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The impact of deniers on epidemics: A temporal
network model

Lorenzo Zino, Member, IEEE , Alessandro Rizzo, Senior Member, IEEE , and Maurizio Porfiri, Fellow, IEEE

Abstract— We propose a novel network epidemic model
to elucidate the impact of deniers on the spread of epidemic
diseases. Specifically, we study the spread of a recurrent
epidemic disease, whose progression is captured by a
susceptible–infected–susceptible model, in a population
partitioned into two groups: cautious and deniers. Cau-
tious individuals may adopt self-protective behaviors, pos-
sibly incentivized by information campaigns implemented
by public authorities; on the contrary, deniers reject their
adoption. Through a mean-field approach, we analytically
derive the epidemic threshold for large-scale homogeneous
networks, shedding light onto the role of deniers in shaping
the course of an epidemic outbreak. Specifically, our analyt-
ical insight suggests that even a small minority of deniers
may jeopardize the effort of public health authorities when
the population is highly polarized. Numerical results extend
our analytical findings to heterogeneous networks.

Index Terms— Network analysis and control; Control of
networks

I. INTRODUCTION

MATHEMATICAL models of epidemic spreading on
networks have gained increasing popularity in the last

decade. They have emerged as powerful tools to predict the
course of epidemic outbreaks [1]–[6] and, ultimately, to design
and assess intervention policies [2], [5], [7]. In the last few
years, the COVID-19 global health crisis has provided further
motivation to pursue these studies. Within this collective
effort, the systems and control community has worked toward
developing new models to capture specific features of COVID-
19 [8]. Through the lens of network theory, effective tools to
predict the spread of the disease and assess the effectiveness
of different intervention policies were developed [9]–[11].

However, there are still significant gaps in the application
of network theory to study epidemics, particularly in the
context of modeling human behavior. Human behavior plays
a crucial role in shaping the course of an epidemic outbreak,
as the individuals’ response to the epidemic spreading may
be quite diverse across a population [12]. In fact, while the
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majority of the individuals were concerned by the COVID-
19 pandemics and were keen to adopt self-protective mea-
sures to avoid the contagion, a nonnegligible minority of
individuals kept denying the severity of the pandemic, or even
its existence [13]. They refused to take any action against
the contagion, even to comply with compulsory measures
enforced by public authorities, such as social distancing or
the use of face masks [14]. The behavioral response to a
pandemic is indeed a divisive topic [15], which may lead to
the emergence or the increase of polarization in the pattern
of social interactions, since people might prefer to interact
with like-minded individuals [16]. The extent to which the
presence of deniers and the emergence of polarization impact
the pandemic spreading and the effectiveness of information
campaigns is still unclear, despite its paramount importance.

In this letter, we investigate these questions by proposing a
novel model for the spread of recurrent diseases, accounting
for the presence of deniers. Specifically, we design a temporal
network model in which the population is partitioned into
two groups: cautious individuals and deniers. While cautious
individuals may decide to adopt self-protective behaviors
to prevent contagion, possibly encouraged by information
campaigns, deniers always refuse to adopt these behaviors.
Interactions between and within these groups are regulated by
a parameter, termed homophily, which captures the tendency
of individuals to interact with like-minded people.

Formally, we develop our model within the continuous-time
activity-driven network (ADN) paradigm [17], and we expand
such a framework to account for the population structure. The
use of ADNs allows us to formalize a model that is analytically
tractable and amenable to fast numerical simulations [18],
[19]. We model the epidemic spreading using two distinct
compartmental models. For deniers, we adopt the well-known
susceptible–infected–susceptible (SIS) model; whereas, for
cautious individuals, we employ a susceptible–alert–infected–
susceptible (SAIS) model. The latter extends the SIS model by
including an additional state to keep track of individuals who
adopt self-protective behaviors to avoid contagion [19]–[21].
We assume that self-protective behaviors are always successful
in preventing contagion, but they come with a nonnegligible
cost that may drive people to abandon them. Hence, the
adoption and rejection of self-protective behavior are regulated
by two contrasting mechanisms that account for information
campaigns implemented by public health authorities and the
social economic costs associated with their use.

