
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mean Field Theory of Self-Organizing Memristive Connectomes / Caravelli, F.; Milano, G.; Ricciardi, C.; Kuncic, Z.. - In:
ANNALEN DER PHYSIK. - ISSN 0003-3804. - ELETTRONICO. - 535:8(2023). [10.1002/andp.202300090]

Original

Mean Field Theory of Self-Organizing Memristive Connectomes

Publisher:

Published
DOI:10.1002/andp.202300090

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979616 since: 2023-06-27T09:49:32Z

John Wiley and Sons



RESEARCH ARTICLE
www.ann-phys.org

Mean Field Theory of Self-Organizing Memristive
Connectomes

Francesco Caravelli,* Gianluca Milano, Carlo Ricciardi, and Zdenka Kuncic

Biological neuronal networks are characterized by nonlinear interactions and
complex connectivity. Given the growing impetus to build neuromorphic
computers, understanding physical devices that exhibit structures and
functionalities similar to biological neural networks is an important step
toward this goal. Self-organizing circuits of nanodevices are at the forefront of
the research in neuromorphic computing, as their behavior mimics synaptic
plasticity features of biological neuronal circuits. However, an effective theory
to describe their behavior is lacking. This study provides for the first time an
effective mean field theory for the emergent voltage-induced polymorphism of
circuits of a nanowire connectome, showing that the behavior of these circuits
can be explained by a low-dimensional dynamical equation. The equation can
be derived from the microscopic dynamics of a single memristive junction in
analytical form. The effective model is tested on experiments of nanowire
networks and show that it fits both the potentiation and depression of these
synapse-mimicking circuits. It is shown that this theory applies beyond the
case of nanowire networks by formulating a general mean-field theory of
conductance transitions in self-organizing memristive connectomes.
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1. Introduction

Unconventional physical systems con-
sisting of many interacting components
have been proposed for the realization of
self-organizing and biologically plausible
behavior where the response to electrical
stimuli mimics features typical of neu-
ronal circuits.[1]

Metallic nanowire (NW) networks
are self-assembled networks of in-
terconnected NWs that can be used
for various applications, for instance
in electronics,[2] energy storage,[3]

sensors,[4] and machine learning.[5]

Among metallic networks,[6,7] silver (Ag)
NW networks have attracted great atten-
tion for the realization of neuromorphic
devices and architectures,[1,5,8,9] as the
electric field required to drive the dis-
solution/nucleation processes is lower
than that required of other metals.[10,11]

For this reason, silver is considered
(with Cu) an electrochemically active

material perfect for memristive devices, as it is prone to form
Ag+ ions which start to migrate across the memristive cell. The
memristive behavior in memristive cells with an electrochemi-
cally active metal electrode is connected to the electrochemical
metallization mechanism (ECM) of switching.[12]

Self-assemblies of NWs are intriguing complex physical
systems,[13] formed by randomly dispersing NWs with diame-
ter in the order of tens of nanometers on a substrate. A self-
assembled Ag-NW network is shown in Figure 1a. It is evident
that these form intricate patterns of connectivity. Despite the ap-
parent complexity of these networks,models for the generation of
these networks mimicking the realistic formation of the NW net-
work have been proposed in the literature,[13–15] reproducing the
almost 2D structure of the circuit, and local properties such as the
graph-theoretic average degree, physically related to the average
number of junctions associated to a nanowire. Additionally, the
intersection between twoNWs (as shown in Figure 1b) act as elec-
trical junctions with all the nonlinear characteristics of a mem-
ristive component,[16–21] making these systems promising plat-
forms for the realization of neuromorphic electronic systems.[22]

A memristive component is a one-port (two-terminal) device
where the internal resistance state depends on the history of the
applied voltage or current.[23] Two-terminal memristive devices
are considered fundamental building blocks for the physical re-
alization of artificial neural networks.[24] Memristors act as ar-
tificial synapses, and over the last few years, both ordered and
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Figure 1. Connectome of a representative self-organizing nanowire net-
work. a) SEM image of a network of highly interconnected Ag nanowires
(scale bar, 10 μm); b) magnified area showing nanoscale cross-point junc-
tions between intersecting NWs (scale bar, 400 nm).

