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A B S T R A C T
Motivated by the proliferation of Internet-of-Thing (IoT) devices and the rapid advances in the field
of deep learning, there is a growing interest in pushing deep learning computations, conventionally
handled by the cloud, to the edge of the network to deliver faster responses to end users, reduce
bandwidth consumption to the cloud, and address privacy concerns. However, to fully realize deep
learning at the edge, two main challenges still need to be addressed: (i) how to meet the high
resource requirements of deep learning on resource-constrained devices, and (ii) how to leverage
the availability of multiple streams of spatially correlated data, to increase the effectiveness of deep
learning and improve application-level performance. To address the above challenges, we explore
collaborative inference at the edge, in which edge nodes and end devices share correlated data and
the inference computational burden by leveraging different ways to split computation and fuse data.
Besides traditional centralized and distributed schemes for edge-end device collaborative inference,
we introduce selective schemes that decrease bandwidth resource consumption by effectively reducing
data redundancy. As a reference scenario, we focus on multi-view classification in a networked system
in which sensing nodes can capture overlapping fields of view. The proposed schemes are compared
in terms of accuracy, computational expenditure at the nodes, communication overhead, inference
latency, robustness, and noise sensitivity. Experimental results highlight that selective collaborative
schemes can achieve different trade-offs between the above performance metrics, with some of them
bringing substantial communication savings (from 18% to 74% of the transmitted data with respect to
centralized inference) while still keeping the inference accuracy well above 90%.

1. Introduction
Accelerated by the remarkable success of Internet of

Things (IoT) technologies, more and more practical environ-
ments are being equipped with sensors connected to mobile
and IoT devices. Prominent examples of such environments
include smart cities, smart transportation systems, and smart
factories. The large amounts of data collected by the above
devices, in conjunction with recent breakthroughs in deep
learning, are driving the proliferation of intelligent applica-
tions and services. In addition, the edge computing paradigm
is increasingly shifting computing loads from the core to
the edge of the network to deliver faster responses to end
users, reduce bandwidth consumption towards the cloud, and
address privacy concerns.

However, several significant challenges still remain to
be addressed in order to fully realize deep learning at the
edge. On the one hand, increasingly complex inference tasks
require highly parametrized deep neural networks (DNNs)
to be executed, which crave for computational and memory
resources. On the other hand, most edge devices that perform
inference tasks in real-time have limited computation, mem-
ory, energy, and communication capabilities. Furthermore,
IoT devices are often deployed with some degree of redun-
dancy or overlap, resulting in data streams exhibiting sig-
nificant spatial correlation. Being able to fuse data coming
from multiple sources is key to achieving better prediction
accuracy in many fine-grained inference tasks, although it
comes at a higher communication and orchestration cost.
Considering these trends, it is critical to envision efficient

ORCID(s):

mechanisms that allow for the collaborative execution of
increasingly complex inference tasks at the edge of the
network, with the different edge nodes sharing data as well
as the computational burden.

In this paper, we take the above challenge, focusing on
the relevant case of computer vision tasks applied to images
collected by different end devices. Computer vision tasks,
enabling machines to derive meaningful information from
digital images, have been at the forefront of deep learning
applications due to their important role in solving problems
arising from various fields. Differently from existing works
tackling the orchestration of DNNs at the edge (1; 2) or the
offloading of such tasks from end devices to the edge (2; 3),
our first goal is to leverage the redundancy or overlap of
the images collected by such cameras to increase the accu-
racy of the inference while reducing the computational and
communication load that such inference implies. Our second
goal is to investigate the benefits and the hurdles of different
collaborative approaches between edge servers and end de-
vices capturing the images, each reflecting a different level of
cooperation and split of the computational/communication
burden at the edge and at the devices. Collaboration can
involve sharing features or inferences and/or splitting com-
putation (i.e., distributing the machine learning operations)
between the different nodes. Thus, it is crucial to assess their
performance from the point of view of both inference quality
and consumption of radio/computational resources.

Specifically, we envision a networked system with per-
node sensing and/or processing capabilities, in which sens-
ing nodes are equipped with cameras with partially over-
lapping fields of view. At distinct time instants, the sensing
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nodes collect a set of spatially correlated images (views) per-
taining the same object observed from distinct viewpoints. A
real-world example of such a scenario is that of a smart city
in which cameras embedded in the road infrastructure collect
images over the same stretch of road, and cooperate with an
edge server to solve a computer vision task based on the col-
lected data. For concreteness, in our investigation, we focus
on the specific task of multi-view classification (4; 5), and
compare different collaborative approaches using a state-of-
the-art DNN architecture (6) for the problem. Nevertheless,
we advocate that the approaches we analyse are both task-
and architecture-agnostic and, thus, can be easily adapted to
different inference pipelines and scenarios.

Our main contributions are, therefore, as follows:
• We provide a formalization of the networked image-
capturing system and a model for describing different ap-
proaches to collaborative inference tasks in such a scenario;
• We consider and formally define different schemes for
edge-end devices collaborative inference, specifying which
building blocks compose the inference processing frame-
work and where they are deployed. Importantly, besides
traditional centralized and distributed schemes, we propose
novel selective schemes that realize different data fusion
and computational split strategies. In these schemes, each
sensing node locally decides whether or not its view should
contribute to the inference task at hand based on some
contextual information, thus restricting inference to a subset
of the most relevant views. By doing so, our schemes enable
different trade-offs between prediction quality and consump-
tion of computational and bandwidth resources;
• We experimentally analyze the different schemes and
compare them in terms of accuracy, computational expen-
diture at the nodes, communication overhead, inference la-
tency as well as robustness, and noise sensitivity. Our results
highlight that (1) not all views are always necessary to
achieve high-quality predictions, instead, substantial com-
munication savings (from 18% to 74% of the transmitted
data) can be obtained discarding some views while still keep-
ing the accuracy well above 90%; (2) even when no views
are discarded, allowing inference to be partially computed
at the end devices still yields an average accuracy ranging
between 71.92% and 83.75%, in average, while reducing
bandwidth consumption by one or more orders of magnitude
with respect to centralized inference;

• We characterize each scheme in terms of different
networking and data-related properties, highlighting their
benefits along with the application- and system-level needs
they can or cannot address. Furthermore, we discuss possible
practical application scenarios for each scheme.

The paper is organized as follows. Sec. 2 discusses some
relevant related works. Sec. 3 introduces the networked
system we consider and formalizes the problem we ad-
dress. Sec. 4 describes the different collaborative inference
schemes we investigate. An experimental comparison of the
proposed schemes focused on relevant metrics is presented
in Sec. 5. Finally, Sec. 6 provides an additional qualitative

comparison between the proposed schemes, discusses suit-
able practical applications for each of them, and concludes
the paper envisioning future research directions.

2. Related Work
A large body of works have focused on supporting AI

tasks at the edge, a research field known as edge intelli-
gence (7; 8). A common solution to this problem is compu-
tation offloading, in which end devices offload the inference
computational burden (or part of it) to another entity, being
it a cloud server, an edge server, or another end device.
These approaches are often based on model partitioning,
splitting a multi-layered DNN across the different entities
participating in the execution of the inference task. Existing
approaches can be broadly categorized into (i) strategies
that offload computation to a single centralized entity (ei-
ther on the cloud (9; 10) or at the edge (11; 2)), and (ii)
strategies that partition the DNN model across multiple
end devices, enabling joint computation either in a purely
decentralized (12; 13) or centrally-orchestrated way (14). In
both cases, each participating device retains only a portion of
the DNN layers and transmits its output features, potentially
compressed to minimize overhead (15), to another node.
The primary drawback of this method is that no single
device can perform inference independently; the entire group
of devices sharing the DNN layers must be available. To
overcome these limitations, some studies have focused on
enabling inference at edge devices via DNN compression
techniques such as parameter pruning, parameter quantiza-
tion, and knowledge distillation (16). Importantly, such tech-
niques, although orthogonal to the collaborative inference
schemes we investigate, can be integrated with those we
consider to further reduce computation and communication
overhead.

It is worth it to remark, however, that most of the above
existing studies focus on inference tasks arising from a single
end device, thus considering other nodes merely for their
additional computational resources. Conversely, in our work,
we consider a scenario in which the inference task can make
use of the information generated by multiple end devices,
each located at a different position. In such a scenario,
collaboration among different nodes entails not only sharing
the computational burden but also fusing correlated data.
The need, and opportunity, to leverage spatially correlated
data from different sources raises additional challenges such
as deciding whether or not all captured data is actually
needed to perform the inference, as the consumption of
computational and network resources should be minimized.
Although some recent work (17; 18) has considered a multi-
agent collaborative inference scenario, where a single edge
server coordinates the inference of multiple UEs, inference
based on spatially correlated data captured by different nodes
has not been addressed. Rather, the goal of the studies in
(17; 18) is to minimize inference latency when multiple end
devices offload their inference computation to the same edge
server.
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Figure 1: Example of our reference system scenario in the 5G
ecosystem.