We expand on the mean-field approach proposed in [22]
to study the epidemic model, accounting for heterogeneity in



the population. For large-scale networks, we study the local
exponential stability of the disease-free equilibrium (DFE),
which determines when self-protective behaviors are success-
ful in preventing global outbreaks. For homogeneous ADNs,
in which all the individuals have the same level of social
activity, we analytically establish a closed-form expression
for the epidemic threshold, shedding light onto the impact
of deniers on the success on eradicating a local epidemic
outbreak. Predictably, the presence of deniers favors the spread
of epidemic diseases. Moreover, our analytical insight exposes
the detrimental role played by polarization: in highly polarized
networks, even small minorities of deniers can jeopardize the
efforts of public health authorities in promoting self-protective
behaviors. For heterogeneous ADNs, we derive a closed-form
expression for the linearization of the system about the DFE,
which allows for the fast numerical evaluation of the epidemic
threshold. Our numerical findings suggest that heterogeneity
may further favor the spread of epidemic diseases.

We gather here the notation used in the letter. We denote
by R, R≥0, R>0, and Z>0 the set of real, real nonnegative,
strictly positive real, and strictly positive integer numbers,
respectively. Given a continuous-time function x(t), we define
x(t−) := lims↗t x(s) and x(t+) := lims↘t x(s). A Poisson
clock with rate ρ ∈ R>0 is a continuous-time stochastic
process that clicks once between time t and t + ∆t with
probability ρ∆t + o(∆t), independent of the past, where the
Landau notation o(∆t) is associated with the limit ∆t ↘ 0.

II. MODEL

A. Population model
We consider a population of n ∈ Z>0 individuals, V =

{1, . . . , n}, partitioned in two sub-populations: the deniers
and the cautious individuals. Deniers are not concerned about
the disease spreading and refuse to adopt any self-protective
measures, even if enforced by public authorities [14]. On the
contrary, cautious individuals are worried about the epidemic
disease, and they may decide to adopt self-protective behav-
iors. Without any loss in generality, we assume that Vd :=
{1, . . . , nd} is the set of deniers, and Vc := {nd + 1, . . . , n}
contains the cautious individuals. The fraction of deniers is
quantified by the parameter η := nd/n ∈ [0, 1].

Each individual v ∈ V is associated with a state xv(t)
that evolves in continuous time (t ∈ R≥0) and characterizes
the individual’s health state and behavior. Specifically, all
individuals can be either susceptible to the disease (xv(t) =
S) or infected with the disease (xv(t) = I). Furthermore,
cautious individuals may be associated with a third state,
which accounts for the adoption of self-protective behaviors
(xv(t) = P). Here, we assume that self-protective behaviors
are ideal, so that their adoption is 100% effective in preventing
contagion. However, their adoption is associated with social
and economic costs that may push people to drop them.

B. Time-varying interaction network
Each individual is identified by a node in an undirected

temporal network (V, E(t)), where the link set E(t) captures
the evolving pattern of human-to-human interactions: {v, w} ∈

E(t) means that individuals v and w interact at time t.
The temporal network is generated according to a stochastic
mechanism, inspired by continuous-time ADNs [17], which
we extend to account for the population structure. Specifically,
each individual v ∈ V is characterized by a constant parameter
av ∈ R>0, termed activity, which captures the individual’s
propensity to initiate interactions with others. We further in-
troduce a parameter θ ∈ [0, 1], which captures the individuals’
preference to interact with people sharing similar beliefs,
termed homophily [16]: the larger θ, the more individuals tend
to interact within their sub-population.

The network temporal is generated according to the fol-
lowing steps: i) at time t = 0, the link set is initialized as
E(t) = ∅. Each node v ∈ V is associated with a Poisson clock
with rate equal to av , each one independent of the others; ii)
time progresses until any of the n Poisson clocks involved
in the process clicks; iii) if the clock associated with node
v ∈ V clicks at time t, individual v is activated and selects
a fellow individual w to interact with. The individual w is
selected according to a probabilistic rule: with probability θ,
w is selected uniformly at random among the individuals with
the same belief of v (that is, among Vd if v ∈ Vd, or among
Vc if v ∈ Vc); otherwise, w is selected uniformly at random in
the entire population V; iv) the undirected link {v, w} is added
to E(t); and v) the link is immediately removed from the set,
the Poisson process associated with node v is reinitialized, and
the process is resumed from item ii).

