
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated prediction of sepsis using temporal convolutional network / Kok, Christopher; Jahmunah, V; Oh, Shu Lih;
Zhou, Xujuan; Gururajan, Raj; Tao, Xiaohui; Cheong, Kang Hao; Gururajan, Rashmi; Molinari, Filippo; Acharya, U
Rajendra. - In: COMPUTERS IN BIOLOGY AND MEDICINE. - ISSN 0010-4825. - ELETTRONICO. - 127:(2020), p.
103957. [10.1016/j.compbiomed.2020.103957]

Original

Automated prediction of sepsis using temporal convolutional network

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.compbiomed.2020.103957

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.compbiomed.2020.103957

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974415 since: 2023-01-13T09:47:02Z

Elsevier



 

 1 

                    Official (Closed) - Non Sensitive 

Automated Prediction of Sepsis Using Temporal 
Convolutional Network 

 

Christopher Kok 1, V Jahmunah1 , Shu Lih Oh1 , Xujuan Zhou2, Raj Gururajan2, 
Xiaohui Tao3, Kang Hao Cheong4, Rashmi Gururajan5, Filippo Molinari8, U Rajendra 

Acharya1,6,7* 
 

1Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore. 

2 School of Management and Enterprise University of Southern Queensland Springfield, Australia. 

3 School of Sciences, University of Southern Queensland, Toowoomba, Australia. 

4 Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 

S487372, Singapore. 

5Royal Brisbane and Women’s Hospital, Queensland, Australia. 

                                               6 Department Bioinformatics and Medical Engineering, Asia University,                       
                                Taiwan. 

7 International Research Organization for Advanced Science and Technology (IROAST) 

Kumamoto University, Kumamoto, Japan. 

8Department of Electronics and Telecommunications, Politecnico di Torino, Italy 
 

*Postal Address: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 

Singapore 599489. 

Email Address: aru@np.edu.sg 

 

 
 

ABSTRACT 

 
Multiple organ failure is the trademark of sepsis. Sepsis occurs when the body's reaction to 

infection causes injury to its tissues and organs. As a consequence, fluid builds up in the tissues 

causing organ failure and leading to  septic shock eventually. Some symptoms of sepsis include 

fever, arrhythmias, blood vessel leaks, impaired clotting, and generalised inflammation. In 

order to address the limitations in current diagnosis, we have proposed a cost-effective 

automated diagnostic tool in this study. A deep temporal convolution network has been 

developed for the prediction of sepsis. Septic data was fed to the model and a high accuracy and 
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area under ROC curve (AUROC) of 98.8% and 98.0% were achieved respectively, for per time-

step metrics. A relatively high accuracy and AUROC of 95.5% and 91.0% were also achieved 

respectively, for per-patient metrics. This is a novel study in that it has investigated per time-

step metrics, compared to other studies which investigated per-patient metrics. Our model has 

also been evaluated by three validation methods. Thus, the recommended model is robust with 

high accuracy and precision and has the potential to be used as a tool for the prediction of 

sepsis in hospitals.  

 
Keywords – Sepsis; machine learning; deep learning; prediction; per-patient metrics, per time-

step metrics, 10-fold validation, temporal convolution network. 
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1. Introduction 

 

The body’s immune system is a highly developed response to infections that can be caused by 

bacteria, viruses, or fungi. However, when the immune system is unable to mount a tailored 

defence against infection, it releases an avalanche of inflammatory chemicals in order to create a 

mass effect, which leads to a state of sepsis within the body [1].  

 

Sepsis is described as an extremely complex and deadly syndrome with divergent clinical 

indications, which altogether create a challenging environment for detection and treatment [2]. 

Presently, as per the international consensus, sepsis is defined as lethal organ malfunction, 

stemming from a disordered host response to an infection [2]. The keystone of organ damage 

results from a disparity between the tissue’s metabolic needs, and the subsequent 

hypoperfusion state that arises from the body’s inflammatory state. While inflammation-

induced cardiac malfunction and systemic blood volume redistribution play a key role in this, it 

is exacerbated by oxygen use from the damaged tissue [3].  

