were not the case, by L∞
loc convergence, and hence conver-

gence in L∞(e),

‖un‖p
L p(G) ≤ ‖un‖p−2

L∞(G)‖un‖2L2(G)
= ‖un‖p−2

L∞(e)‖un‖2L2(G)
→ 0,

violating 1). Moreover, since Xe is weakly closed (see Remark 3.1), u ∈ Xe, and 3) is proved.
To prove 4) observe that by lower semicontinuity, sinceπλ(u)u ∈ Nλ(G)∩Xe, the estimate

κ‖u‖p
p ≤ lim inf

n
κ‖un‖p

p = lim inf
n

Jλ(un) = cλ(G, e) ≤ Jλ(πλ(u)u) = κπλ(u)p‖u‖p
p

(3.3)
yields πλ(u) ≥ 1, which is equivalent to L(u) ≤ λ.

Now if L(u) = λ, then u ∈ Nλ(G) ∩ Xe and (3.3) shows that u is a minimizer, which is
5).

Finally, suppose that L(u) < λ and hence un − u �≡ 0 for all n large. Obviously,
by semicontinuity, m ≤ μ. To prove that the inequality is strict, first observe that by the
Gagliardo–Nirenberg inequality (2.1),

L(un − u) = ‖un − u‖p
p − ‖u′

n − u′‖22
‖un − u‖22

≤ ‖un − u‖p
p

‖un − u‖22
≤ K‖un − u‖

p
2 +1
2 ‖u′

n − u′‖
p
2 −1
2

‖un − u‖22
= K‖un − u‖

p
2 −1
2 ‖u′

n − u′‖
p
2 −1
2 ≤ C, (3.4)
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for every n, since (un)n is bounded in H1(G). Now, by the Brezis–Lieb Lemma [17], as
n → ∞,

L(un − u) = ‖un − u‖p
p − ‖u′

n − u′‖22
‖un − u‖22

= ‖un‖p
p − ‖u′

n‖22 − ‖u‖p
p + ‖u′‖22 + o(1)

‖un‖22 − ‖u‖22 + o(1)

= λ‖un‖22 − L(u)‖u‖22 + o(1)

‖un‖22 − ‖u‖22 + o(1)
= λ + (λ − L(u))‖u‖22 + o(1)

‖un‖22 − ‖u‖22 + o(1)
.

Since L(u) < λ and u �≡ 0, we see that μ = limn ‖un‖22 > ‖u‖22 = m, since otherwise
(3.4) is violated. Letting n → ∞ in the preceding equality, we obtain (3.2) and the proof is
complete. ��
Remark 3.8 As a consequence of Lemma 2.4, for every ε > 0 there exists Rε > 0 such that,
if G is any metric graph containing a bounded edge e of length greater than Rε , then

cλ(G, e) ≤ sλ + ε.

We are now ready to prove the main results of this section.

Proof of Theorem 3.2 Fix ε > 0 such that

sλ+ε = s1(λ + ε)α ≤ 2s1λ
α = 2sλ, λ − Cε > 0 and (λ + ε)α < λα + (λ − Cε)α,

(3.5)
with

C = 16s21/κ
2. (3.6)

Observe that C depends only on p and, hence, that ε depends only on p and λ but not on G.
Let R be so large that for every R ≥ R,

cλ(G, e) < sλ+ε,

which is possible by Remark 3.8. Again, we observe that R depends only on p and λ but not
on G.

Let (un)n ⊂ Nλ(G) ∩ Xe be a minimizing sequence for Jλ such that

Jλ(un) ≤ sλ+ε

for every n. Applying Lemma 3.7, (un)n has (up to subsequences) a weak limit u ∈ Xe \ {0}
such that L(u) ≤ λ and, in case equality holds, u is the required minimizer.

We now show that L(u) < λ cannot happen, and this will end the proof. If L(u) < λ, by
(3.2),

lim
n

L(un − u) = λ + m

μ − m
(λ − L(u)) > λ > 0,

with 0 < m = ‖u‖22 < limn ‖un‖22 = μ. We note that

lim inf
n

‖un − u‖p > 0, (3.7)

as otherwise, up to a subsequence, (un)n converges tou in L p(G), and by lower semicontinuity
we would have

λ > L(u) = ‖u‖p
p − ‖u′‖22
‖u‖22

≥ lim inf
n

‖un‖p
p − ‖u′

n‖22
‖un‖22

= λ,

a contradiction.
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As G ∈ G satisfies assumption (H), (3.7), (3.2) and Lemma 3.6 give

lim inf
n

‖un − u‖p
p ≥ s1

κ

(

λ + m

μ − m
(λ − L(u))

)α

. (3.8)

Notice that

lim
n

(‖u′
n‖22 + λ‖un‖22

) = 1

κ
lim
n

Jλ(un) ≤ sλ+ε

κ
≤ 2s1

κ
λα (3.9)

and hence

μ = lim
n

‖un‖22 ≤ lim
n

1

λ

(‖u′
n‖22 + λ‖un‖22

) ≤ 2s1
κ

λα−1. (3.10)