C. Epidemic model
The state of each individual v ∈ V , xv(t), evolves according

to two different epidemic progressions for deniers and cautious
individuals. Deniers revise their state according to a standard
SIS model [5], while cautious individuals follow an SAIS
model [20], [21], implemented as in [19]. Both models involve
contagion and recovery, while SAIS has two additional mecha-
nisms: awareness and unprotecting, described in the following.

Contagion. If a susceptible individual v (xv(t
−) = S)

contacts an infected one at time t ((v, w) ∈ E(t) with xw(t) =
I), then v becomes infected (xv(t

+) = I) with probability
λ ∈ [0, 1], independent of the others.

Recovery. An infected individual (xv(t
−) = I) sponta-

neously recovers and becomes susceptible according to a
Poisson clock with rate µ ∈ R>0, independent of the others.
If v ∈ Vc is cautious, then v adopts self-protective behaviors
after recovery (xv(t

+) = P); whereas, if v ∈ Vd is a denier, v
becomes susceptible again to the disease (xv(t

+) = S).
Awareness. We introduce a parameter γ ∈ R≥0 to quantify

the effort exerted by public heath administrations in infor-
mation campaigns (a control input). A cautious susceptible
individual (xv(t

−) = S, v ∈ Vc) starts adopting self-protective
behaviors (xv(t

+) = P) according to a Poisson clock with rate
γ, independent of the others.

Unprotecting. A cautious individual who is adopting self-
protective behaviors (xv(t

−) = P) spontaneously abandons
them due to the social and economic costs associated with
them (xv(t

+) = S) according to a Poisson clock with rate
ν ∈ R>0, independent of the others. The rate ν captures the
costs associated with the adoption of self protections.
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Fig. 1: Schematic of the state transitions of the model.

III. DYNAMICS

A. Markov process
The formation process of the temporal network and the

four mechanisms described in Section II are all governed
by Poisson processes, each one independent of the others.
Hence, they induce an n-dimensional continuous-time Markov
process x(t) = [x1(t) . . . xn(t)] over the state space {S, I}nd×
{S,P, I}nc [23]. Depending on the sub-population they belong
to, individuals may undergo up to four distinct state transitions,
illustrated in Fig. 1, which are triggered by the processes
described in Section II. The three transitions triggered by
recovery (from I to S or P), awareness (from S to P) and
unprotecting (from P to S) involve only spontaneous mecha-
nisms. Hence, the corresponding transition rates of the Markov
process are given by the rates of the underlying Poisson pro-
cess (µ, γ, and ν, respectively). Contagion, instead, involves
an interaction between two individuals and is dependent on
their health state. In the following, we explicitly compute the
corresponding transition rate.

Proposition 1: Let us define the indicator function

Iv(t) :=

{
1 if xv(t) = I,
0 otherwise. (1)

A susceptible denier (xv(t
−) = S, v ∈ Vd) becomes infected

(xv(t
+) = I) according to a Poisson clock with rate

αv(x(t)) := λav

[ θ

ηn

∑
w∈Vd

Iw(t) +
1− θ

n

∑
w∈V

Iw(t)
]

+ λ
[ θ

ηn

∑
w∈Vd

awIw(t) +
1− θ

n

∑
w∈V

awIw(t)
]
, (2a)

while, for a cautious individual, v ∈ Vc, the rate is equal to

βv(x(t)) := λav

[ θ

(1− η)n

∑
w∈Vc

Iw(t) +
1− θ

n

∑
w∈V

Iw(t)
]

+ λ
[ θ

(1− η)n

∑
w∈Vc

awIw(t) +
1− θ

n

∑
w∈V

awIw(t)
]
. (2b)

Proof: A susceptible denier v becomes infected if any of
the following four chains of events occur: i) v activates, de-
cides to restrain the interactions within the denier community
(which occurs with probability θ), contacts an infected indi-
vidual (which occurs with robability equal to the fraction of
infected individuals in the community), and becomes infected
(with probability λ); ii) v activates, decides not to restrain
the interactions within its community, has a contact with an
infected individual (which occurs with probability equal to the
fraction of infected individuals in the entire population), and
becomes infected; iii) any of the infected denier individuals

activates, decides to interact within the denier community, has
a contact with v, and infects them; or iv) any of the infected
individuals in the network activates, decides to interact within
the whole network, has a contact with v, and infects them.