On the other hand, the works that in the context of
IoT focus on strategies to fuse data from multiple sources
leveraging on spatio-temporal correlations (19; 20; 21) con-
sider that the inference is performed at a centralized location
and are not geared toward balancing the usage of local
computational resources and bandwidth. As for state-of-the-
art studies on multi-view classification, these are tailored
to optimizing deep learning multi-view models to achieve
higher prediction accuracy. For instance, in (22) Silva et al.
train an auxiliary classifier to optimize the feature extractors
of each view and apply the modified multi-view architecture
to the task of automatic toll collection. In (5), Seeland and
Mäder explore different view fusion strategies. Differently
from these works, our focus is on efficiently partitioning an
existing multi-view architecture across different nodes rather
than optimizing the individual stages of these architectures.

Finally, we remark that there exists an extensive body of
research on techniques exploiting the temporal correlation
between views, such as frame differentiation (23). This is
an orthogonal research direction with respect to our work,
which, besides tackling computational split strategies, fo-
cuses instead on exploiting the spatial correlation between
views captured by nodes at different positions so as to reduce
information redundancy and save bandwidth.

3. System Model and Inference Task
In this section we describe the network and computing

system under study (Sec. 3.1). Then, we provide some back-
ground on single-view and multi-view classification, as well
as on the architecture of the deep learning models used to
perform them (Sec. 3.2). Finally, we briefly introduce color
histograms, a lightweight image descriptor that will be used
in some of the proposed schemes (Sec. 3.3). The notation we
use throughout the paper is summarized in Table 1.
3.1. Network and computing system

We consider ={𝑛1,… , 𝑛𝑉 }, a set of source nodes
composed of 𝑉 edge devices equipped with a camera, a radio
interface, as well as computational and memory resources.
Source nodes may capture images of the same object, which
differ in the perspective with which the object is captured,
or in quality, size, or resolution. We refer to such an image,
displaying an object captured by a source node, as a view.

Table 1
Summary of notation

Definition Meaning
 = {𝑛1,… , 𝑛𝑉 } Set of source nodes
𝑛∗ ∈  Central controller node
 =  ∪ {𝑛∗} Set of physical nodes

𝑦 ∈ 𝑌={𝑦1,… , 𝑦𝐾} Class label
𝐱𝑖(𝑡) ∈ 𝐗 View captured by node 𝑛𝑖 at time 𝑡
𝐳(𝑗)𝑖 (𝑡) ∈ 𝐙 𝑗-th intermediate representation of 𝐱𝑖(𝑡)
𝐜(𝑡) ∈ 𝐂 Context at time 𝑡
�̂�(𝑡) ∈ 𝑌 Prediction made at time 𝑡
𝐞 ∈ 𝐄 Embedding of an image 𝐱
𝐱𝑉 = [𝐱1,… , 𝐱𝑉 ] Collection of 𝑉 views
𝐞𝑉 = [𝐞1,… , 𝐞𝑉 ] Collection of 𝑉 embeddings
CNN𝑠𝑣 ∶ 𝐗 → �̂� Single-view CNN model
𝐵𝑠𝑣 ∶ 𝐗 → 𝐄 Single-view feature extraction network
𝐻𝑠𝑣 ∶ 𝐄 → �̂� Single-view classification network
CNN𝑚𝑣 ∶ 𝐗𝑉 → �̂� Multi-view CNN model
𝐵𝑚𝑣 ∶ 𝐗𝑉 → 𝐄 Multi-view feature extraction network
𝐻𝑚𝑣 ∶ 𝐄 → �̂� Multi-view classification network
𝑉 𝑖𝑒𝑤𝑃𝑜𝑜𝑙 View pooling function

𝐡𝑖(𝑡) ∈ 𝐇 Color histogram of the view 𝐱𝑖(𝑡)
ℎ𝑖𝑠𝑡 ∶ 𝐗 → 𝐇 Color histogram function

Each source node is also connected, for instance through a
5G link, with an edge server hosting a central controller,
with the latter being denoted by 𝑛⋆. We indicate the set of all
system nodes with  . Both source nodes and central con-
troller can collaborate to execute multi-view classification
tasks on the images captured by the source nodes. Time is
assumed to be discretized, with each discrete time period 𝑡
corresponding to the time interval during which the source
nodes capture their images, and the system has to execute
the classification task.

Importantly, the central controller acts as a data aggrega-
tor and coordinator for the collaborative inference task. Once
the result of the multi-view classification task is obtained,
we consider that the central controller returns the prediction
to the source nodes, which feed it as input to their local
applications. This is required whenever source nodes are
autonomous mobile nodes, like connected vehicles and un-
manned aerial vehicles, which need the classification result
as input to their local application for navigation purposes.
Fig. 1 provides an example of the considered system in the
5G ecosystem, where source nodes may be connected vehi-
cles as well as road infrastructure cameras communicating
with an edge application server via 5G. Further details on
the main system components are given below.
Source nodes. At time 𝑡, each source node 𝑛𝑖 collects a
view 𝐱𝑖(𝑡) and receives the current context 𝐜(𝑡) from the
central controller. The view is processed locally to obtain one
or more intermediate representations 𝐳𝑖(𝑡), which, the node
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Figure 2: Schematic representation of source node 𝑛𝑖.

can decide to send to the central controller or discard based
on the contextual information received (see Sec. 4). When
multiple intermediate representations are computed for a
given view, we indicate with 𝑧(𝑗)𝑖 (𝑡) the 𝑗-th representation.
Fig. 2 provides the schematic representation of the generic
source node 𝑛𝑖, which includes the following modules:

• View Processing, responsible for applying any local
transformation on the captured view 𝐱𝑖(𝑡) and for generating
the intermediate representation 𝐳𝑖(𝑡). The type of processing
it performs depends on the particular inference scheme, and
it can range from no processing, to feature extraction, to full
single-view classification.

• Quality Estimation, which takes as input the current
view and context and determines whether or not the interme-
diate representation of the view is worth being transmitted
to the central controller. We define a view’s quality as a mea-
sure of similarity between the view and the current context,
representing the collective set of features captured by the
network at the previous or current time instant. Internally,
the quality estimation module thus computes a similarity
measure and tests it against a threshold.

• Transmission Controller, handling the communication
with the central controller via the radio interface.
Central controller. At time 𝑡, the central controller 𝑛⋆ re-
ceives 𝑉 ′≤𝑉 intermediate view representations, each from a
distinct source node 𝑛𝑖 and represented by the corresponding
tensor 𝐳𝑖(𝑡). Such tensors are aggregated into a higher di-
mensional tensor 𝐳(𝑡), which is then processed to obtain the
current context 𝐜(𝑡) as well as the final prediction �̂�(𝑡). The
latter is then sent back to the source nodes. Fig. 3 provides a
schematic representation of the controller node, comprising
the following additional modules:

• View Aggregator, which aggregates the intermediate
representations received from the source nodes and derives
the final prediction;

• Context Manager, determining the current context
𝐜(𝑡) based on the intermediate view representations received
from the source nodes at the current or previous time in-
stants;

The modules introduced above for the source nodes
and the central controller will then be further specified for
each of the collaborative inference schemes we analyze in
Sec. 4. Transmission Controller modules are assumed not to
include any inference scheme-related logic and, therefore are
implemented similarly for each scheme.

Context
Manager

Transmission
Controller RAN

View
Aggregator

Figure 3: Schematic representation of the central controller 𝑛⋆.

3.2. Single- and multi-view inference tasks
Below, we define our reference inference tasks, namely,

single-view and multi-view image classification. For each of
them, we also present the high-level architecture of state-of-
the-art deep learning pipelines that can be used to execute
the task.

Feature Extraction Classi�cation

cat

dog

bird

Figure 4: Architecture of a deep single-view CNN.

Feature Extraction

Classi�cation

car

dog

bird

View
Pooling

Figure 5: Architecture of a deep multi-view CNN.