disordered circuits of memristors have been studied theoretically
and experimentally in the literature. Ordered networks of mem-
ristive devices, arranged in arrays of conventional crossbar archi-
tecture, have been used in a variety of supervised and unsuper-
vised machine learning tasks, showing that these are apt for the
implementation of brain-inspired computational frameworks.[25]

However, it has been suggested in the literature that brain-
inspired computation can also be achieved in disordered net-
works ofmemristive devices.[26] In particular, memristive devices
can also be implemented using lithographically printedmagnetic
nanoislands, both in ordered and disordered arrays,[27,28] and tai-
lored for computational purposes.[29,30]

In particular, memristive elements in these networks can en-
dow short-term synaptic plasticity that is related to internal dy-
namics of memristive components,[31–34] making memristive
NW networks suitable platforms for in material implementation
of reservoir computing.[18,35] The wiring diagram of a large num-
ber of memristive nanowires forms an artificial connectome, for
example, a network of nanowires and junctions. However, it is
still unclear how collective dynamics and synaptic functionali-
ties emerge coherently from such a complex connectome. As we
show in this study, this is a property of memristive components
arranged on a complex network.
The graph statistical properties of a connectome (such as

the local number of connections) of NW network models have
been studied in refs. [15, 36] together with emerging memristive
dynamics,[13] providing a quantitative agreement with the exist-
ing experimental results within the context of Ag NW networks.
The resistivity of these networks is mainly due to the voltage drop
at the junctions (sinceGjun ≪ Gwire,

[18]). Thismeans that as a first
approximation, one can neglect the resistivity of the wires and
consider a network of ideal memristive junctions, whose behav-
ior has to be then carefully analyzed. In the equivalent circuit,
such approximation implies that Ag nanowires become effective
nodes of the circuit, while junctions become memristive links.
The key aspect of the present study is that the transition between
low and high network conductance states can be described by a
mean-field theory.
The interesting properties of Ag NW networks have been

probed experimentally over the last decade.[8,9] The conductivity
of the single junction and networks has been studied in detail,
and its behavior emerges from the interplay of roughly two ef-
fects, depending on the composition of the wires. First, there are

many geometrical effects, due to the distribution of the wires,
which are not the scope of the present study. For instance, at low
density of nanowires, there are few or no percolating paths be-
tween two nodes where the probes are attached.We are interested
in the dynamic effects of conductivity, in particular, transitions
between low and high conductance states.[8,14] In ref. [37], con-
ductance transitions were predicted for circuits composed of the
simplest type of memristive devices using the Strukov–Williams
model for TiO2 memristors,[23,38] which is a bulk model for fila-
ment conductance. The dynamical component is due to metal fil-
ament formation across the junction, due to the voltage-induced
migration of Ag+. Moreover, quantum tunneling also introduces
a source of nonlinearity, but this becomes important only for
nearly ungapped filaments.[14]

The internal dynamics of NW junction memristive elements
characterized by short-term memory can be described by a rate-
balance equation.[39] This is a dynamical model that can be used
to describe the conductivity of the NW junction exhibiting a non-
linear dynamical response to a voltage bias, due to the forma-
tion of a metallic filament. For the type of Ag NW network ex-
periments that we are interested in, the effective model which
well describes the conductance of a single junction is a rate
equation.[15,39] This dynamical model for the junction conductiv-
ity depends on two parameters, Gmin and Gmax, representing the
minimum and maximum conductance, and voltage-drop depen-
dent rate constant 𝜂P and 𝜂D:

G(g) = Gming +Gmax(1 − g) = Gmin(1 + 𝜒g) (1)

dg
dt

= 𝜂P(Δv)(1 − g) − 𝜂D(Δv)g (2)

𝜂P(Δv) = 𝜅P0 exp(𝜂P0Δv) (3)

𝜂D(Δv) = 𝜅D0 exp(−𝜂D0Δv) (4)