 

Angiopoietins are a subset of a family of vascular growth factors. The imbalance of 

angiopoietin-tyrosine kinase alongside immunoglobulin-like ligand-receptor system (Ang-tie), 

which is responsible for cardiovascular and lymphatic development, is of particular interest in 

sepsis research [2]. The improved expression of Ang-2 and the impediment of Ang-1 obstructs 

the Tie-2 receptor and proliferates vascular permeability, causing tissue edema [4]. A high 

serum Ang-2/Ang-1 ratio in turn results in heightened severity in organ malfunction and 

increased mortality, even in early sepsis [5]. The organs often damaged due to sepsis include 

the kidneys, lungs, liver, heart, central nervous hematologic systems [2].  

 

The infections that contribute to sepsis are resistant to antibiotics, leading to quick deterioration 

of health conditions [6]. The symptoms of sepsis include fever, irregular heart rate, blood vessel 

leaks, inflammation and clotting difficulties [7]. Sepsis can be classified as sepsis 1, 2 or 3. Sepsis 

1 is known to occur as a consequence of the systemic inflammatory response to known or 

suspected infections. Sepsis 2 is diagnosed based on inflammatory, hemodynamic, organ 

maladies and tissue perfusion parameters, while sepsis 3 is diagnosed based on life-threatening 

malady of the organ due to the imbalanced host response to infection [8]. Figure 1 encapsulates 
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causes and consequences of sepsis. Sepsis afflicts more than 30 million people globally, causing 

about 6 million deaths yearly [9].  

 

Early detection and timely management of sepsis are crucial to lower the mortality and 

morbidity rates. Presently, blood cultures are examined and biomarkers such as 

procalcitonin(PCT), C-reactive protein(CRP), cell-free DNA(cfDNA) are used as the gold 

standard for early sepsis diagnosis[10][11]. However, using blood cultures as a diagnostic tool 

exhibit several shortcomings. Besides being invasive, biomarkers for sepsis have been reported 

to be lacking sensitivity or specificity for the diagnosis or even prediction of sepsis, owing to the 

overlap that exists between infectious and inflammatory conditions[12]. Multimarker systems 

that were developed to address these were found to be costly and integration into clinical 

algorithms is an arduous task. Hence, a cost-effective automated diagnostic tool for the early 

identification of sepsis is important beyond measure, as this decreases the time for advanced 

diagnostics and paves the way for timely treatment [13].  
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Figure 1:Causes and consequences of sepsis.  
 

Conventional machine learning techniques have been explored by some authors for the 

prediction of sepsis. Henry et al [14], Umscheid et al [15], Delahanty et al [16] and Lake et al [17] 

investigated early warning scoring systems by building models using machine learning 

techniques. Calvert et al  [18], Mao et al [19] and Desautels et al [20], explored the insight 

algorithm to develop the prediction models. Mani et al [21], Horng et al [22] and Gultepe et al 

[23] explored the support vector machine classifier amongst other models. Nemati et al [24] and 

Shashikumar et al [25], [26] studied electronic medical record features. Other models such as 

random forest classifier, composite mixture and Rusboost classifiers were developed by Taylor 

et al [27], Mayhew et al [28] and Patidar et al [29] respectively. Conventional machine learning 

techniques require the manual extraction and selection of features, and this has been proven to 

be cumbersome and tedious. The significant features are also selected by iterative trial and 

error, hence the process is time-consuming. Additionally, some of the studies discussed above 

have only generated qualitative results.  

 

Feature extraction and selection processes are naturally automated in deep learning techniques, 

easing classifications, hence deep learning models are increasingly being employed in the 

detection of various diseases [30] [31] [32] [33] [34] [35]. In this study, we have employed the 

temporal convolutional network for the prediction of sepsis. Our proposed method not only 

predicts sepsis rapidly, but also with high accuracy. More details about our work are discussed 

in the subsequent sections; section 2 discusses the methodology, sections 3 and 4 discuss the 

results and comparisons with other works respectively,  while section 5 concludes the paper 

with recommendations for future work. Table 1 details the summarized studies for sepsis 

prediction using deep learning methods.  