Since all the events in each chain are independent, the
rate corresponding to each chain of events is computed by
multiplying the activity rate of the individual who activates by
the probability of each event in the chain [24]. For instance, for
chain i), we obtain the product avθ 1

ηn

∑
w∈Vd

Iw(t)λ, which
yields the first term in (2a). We recall that the transition occurs
as soon as the fastest of the four chains of events occurs, and
the events in the chains are disjoint. Hence, the transition is
triggered by a Poisson clock with rate equal to the sum of the
rates of the four chains [24]. After algebraic simplifications,
we obtain (2a). A similar argument yields (2b).

We can summarize the transition rates of the Markov
process x(t) using the transition rate matrices

Qd
v =

[
· αv(x(t))
µ ·

]
, Qc

v =

 · γ βv(x(t))
ν · 0
0 µ ·

 , (3)

that is, the probability that v ∈ Vs with s ∈ {d, c} changes
state from h ∈ {S,P, I} to k ∈ {S,P, I} is equal to P[xv(t +
∆t) = k |xv(t) = h] = (Qs

v)hk∆t + o(∆t), for any h ̸= k,
with the understanding that P can only be reached if v ∈ Vc.

B. Mean-field dynamics

Following [22], we consider a continuous-state deterministic
mean-field relaxation of the dynamics in which, instead of
the evolution of the individuals’ state, we study its mean
dynamics, in terms of the probability for each individual to
be in each state. That is, for all v ∈ V , we define

sv(t) := P[xv(t) = S], iv(t) := P[xv(t) = I], (4a)

while, for v ∈ Vc, we further define

pv(t) := P[xv(t) = P]. (4b)

Briefly, in the mean-field approach [22], the system dy-
namics is obtained by approximating the expected value of
the transition rate matrices in (3) with the transition rate
matrices for the expected state of the system (E[Qd

v(x(t))] ≈
Qd

v[E[x(t)]]). Using this approach, the temporal evolution
of the probabilities in (4) is approximated by a system of
2n + nc ordinary differential equations (ODEs), obtained as
[ṡv i̇v] = [sv iv]Q

d
v[E[x(t)]], ∀ v ∈ Vd and [ṡv ṗv i̇v] =

[sv pv iv]Q
c
v[E[x(t)]], ∀ v ∈ Vp, recalling that E[Iw(t)] =

iw(t). For v ∈ Vd, we obtain

ṡv = µiv − svᾱv, (5a)

i̇v = −µiv + svᾱv, (5b)

with

ᾱv := λav

[
θ
ηn

∑
w∈Vd

iw + 1−θ
n

∑
w∈V iw

]
+λ

[
θ
ηn

∑
w∈Vd

awiw + 1−θ
n

∑
w∈V awiw

]
,

(6)
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Fig. 2: Comparison between the Markov process and its deter-
ministic approximation. Blue dashed curves are the epidemic
prevalence computed integrating numerically (5) and (7); red
solid curves are the epidemic prevalence in three runs of the
Markov process. Common parameters: n = 20, 000, η = 0.1,
λ = 0.06, µ = 1/7, ν = 0.5, θ = 0.2, and av = 1, ∀ v ∈ V .

and, for v ∈ Vc, we obtain

ṡv = −γsv + νpv − β̄v, (7a)
ṗv = γsv − νpv + µiv, (7b)

i̇v = −µiv + svβ̄v, (7c)

with

β̄v := λav

[
θ

(1−η)n

∑
w∈Vc

iw + 1−θ
n

∑
w∈V iw

]
+λ

[
θ

(1−η)n

∑
w∈Vc

awiw + 1−θ
n

∑
w∈V awiw

]
.