Above,G(g) is the junction conductance, g is the normalized con-
ductance with 0 ≤ g ≤ 1, Δv is the voltage drop on the junction.
We have also introduced 𝜒 = (Gmax −Gmin)∕Gmin, which can be
interpreted as the degree to which the system presents memory
effects. In fact, if 𝜒 = 0, then these memristive elements become
simple resistors. The parameter 𝜒 not only introduces then the
nonlinearity in the system, but also induces the extent to which
the system remembers the past states. Of course, in a circuit, the
behavior of the conductance of the single junction is contained
in the voltage drop Δv, and thus through the graph representing
the circuit. In what follows, since we will have N junctions, we
will refer to G(g⃗) as the diagonal matrix of the conductances, and
gi the normalized conductance of the ith junction. The voltage
drops Δv are generalized to a vector accordingly.
Disordered circuits such as those emerging in self-assembling

nanowires present a variety of phenomena, and their architec-
ture is closer to biological neuronal networks.[14,15] However, the
fact that experimentally a rather similar behavior is observed in
many differently self-assembled nano-structures suggests the ex-
istence of an underlying mechanism, such as self-averaging, ex-
plaining such homogeneity in responses. Overall, the underlying
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complexity stands in the combination of spatiotemporal disorder,
the nonlinear memory property of the single junction (cf. (2)),
and the induced correlations between the junctions. In such a cir-
cuit, one has also to solve Kirchhoff laws. Let us call  the directed
graph representing the circuit, with edges oriented according to
the positive currents i⃗ in the junctions. The directionality is in-
deed artificial but can be chosen arbitrarily, so if the direction of
the edge was chosen to be say +, then a negative current means a
current going in the opposite orientation as chosen. We call B the
directed incidence matrix of . Then, if the circuit is controlled
by injecting a current between two nodes n1, n2, for example, +|j|
at n1 and −|j| at n2, the Kirchhoff laws can be obtained by solving
the nodal analysis equations

Bi⃗ = j⃗ext (5)

GΔv⃗ = i⃗ (6)

where (jext)i = 0 if i ≠ n1, n2 and (jext)i = ±j for i = n1, n2 respec-
tively. The matrix G represents the diagonal matrix with the cor-
responding conductance value, and thus Equation (6) simply rep-
resents Ohm’s law in matricial form. We see then that in order
to simulate a circuit of N junctions, we need to solve N dynam-
ical equations from Equation (2) and 2N linear equations from
Equation (6), and finally, calculate the effective conductance.

2. Results

Studying dynamical systems composed of many memristive sys-
tems is a cumbersome numerical process. The 3N equations of
Equations (5) and (6) with Equations (1)–(4) require long numer-
ical simulations, and do not provide a lot of room for simple in-
terpretability of the results. It is however much simpler if we can
obtain some results for the effective conductivity Geff between
the nodes n1 and n2 at which the probes are attached. This is the
case in a typical experimental setup, in which the typical conduc-
tance measurement involves placing two probes between two (or
more) nanowires. Thus, the quantity of interest is an effective re-
sistance, which depends on the points of contact. Here, we use
both analytical results and approximation methods to derive an
effective mean field theory for the effective conductance. In the
Methods section, we introduce the key results that lead to the
derivation of themean-field theory. For the purpose of context, we
used the same analytical techniques introduced in refs. [37, 40,
41]. We first obtain an exact closed formula for the effective volt-
age drop at each junction (Lemma 1 and Corollary 1) by solving
Kirchhoff’s laws explicitly, reducing the system of equations from
3N to N. Then, we obtain an exact formula for the conductance
(Corollary 2); however, it depends on the state of each single junc-
tion. We reduce the resulting N equations to a single one, using
a mean field approximation (see Methods). Effectively, we show
that the whole network can be reduced to an effective single junc-
tion model, similar in spirit to Equations (1)–(4). As a result, we
obtain an effective internal junction conductance parameter ⟨g⟩,
and the dynamical equations for the effective conductance can be
written in terms of this quantity. As a result, ourmethod allows us
to describe the effective conductance measurement of this com-

plex network of nanowires. The effective dynamical equations for
the conductance are given by