 
Table 1: Summarized studies for the prediction of sepsis using deep learning methods. 

 

 

Authors 

 

Techniques 

 

Database/ participants 

 

Results 

 

Kam et al [36], 

2017 

 

 Insight model 

 Feedforward model 

 20 features 

 LSTM model 

MIMIC-II( version 3) 

database:  

 350 patients 

 

LSTM model: 

AUROC: 92.9% 

Insight model: 

AUROC: 88.7% 
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Sensitivity: 91% 

 

 

 

Futoma et al 

[37], 2017 

 Multitask Gaussian process recurrent 

neural network(MGP-RNN) 

 RNN classifier 

 

University health system, 

HER database: 

49 312 patients 

MGP-RNN outperforms 

GP-RNN baselines in the 

classification of sepsis. 

Kamaleswaran 

et al [38], 2018 

 Logistic regression classifier 

 Random forest classifier 

 Deep CNN model 

Le Bonheur Children’s 

Hospital: 

Sepsis: 18 patients 

Normal: 473 subjects 

Logistic regression: 

(2-8 hours before sepsis) 

ACCURACY: 82.8% 

SPECIFICITY: 82.7% 

SENSITIVITY:85% 

Fagerstrom et al 

[39], 2019 

 LiSep LSTM model 

 6-fold validation 

MIMIC-II database:  

About 59 000 septic 

shock patients 

AUROC: 83.06% 

 

Li et al [40], 2019 

 Convolutional neural network 

 Recurrent neural network 

 Ensemble bagging(combination of both 

models) 

Physionet Challenge 2019 

database: 

40 336 data(2932 septic 

records) 

ACCURACY: 92.7% 

AUROC: 96.4% 

AUPRC: 38.3% 

 

Scherpf et al 

[41], 2019 

 Recurrent neural network 

 4 fold-validation 

 Gated recurrent unit 

 10 parameters 

MIMIC-III database: 

 

Patients: 46520 

AUROC: 81% 

Sensitivity: 85% 

Specificity: 67% 

 

 

Lauritsen et al 

[42],2020 

 Convolutional + long short-term 

memory networks 

 5-fold cross validation 

 

Electronic health records 

from multiple Danish 

hospitals  

 

Full dataset: 52 229 

patients 

Vital signs: 3129 

 

AUROC: 85.6%(3 hours 

before sepsis onset) 

 

Bedoya et al 

[43], 2020 

 Multi-output gaussian processes 

recurrent neural network 

 Internal validation 

 Temporal validation 

 

Electronic health records 

from quaternary 

academic hospital: 

 

Training and internal 

validation: 42979 

AUROC: 88.0% 
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encounters 

Temporal validation: 39 

786 encounters 

This study 

 Gaussian Process Regression 

 Temporal convolutional network 

 40 features per record 

 10-fold cross validation 

Beth Israel Deaconess 
Medical Center: 
 
1790 septic records 
 

Emory University 
Hospital: 
 
1142 septic records 
 

Per-patient metrics: 

ACCURACY: 95.5% 

AUROC: 91.0% 

AUPRC: 68.0% 

 

Per-timestep metrics 

ACCURACY: 98.8% 

AUROC: 98.0% 

AUPRC: 65.0% 

UTILITY: 43.0% 

 

 

 

2. Methodology 

2.1 Data acquired and pre-processing method 
 
The data used is the open source dataset released for the PhysioNet Computing in Cardiology 

2019 Challenge [44]. This contains data from 2 hospitals: Beth Israel Deaconess Medical Center 

(hospital system A) and Emory University Hospital (hospital system B) which contain 1790 and 

1142 septic records respectively. The data obtained were based on sepsis-3 criteria and each 

patient’s record comprised 40 features: 8 vital signs, 26 laboratory measurements, and 6 

demographic variables, recorded hourly. The Gaussian Process Regression (GPR)[45] was used 

to predict the distribution of possible values for each feature that contained entries, to ease the 

problem of missing values. As GPR generates a distribution of values as compared to filling in 

the missing values like other interpolation methods, this comes with the added advantage of 

being able to sample this distribution during training time, as it yields varied values according 

to the distribution. The Radial Basis Function (RBF) kernel combined with a White Noise kernel 

[46] was then used to produce the covariance matrix which describes the distribution of values. 