Furthermore, as

λ‖un‖22 ≤ ‖u′
n‖22 + λ‖un‖22 = ‖un‖p

p ≤ ‖un‖p−2∞ ‖un‖22, (3.11)

we see that

‖u‖L∞(G) = ‖u‖L∞(e) = lim
n

‖un‖L∞(e) = lim
n

‖un‖L∞(G) ≥ λ
1

p−2 (3.12)

and therefore, by theGagliardo-Nirenberg inequality (2.2) and (3.9), recalling thatm = ‖u‖22,
we have

λ
4

p−2 ≤ ‖u‖4∞ ≤ 4m‖u′‖22 ≤ 4m lim inf
n

‖u′
n‖22 ≤ 4m

κ
sλ+ε ≤ 8s1m

κ
λα. (3.13)

Thus, recalling from (2.10) the value of α, we see from (3.10) and (3.13) that

μ

m
≤ 16s21

κ2 λ
2α−1− 4

p−2 = C, (3.14)

with C given by (3.6).
In conclusion, by the Brezis–Lieb Lemma and (3.8),

s1(λ + ε)α ≥ cλ(G, e) = lim
n

Jλ(un) = lim
n

κ‖un‖p
p = lim

n
κ
(‖un − u‖p

p + ‖u‖p
p
)

≥ s1

(

λ + m

μ − m
(λ − L(u))

)α

+ κ‖u‖p
p. (3.15)

Neglecting the last term, we obtain

ε ≥ m

μ − m
(λ − L(u)),

or, rearranging terms and using (3.14),

L(u) ≥ λ − μ − m

m
ε > λ − Cε > 0,

Using this, we see from Lemma 3.6 that

κ‖u‖p
p ≥ s1L(u)α ≥ s1(λ − Cε)α.

Hence, by (3.15),

(λ + ε)α ≥ λα + (λ − Cε)α

which contradicts (3.5). ��
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Remark 3.9 Before proving Theorem 3.3 we recall that, letting

D := {
u ∈ H1(R)

∣
∣ u ≥ 0, u is even, u is nonincreasing on [0,+∞)

}
,

for every ε > 0 there exists δ > 0 such that, for every u ∈ Nλ(R) ∩ D with Jλ(u) ≤ sλ + δ,
there results

‖u − φλ‖H1 ≤ ε.

This result is rather standard and its proof follows combining the compactness property in
Proposition 1.7.1 of [19] and the uniqueness of the minimizer of Jλ in Nλ(R) ∩ D.

Proof of Theorem 3.3 By Remark 3.9, there exists δ > 0 such that for every u ∈ Nλ(R) ∩ D
with Jλ(u) ≤ sλ + δ there results

‖u − φλ‖H1 ≤ 1

3
‖φ′

λ‖L2(−	0/2,	0/2). (3.16)

Let 0 < ε ≤ δ satisfy
⎡

⎣
4

5

⎛

⎝1 −
(

sλ
sλ + ε

) p−2
p

⎞

⎠
sλ + ε

κ

⎤

⎦

1/2

≤ 1

3
‖φ′

λ‖L2(−	0/2,	0/2) (3.17)

and, accordingly to Remark 3.8, let R̃ > 0 be such that

cλ(G, e) ≤ sλ + ε (3.18)

for every edge e with length R ≥ R̃. Observe that R̃ depends only on λ, p and 	0.
Let uR ∈ Nλ(G) ∩ Xe be a function satisfying Jλ(uR) = cλ(G, e). To show that uR ∈

Sλ(G), it is enough to prove that

‖uR‖L∞(e) > ‖uR‖L∞(G\e). (3.19)

Indeed, (3.19) implies that uR belongs to the relative interior ofNλ(G)∩ Xe, and therefore it
is not only a global minimizer of Jλ in the double constraint space, but also a local minimizer
in Nλ(G), and, as such, solves (1.2). Since |uR | ∈ Nλ(G) ∩ Xe and Jλ(uR) = Jλ(|uR |), we
will assume that uR ≥ 0 on G.

We proceed by contradiction and assume that

‖uR‖L∞(e) = ‖uR‖L∞(G\e).

Let MR := ‖uR‖L∞(e), denote by B the set of all bounded edges of G and set

δR := max
h∈B min

x∈h uR(x) (0 ≤ δR ≤ MR). (3.20)

The definition of δR as amaximum is correct even ifB contains infinitelymany edges. Indeed,
as ‖uR‖2 is finite and the length of the edges is bounded from below by 	0, there is only a
finite number of edges h where minh uR ≥ t , for every t > 0.