Single-view image classification. Given an input image
𝐱∈𝐗 and a set of K labels 𝑌={𝑦1,… , 𝑦𝐾} representing
classes of interest, the single-view image classification task
consists in inferring which label 𝑦∈𝑌 to assign to 𝐱, i.e., a
single-view image classifier is a function mapping input im-
ages to class labels. State-of-the-art image classifiers are of-
ten implemented through complex, resource-craving convo-
lutional neural networks (CNNs) (24; 25). A CNN for single-
view image classification CNN𝑠𝑣 is a model composed of
two parts: a convolutional feature extraction network (back-
bone) and a fully-connected classification network (head),
as shown in Fig. 4. The feature extraction network, denoted
by 𝐵𝑠𝑣, consists of a sequence of 2D convolutional blocks
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Figure 6: Color histograms with 32 bins computed on 12 views of the same object (left) and their corresponding average (right).

and pooling layers and is responsible for extracting and
encoding visual features from the input image into an im-
age embedding 𝐞∈𝐄. The embedding space 𝐄 is a lower-
dimensional space than 𝐗, making the image embedding
a more compact representation of the visual features of
the image. The classification network, denoted by 𝐻𝑠𝑣, is
composed of several fully connected layers followed by a
softmax activation function, mapping the image embedding
𝐞 to a class label �̂�.
Multi-view image classification. This task can be per-
formed when multiple input images describing the same
object from distinct perspectives are available. A set of
views of the same object is called a multi-view collection
(or simply a collection). Multi-view image classification
extends of the image classification task to a multi-view col-
lection 𝐱𝑉 =[𝐱1,… , 𝐱𝑉 ]∈𝐗𝑉 . We consider deep multi-view
classification models based on the MVCNN architecture (6),
which uses a single-view image classification CNN as a
backbone (see Fig. 5). Similarly to the single-view case, a
CNN for multi-view image classification CNN𝑚𝑣 consist of a
convolutional feature extraction and a fully-connected clas-
sification part. The former, denoted by 𝐵𝑚𝑣, takes as input
a collection of 𝑉 input images 𝐱𝑉 and produces as output a
single multi-view embedding 𝐞𝑚𝑣∈𝐄, acting as an intermedi-
ate representation of the whole multi-view collection. This
is done by applying a single-view feature extractor 𝐵𝑠𝑣 to
each individual view 𝐱𝑖 to obtain a collection of embeddings
𝐞𝑉 =[𝐞1,… , 𝐞𝑉 ] ∈ 𝐄𝑉 . Then, orderless aggregation of
these embeddings is performed via a view pooling function
𝑉 𝑖𝑒𝑤𝑃𝑜𝑜𝑙, producing a single multi-view embedding 𝐞𝑚𝑣.
The latter part of the network, denoted with 𝐻𝑚𝑣, is thus
a single-view image classifier 𝐻𝑠𝑣 that maps the multi-view
embedding 𝐞𝑚𝑣 to a class label �̂�. It follows that a multi-view
CNN model, CNN𝑚𝑣, can be obtained from a single-view
one, CNN𝑠𝑣, by duplicating the feature extraction network
𝐵𝑠𝑣 once for each view, adding a view pooling layer, and
reusing the same classification network 𝐻𝑠𝑣.

3.3. Color histograms
In some of the inference schemes we describe in Sec. 4,

we will make use of color histograms as lightweight descrip-
tors of views. Given a view 𝐱𝑖(𝑡) and a number of bins 𝐵,
we denote with ℎ𝑖𝑠𝑡 the function responsible for computing
the color histogram 𝐡𝑖(𝑡) of 𝐱𝑖(𝑡). Color histograms are
represented as 2-dimensional tensors in the space 𝐇=ℝ𝐵×𝐵:
𝐡𝑖(𝑡) = ℎ𝑖𝑠𝑡(𝐱𝑖(𝑡);𝐵). The color histogram of a view is
computed as follows:

1. First, the view image is converted from the RGB to
the L*a*b* color space (26), designed to be more
perceptually uniform than the RGB.

2. Then the ranges of the L*a*b* color channels (a* and
b*) are divided into 𝐵 bins and each pixel is counted
into one of the resulting 𝐵×𝐵 buckets.

3. Finally, the pixel count of each bucket is normalized
by the number of pixels.

Fig. 6 provides a visual representation of the color his-
tograms computed for a sample collection of views, as well
as their average.

4. Collaborative Inference Schemes
A straightforward approach to handle classification tasks

in which multiple nodes sense spatially correlated data
would be to have each source node perform its inference in
isolation, relying only on locally captured sensory data. This
approach, however, has several drawbacks:

• Source nodes are often IoT devices with limited hard-
ware resources and may be unable to execute entire deep
learning pipelines;

• For fine-grained image classification tasks character-
ized by high inter-class similarity and a high intra-class
variability (e.g., vehicle identification (27; 22)), the visual
information conveyed by a single image may be insufficient
to make accurate predictions.

We aim at mitigating such drawbacks by leveraging the
spatial correlation among views taken by different source
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nodes, as well as the collaboration between source nodes and
the central controller at the edge. We, therefore, transform
multiple disjoint instances of the single-view classification
problem into a single instance of multi-view classification.

To address the multi-view classification task collabora-
tively, the system nodes have to share data, or processing, or
both. Processing may be shared by splitting and allocating
the different layers of the multi-view classification network
to different nodes. Depending on how the model is split,
nodes will need to exchange different types of data (e.g.,
raw images, embeddings, class predictions, etc.), resulting
in different bandwidth utilization and latency. Thus, while
devising how to leverage collaboration between nodes, it is
critical to jointly take into account networking and data-
related aspects such as the communication capability of
nodes, the reliability of the communication links, the pres-
ence of noise affecting the transmitted data, and the privacy
requirements of end users.

Below, we identify various schemes for collaborative
inference based on how the processing is split among nodes
and which data they share. We consider both traditional
centralized and distributed schemes and introduce selective
schemes that can substantially decrease network resource
consumption by exploiting context information to reduce
data redundancy. Indeed, as observed in (6), given a multi-
view collection, not all of the views it contains may be
needed to produce an accurate prediction. Some views may
be particularly informative, capturing uniquely distinctive
features of an object, while others may be redundant with
respect to the rest of the collection and, thus, lead to unnec-
essary communication overhead.

We classify the schemes under study into two main
categories:

• Centralized inference schemes, in which inference
takes place at the central controller based on aggregated
multi-view input data obtained from the source nodes;

• Ensemble inference schemes, in which source nodes
performs local inferences on their single-view input data
and then local predictions are aggregated by the central
controller. For each category, we further distinguish infer-
ence schemes into selective and non-selective, depending on
whether source nodes leverage only the most informative
views to be used for classification, or if, instead, all views
are processed for executing the task.
4.1. Centralized inference schemes

In centralized inference schemes, the central controller
is responsible for aggregating single-view data received
from the source nodes and then performing inference on
the aggregated multi-view data. Source nodes, on the other
hand, collect input images and may perform feature extrac-
tion. Below, we specify how the central controller and the
source nodes split the computational burden and collabo-
rate towards the multi-view image classification, when all
views get processed as well as when source nodes identify
and discard redundant information before views are further
processed.

4.1.1. Non-selective centralized inference
In the non-selective centralized inference scheme (CI),

source nodes act merely as data sources, transmitting their
views to the central controller. Specifically, the CI scheme,
depicted in Fig. 7, operates as follows:

• Source nodes do not perform any processing, therefore
they do not include the View Processing module and the in-
put view 𝐱𝑖(𝑡) is forwarded directly to the central controller,
i.e., 𝐳𝑖(𝑡)=𝐱𝑖(𝑡);• The central controller is responsible for performing
multi-view classification; accordingly, its View Aggregation
module aggregates the received views into a collection and
then executes a multi-view CNN to obtain a prediction �̂�(𝑡).
The class prediction will then be delivered back to the source
nodes.

• As the CI scheme is non-selective, there is no sharing
of contextual information between the central controller and
source nodes. Consequently, neither the Quality Estimation
module at the source nodes nor the Context Manager module
at the central controller are implemented.
4.1.2. Selective centralized inference

In selective centralized inference schemes (SCI), each
source node decides whether or not to transmit its view to the
central controller based on a measure of similarity between
the view and the current context. The context is received
from the central controller and is used as a low-dimensional
representation of the set of features collectively captured by
the network at the previous or current time instant. Com-
paring the current view to the context enables each source
node to estimate how informative its view is with respect to
the data sensed by the rest of the network. Only those views
yielding sufficiently distinctive information with respect to
the context will be forwarded to the central controller and
will then contribute to the inference task, while the others
will be discarded. The central controller is still responsible
for performing multi-view classification but its input will be
restricted to a subset of the most informative views. Further,
we consider two variants of the SCI scheme, which suit two
different types of use cases: one based on view embeddings
and the other based on color histograms, as detailed below.
SCI based on embeddings. In this case, referred to as
SCI-E, each source node decides whether or not to send its
view to the central controller by comparing it to a represen-
tation of the features collectively captured by the network
at the previous time period. Specifically, at every inference
time 𝑡, the central controller sends to the source nodes the
pooled view embedding computed at time 𝑡−1 as contextual
information to discriminate views. As this scheme allows
detecting the correlation among views taken at different time
(temporal change of context), it processes the current views
only if sufficiently different from what previously captured
by the source nodes. The SCI-E scheme, depicted in Fig. 8,
includes the following steps:

1. Source nodes perform feature extraction to obtain an
embedding 𝐞𝑖(𝑡) of their view 𝐱𝑖(𝑡). Thus, the View
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Figure 7: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the
non-selective centralized inference scheme (CI).
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Figure 8: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the selective
centralized inference scheme based on embeddings (SCI-E).