Besides filling in missing data, this step also creates noisy data, which helps to improve 

generalisation of the model used [46]. Any NaN(not a number) values left after this process 

were subsequently set to 0.  
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2.2 Temporal convolutional neural network 
 

Deep learning models are neural networks that consist of a large number of layers and 

parameters that aid in classification tasks [47]. Deep models ranging from the convolutional 

neural networks(CNN) [48] to the long short-term memory(LSTM) [49] and autoencoders [50] 

are frequently used for the detection of arrhythmia [30] [31] [51] schizophrenia [32], congestive 

heart failure [33] among other maladies. In this study, a temporal convolutional network(TCN) 

[52] was employed. TCN is a convolutional network which convolves over the time domain. In 

TCN, calculations are conducted in such a way that each time-step is updated concurrently [53]. 

A temporal convolutional network is a convolutional network which convolves over the time 

domain. As the filters in these convolutions do not have access to timesteps in the future, 

dilated convolutions were implemented wherein a convolution filter is applied over a larger 

receptive field than its defined input size by skipping inputs from a given step size. These 

dilated convolutional layers are then stacked on top of each other with increasing dilation to 

increase the size of the receptive field exponentially [54]. Figure 2 represents the dilated 

convolution layers used in our model.  

 

In this study, the TCN was specifically chosen as a replacement/alternative of existing recurrent 

neural networks(RNN)/gated recurrent unit(GRU) architectures to improve training hardware 

requirements. TCNs retain benefits from RNNs such as variable length inputs via sliding of the 

1-dimensional convolutional kernel windows and are less memory intensive than GRU/LSTM 

networks especially when the data length gets larger. The hyperparameters(as shown in Table 

2) were tuned with a grid search. The grid can be described with 3 values: A minimum, 

maximum and interval. For maximum learning rate and weight decay, the grid values are 

incremented exponentially (eg. 1e-5, 1e-4.5, 1e-4, etc). Residual blocks are known to benefit deep 

learning models, as such, nine residual block were stacked, summing the output together with 

the output of the skip connections, followed by a linear transform on the sum. This output was 

then fed to a sigmoid activation function. Batch normalisation was done and dropout layers 

were added to prevent overfitting of the model. Figures 3a and 3b present a typical residual 

block and the TCN architecture used in our study, respectively. 
Table 2: Tuning of hyperparameters with grid search. 

 Min Max Interval Final value 
Maximum learning 

rate 
1e-5 

 
1e0 

 
e0.005 

 
3e-4 

 
Weight decay 0, 1e-5 3e-2 e0.5 1e-3 
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Minimum 

momentum 
0.80 1.00 0.05 0.85 

Maximum 
momentum 

0.80 1.00 0.05 0.95 

 
 

 
 

Figure 2: Dilated convolution layers. 

 

 

 

 

 

 

 

 
 

 
 
 
       

 
 
 
 
 
 
 
 

(a) (b) 
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Figure 3: (a) Temporal Residual Block and (b) Temporal Convolutional Network architecture. 
 

2.3 Training, testing and validation of model 

The predicted values for each patient are labels that signify the onset of sepsis at each timestep. 