Since G satisfies assumption (H), by Step 1 of the proof of Lemma 4.2 of [5],

#u−1
R (t) ≥ 3 for almost every t ∈ [δR, MR]. (3.21)

Notice that the set

AR := {
x ∈ G | uR(x) ∈ [δR, MR]}
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contains at least one bounded edge of B (the one where the minimum of uR is exactly δR)
and therefore we have

∣
∣AR

∣
∣ ≥ 	0.

Let now û R be the symmetric rearrangement of uR . By Proposition 2.2 applied to TR =
[δR, MR] and (3.21), defining 	R = ∣

∣AR
∣
∣/2, we have

‖û′
R‖2L2(−	R ,	R)

= 4‖(u∗
R)′‖2L2(0,2	R)

≤ 4

9
‖u′

R‖2L2(AR)
. (3.22)

Next, denoting1 by BR = {
x ∈ G | uR(x) ∈ [0, δR)

}
, since by assumption (H)

#u−1
R (t) ≥ 2 for almost every t ∈ (0, δR),

we obtain

‖û′
R‖L2(R\(−	R ,	R)) ≤ ‖u′

R‖L2(BR).

From these relations it follows

‖û′
R‖2L2(R)

≤ 4

9
‖u′

R‖2L2(AR)
+ ‖u′

R‖2L2(BR)
= ‖u′

R‖2L2(G)
− 5

9
‖u′

R‖2L2(AR)

so that

πλ(̂uR)p−2 ≤
‖u′

R‖2
L2(G)

+ λ‖uR‖2
L2(G)

− 5
9‖u′

R‖2
L2(AR)

‖uR‖p
L p(G)

= 1 − 5

9

‖u′
R‖2

L2(AR)

‖uR‖p
L p(G)

. (3.23)

Since πλ(̂uR )̂uR ∈ Nλ(R), by (2.11) we obtain

sλ ≤ Jλ(πλ(̂uR )̂uR) = κπλ(̂uR)p‖û R‖p
p = κπλ(̂uR)p‖uR‖p

p = πλ(̂uR)p Jλ(uR). (3.24)

Using (3.24) and recalling that Jλ(uR) = cλ(G, e), (3.18) and (3.23) imply that

sλ ≤ Jλ(πλ(̂uR )̂uR) ≤ sλ + ε. (3.25)

Since, by definition πλ(̂uR )̂uR belongs to D, with D defined in Remark 3.9, (3.25), (3.16)
and the fact that ε ≤ δ imply that

‖φλ − πλ(̂uR )̂uR‖H1(R) ≤ 1

3
‖φ′

λ‖L2(−	0/2,	0/2),

which itself implies

‖φ′
λ‖L2(−	0/2,	0/2) ≤ ‖φ′

λ‖L2(−	0/2,	0/2)

3
+ ‖πλ(̂uR )̂u′

R‖L2(−	0/2,	0/2). (3.26)

In order to obtain a contradiction, we now prove that

‖πλ(̂uR )̂u′
R‖L2(−	0/2,	0/2) ≤ ‖φ′

λ‖L2(−	0/2,	0/2)

3
. (3.27)

By (3.24), we have

sλ
Jλ(uR)

≤ πλ(̂uR)p.

1 If δR = 0, the set BR is empty, AR = G, and the proof is simpler, working with AR only.
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Using the previous inequality, (3.18) and (3.23), we deduce that

( sλ
sλ + ε

)1/p ≤ πλ(̂uR) ≤ 1. (3.28)

Using (3.23), (3.28) and ‖uR‖p
L p(G) = cλ(G,e)

κ
≤ sλ+ε

κ
, we obtain

‖u′
R‖2L2(AR)

≤
⎛

⎝1 −
(

sλ
sλ + ε

) p−2
p

⎞

⎠
9

5
‖uR‖p

L p(G) ≤ 9

5

⎛

⎝1 −
(

sλ
sλ + ε

) p−2
p

⎞

⎠
sλ + ε

κ
.

(3.29)
By (3.17), (3.22), (3.28), (3.29) and the fact that 2	R ≥ 	0 for every n, we obtain

‖πλ(̂uR )̂u′
R‖L2(−	0/2,	0/2) ≤

⎡

⎣
4

5

⎛

⎝1 −
(

sλ
sλ + ε

) p−2
p

⎞

⎠
sλ + ε

κ

⎤

⎦

1/2

≤ ‖φ′
λ‖L2(−	0/2,	0/2)

3

which concludes the proof of (3.19).
The proof that uR > 0 in G follows by a strong maximum principle as in [7, Proposition

3.3] knowing that uR ≥ 0 on G. ��

4 Proof of Theorem 1.3

This section is devoted to the proof of the main result of the paper. In fact, alternatives A1 and
B1 are straightforward, whereas A2 will follow as a direct application of the results proved
in Sect. 3. Conversely, case B2 is the most involved and will occupy the largest part of this
section.

For the sake of completeness, each case A1–B2 is presented here independently from the
others.