Processing module consists only of a single-view
feature extraction network 𝐵𝑠𝑣 and the intermediate
representation 𝐳𝑖(𝑡) that each node sends to the central
controller is a view embedding: 𝐳𝑖(𝑡)=𝐞𝑖(𝑡);

2. Each source node receives the current context 𝐜(𝑡)
from the central controller, which consists of a view
embedding used to determine whether or not the cur-
rent view should contribute to the classification task;

3. The Quality Estimation module of each source node
estimates how similar the embedding of its view is
to the context by computing the cosine similarity be-
tween the two tensors: 𝐶𝑜𝑠𝑖𝑛𝑒(𝐜(𝑡), 𝐞𝑖(𝑡))=

𝐜(𝑡)⋅𝐞𝑖(𝑡)
‖𝐜(𝑡)‖‖𝐞𝑖(𝑡)‖

.
Then, the result is compared to a given similarity
threshold 𝛾 – a configurable system parameter whose
impact is analysed in Sec. 5.2. Any view that is too
similar to the context, i.e., exceeding the similarity
threshold, will be discarded, while the others, for
which 𝐶𝑜𝑠𝑖𝑛𝑒(𝐜(𝑡), 𝐞𝑖(𝑡))<𝛾 , will be forwarded to the
central controller;

4. The central controller receives a collection of 𝑉 ′≤𝑉
view embeddings, which are aggregated by the View
Aggregator module into a single embedding 𝐞(𝑡) using
a view pooling function 𝑉 𝑖𝑒𝑤𝑃𝑜𝑜𝑙. Then, the con-
troller completes the multi-view classification task by
executing the classifier portion 𝐻𝑚𝑣 of a multi-view
CNN on 𝐞(𝑡), obtaining a prediction �̂�(𝑡). The class
prediction is sent back to all source nodes;

5. As the information used as current context is the
pooled view embedding obtained at the previous time
period (i.e., 𝐜(𝑡)=𝐞(𝑡−1)), the Context Manager mod-
ule of the central controller will store the computed
pooled embedding 𝐞(𝑡) and send it to each source

node as context at the beginning of the next inference
period.

SCI based on color histograms. In this case, referred to
as SCI-CH, each source node decides whether or not to send
its view to the central controller by comparing a light-weight
descriptor of it, namely, a color histogram (28), to that of the
other views captured within the same time period. The SCI-
CH scheme, depicted in Fig. 9, thus includes the following
steps:

1. Source nodes perform the color histogram computa-
tion with 𝐵 bins to obtain a light-weight descriptor
𝐡𝑖(𝑡) of their view 𝐱𝑖(𝑡). Therefore, the View Pro-
cessing module consists only of the color histogram
computation function ℎ𝑖𝑠𝑡. Each source node sends its
color histogram 𝐡𝑖(𝑡) to the central controller as a first
intermediate representation: 𝐳(1)𝑖 (𝑡)=𝐡𝑖(𝑡);2. Each source node receives the current context 𝐜(𝑡)
from the central controller. The context consists of an
average color histogram 𝐡𝑎𝑣𝑔(𝑡) that will be used to
determine whether or not the current view should take
part in the current classification task;

3. The Quality Estimation module of each source node
estimates how similar the color histogram of its view
is to the context. We use the Normalized Histogram
Intersection (NHI) (29) as a light-weight measure to
compute similarity between two color histograms. The
NHI will return a value between 0 and 1, with the two
values indicating null intersection and full overlap, re-
spectively. The result of NHI is then compared against
a given similarity threshold 𝛾 – as for the previous
case, the impact of the value of the similarity threshold
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Figure 9: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the selective
centralized inference scheme based on color histograms (SCI-CH).
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Figure 10: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the
non-selective ensemble inference scheme (EI).

will be determined as described in Sec. 5.2. Only
those views whose similarity to the context does not
exceed 𝛾 , i.e., NHI(𝐡𝑖(𝑡), 𝐜(𝑡))<𝛾 , will be forwarded
(unprocessed) to the central controller: 𝐳(2)𝑖 (𝑡)=𝐱𝑖(𝑡);

4. The View Aggregator module of the central controller
is responsible for two tasks. First, it aggregates the
color histograms received from the source nodes into a
single average descriptor 𝐡𝑎𝑣𝑔(𝑡). Then, upon receiv-
ing a collection of 𝑉 ′≤𝑉 selected views, it executes
a multi-view CNN model to obtain a class prediction
�̂�(𝑡). The class prediction is then sent back to all source
nodes.

5. The Context Manager module sends the average color
histogram 𝐡𝑎𝑣𝑔(𝑡) to all source nodes as context:
𝐜(𝑡)=𝐡𝑎𝑣𝑔(𝑡).

4.2. Ensemble inference schemes
In ensemble inference schemes, each source node per-

forms a local inference task based on its captured view.
The class predictions resulting from these inferences are
then aggregated by the central controller using a consensus
protocol.
4.2.1. Non-selective ensemble inference

According to this scheme, named EI, single-view clas-
sification is performed locally by each source node while
the central controller acts as a prediction aggregator. The EI
scheme, depicted in Fig. 10, consists of the following steps:

1. Source nodes perform local single-view classifica-
tion on their input views 𝐱𝑖(𝑡); therefore the View
Processing module implements a single-view CNN
model to obtain a local prediction �̂�𝑖(𝑡). The local
prediction is then forwarded to the central controller,
i.e., 𝐳𝑖(𝑡)=�̂�𝑖(𝑡);

2. The central controller acts as a prediction aggregator,
hence its View Aggregation module implements a
consensus protocol that selects as final prediction the
label appearing most frequently among the predictions
made by source nodes. Thus,

�̂�(𝑡) = 𝑎𝑟𝑔max
𝑦∈𝑌

∑

𝑖=1
𝑦(�̂�𝑖(𝑡))

where 𝑦 for a given class label 𝑦 is the indicator
function taking on 1 if 𝑥=𝑦, and 0 otherwise. The final
class prediction �̂�(𝑡) is then sent back to the source
nodes;

3. Being the scheme non-selective, there is no sharing of
contextual information between the central controller
and source nodes. Consequently, it does require nei-
ther the Quality Estimation at the source nodes nor
the Context Manager at the central controller.

4.2.2. Selective ensemble inference
In selective ensemble inference schemes (SEI) each

source node decides whether or not to perform a local
inference task and send its class prediction to the central
controller, based on a measure of similarity between the
current view and the context. Similarly to the selective
centralized schemes described before, we investigate two
variants of the SEI schemes: one based on view embeddings
and the other on color histograms.
SEI based on embeddings. In this case, referred to as
SEI-E, we use the pooled view embedding computed by the
network at the previous time period as contextual informa-
tion to discriminate views. Such a context is computed by
the central controller and disseminated to source nodes in the
same way described for the SCI-E scheme. Differently from
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Figure 11: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the
selective ensemble inference scheme based on embeddings (SEI-E).

the corresponding centralized case, the context here is used
to decide whether or not each source node should perform
its local inference. Specifically, the SEI-E scheme, depicted
in Fig. 11, consists of the following steps:

1. Source nodes perform feature extraction to obtain an
embedding 𝐞𝑖(𝑡) of their view 𝐱𝑖(𝑡). The View Pro-
cessing module consists of a single-view CNN model
in which the feature extraction part 𝐵𝑠𝑣 is always
executed whereas the classification part 𝐻𝑠𝑣 is exe-
cuted only conditionally. Each source node sends its
embedding 𝐞𝑖(𝑡) to the central controller as a first inter-
mediate representation: 𝐳(1)𝑖 (𝑡)=𝐞𝑖(𝑡). Upon receiving
the current context and if its local view passes the
quality estimation check, the source node completes
the local inference task by executing 𝐻𝑠𝑣 to produce a
local class prediction �̂�𝑖(𝑡). The local class prediction
is then sent to the central controller to participate in
the consensus protocol: 𝐳(2)𝑖 (𝑡)=�̂�𝑖(𝑡);