(8)

The following result proves that (5) and (7) are well defined.
Lemma 1: The domain S := {(sv, iv) : sv, iv ≥ 0, sv +

iv = 1}nd × {(sv, iv) : sv, pv, iv ≥ 0, sv + pv + iv = 1}nc is
positive invariant under (5) and (7).

Proof: We immediately verify that, if one of the variables
is equal to 0, then its derivative is always nonnegative. Hence,
the nonnegative orthant is a positive invariant set. We further
observe that, under (5), ṡv + i̇v = 0, while under (7), ṡv +
ṗv+ i̇v = 0, preserving the sum of the variables for each node
v, which proves our claim.

Remark 1: As a consequence of Lemma 1, only n+ nc of
the ODEs from (5) and (7) are linearly independent.

From the set of n + nc independent ODEs that govern
the mean-field evolution of the process, it is straightforward
to conclude that the system has a unique DFE, that is, an
equilibrium of (5) and (7) with iv = 0 for all v ∈ V . The DFE
is characterized in the following lemma, proved by checking
the equilibrium conditions for (5).

Lemma 2: The unique DFE of the system has iv = 0 for
all v ∈ V and pv = γ

γ+ν , for all v ∈ Vc.
Before our main results, we introduce some more notation.

Specifically, we define three macroscopic variables:

yd :=
1

n

∑
v∈Vd

iv, yc :=
1

n

∑
v∈Vc

iv, yp :=
1

n

∑
v∈Vc

pv, (9)

that is, the average probability for a randomly selected node
to be an infected denier, an infected cautious individual, and
to adopt self-protective behaviors, respectively.

In the thermodynamic limit, n → ∞, the temporal evo-
lution of the stochastic process at the population level can
be approximated by the macroscopic variables in (9) over
any finite time-horizon with arbitrary accuracy [22], [25].

In particular, we can approximate the epidemic prevalence
I(t) := 1

n |{j ∈ V : xj(t) = I}| ≈ yd(t) + yc(t), as illustrated
in Fig. 2, which shows the high quality of the approximation
even for medium-size networks.

IV. RESULTS

A. Analytical results for the homogeneous ADNs
In general, it is not possible to derive closed-form expres-

sions for the three ODEs that govern the macroscopic variables
in (9). In fact, the temporal evolution of the average proba-
bilities in (9) depends recursively on higher-order moments.
However, closed-form expressions can be derived for specific,
yet interesting cases. In the following, we make the assumption
of homogeneous ADNs, in which all the individuals have the
same activity.

Proposition 2: In the thermodynamic limit, n → ∞, and if
av = a, for all v ∈ V , the mean-field evolution of the system
of macroscopic equations in (9) is governed by

ẏd =− µyd + 2λa(η − yd)·

·
[(
1 + θ 1−η

η

)
yd + (1− θ)yc

]
, (10a)

ẏc =− µyc + 2λa(1− η − yc − yp)·

·
[(
1 + θ η

1−η

)
yc + (1− θ)yd

]
, (10b)

ẏp =γ(1− η − yc − yp)− νyp + µyc. (10c)
Proof: First, we compute the derivative of (9) and we

substitute (5b), obtaining

ẏd = 1
n

∑
v∈Vd

i̇v = −µyd +
1
n

∑
v∈Vd

(1− iv)ᾱv. (11)

Then, (10a) is obtained by observing that, if av = a, for all
v ∈ V , (6) reduces to ᾱv = 2λa[(1 + θ 1−η

η )yd + (1 − θ)yc],
which can be substituted into (11), leading to (10a). The other
two equations come from similar arguments.

Proposition 2 establishes that, for homogeneous ADNs,
the epidemic spreading process can be studied with a three-
dimensional nonlinear system of ODEs in (10), instead of the
higher dimensional system in (5) and (7). The analysis of
such a system allows us to compute the epidemic threshold,
that is, to determine whether a local outbreak is eradicated,
or if it becomes endemic. Formally, the epidemic threshold
determines the region of the parameter space in which the
DFE is (locally) exponentially stable.