4.1 Case A1: c� = ��, attained

As already pointed out in the Introduction, this is the easiest case and there is essentially
nothing to say. It is the case where cλ(G) is attained by an action ground state, which is of
course also a least action solution. Straightforward examples for this are compact graphs,
where ground states exist for every value of λ and p (see for example [22]), but many
graphs realizing alternative A1 can be identified also in the noncompact setting, as e.g. those
presented in [8, Sect. 3].

4.2 Case A2: c� = ��, not attained

The proof of this alternative is one of the main results of the paper and it relies heavily on
Theorems 3.2–3.3 above. To exhibit a graph where A2 occurs we will use the following
construction.

On a real line we insert, for each integer k ≥ 1, a node vk at the point of coordinate k. At
each vk we attach a self-loop Lk of length k, by identifying vk with the only vertex of Lk .
We obtain in this way the graph depicted in Fig. 1.
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Fig. 1 The graph G of Theorem 4.1

Theorem 4.1 Let G be the graph in Fig.1. For every λ > 0,

cλ(G) = σλ(G) = sλ

and neither cλ(G) nor σλ(G) is attained.

Proof On the one hand, G ∈ G satisfies assumption (H) by construction, so that cλ(G) = sλ
and cλ(G) is not attained by Theorem 2.7. On the other hand, Theorems 3.2–3.3 ensure that,
for sufficiently large k, there exists uk ∈ Sλ(G) such that Jλ(uk) = cλ(G,Lk). Hence, by
Remark 3.8,

σλ(G) ≤ lim inf
k→∞ Jλ(uk) ≤ sλ,

in turn implying σλ(G) = cλ(G) and concluding the proof. ��

4.3 Case B1: c�(G) < ��(G),��(G) attained

As anticipated in the Introduction, in view of the existing literature it is easy to produce
graphs realizing alternative B1. Indeed, it is for instance enough to let G be a star graph,
i.e. a graph made of a finite number N ≥ 3 of half-lines, glued together at their common
origin. Star graphs have been widely investigated, as they provide the simplest example of
noncompact graphs with half-lines. On the one hand, since star graphs satisfy assumption
(H), it is immediate to see that cλ(G) = sλ and it is not attained by Theorem 2.7. On the other
hand, one can exploit the simple structure of these graphs to characterize explicitly the set of
all solutions Sλ(G) (see e.g. [4])

• if N is odd, (1.2) only admits two nonzero solutions±u, the positive one given by a copy
of the restriction of φλ to R

+ on each half-line of the graph.
• if N is even, the set of non-zero solutions of (1.2) is given by

{±uI ,a | I ⊂ {1, · · · , N }, #I = N/2, a ∈ R
+},

where

uI ,a(x) =
{

φλ(x + a) if x ∈ Hi , for some i ∈ I ,

φλ(x − a) otherwise,

with Hi being the i–th half-line of the graph.
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∞ ∞

R

(a)

L

(b)

B

(c)

Fig. 2 The building blocks of the graph GN . Two half-lines emanating from a vertex (a); a self-loop of length
N (b); N edges of length 1 connecting two vetices (c)

∞∞∞∞∞∞∞ ∞∞∞∞∞∞∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3

Fig. 3 The graph GN

Hence, we easily deduce that σλ(G) = N
2 sλ > sλ and it is attained for instance by a function

u ∈ Sλ(G) whose restriction to each half-line of the graph coincides with the restriction of
the soliton φλ to R

+.

4.4 Case B2: c�(G) < ��(G), neither attained

The discussion of alternative B2 requires a deeper analysis with respect to the other cases.
To prove that this alternative actually occurs, we will consider the one–parameter family of
noncompact graphs constructed as follows.

Let N ∈ N be fixed. Keeping in mind Fig. 2, we consider a straight line on which we
insert, for every k ∈ Z, a vertex vk at the point of coordinate k. At each vk we attach a copy
of the graph R, called Rk , by identifying vk with the vertex of Rk . Next, denoting by L the
self-loop of length N in Fig. 2b, we attach at each vk except v0 a copy of the graph L, called
Lk , by identifying vk with the only vertex of Lk . Finally, we attach at v0 the graph B with
N edges of length 1 in Fig. 2c, by identifying one of its two vertices with v0. We call GN the
resulting graph, shown in Fig. 3.

A second graph we will use below, that plays the role of “limit graph” with respect to GN ,
is depicted in Fig. 4. It is exactly equal to GN except that the subgraph B is replaced by a loop
L0 identical to all other loops. Note that this graph is Z–periodic. We call it G̃N , and we label
all its vertices, edges and subgraphs with the same letters as for those of GN , superposed by
a tilde.