2. Each source node receives the current context 𝐜(𝑡)
from the central controller. The context consists of a
view embedding that is used to determine whether or
not the current view should take part in the classifica-
tion task;

3. The Quality Estimation module of each source node
estimates how similar the embedding of its view is
to the context by computing the cosine similarity be-
tween the two tensors. The result is then compared to
a given similarity threshold 𝛾 . Only those embeddings
whose similarity to the context does not exceed 𝛾 , i.e.,
𝐶𝑜𝑠𝑖𝑛𝑒(𝐜(𝑡), 𝐞𝑖(𝑡))<𝛾 , will be used to derive a local
prediction;

4. The View Aggregator module of the central controller
is responsible for two tasks. First, it aggregates the
view embeddings received from the source nodes into
a pooled embedding 𝐞(𝑡) using a view pooling func-
tion 𝑉 𝑖𝑒𝑤𝑃𝑜𝑜𝑙. Then, upon receiving a collection of
𝑉 ′≤𝑉 local predictions, it executes a consensus pro-
tocol selecting as a final prediction the most frequent
label among them. The final class prediction �̂�(𝑡) will
then be sent back to source nodes;

5. The information used as the current context 𝐜(𝑡) is
the pooled view embedding obtained at the previous
time period; i.e., 𝐜(𝑡)=𝐞(𝑡− 1). Therefore, the Context

Manager module of the central controller will store
the computed pooled embedding 𝐞(𝑡) and send it to
each source node as context at the beginning of the
next time period.

SEI based on color histograms. In this case, referred
to as SEI-CH, we use color histograms as contextual in-
formation representing the views collectively captured at
the current time period. Color histograms are computed by
source nodes and aggregated by the central controller in the
same way as described for the SCI-CH scheme. Unlike in the
corresponding centralized case, the context is used to decide
whether or not each source node should perform its local
inference. The SEI-CH scheme, depicted in Fig. 12, thus
operates as follows:

1. The View Processing module of source nodes consists
of the color histogram computation function ℎ𝑖𝑠𝑡 and
a single-view CNN model. First, each source node
computes the color histogram (with 𝐵 bins) of its
view 𝐱𝑖(𝑡) to obtain a lightweight descriptor 𝐡𝑖(𝑡). The
color histogram is sent to the central controller as a
first intermediate representation: 𝐳(1)𝑖 (𝑡)=𝐡𝑖(𝑡). Upon
receiving the context and if its local view passes the
quality estimation check, the source node executes
the single-view CNN to produce the local prediction
�̂�𝑖(𝑡), which is then sent to the central controller to
participate in the consensus protocol: 𝐳(2)𝑖 (𝑡)=�̂�𝑖(𝑡);

2. Each source node receives the current context 𝐜(𝑡)
from the central controller. The context consists of an
average color histogram 𝐡𝑎𝑣𝑔(𝑡), that is used to deter-
mine whether or not to perform the local inference
task;

3. The Quality Estimation module of each source node
estimates how similar the color histogram of its view
is to the context by computing the NHI between the
two histograms. The result is compared to a given
similarity threshold 𝛾: only those views whose sim-
ilarity to the context does not exceed 𝛾 (i.e., s.t.
NHI(𝐡𝑖(𝑡), 𝐜(𝑡))<𝛾) are subject to local inference and
participate in the consensus protocol;

4. The View Aggregator module of the central controller
is responsible for two tasks. First, it aggregates the
color histograms received from the source nodes into
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Figure 12: Schematic representation of the operations performed by a source node (a) and the central controller (b) in the
selective ensemble inference scheme based on color histograms (SEI-CH).

a single average descriptor 𝐡𝑎𝑣𝑔(𝑡). Upon receiving
a collection of 𝑉 ′≤𝑉 local predictions, it executes
the consensus protocol selecting as a final prediction
the most frequent label among them. The final class
prediction �̂�(𝑡) will then be sent back to source nodes;

5. The Context Manager module sends the average color
histogram 𝐡𝑎𝑣𝑔(𝑡) to all source nodes as context:
𝐜(𝑡)=𝐡𝑎𝑣𝑔(𝑡).

5. Experimental Evaluation
This section presents our experimental setup (Sec. 5.1)

and the obtained results. In particular, we first analyze the
impact of different values of the similarity threshold used in
the selective schemes (Sec. 5.2). Then we compare the differ-
ent schemes in terms of accuracy, communication overhead,
and inference latency, under different operational conditions
(Sec. 5.3).
5.1. Experimental setup

Experiments are performed by running pre-trained single-
and multi-view models under the experimental conditions
detailed below.

Classification dataset. We use the ModelNet40 (30)
dataset to train the underlying CNN models and test the dif-
ferent collaborative inference schemes. The dataset consists
of a collection of multi-view 3D shape recognition instances
with 12 views each and labels spanning across 40 classes.
Instances are split into 9,483 training instances and 2,468
test instances. Consistently with previous works (6; 31), we
use the standard train-test split provided by the dataset in
our experiments. At a given time period 𝑡, the selective
inference schemes based on view embeddings (SCI-E and
SEI-E) require the embeddings of the views captured at 𝑡−1
to generate the contextual information used to discriminate
views. As the instances in our dataset are not temporally
correlated with each other, for each instance we randomly
select 6 out of the 12 available views and use them as the set
of views captured by the network at the previous time period
to derive the context. The remaining 6 views are used as the
multi-view collection captured at the current time period.
For a fair comparison, we limit the maximum number of
views used for each instance to 6 by randomly sampling each
multi-view collection in the test set.

Models implementation and training. We implemented
each scheme as a standalone deep learning model using
PyTorch. Centralized inference schemes were implemented
by instrumenting a pre-trained multi-view CNN (base multi-
view model), whereas ensemble inference schemes were
implemented by extending a pre-trained single-view CNN
model (base single-view model). The same base model
was used to implement all schemes belonging to the same
category. First, we trained the base single-view model
CNN𝑠𝑣, starting from a general-purpose VGG-16 (32) image
classification network, pre-trained on ImageNet (33). The
VGG-16 model consists of five convolutional blocks for
feature extraction, followed by three fully-connected layers
and a softmax layer for classification. The default input
size for the model is 224×224 pixels. This general-purpose
network was then fine-tuned on the single-view images of the
ModelNet40 dataset. Training was performed for 30 epochs,
using the Adam optimizer with a learning rate of 5×10−5
and 64 instances per batch over the entire training set. The
base multi-view model CNN𝑚𝑣 was then built using the base
single-view network CNN𝑠𝑣 as a backbone, as described
in Sec. 3.2. The multi-view model was trained to jointly
classify all the views of the multi-view collections in the
training set of ModelNet40. Training was performed for 30
epochs, using the Adam optimizer with a learning rate of
1×10−5, and 8 multi-view instances per batch over the entire
training set.

Hardware description. Experiments were run on Google
Colab’s virtual machines using a Pro+ subscription. The
hardware specifications for the used virtual machines con-
sists of 8 vCPUs Intel(R) Xeon(R) @ 2.00 GHz, 52 GB of
RAM, an NVIDIA Tesla V100 GPU with 16 GB of GPU
memory, 170 GB of persistent disk storage and a 1 Gbps-
network connection.

Evaluation metrics. Through our experiments, we eval-
uate prediction accuracy and communication overhead for
the different collaborative schemes under various network
and data-related settings. Accuracy is obtained directly by
evaluating the models over our test set. As for the communi-
cation overhead, we consider a reference scenario in which
nodes communicate through a TCP connection over a 5G
link. Table 2 presents the 5G parameter settings used. We
then compute the communication overhead for each scheme
as the total number of transmitted bytes per inference, taking
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Table 2
Reference scenario: radio channel parameters.