These labels are 1, starting from the onset of sepsis and throughout the sepsis episode and are 0 

otherwise. The data was shifted 6 hours into the past to train the proposed model to predict the 

onset of sepsis by 6 hours. The model was trained over 20 epochs using the Python module 

fastai’s implementation of the one cycle policy in [55], which is a variant of the cyclical learning 

rates introduced in [56]. The optimal maximum learning rate and weight decay is found using 

the learning rate finder in Smith et al.’s work in [45] and a grid search over a range of values for 

weight decay. 10-fold stratified cross validation [57] was used to evaluate the model wherein 

90% of the data was used for training and 10% for validation at each fold. Area under the 

receiver operating characteristics (AUROC) and area under the precision-recall curve (AURPC) 

values were also computed to validate the model. The metrics calculated for each fold over the 

validation set were split into 2 categories: per-patient metrics, which are calculated once per 

patient in the validation set, which gives rise to a binary classification; and per-timestep metrics, 

which are calculated at each timestep and include a utility function as defined in [44] which 

penalises a model based on its sensitivity, as well as how early or late its prediction of sepsis 

onset is. 

3. Results 
 
Table 2a and 2b present the results of the classification based on per-patient and per time-step 

metrices respectively. It is apparent that the highest accuracy and AUROC of 98.8% and 98.0% 

were achieved respectively, for the per time-step metrics. A relatively high accuracy and 

AUROC of 95.5% and 91.0% were achieved respectively, for the per-patient metrics. When the 

sensitivity of the proposed model was set to 85%, to compare with work done by other authors 

who set their sensitivity values between 80 to 90%, our model achieved accuracy and AUROC 

values of 80% and 91% respectively.  

 
Table 2a:  Classification results based on per-patient metrics.  
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Accuracy(%) Sensitivity(%) Specificity(%) AUROC AUPRC 

95.5 57.1 98.5 91.0 68.0 

80.0 85.0 79.6 91.0 68.0 

 

 

 

 

Table 2b:  Classification results based on per time-step metrics.  

 

 

4. Discussion 
 
From Table 1, it is worth noting that our proposed model has achieved the highest classification 

accuracy of 98.8% for the per time-step metrics, followed by 95.5% for the per-patient metrics. 

The study is novel because we have investigated and reported results on two metrices, while 

the other studies reported only on per-patient metrics. A higher utility score of 43.0% was also 

achieved, wherein the entry for the Physionet 2019 competition only received a normalised 

utility score of 23.7% for the entire dataset [40]. Since the competition entries were tested on a 

hidden dataset, wherein there has been no updates if these data is available for other 

researchers’ testing, we have compared our results with those of the competition, based on k-

fold validation techniques, used in both studies.  Comparing the CNN model, logistic 

regression and random forest classifiers, Kamaleswaran et al [38] reported the highest 

classification accuracy of 82.8% achieved with the logistic regression classifier, which is a lower 

accuracy than ours.  

 

Kam et al [36] achieved a higher AUROC value of 92.9% as compared to 91% in our study. 

However, only a small dataset of 350 patients were used to train the model in this study, larger 

datasets are needed to train deep learning models. Li et al [40] also used the same dataset as our 

study and achieved a higher AUROC value of 96.4%. Although the AUROC value was higher, a 

lower AURPC of 38.3% was reported, as compared to our study which achieved AUROC value 

of 68%. Similar to our study, the dataset used in this study was imbalanced. ROC plots do not 

reflect the true classification performance of a classifier wherein imbalanced datasets are used, 

as this would result in a misleading interpretation of the model’s sensitivity [58]. PRC plots, in 

contrast, provide a more accurate prediction of future classification performance of the model, 

Accuracy(%) Utility(%) AUROC AUPRC 

98.8 43.0 98.0 65.0 
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as a fraction of true positives amongst positive predictions is computed in these plots [58]. 

Hence, as an alternative to ROC plots, PRC is known to be robust even under imbalanced 

datasets [59] [60]. Thus, AUPRC is more representative of the model’s performance instead of 

AUROC. So, with the higher AUPRC obtained, our model still performed better than that of Li 

et al [40]. Futoma et al [37] reported on qualitative results while the remaining studies obtained 

lower AUROC values. Our model has also been validated by three techniques; 10-fold 

validation, AUROC and AUPRC, hence it is robust, besting the other models discussed in Table 

1.  