Note that the graph GN is made of edges of length 1 (the horizontal edges and the N edges
of B), of self-loops of length N and of half-lines. Notice also, as it will be important in the
sequel, that the total length of B equals the length of the loop L.
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∞∞∞∞∞∞∞ ∞∞∞∞∞∞∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3 L0

R−3 R−2 R−1 R0 R1 R2 R3

Fig. 4 The graph G̃N

Exploiting the dependence of GN on the parameter N we have the following result, which
proves the actual occurrence of case B2.

Theorem 4.2 For every N ∈ N, let GN be the graph in Fig.3. There exists N ∈ N such that
for every N ≥ N,

sλ = cλ(GN ) < σλ(GN )

and neither cλ(GN ) nor σλ(GN ) is attained.

Preliminary to the proof of Theorem 4.2, we introduce some notation. Since λ is fixed we
omit to write it in quantities that depend on it, except for the levels sλ, cλ(GN ) and σλ(GN )

(and the same for quantities relative to G̃N ). Next, in order to have lighter notation, we omit
to write the dependence from N in various quantities, such as the loops Lk , and we keep it
only in the names of the graphs. It is understood anyway that N is a parameter that we will
tune in various proofs.

In what follows, we split the set of solutions to problem (1.2), as

S(GN ) = S1(GN ) ∪ S2(GN ) ∪ S3(GN ),

where

S1(GN ) := {
u ∈ S(GN ) | ‖u‖L∞(GN ) = ‖u‖L∞(Rk ), for some k ∈ Z

}
,

S2(GN ) := {
u ∈ S(GN ) | ‖u‖L∞(GN ) = ‖u‖L∞(e), for some edge e ∈ GN of length 1

}
,

S3(GN ) := {
u ∈ S(GN ) | ‖u‖L∞(GN ) = ‖u‖L∞(Lk ), for some self-loop Lk ∈ GN of length N

}
.

We define analogously the sets S1(G̃N ), S2(G̃N ), S3(G̃N ) so that we also have

S(G̃N ) = S1(G̃N ) ∪ S2(G̃N ) ∪ S3(G̃N ) . (4.1)

Remark 4.3 Byconstruction, bothGN and G̃N satisfy assumption (H), sowehave immediately
that for every N ∈ N,

cλ(GN ) = cλ(G̃N ) = sλ

and neither infimum is attained as a consequence of Theorem 2.7.

Remark 4.4 Observe that, ifG ∈ G satisfies assumption (H) and u is a sign-changing solution,
then u+ ∈ Nλ(G) and u− ∈ Nλ(G) and, by Theorem 2.7,

Jλ(u) = Jλ(u
+) + Jλ(u

−) ≥ 2 inf
u∈Nλ(G)

Jλ(u) = 2sλ.
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The proof of Theorem 4.2 will rely on the next series of lemmas. As Jλ(u) = Jλ(|u|),
we will assume without loss of generality in the rest of this section that all the functions
u ∈ Nλ(GN ) that we will consider will be non-negative.

Lemma 4.5 Let e ∈ GN , N ≥ 2, be any bounded edge. Identify GN\B with G̃N\L̃0 and let
ẽ ∈ G̃N be

ẽ =
{
e if e /∈ B
L̃0 if e ∈ B.

Then for every u ∈ Nλ(GN ) ∩ Xe, there exists ṽ ∈ Nλ(G̃N ) ∩ Xẽ such that

Jλ(̃v) ≤ Jλ(u). (4.2)

Moreover, if for t in a set of positive measure,

#{x ∈ B | u(x) = t} ≥ 3, (4.3)

then the inequality (4.2) is strict.

Proof Since B contains a loop,

#{x ∈ B | u(x) = t} ≥ 2 for every t ∈ (min
B

u,max
B

u
)
.

Letting û(x)be the symmetric rearrangement of the restrictionofu toB, û ∈ H1(−N/2, N/2)
and

‖û‖Lq (−N/2,N/2) = ‖u‖Lq (B) ∀q ∈ [1,+∞], ‖û′‖L2(−N/2,N/2) ≤ ‖u′‖L2(B). (4.4)

Furthermore, as û(p) = u(v0) for some p in [−N/2, N/2], we can view û as a function on
L̃0 (after identifying L̃0 with (−N/2, N/2) and p with v0). We can then define v ∈ H1(G̃N )

as

v(x) :=
{
u(x) if x ∈ G̃N \ L̃0 = GN \ B
û(x) if x ∈ L̃0.

Continuity is guaranteed since û(p) = u(v0). By construction, ‖v′‖L2(G̃N ) ≤ ‖u′‖L2(GN )

and ‖v‖Lq (G̃N ) = ‖u‖Lq (GN ) for every q ∈ [1 + ∞], leading to πλ(v) ≤ 1.
Moreover, by construction, if u attains its L∞ norm on some edge e ∈ GN \ B, then v

attains its L∞ norm on the corresponding edge of G̃N\L̃0; if, instead, u attains its L∞ norm
on some edge of B, then v attains it on L̃0. This shows that ṽ := πλ(v)v ∈ Nλ(G̃N ) ∩ Xẽ

and

Jλ(̃v) = Jλ(πλ(v)v) = κπλ(v)p‖v‖p
p ≤ κ‖u‖p

p = Jλ(u).