G(⟨g⟩) = Geff
min(1 + 𝜒eff⟨g⟩) (7)

d⟨g⟩
dt

= 𝜂effP (Δv, ⟨g⟩)(1 − ⟨g⟩) − 𝜂effD (Δv, ⟨g⟩)⟨g⟩ (8)

𝜂P(Δv, ⟨g⟩) = 𝜅effP0exp
(
𝜂effP0

Δv
1 + 𝜒eff⟨g⟩

)
(9)

𝜂D(Δv, ⟨g⟩) = 𝜅effD0exp
(
−𝜂effD0

Δv
1 + 𝜒eff⟨g⟩

)
(10)

Above, ⟨g⟩ is an effective dynamical conductance parameter,
which can be obtained from the microscopic values gi of the sin-
gle junctions via the mean field approximation. The specific ex-
pression for ⟨g⟩ in terms of the gi and the circuit topology is not
important from an effectivemacroscopic system perspective, as it
is nonetheless self-consistent with the measurement of an initial
value of the effective conductance of the sample.
It is important to note that the free parameters are of the same

number as the ones for the single junction. The key difference is
that now Δv is renormalized by a factor given by 1 + 𝜒eff⟨g⟩; the
other parameters are also renormalized by network-dependent
quantities. Clearly, the equation above has the advantage that one
uses a single rate equation for the entire NW network.
Our experimental results are based onmeasurements of a NW

network device using two electrical probes.[15] Self-assembling
NWs were realized by drop-casting Ag NWs in suspension on
a SiO2 insulating substrate.

[43] A high density of NW cross-point
junctions (106 junctions per mm2) was achieved, ensuring that
the network is above the percolation threshold. AgNWswere pas-
sivated by a coating of PVP of 1–2 nm thickness around the Ag
core.[15,18] PVP acts as a solid electrolyte for the junctions, as an
electrochemical metallization induces a memristive behavior to
the junction, characterized by the rate equation (Equation (2)).
We then applied a square voltage of 2 V for 100 s, followed by a
small voltage for measurement purposes, as shown in Figure 2a;
using this protocol, we are measuring the short-term memory of
the sample.
To see that the mean-field equation can fit the response of a

real device, we consider the best-fit parameters that minimize,
given the input voltage Δv(t), the error ET = ( 1

T
∫ T
0 dt(Gexp(t) −

Gmft
eff (t)))

2. As we can see from Figure 2a the mean-field theory re-
produces the experimentally observed behavior of the network of
junctions. Thus, it can be used to obtain, given the tuned parame-
ters, the behavior of the nanowires as a function of themaximum
voltage Δv applied to the device.
The advantage of using a mean-field equation such as Equa-

tion (8) is that, since it is 1D, we can always express it in terms of
an effective potential V

d⟨g⟩
dt

= −
dVΔv(⟨g⟩)
d⟨g⟩ (11)
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Figure 2. Effective mean-field behavior. a) Conductance response to a 2 V square signal, followed by a low readout voltage, delivered to an Ag-PVP NW
network device (green, experimental data from ref. [5]) and mean-field theory fit of the experimental data (dashed blue).[42] b) Switching of the effective
potential VΔv as a function of the order parameter ⟨g⟩ and applied voltage Δv. At low voltages, the system remains in a low conducting phase. At higher
Δv, the potential switches, and the system becomes conductive. This behavior can be inferred from Equation (12). c) Schematic phase diagram of the
system. At very low junction densities, the system does not have a conducting path. Above a percolation threshold, the system establishes a connected
path and the conductance becomes a function of voltage. To the right of the insulating region, the system undergoes a phase transition as it switches to a
conducting phase for a given density of memristive elements on the shortest path across the bias. This phase diagram depends on the initial conditions
of the junctions; here we assume them to be all in the low-conductance state (i.e., homogeneous system). The diagram can indeed change for other
systems and different initial conditions of the junctions, but we expect the general structure to be preserved.

that is, it shows that there is an effective low dimensional dy-
namics driven by a voltage-dependent mean-field potential VΔv
(in the overdamped regime). This approach was previously ap-
plied to study current-controlled memristive circuits in ref. [37],
where a change in symmetry of the potential occurs as a function
of applied voltage. The theory was also recently extended to un-
derstand a larger class of dynamical systems involving projector
operators.[56]