Theorem 1: The system in Proposition 2 admits a locally
exponentially stable DFE if and only if (iff)

λ

µ
< σ :=

1

a

[
η(1− θ) + θ + ν(1−η(1−θ))

γ+ν +

+
√(

η(1− θ) + θ + ν(1−η(1−θ))
γ+ν

)2 − 4 ν
γ+ν θ

]−1

.
(12)

Proof: First, we perform the change of variable z =
yp − (1−η)γ

γ+ν , and we observe that the DFE of (9) coincides
with the origin of the new system made by variables yd, yc,
and z. We linearize this system about the origin, obtaining:

ẏd = −µyd + 2λaη
[
(1 + θ 1−η

η )yd + (1− θ)yc
]
, (13a)

ẏc = −µyc + 2λaν(1−η)
γ+ν

[
(1 + ηθ

1−η )yc + (1− θ)yd
]
, (13b)

ż = γ(1− η − yc − z − (1−η)γ
γ+ν )− ν(z + (1−η)γ

γ+ν ) + µyc.

(13c)
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Fig. 3: Threshold σ computed via (12) for different values of homophily, θ, fraction of deniers, η, and effort placed by public
heath authorities in information campaigns, γ. Common parameters are ν = 0.5 and av = 1, for all v ∈ V .

The Jacobian matrix of (13) has a block-diagonal structure,
which allows us to compute its three eigenvalues Λ1,2,3. From
the block associated with the third row of (13), we obtain
the Λ1 = −γ − ν < 0. The other two eigenvalues are
equal to Λ2,3 = −µ + λa[η(1 − θ) + θ + ν(1−η(1−θ))

γ+ν ±√
(η(1− θ) + θ + ν(1−η(1−θ))

γ+ν )2 − 4 ν
γ+ν θ] and are always

real, since the square root can be cast as the sum of two non-
negative quantities. Hence, the DFE is locally exponentially
stable if all the eigenvalues of the Jacobian matrix of (13)
evaluated in the origin are negative [26], which occurs iff (12)
holds true, which concludes the proof.

Remark 2: For θ = 0, (12) reduces to λ/µ < [2a(η +
ν(1−η)
ν+γ )]−1. In the absence of deniers, η = 0, it further reduces

to the threshold for a SAIS on a homogeneous ADN [19].
Our theoretical result in Theorem 1 allows us to shed

light on the impact of deniers on the spread of epidemics.
In Fig. 3, we report a parametric study for the epidemic
threshold computed analytically using (12). Figure 3a shows
that, while increasing the fraction of deniers predictably favors
the epidemic spreading, also homophily has a strong impact:
as θ increases, the threshold quickly decreases. This suggests
that even a small minority of deniers could hinder the eradi-
cation of a disease in highly polarized scenarios. Figures 3b
and 3c investigate the effectiveness of information campaigns
in increasing the epidemic threshold, confirming that a small
minority of deniers is able to jeopardize even large control
efforts. For instance, in Fig. 3c, we observe that with only
20% of deniers, increasing the control effort has a marginal
effect if the homophily is higher than θ = 0.5.

B. Numerical results for heterogeneous ADNs

Despite the impossibility to derive closed-form expressions
for heterogeneous ADNs, we can follow [17], [19] to establish
a closed-form expression for the linearization of the system
about the DFE, through some ancillary variables.

Proposition 3: Let us define

zd :=
1

n

∑
v∈Vd

ivav, zc :=
1

n

∑
v∈Vc

ivav. (14)

In the thermodynamic limit, n → ∞, the linearization of the
mean-field evolution of the macroscopic variables in (9) and

ancillary variables in (14) about the DFE is given by

ẏd =− µyd + λ⟨a⟩dη[(1 + θ 1−η
η )yd + (1− θ)yc]

+ λη[(1 + θ 1−η
η )zd + (1− θ)zc], (15a)

ẏc =− µyc + λ⟨a⟩c (1−η)ν
γ+nu [(1 + θη

1−η )yc + (1− θ)yd]

+ λ (1−η)ν
γ+ν [(1 + θη

1−η )zc + (1− θ)zd], (15b)