Finally, in case (4.3) holds, the inequality in (4.4) is strict by Proposition 2.2, resulting in the
strict inequality in (4.2). ��

The next lemma shows that the action of solutions attaining their maximum on a half-line
cannot be too close to sλ.

Lemma 4.6 There exists δ1 > 0 such that for every N ∈ N,

inf
u∈S1(GN )

Jλ(u) ≥ sλ + δ1 and inf
u∈S1(G̃N )

Jλ(u) ≥ sλ + δ1.

123



  159 Page 22 of 28 C. De Coster et al.

Proof We prove the statement explicitly for GN only, as the argument works exactly in the
same way for G̃N .

Let u ∈ S1(GN ). If u is sign-changing then, by Remark 4.4, we know that Jλ(u) ≥ 2sλ.
Thus we consider the case where u does not change sign. We can suppose that u ≥ 0 and by
strong maximum principle, we have that u > 0 on G.

Call H1 ⊂ Rk , for some k ∈ Z, the half-line where u attains its L∞ norm and H2 the
other half-line emanating from vk . Suppose that u attains its maximum at vk . Then

#u−1(t) ≥ 3 ∀t ∈ (0, ‖u‖∞), (4.5)

since every value t ∈ (0, ‖u‖∞) is attained at least once in H1, in H2 and in GN \ Rk .
Then Proposition 2.8 applied with K = 3 yields

Jλ(u) ≥ 3

2
sλ. (4.6)

Suppose now that u attains its maximum in the interior of H1. Since u solves (1.2), its
restrictions to H1 and H2 coincide with suitable parts of the soliton φλ. In particular, since
u attains its maximum in the interior of H1, we see that u(x) = φλ(x − a), for some
a > 0, on H1. Therefore, by continuity at vk , on H2 either u(x) = φλ(x − a) as well, or
u(x) = φλ(x + a).

In the first case we have a copy of φλ(x − a) on each of the two half-lines, and the
maximum of u is attained on both half-lines. But then (4.5) again holds for u, since every
value in (u(vk), ‖u‖∞) is attained twice on each half-line, and every value in (0, u(vk)) is
attained once on each half-line and at least once in GN \ Rk . Thus we conclude, exactly as
above, that (4.6) holds.

In the second case the restriction of u toRk is the whole soliton φλ, which is smooth, and
in particular the derivatives of φλ at vk , being opposed, do not contribute to the Kirchhoff
condition. Therefore u solves problem (1.2) on GN \ Rk and, as such, u ∈ Nλ(GN\Rk).
Then, by (2.9),

‖u‖p
L p(GN \Rk )

≥ C,

with C depending only on λ and p. In conclusion,

Jλ(u) = κ
(
‖u‖p

L p(Rk )
+ ‖u‖p

L p(GN \Rk )

)

≥ κ
(
‖φλ‖p

L p(R)
+ C

)
= sλ + κC,

and the lemma is proved choosing δ1 = min
{ 1
2 sλ, κC

}
. ��

Nowweprove that an estimate similar to that of the previous lemmaholds also for solutions
attaining their maximum on an edge of length 1.

Lemma 4.7 There exists δ2 > 0 such that for every N ≥ 2,

inf
u∈S2(GN )

Jλ(u) ≥ sλ + δ2 and inf
u∈S2(G̃N )

Jλ(u) ≥ sλ + δ2 . (4.7)

Proof We will prove the existence of δ2 > 0 such that for every N ≥ 2,

inf
u∈N2(G̃N )

Jλ(u) ≥ sλ + δ2

where

N2(G̃N ) =
{
u ∈ N (G̃N ) | ‖u‖L∞(G̃N ) = ‖u‖L∞(e), for some edge e ∈ G̃N of length 1

}
.
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Then the result will follow via Lemma 4.5 and (1.8).
Let u ∈ N2(G̃N ) and assume that u attains its maximum on a given edge e (of length 1).
We first construct a new graph and we rearrange u on it. Let e be an edge of length 1 and

attach a pair of half-lines H1,H2 to one of its vertices and another pair H3,H4 to the other
one. We obtain in this way an H-shaped graph denoted by G. We now claim that there exists
v ∈ Nλ(G) ∩ Xe such that

Jλ(v) ≤ Jλ(u). (4.8)

To see this, let vk , vk+1 be the vertices of e and let G̃vk , G̃vk+1 be the connected components of
G̃N \ e containing vk and vk+1 respectively. Note that both G̃vk and G̃vk+1 satisfy assumption
(H) and hence

#{x ∈ G̃vk | u(x) = t} ≥ 2 for almost every t ∈ (0, ‖u‖L∞(G̃vk )),

#{x ∈ G̃vk+1 | u(x) = t} ≥ 2 for almost every t ∈ (0, ‖u‖L∞(G̃vk+1 )).