 

Figures 4a and 4b show the AUROC and AUPRC plots derived from our study. From Figure 4a, 

it is apparent that the mean ROC of our proposed model has a true positive rate of about 1.0 

and a false positive rate of about 0.0. From Figure 4b,  it is noteworthy that the mean PRC of our 

model has a precision value of about 1.0 and recall value less than 1.0. Although our model is 

not the best( the best model has both precision and recall values close to 1.0), it can be 

considered as a better model as compared to those in Table 1. Figures 4a and 4b clearly indicate 

that our model is highly accurate to be implemented for sepsis prediction in the hospitals. The 

ROC and PRC plots obtained by our model for per-patient metrics are depicted in Figures 4c 

and 4d respectively(Please see the appendix section). Figures 5a and 5b depict the training and 

validation loss versus epoch graphs respectively. It is observable from both graphs that the loss 

decreases across the epochs as the model learns the data, hence it can be seen that the model 

performs better, as the training continues. The closer the loss value is to 0, the better the model 

is performing. There are some benefits and limitations of our study to be discussed below.  
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Figure 4: (a) ROC curve and (b) Precision Recall curve for each patient.  

(b) 
 

(a) 
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Figure 5: (a) Training loss vs epoch graph and (b)Validation loss vs epoch graph.  
 

 

(a) 
 

(b) 
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Benefits 

1. Sizeable data can be trained by the model. 

2. The model has been validated by 3 techniques, hence it is very robust. 

3. The dataset is not localized and contains data from 2 different clinical settings.  

4. Feature extraction and selection processes can be done automatically by the model for 

any classification tasks. 

 

Limitations 

1. GPR process is time-consuming, hence pre-processing and training phases may take 

longer than traditional pre-processing. 

2. GPR process produces output with high variance and noise when the number of 

samples in the feature are low.  

3. GPR is also very computationally expensive, both during the regression process; where 

the distribution of points is estimated and the sampling process; where the estimated 

distribution is sampled before the data is fed into the model. 

4. GPR sampling method, which results in a lot more data points being produced than is 

realistically possible in a hospital environment. This can lead to the model potentially 

performing sub-par when given unprocessed data although this is yet to be tested. 
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5. Conclusion and future work 

Sepsis is a condition that arises when one’s immune response releases large amounts of 

inflammatory chemicals, to fight back an infection caused by pathogens.  The release of large 

amounts of chemicals causes fluid to build up in one’s tissues, leading to organ dysfunction, 

eventually leading to septic shock. Prediction is more imperative than detection, to prevent 

sepsis altogether and the lasting effects this can have on the body. Deep learning models are 

increasingly taking over conventional machine learning techniques. In this study, we have 

developed an original and novel deep temporal convolution network for the prediction of 

sepsis. Acquired data was fed to the model and a high accuracy and AUROC of 98.8% and 

98.0% were achieved respectively, for the per time-step metrics. A relatively high accuracy and 

AUROC of 95.5% and 91.0% were achieved respectively, for the per-patient metrics. Our model 

has been evaluated by three validation methods; 10-fold, AUROC and AUPRC. Our 

experiments have shown that our proposed model is an effective automated diagnostic tool, of 

high accuracy and precision, that can be used to predict sepsis. 

 
 
For our future work, we hope to improve the performance of our model by training it using a 

larger data set as compared to the present, with more varied data comprising sepsis 1,2 and 3 

criteria. With more and varied data, the model is bound to learn better and hence classify with a 

higher accuracy. Also, in future, we intend to test our model using new unknown database and 

evaluate the performance of the model. Attention-based neural networks can be a solution to 

automatic feature extraction and selection. It would also be interesting to observe how our 

proposed model performs on more authentic, varied clinical settings. 
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6. Appendix 

 

(c) 
 

(d) 
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Figure 4: (c) ROC curve and (d) Precision Recall curve for each time step. 
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