żd =− µzd + λ⟨a2⟩dη[(1 + θ 1−η
η )yd + (1− θ)yc]

+ λ⟨a⟩dη[(1 + θ 1−η
η )zd + (1− θ)zp], (15c)

żc =− µzc + λ⟨a2⟩d (1−η)ν
γ+nu [(1 + θη

1−η )yc + (1− θ)yd]

+ λ⟨a⟩c (1−η)ν
γ+ν [(1 + θη

1−η )zp + (1− θ)zd], (15d)

ẏp =γ(1− η − yc − yp)− νyp + µyc. (15e)

where

⟨am⟩d =
1

nd

∑
c∈Vd

amv , ⟨am⟩c =
1

nc

∑
c∈Vc

amv , (16)

with m ∈ Z>0 being the m-order moments of the activity of
deniers and cautious individuals, respectively.

From Proposition 3, we conclude that stability of the
DFE for a heterogeneous ADN is determined by the four-
dimensional block of the Jacobian matrix of (15) associated
with the first four rows. In Fig. 4, we perform a parametric
study to investigate how heterogeneity affects the epidemic
threshold. We compare the epidemic threshold computed nu-
merically for a heterogeneous ADN with the one computed
analytically for a homogeneous ADN with the same average
activity. Our results suggest that heterogeneity in the pop-
ulation tends to favor the spread of epidemic diseases. On
the one hand, a strong decrease in the threshold is always
recorded when deniers are more socially active than cautious
individuals. On the other hand, if deniers are less active, we
do not register the opposite, beneficial phenomenon.

V. CONCLUSION

We proposed a novel epidemic model on temporal networks
that accounts for different behavioral responses of the popula-
tion to the epidemic spreading. The model is parsimonious,
and it relies mostly on parameters with a clear physical,
epidemiological, or sociological interpretation, which can be
obtained from the literature. By implementing our model using
the ADN paradigm, we developed an analytically tractable
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Fig. 4: Relative change in the epidemic threshold σ computed
numerically using (15) with respect to the one of homogeneous
ADNs (from (12)), as a function of the average activity of
deniers and activity variance. Common parameters are θ =
η = γ = 0.2, ν = 0.5, and average activity ⟨a⟩ = 1. We set
the activity variance of deniers equal to the one of cautious
individuals (⟨a2⟩d − ⟨a⟩2d = ⟨a2⟩c − ⟨a⟩2c).

framework to evaluate the impact of deniers on the spread of
an epidemic disease. Employing a mean-field approach and
extending it to account for heterogeneity in the population
behavioral response, we derived a closed-form expression for
the epidemic threshold. Through its analysis, we exposed how
deniers might have a strong impact on the epidemic spreading,
especially in highly-polarized population. In such a scenario, a
small minority of deniers is able to jeopardize massive efforts
by public health authorities placed in awareness campaigns to
curb the epidemic spreading.

Our results pave the way for several directions of future
research. The theoretical results established in this letter are
limited to the epidemic threshold for homogeneous ADNs.
Further theoretical extensions may be pursued. First, a com-
plete analysis of the three-dimensional nonlinear system of
ODEs in Proposition 2 beyond the stability of the DFE may
shed light on the role of deniers in endemic diseases. Second,
studying linear stability conditions for the five-dimensional
system in Proposition 3 may generate new theoretical insight
to corroborate our numerical findings on the detrimental role of
heterogeneity toward curbing an epidemic outbreak. Besides
these theoretical developments, several modeling extensions
are envisaged of our future research. For instance, non-ideal
efficacy of self-protective behaviors should be incorporated
through the inclusion of a contagion mechanism for indi-
viduals who adopt self-protective behaviors, with a suitable
parameter to re-scale the infection probability [11]. Likewise,
more complex and realistic decision-making mechanisms can
be incorporated, such as those based on game theory [27],
[28] or on opinion dynamics [29] and, besides awareness cam-
paigns, we could study isolation of infected individuals [19]
and the implementation of vaccination campaigns [7]. Finally,
validation of the modeling framework against real-world epi-
demic data, such as those on the COVID-19 pandemic, is a
key objective of the future research.
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