Let u1 and u2 be the symmetric rearrangements on R of the restrictions of u to G̃vk , G̃vk+1

respectively, so that u1, u2 ∈ H1(R) and

‖u1‖Lq (R) = ‖u‖Lq (G̃vk ), ‖u2‖Lq (R) = ‖u‖Lq (G̃vk+1 ) for every q ∈ [1,∞],
‖u′

1‖L2(R) ≤ ‖u′‖L2(G̃vk ), ‖u′
2‖L2(R) ≤ ‖u′‖L2(G̃vk+1 ).

Furthermore, there exist x1, x2 ∈ R such that u1(x1) = u(vk) and u2(x2) = u(vk+1). Define
then u ∈ H1(G) as

u(x) =

⎧
⎪⎨

⎪⎩

u(x) if x ∈ e

u1(x + x1) if x ∈ H1 ∪ H2

u2(x + x2) if x ∈ H3 ∪ H4,

where with a slight abuse of notation we identified e ∈ G with e ∈ G̃N . By construction, u
attains its L∞ norm on e, ‖u‖Lq (G) = ‖u‖Lq (G̃N ) for every q and ‖u′‖L2(G) ≤ ‖u′‖L2(G̃N ),

so that πλ(u) ≤ 1. Hence, setting v = πλ(u)u, we obtain v ∈ Nλ(G) ∩ Xe fulfilling (4.8).
Thus

Jλ(u) ≥ inf
v∈Nλ(G)∩Xe

Jλ(v) = cλ(G, e)

and it suffices to show that cλ(G, e) > sλ.
Now if cλ(G, e) is attained this is trivial by Theorem 2.7, since G ∈ G satisfies assumption

(H). If cλ(G, e) is not attained and (wn)n ⊂ Nλ(G) ∩ Xe is a minimizing sequence, then
Lemma 3.7 applies yielding a weak limitw ∈ Xe\{0}, withm := ‖w‖22 < limn ‖wn‖22 =: μ,
L(w) < λ and

lim
n

L(wn − w) = λ + m

μ − m
(λ − L(w)) ≥ λ.

In conclusion, as usual by the Brezis–Lieb Lemma and Lemma 3.6

cλ(G, e) = lim
n

Jλ(wn) = lim
n

κ‖wn‖p
p = κ lim

n

(‖wn − w‖p
p + ‖w‖p

p
)

≥ s1λ
α + κ‖w‖p

p = sλ + κ‖w‖p
p

and the proof is complete also when cλ(G, e) is not attained as w �= 0. ��
In the next lemma, we study the properties of the graph G̃N .
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Lemma 4.8 For every ε > 0 there exists Nε := Nε(ε, λ, p) ∈ N such that, for every N ≥ Nε,

inf
u∈S3(G̃N )

Jλ(u) < sλ + ε

and it is attained.

Proof By Remark 3.8, for every ε > 0 there exists Nε ∈ N such that for every N ≥ Nε

cλ(G̃N , L̃0) < sλ + ε.

By taking Nε even larger, if necessary, Theorem 3.2 guarantees that cλ(G̃N , L̃0) is attained
by some u and, by Theorem 3.3, u ∈ S3(G̃N ). If v is any other element of S3(G̃N ), by the
periodicity of G̃N there exists ṽ ∈ Nλ(G̃N )∩XL̃0

(a translation of v) such that Jλ(̃v) = Jλ(v).
Therefore

Jλ(v) = Jλ(̃v) ≥ cλ(G̃N , L̃0) = Jλ(u),

which shows that inf
u∈S3(G̃N )

Jλ(u) = cλ(G̃N , L̃0) is attained (by u). ��

Corollary 4.9 Let ε ≤ 1
2 min{δ1, δ2}, where δ1, δ2 are given by Lemmas 4.6–4.7, and Nε be

the corresponding number given by Lemma 4.8. For every N ≥ Nε,

σλ(G̃N ) = inf
u∈S3(G̃N )

Jλ(u) < sλ + ε.

and σλ(G̃N ) is attained.

Proof By Lemmas 4.6–4.7, for every N ≥ 2,

inf
u∈S1(G̃N )

Jλ(u) ≥ sλ + ε, inf
u∈S2(G̃N )

Jλ(u) ≥ sλ + ε,

while by Lemma 4.8

inf
u∈S3(G̃N )

Jλ(u) < sλ + ε.

Therefore, in view of (4.1),

σλ(G̃N ) = inf
u∈S3(G̃N )

Jλ(u)

and it is attained, again by Lemma 4.8. ��
To proceed, we prove a further preliminary result, similar in spirit to Lemma 4.5, that

establishes a strict inequality when passing from S3(GN ) to S3(G̃N ).