Parameter Value

Carrier Frequency 3.5 GHz (FR1)

Channel Bandwidth 50 MHz

Subcarrier Spacing (SCS) 15 kHz

No. of MIMO Layers 2

Resource Blocks allocated to 5G slice 50

Table 3
Size of exchanged application-layer packets for each scheme

Scheme Message description Size [bytes]

CI
View message 𝐳𝑖(𝑡) 602,112

Prediction message �̂�(𝑡) 1

SCI-E

Context message 𝐜(𝑡) 100,352

Embedding message 𝐳𝑖(𝑡) 100,352

Prediction message �̂�(𝑡) 1

SCI-CH

Color histogram message 𝐳(1)𝑖 (𝑡) 4,096

Context message 𝐜(𝑡) 4,096

View message 𝐳(2)𝑖 (𝑡) 602,112

Prediction message �̂�(𝑡) 1

EI
Prediction message 𝐳𝑖(𝑡) 1

Final prediction message �̂�(𝑡) 1

SEI-E

Context message 𝐜(𝑡) 100,352

Embedding message 𝐳(2)𝑖 (𝑡) 100,352

Prediction message 𝐳(1)𝑖 (𝑡) 1

Final prediction message �̂�(𝑡) 1

SEI-CH

Color histogram message 𝐳(1)𝑖 (𝑡) 4,096

Context message 𝐜(𝑡) 4,096

Prediction message 𝐳(2)𝑖 (𝑡) 1

Final prediction message �̂�(𝑡) 1

into account: the number of messages exchanged between
the nodes, their respective size at the application layer (pre-
sented in Table 3), all protocol headers and the size of control
packets. For each scheme, we also report the transmission
gain, indicating the decrease in the percentage of transmitted
views under each scheme with respect to a given baseline
(that will be defined for each experiment). Inference latency,
accounting for both data transfer and data processing, is
also computed considering the aforementioned reference
scenario.
5.2. Similarity thresholds evaluation

Here, we provide an experimental evaluation assessing
the impact on accuracy and communication overhead of dif-
ferent values of similarity threshold 𝛾 for different variants of
the selective inference schemes, i.e., embedding-based and
color histogram-based. For brevity, we only show the results

obtained for selective centralized schemes, as we observed
a very similar behavior in the case of selective ensemble
approaches.

Threshold analysis for embedding-based schemes.
We evaluate the SCI-E scheme for different threshold values,
namely, in the range [0.1, 0.9] with 0.1 increments and a
growing number of source nodes from 1 to 6. As mentioned
above, the remaining 6 views are used to represent the
context. For each pair of (𝛾,𝑁) values, we performed 12
evaluations of the SCI-E scheme over the entire test set, each
time selecting different random subsets of views. Fig. 13
shows the obtained results, averaged over the 12 runs, in
terms of accuracy (a), transmission gain (due to discarded
views) (b), and communication overhead per inference
(c). The SCI-E scheme with 𝛾=1, in which no view gets
discarded, is used as a baseline. We only report the results
obtained for 𝛾∈{0.3, 0.4, 0.5, 0.6} to reduce visual clutter
in the plots. Any 𝛾>0.6 would further degrade accuracy,
and any 𝛾<0.3 would be virtually indistinguishable from the
baseline.

The plots show that the transmission gain, and thus
the ratio of discarded views, is independent of the number
of source nodes. When only one source node is available,
discarding a view corresponds to dropping the current in-
ference task. Even if the transmission gains vary widely for
the different values of 𝛾 (ranging from 10% to 70%), the
difference in communication overhead per inference is more
limited (ranging from 4% to 35% concerning the baseline).
As expected, the accuracy decreases as the number of dis-
carded views increases. Overall, however, the system is still
able to reach high accuracy (above 90%) while leveraging the
benefit of sizable transmission gains (between 24% and 44%)
for values of 𝛾 between 0.4 and 0.5. Importantly, the plots
highlight that a similarity threshold of 0.4 achieves the best
trade-off in terms of accuracy and transmission efficiency,
with a 44% reduction in the number of transmitted views
while degrading accuracy by just 4.4% on average, with
respect to the baseline.

Threshold analysis for color histogram-based schemes.
We perform the same threshold analysis on the SCI-CH
scheme. Fig. 14 presents the results, again, in terms of
accuracy (a), transmission gain (b), and communication
overhead per inference (c). The SCI-CH scheme with 𝛾=1,
in which no view gets discarded, is used as a baseline,
and, for brevity, we only report the results obtained for
𝛾∈{0.4, 0.5, 0.6, 0.7, 0.8} as the other values do not provide
additional insights.

Consistently with the intuition, accuracy decreases as the
value of 𝛾 gets smaller, and thus more views are discarded.
Interestingly, for the strategies that most aggressively discard
views (𝛾<0.7), the accuracy follows a non-monotone trend.
It spikes when moving from a single source node to two,
capitalizing on the benefits of multi-view classification as
the ratio of discarded views is still reasonably low (below
26%). With three source nodes, the ratio of discarded views
has its steepest ascent, resulting in a sudden drop in accuracy.
This is due to the average color histogram, used by SCI-CH
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Figure 13: Impact of different similarity threshold values for the SCI-E scheme with increasing number of source nodes: accuracy
(a), transmission gain (b), and the communication overhead per inference (c).
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Figure 14: Impact of different similarity threshold values for the SCI-CH scheme with increasing number of source nodes: accuracy
(a), transmission gain (b), and the communication overhead per inference (c).

as a context, which is very sensitive to the variability in the
color distribution of the individual views when computed on
a small number of sources. This fact, paired with an overly
selective threshold, may lead the scheme to discard some
informative views whose contribution is crucial to achieving
better accuracy when the total number of views is scarce. As
more views become available, the average color histogram
becomes an adequate descriptor of the collection of views
captured by the network, and the downside of discarding
some of the informative views becomes less severe.

Differently from the embedding-based case, the ratio
of discarded views in the histogram case grows with the
number of available nodes. When only one source node is
available, no view gets discarded and each inference task is
reduced to single-view classification. Note that no inference
task is dropped in the SCI-CH scheme. As the number of
available views increases, so does the transmission gain,
growing rapidly at first until reaching a plateau at around 5
views. A similarity threshold of 0.7 seems to achieve the best
trade-off between accuracy and transmission gain, attaining
at least 92.5% accuracy while discarding between 34% and
52% of the views.

Lessons learnt on the impact of similarity thresholds.
Selecting a similarity threshold for each of the proposed
selective inference schemes is crucial in determining the
trade-off between accuracy and communication overhead

the network achieves. The value of 𝛾 can be dynamically
tuned to adapt to different network loads, as discarding
views more aggressively allows the system to decrease band-
width utilization at the cost of a loss in accuracy, with
embedding-based schemes potentially experiencing a sig-
nificantly greater degradation than color histogram-based
schemes.
5.3. Comparative analysis

In this section, we provide a quantitative comparison
of the schemes in terms of prediction accuracy, communi-
cation overhead, and inference latency. For each scheme,
we perform multiple experiments considering a number 𝑁
of source nodes ranging from 1 to 6. In each experiment,
the specified number of views are randomly selected among
the 12 available. We repeat each experiment over 12 runs
and average the results. For the selective schemes, we use
the value of the similarity threshold 𝛾 that, based on our
experiments, yields the best trade-off between accuracy and
transmission gain, i.e., 𝛾=0.4 for embedding-based schemes
and 𝛾=0.7 for color histogram-based schemes. Results are
reported in Table 4 as well as in Fig. 15, in terms of accuracy
(a), transmission gain (b), communication overhead (c), and
inference latency (d). The CI scheme is used as a baseline.
Then, we investigate how the accuracy of the schemes is
affected by different networking and data-related conditions,
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Table 4
Results of the comparison among inference schemes as the number of source nodes varies.

Accuracy [%]
N CI EI SCI-E SCI-CH SEI-E SEI-CH
1 88.00 76.80 79.90 87.40 67.30 76.20
2 96.30 78.00 87.90 93.20 67.90 78.50
3 98.50 83.80 91.80 92.70 71.50 79.60
4 99.40 87.20 93.40 92.90 73.20 79.70
5 99.50 87.70 95.20 92.90 75.30 80.70
6 99.80 89.00 95.74 94.30 76.30 82.70

Mean 96.92 83.75 90.66 92.23 71.92 79.57
Std Dev 4.55 5.22 5.98 2.44 3.74 2.17

Transmission Gain [%]
N CI EI SCI-E SCI-CH SEI-E SEI-CH
1 0.00 0.00 44.12 0.00 53.99 0.00
2 0.00 0.00 45.10 19.04 55.91 19.45
3 0.00 0.00 44.70 35.12 54.84 36.49
4 0.00 0.00 45.42 43.88 55.06 43.36
5 0.00 0.00 44.63 42.80 54.52 43.16
6 0.00 0.00 45.20 41.93 54.40 40.64

Mean 0.00 0.00 44.86 30.46 54.79 30.52
Std Dev 0.00 0.00 0.47 17.57 0.66 17.42

Communication Overhead [KB]
N CI EI SCI-E SCI-CH SEI-E SEI-CH
1 623.58 0.17 207.95 632.09 208.03 8.69
2 1247.16 0.35 353.84 1026.77 342.37 17.31
3 1870.74 0.52 507.97 1239.36 485.33 25.88
4 2494.32 0.70 662.14 1433.82 629.43 34.46
5 3117.90 0.87 823.22 1825.98 779.07 43.07
6 3741.47 1.04 979.50 2223.69 927.96 51.71

Mean 2182.53 0.61 589.10 1396.95 562.03 30.19
Std Dev 1166.61 0.33 289.75 568.47 270.18 16.09