The effective potential can be obtained analytically by integrat-
ing Equation (8), giving dVΔv(⟨g⟩) = − ∫ d⟨g⟩ d⟨g⟩

dt
(the exact ex-

pression is provided in Section SB2, Supporting Information).
Let us, however, report here the phenomenology of the potential
change. Using the effective parameters obtained from the fit in
Figure 2a, we estimate that there is a threshold at which the po-
tential switches and the system transitions from a low to a high
conducting phase. The switching of the potential occurs at very
small values of Δvthsw ≈ 2 × 10−2 V. However, since the gradient
is very shallow and it increases as a function of the voltage, a no-
ticeable change in the effective conductance occurs, within the
time scale of the tens-hundred seconds, for Δvexpsw ≈ 0.9 V, which
is consistent with the experimental timescale. The picture we ob-
tain is then the one of Figure 2b, in which the potential changes
its minimum abruptly, but continuously, for example, the equi-
librium value of the effective conductance ⟨Geff⟩eq changes from
Gmin to Gmax as a function of Δv. As we can see, the effective de-
scription provides a qualitative and quantitative prediction of the
conductance transition.

2.1. Conductance Transitions

As in the case of current controlled memristor networks studied
in ref. [37], the effective potential can be calculated analytically
via approximations. It ought to be noted, however, that there the
potential switching takes a different form, and that unlike here, it
is an unstable fixed point that moves as a function of the effective
(average) current in the circuit. There, the system can have two
stable fixed points at the same time. In our case instead, the sys-

tem has always a single stable fixed point, which rapidly switches
as a function of the applied voltages.
Nevertheless, the overall picture which emerges in both cases

is similar and is the one shown in Figure 2c, replacing current
with voltage. For sufficiently high circuit density (characterized
by the number of memristive junctions), the mean-field descrip-
tion suggests that the system is in a low conductance state, and
for larger applied voltages (or currents), the system switches to a
high conductive state. This picture is qualitatively similar to other
types of nanowire networks,[14] where it was found that threshold
dynamics can lead to avalanches. These critical dynamics were
also studied using mean-field theory in ref. [44].
It thus seems then that there is a general pattern emerging

concerning nonlinear circuits with memory, for example, mem-
ristive circuits. At low densities of memristors, given the effective
conductance between two nodes, the system is in an insulating
phase because of the geometric features of the circuit. At higher
densities, above a percolation threshold, the probability of estab-
lishing a conductance path between two nodes becomes macro-
scopically large, and would also occur in a resistor network. Our
study is then concerned with the region to the right of this transi-
tion, where between a weak conducting and a conducting phase
there is a switching region. Whilst the details of a such region
depends on the type of memristor and initial conditions of the
system, the results of this study (analytical) and[18] (numerical)
for Ag nanowires, those of refs. [37, 40] for current controlled
memristors (analytical), and those of ref. [14] for atomic switch
NW networks[9] (numerical), suggest that such a phase diagram
is robust to the details of the nonlinearity. this is because for
low nodes the current flows on a smaller number of junctions,
thus having a larger voltage drop on each, thus making them
switch earlier.
It is important to stress that the mean-field theory presented

in this study is a result of the symmetries induced by Kirchhoff’s
laws, and that can be applied to a variety of other systems. To
see the broad applicability of this mean-field technique, we de-
rived the equations for other models describing the dynamics
of different self-organizing memristive networks. In fact, these
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Figure 3. Effective force (−𝜕zV(z)) for the mean-field nano-particle/-wire
filament formation in ref. [45], for 𝜅 = a = 1 as a function of the effec-
tive voltage q. For q > 0, the model is most likely in the low conductance
state, but for values q < q∗ we observe an abrupt transition from a low to a
high conductance state. The arrows show the directionality of the effective
force, showing that it flips directions at a particular value of the driving
voltage.