Lemma 4.10 For every N large enough and for every u ∈ S3(GN ) such that Jλ(u) < 2sλ,
there exists v ∈ S3(G̃N ) such that Jλ(v) < Jλ(u).

Proof Let u ∈ S3(GN ) such that Jλ(u) < 2sλ. By Remark 4.4, u does not change sign. We
suppose that u ≥ 0 and by strong maximum principle, we have that u > 0 on G.

If u attains its maximum in a loop Lk , by Lemma 4.5 there exists ṽ ∈ Nλ(G̃N ) ∩ XL̃k

such that Jλ(̃v) ≤ Jλ(u), where L̃k corresponds to Lk after the identification of GN\B with
G̃N\L̃0.

If u is constant on m edges of B, then it necessarily equals λ
1

p−2 , and

2sλ ≥ Jλ(u) ≥ mκλ
p

p−2
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shows that m is bounded by a constant depending only on λ and p. Since N can be assumed
as large as we wish, there are at least N −m ≥ 6 edges of B on which u is not constant. Any
pair of these edges in B forms a loop on which u is not constant. Since there are at least 3
such loops, necessarily

#{x ∈ B | u(x) = t} ≥ 3

for t in a set of positive measure, so that by Lemma 4.5, the element ṽ ∈ Nλ(G̃N ) ∩ XL̃k
found above satisfies the strict inequality Jλ(̃v) < Jλ(u). Finally, invoking again The-
orems 3.2 and 3.3, provided N is sufficiently large, there exists v ∈ S3(G̃N ) such that
Jλ(v) = infw∈Nλ(G̃N )∩XL̃k

Jλ(w) and hence

Jλ(v) ≤ Jλ(̃v) < Jλ(u),

and the proof is complete. ��
Lemma 4.11 There exists N ∈ N such that, for every N ≥ N, we have σλ(G̃N ) > sλ,

σλ(GN ) = σλ(G̃N ) (4.9)

and σλ(GN ) is not attained.

Proof Let ε and Nε be as in Corollary 4.9, so that there exists w ∈ S3(G̃N ) satisfying

Jλ(w) = σλ(G̃N ) < sλ + ε.

Note thatσλ(G̃N ) = Jλ(w) > sλ byRemark4.3.Weassume, in accordancewithTheorem3.3,
that w > 0, and that w attains its maximum in the loop L̃0, which is possible, as usual, by
the periodicity of G̃N . For every δ > 0, define wδ ∈ H1(G̃N ) as

wδ(x) = (w(x) − δ)+

and notice thatwδ → w strongly in H1(G̃N ) as δ → 0. The support ofwδ is, by construction,
a bounded subgraph Gδ of G̃N , that can also be considered as a subgraph of GN : it suffices to
embed it, for every δ, into GN in such a way that it does not contain v0. Thus, after extending
wδ to 0 in GN\Gδ , we can view it as a function in H1(GN ) attaining its maximum on some
loop Lkδ . Note also that, by strong convergence,

πλ(wδ)
p−2 =

‖w′
δ‖2L2(GN )

+ λ‖wδ‖2L2(GN )

‖wδ‖p
L p(GN )

=
‖w′

δ‖2L2(G̃N )
+ λ‖wδ‖2L2(G̃N )

‖wδ‖p
L p(G̃N )

→ 1

as δ → 0.
By Theorems 3.2–3.3, for every δ > 0 there exists vδ ∈ S(GN ) such that

Jλ(vδ) = inf
u∈Nλ(GN )∩XLkδ

Jλ(u).

Therefore, as δ → 0,

σλ(GN ) ≤ Jλ(vδ) ≤ Jλ(πλ(wδ)wδ) → Jλ(w) = σλ(G̃N ),

showing that
σλ(GN ) ≤ σλ(G̃N ), (4.10)

and hence, by Lemmas 4.6–4.7,

σλ(GN ) = inf
u∈S3(GN )

Jλ(u) < sλ + ε.
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Without loss of generality, let us assume that ε < sλ. Next, for every u ∈ S3(GN ) with
Jλ(u) < sλ + ε, let v ∈ S3(G̃N ) be the function provided by Lemma 4.10. Then

σλ(G̃N ) ≤ Jλ(v) < Jλ(u)

and taking the infimum over u we obtain σλ(G̃N ) ≤ σλ(GN ) which, coupled with (4.10),
establishes (4.9).

Finally, to prove that σλ(GN ) is not attained, assume instead that there exists u ∈ S3(GN )

such that J (u) = σλ(GN ). By Lemma 4.10 again, let v ∈ S3(G̃N ) satisfy Jλ(v) < Jλ(u).
Then

σλ(G̃N ) ≤ Jλ(v) < Jλ(u) = σλ(GN ),

contradicting (4.9). ��
Proof of Theorem 4.2 It is enough to take N as in Lemma 4.11, the result is then a straight-
forward consequence of Remark 4.3 and Lemma 4.11. ��
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