Inference Latency [ms]
N CI EI SCI-E SCI-CH SEI-E SEI-CH
1 69.15 20.46 40.49 73.46 43.19 24.77
2 140.37 20.48 64.29 145.59 66.95 25.71
3 216.36 20.51 89.68 222.55 92.30 26.70
4 281.86 20.52 111.57 288.89 114.15 27.56
5 332.99 20.54 128.66 340.68 131.21 28.23
6 415.36 20.56 156.18 424.11 158.69 29.31

Mean 242.68 20.51 98.48 249.21 101.08 27.05
Std Dev 127.11 0.04 42.48 128.74 42.40 1.67

such as partial availability of the source nodes and noise
in the input data. Finally, Table 5 presents a qualitative
comparison of the proposed schemes.
Accuracy and communication overhead trade-off.
Comparing the accuracy of the different schemes, we ob-
serve that the ensemble schemes, enabling local inference
at the source nodes, provide good performance (namely, be-
tween 71.92% and 83.75% accuracy in average, see Table 4),
while reducing the communication overhead by one or more
orders of magnitude. Conversely, the CI scheme exhibits
slightly higher accuracy but leads to the largest bandwidth
consumption. Furthermore, the SCI-E and SCI-CH schemes
attain comparable accuracy levels and transmission gains
when at least 3 source nodes are available, with the for-
mer scheme slightly outperforming the latter. Overall, the
results highlight the benefits of selective schemes, which
still provide considerably accurate predictions (above 92%
accuracy) while reducing the communication overhead from
18% to 74% (on average) with respect to the non-selective
case, thanks to their ability to discard redundant views.

When considering bandwidth utilization per inference,
the centralized selective scheme based on embeddings emerges
as a clear winner with respect to the one based on color
histograms, given the difference in the size of the interme-
diate representations exchanged between the source nodes
and the controller in the two cases. However, embedding-
based selective schemes require, in general, source nodes
to sustain a higher computational burden and, thus, are
only feasible in scenarios in which devices are equipped
with sufficient computing capability. Finally, considering
the ensemble approach, selective schemes always perform
worse than non-selective ones, both in terms of accuracy
and communication overhead.

Lessons learnt on accuracy-communication over-
head trade-off. Ensemble schemes lead to a limited de-
crease in accuracy relative to centralized schemes while

greatly reducing the communication overhead, making them
more suitable in network-constrained scenarios. On the
contrary, schemes in which nodes exchange raw images
would, in general, entail a higher communication overhead.
The communication burden decreases as the representa-
tion of the exchanged views becomes more refined (and
lower-dimensional). Different trade-offs can be explored
by applying (lossy) feature compression techniques before
view transmission. Overall, selective schemes effectively
reduce the required communication overhead with respect to
their non-selective counterparts, sacrificing little accuracy.
Furthermore, they can be tuned to achieve different trade-
offs between accuracy and communication overhead by
varying the similarity threshold parameter 𝛾 .

Regarding accuracy, we take as base case a large multi-
view CNN executed on a single machine. The CI scheme,
in which all available views are fed unprocessed to a single
large MVCNN running at the edge, is indeed the imple-
mentation achieving the highest accuracy. The accuracy
degrades as the model gets split, and possibly compressed.
Comparing SEI-E and SEI-CH, the former yields 6% de-
crease in accuracy, but 14% increase in transmission gain.
For the centralized schemes, SCI-E provides the best trade-
off between accuracy and communication overhead, while
SCI-CH is more versatile, requiring far lower computational
resources at source nodes and reaching comparable levels
of accuracy at the cost of a higher bandwidth utilization.
However, our results show that, whenever a limited accuracy
degradation is allowed, ensemble schemes can provide an
excellent trade-off between accuracy and communication
overhead, and selective schemes are very effective in further
reducing the latter.
Inference latency. To estimate the inference latency of
the different schemes, we consider the previously mentioned
reference scenario with 6 source nodes, randomly located
within the coverage of a 5G base station (gNB), resulting in
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Figure 15: Comparison in terms of accuracy (a), percentage of discarded views (b), communication overhead per inference (c),
and inference latency (d) among the different schemes for increasing the number of source nodes.

levels of signal-to-noise ratio (SNR) between 0 and 20 dB.
We recall that we consider a slice of 50 Resource Blocks
(RBs) allocated for the service. In the following experi-
ments, the available RBs are evenly assigned to the source
nodes.

For each scheme, we estimate inference latency by con-
sidering two main components: the transmission and the
processing latency. Notably, the processing latency is com-
puted by profiling the execution time of the processing
modules foreseen by each scheme and using a virtual ma-
chine equipped with a single NVIDIA Tesla V100 GPU for
the central controller, and a virtual machine equipped with
an NVIDIA GeForce GTX 1070 Ti GPU for the generic
source node. Fig. 15(d) shows the inference latency for each
scheme.

Lessons learnt on inference latency. Note that infer-
ence latency increases fairly linearly with the number of
deployed source nodes: as the radio challenge becomes more

congested the transmission throughput decreases. The CI
and SCI-CH schemes perform the worst in terms of inference
latency. This is due to the amount of time required to
transmit raw views between nodes, which dominates any
other latency contribution in our reference scenario. Note
that, even if the SCI-CH is able to achieve a considerable
gain in terms of network overhead, thus reducing bandwidth
consumption, it perform worse than CI in terms of latency
as the delay due to context sharing adds to the already
sizeable time required by the (selected) source nodes to
transmit their views. Inference latency decreases as more
computational load is shifted toward the source nodes (either
feature extraction of local inference). However, this often
comes at the cost of a decrease in prediction accuracy, as
in the case of ensemble-based schemes. Both the EI and the
SCI-E seems to strike a good trade-off between inference
latency and accuracy.
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Figure 16: A view perturbed with additive Gaussian noise
attaining different SNR levels.

Robustness to unreliable communication links. We
are also interested in assessing the robustness of the different
inference schemes in the presence of unreliable communica-
tion links between source nodes and edge servers. The results
of the previous experiment can be interpreted considering
a reduced number of source nodes 𝑁 to mimic faults in
the communication links between the central controller and
a subset of source nodes. Looking at how the accuracy is
affected by the partial availability of views, SCI-CH and
SEI-CH emerge as the most robust schemes, both boasting
values of standard deviation for the accuracy below 2.5%
(Table 4).

Lessons learnt on robustness to link failures. The ac-
curacy of all schemes seems to be affected to some degree by
the reduced availability of sources nodes. However, selective
schemes based on color histograms are to be preferred to
embedding-based ones when the reliability of the commu-
nication links is a concern. In these schemes in fact, before
transmitting their views, all nodes will communicate in order
to establish the current context. This context is then used
to collectively decide which views should participate in the
inference. Assuming that failures do not occur between this
context-sharing phase and the actual transmission of views,
any offline node would not contribute to the current context,
thus enabling the rest of the nodes to collectively select
the more relevant set of views based solely on their present
availability.
Sensitivity to noise. To assess the sensitivity of different
inference schemes to noise, we performed another exper-
iment in which we applied Gaussian RGB noise to each
sample in the dataset and then tested how the accuracy of
the different schemes was affected. Specifically, we applied
a random additive noise with zero-mean and different values
of standard deviation 𝜎 to each channel independently. By
varying 𝜎, we generated multiple perturbed datasets with
different levels of signal-to-noise ratio (SNR), as depicted
in Fig. 16. In Fig. 17 we show the accuracy degradation
in percentage for each scheme with respect to the case of
an unperturbed dataset, as the SNR varies. Each perturbed
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Figure 17: Comparison among the different schemes in terms
of percentage of accuracy loss with respect to the unperturbed
case, for varying SNR levels.

dataset includes all available views and, as done previously,
we use the best-performing similarity threshold for each
selective inference scheme. The impact of noise on accuracy
remains negligible only as long as the SNR level remains
between 15 and 20 dB (i.e., the noise power is within 1%
and 3% of the power of the original image). A performance
degradation starts instead to be evident for lower SNR values
(noise power within 3% and 10% of the original image
power). Then, after decreasing slowly between 10 and 7 dB
of SNR, the accuracy rapidly plummets for SNR below 7 dB.
Interestingly, CI and SCI-CH prove to be the least sensitive
to noise (leftmost curves): they exhibit almost the same
sensitivity profile and both retain accuracy levels above 90%
for SNR values up to 11 dB (i.e., noise power around 8%
of the original image power). Conversely, SEI-E and SCI-E
show the highest noise sensitivity (rightmost curves).

Lessons learnt on noise sensitivity. Regarding noise
sensitivity, all schemes prove to be sensitive to noise in the
input data to some degree. Selective schemes based on color-
histograms demonstrate to be substantially more robust than
their embedding-based counterparts. This is probably due
to how the view descriptors are aggregated to produce the
context in the two distinct variants, i.e., through an average in
the color histogram case and through a maximum operation
in the embedding case, with the latter tending to be more
easily affected by noise. Furthermore, centralized inference
schemes seems to be less affected by noise than ensemble
ones. This may be due to the fact that, by aggregating the
distorted views at a earlier stage, the effect of noise on the
features of a view may be mitigated by the features captured
by other views before it has a chance to distort the prediction,
in the centralized case.

Overall quantitative comparison. At last, we present
the qualitative comparison of the considered schemes in
Table 5. The table summarizes the advantages and disadvan-
tages of each schemes, highlighting a set of networking and
data-related properties.
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Table 5
Qualitative comparison of the considered collaborative inference schemes

Scheme Prediction
accuracy

Communication
overhead

Computational requirements Robustness to
link quality

Noise
sensitivity

Privacy
preservationController Source nodes

CI High
full MVCNN,
use all views

High
nodes share
raw images

High
full MVCNN

None
no processing

Medium Low None

SCI-E Medium-High*
split MVCNN,
discard views

Medium
nodes share
embeddings

Low
view pooling,
classification

High:
feature

extraction

Low High Partial

SCI-CH Medium-High*
full MVCNN,
discard views

High
nodes share color

hist. and raw images

High
full MVCNN,

hist. aggregation

Low :
color histogram

High Low None

EI Medium
multiple SVCNN,

use all views

Low
nodes share labels

Low
consensus

High
full SVCNN

Low High Full

SEI-E Low-Medium*
multiple SVCNN,

discard views

Medium
nodes share labels
and embeddings

Low
consensus,

view pooling

High
full SVCNN

Medium High Partial

SEI-CH Low-Medium*
multiple SVCNN,

discard views

Low
nodes share labels

and color hist.

Low
consensus,

hist. aggregation

Medium
full SVCNN,

color histogram

Low High Partial

* Depending on the selected similarity threshold.

6. Discussion and Conclusions
The experimental results presented above clearly indi-

cate that the inference schemes we analysed can achieve
different trade-offs between accuracy, communication over-
head and latency by leveraging different splits of computa-
tion between edge and end devices. In this section we provide
an additional qualitative comparison between the aforemen-
tioned schemes in terms of computational requirements and
privacy preservation. Furthermore, we discuss some relevant
applications that can benefit from the proposed schemes
(Sec. 6.1) and provide some future research directions (Sec.
6.2).
Computational requirements. Considering the MVCNN
based on VGG-16 used in the experiments, the most compu-
tationally intensive task is feature extraction, with the con-
volutional network accounting for 30.7 GFLOPs per view. In
contrast, the view pooling layer and the classification portion
of the network account for 0.3 and 239.4 MFLOPs per
inference, respectively. The CI scheme clearly minimizes the
computational burden allocated to the source nodes, while
SCI-CH aims at leveraging the advantages of view selection
while keeping the computational requirements at the source
nodes low. Conversely, selective, embedding-based schemes
and ensemble schemes require the source nodes to perform
feature extraction and are thus suited only for scenarios in
which sensing devices are equipped with sufficient process-
ing capabilities (e.g., connected vehicles). Importantly, the
SEI-CH scheme mitigates the overall computational burden
on source nodes, as only color histogram computation is
performed locally when a view gets discarded.

Privacy preservation. As the data captured by source
nodes may contain private information, some scenarios may
be subject to privacy preservation requirements. Clearly, the
CI and SCI-CH schemes, in which the raw input data is
shared between source nodes and the central controller, are
intrinsically unable to preserve privacy. On the contrary, the
non-selective ensemble inference scheme, in which nodes
exchange only predictions, is the most robust to privacy
leakage. Schemes in which intermediate representation of
views are shared between the nodes, being those embeddings
or color-histograms, enhance the level of privacy but are
only partially privacy-preserving, as they are not immune to
leakage of private information (34).
6.1. Application scenarios

Some relevant applications that can greatly benefit from
the proposed collaborative inference schemes are discussed
below. The main strength of centralized inference is the
superior prediction accuracy it can provide. The completely
centralized CI scheme is thus best suited for application
scenarios characterized by devices with scarce computing
capabilities, ample communication bandwidth, and no pri-
vacy concerns, such as Quality Control in smart manufactur-
ing. In this context, indeed, resource-constrained IoT devices
are used to analyze images of food products or drugs pack-
aging to detect defects, inconsistencies, and quality issues.
Conversely, mission and safety critical applications, like
process automation in smart factories or pedestrian detection
in connected autonomous vehicles, are often characterized
by ultra-low latency and ultra-high accuracy requirements.
In these cases, we advocate the use of the SCI-E scheme,
in which the availability of contextual information from
previous time periods and the feature extraction performed
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in parallel by source nodes can ensure a lower inference
latency, while the use of a conservative similarity threshold
will still ensure high prediction accuracy. Instead, SCI-CH,
given its low computational requirements on source nodes,
low noise sensitivity, is more suitable for scenarios such as
outdoor video-surveillance, in which resource-constrained
devices collaborate in a noisy environment.

The main advantages of ensemble inference schemes are
their reduced communication overhead, along with the yet
good accuracy level and the high degree of privacy they
provide. The EI allows for the maximum degree of privacy
preservation but at the same time proves to be scarcely robust
to link failures and highly sensitive to noise. Thus, it suits
best applications with strong privacy requirements, reliable
connectivity, and low noise such as security surveillance in
home automation systems. When privacy is an important
factor but the computational capability of the devices is
limited, the SEI-CH scheme is to be preferred. Relevant
examples include in-store retail analytics applications (such
as customer footfall analysis, people counting, etc.), or peo-
ple/vehicle identification in access control systems. Finally,
urban monitoring applications through connected vehicles
or UAVs, for instance to track new stores, road surface
conditions, health of urban green spaces, are characterized
by both privacy concerns and low connection reliability and,
hence, are suitable candidates for the SEI-E scheme.
6.2. Challenges and future directions

We advocate that collaborative inference schemes, in
which nodes share semantically correlated data and com-
putation to make a prediction, can allow an increasingly
larger set of fine-grained inference tasks to be pushed from
the cloud domain to the network edge. However, a number
of challenges should be addressed in order to make these
schemes easier to apply in real-world scenarios.
Node selection. We considered a scenario in which a set
of end devices capture data that are spatially correlated.
This easily holds in contexts with static end nodes whose
cameras are deployed at fixed locations and orientations, in
which case the spatial correlation between sensed data can
be determined a priori. In reality, we often deal with hybrid
systems comprising both static and mobile nodes, in which
the correlation between the sensed data often arises in real
time and most likely involves only a subset of the system
nodes at a time. In these cases, how to select the nodes that
should contribute to a collaborative multi-view classification
task is still an open issue.
Adapt to dynamic network conditions. As detailed pre-
viously, different collaborative inference schemes, with dif-
ferent parameters, may lead to more or less favorable trade-
offs between accuracy, communication overhead and la-
tency, depending on the condition of the network at a given
time. However, especially in a context involving mobile
nodes, the underlying network conditions may vary contin-
uously, making the choice of which scheme (or scheme’s
parametrization) to adopt quite hard. Future research should

thus envision methods to allow inference schemes to adapt
dynamically to the varying conditions of the network. In
particular, when a selective inference scheme is used, its
similarity threshold should be dynamically modulated based
on the available bandwidth.
Computational splits and temporal correlation. In our
study, we focused on the most relevant splits of computation
between nodes. For instance, in the SCI-E scheme, each
node executes a multi-view CNN’s full feature extraction
pipeline. However, more elaborated splits are possible de-
pending on the processing capabilities of the nodes, e.g.,
executing only a subset of the first convolutional blocks
at the source nodes while delegating the remaining feature
extraction to the central controller. Additionally, state-of-
the-art DNN compression techniques such as model prun-
ing (35) and knowledge distillation (36) may further broaden
the scope of applicability of inference schemes by reducing
their requirements in terms of processing capabilities. In
our current setting, deciding which scheme to use, how the
computation should be split between the system nodes, and
whether to use data and/or DNN compression techniques
would all be one-time decisions made at the system design
time. Thus, it would be important to define new methods to
let the system make these decisions automatically, based on
the availability of resources and the presence of overarching
system requirements, both at a preliminary "negotiation"
phase and (potentially) at a later stage during the network op-
eration. Finally, in our study we mainly focused on exploiting
spatial correlation between views. An additional aspect to
consider would be to also integrate techniques like frame
differentiation (23), taking into account temporal correlation
as well, in order to further reduce redundant information.
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