conductance transitions occur beyond a particular model; they
were derived in ref. [37] for the case of TiO2 memristor models,
and to support the present study we derived mean-field equa-
tions for a model describing the behavior of both percolating
nanoparticles[45] and 3D nanowires,[46] but still constrained by
the Kirchhoff laws (see Methods).
We can thus immediately see why the conductance transitions

are not a feature of a particular model. An analysis of the equa-
tions for the nanoparticles shows that there is a first-order transi-
tion between a high and low conductance state. This can be seen
visually in Figure 3, where we plot the effective direction of the
effective force driving the conductance parameter ⟨g⟩. As we can
see, from the mean-field theory of this model we predict a first-
order transition as a function of the effective voltage. This is the
same phenomenon observed in refs. [14, 47] for a similar type
of nanowire network. As we explain below, we contend this is a
robust phenomenon that goes beyond the specific details of the
model, and that can be characterized by an effective theory a lá
Landau.

3. Effective Theory of Conductance Transitions

To understand when and how these conductance transitions oc-
cur, let us focus on the equilibrium obtained mean field equa-
tion for memristive nanowires, given by the solution of the equa-
tion (see Section SB1, Supporting Information)

⟨g⟩∗ = (
1 + se

f0v

1+𝜒eff
⟨g⟩∗)−1

(12)

where the parameters f0, s, and 𝜒eff can be determined experi-
mentally, but have an explicit form from the mean-field theory

in terms of the microscopic parameters. It can be seen explicitly
from the equilibrium how the switching of Figure 2b occurs as a
function of the applied voltage v.
For small values of v, the effective mean field potential takes

the form

V(⟨g⟩) = a⟨g⟩ + b⟨g⟩2 − cv log(1 + 𝜒⟨g⟩) (13)

where a, b, and c are constants. In the case of the nanoparticles,
such a potential can be written in the form

V(⟨g⟩) = a⟨g⟩2 − bv log(1 + f (⟨g⟩)) (14)

Similarly, for a network of memristors which satisfy R(x) =
Ronx + (1 − x)Roff and dx∕dt = −𝛼x + i∕𝛽, the effective potential
for the equivalent parameter ⟨x⟩ is given by[37]
V(⟨x⟩) = 𝛼

2
⟨x⟩2 + v

𝜒
log(1 − 𝜒⟨x⟩) (15)

In all these cases which can be studied analytically, we thus see
that the general form of the potential is written in the form

V(r̄) = ±|Q(r̄) − av log
(
1 + P(r̄)

)| (16)

where r̄ is a generic order parameter, andQ(⋅) andP(⋅) are generic
functions, such thatQ(0) = Q ′(0) = P(0) = 0, that is, there are no
constant terms and for v = 0 the only solution is r̄ = 0. The equi-
librium points are then determined by the mean-field equation

𝜕r̄Q(r̄)

𝜕r̄ log
(
1 + P(r̄)

) = av (17)

If P(r̄) is a monotonic function, we can always define the effective
order parameter given by s = log(1 + P(r̄)) and then rewrite the
expression above as the mean-field theory

Q(r̄(s)) = Q̃(s) = avs (18)

Using this formulation we see that the number of equilibrium
points can be defined, as a function of the effective voltage v, a
lá Landau, depending on the function Q̃(s). For small values of
v, there is only one fixed point s = 0, corresponding to the mean
field parameter r̄ = 0. For larger values, depending on the func-
tion Q̃(s), there can bemultiple fixed points. However, if the func-
tion Q̃(s) is globally convex, the transition is continuous, which
is the situation described here, shown schematically in Figure 4
(top). The order of the transition however depends on the shape
of the function. First-order transitions can indeed occur if the
function Q̃(s) is non-convex, in which case one can have mul-
tiple equilibrium points, or even first-order transitions. These
first-order transitions are indeed observed experimentally, for ex-
ample, in ref. [14]. Using the mean field model, this situation is
shown in Figure 4 (bottom).
One important issue is when and why the parameter 𝜒 is key

to observing these transitions. Let us now extend here, to a more
general case, the remarks made in ref. [37] about the role of 𝜒 . In
that case, where we have 𝜒 = Roff − Ron∕Roff (analogous to 𝜒 =
(Gmax −Gmin)∕Gmin in this study), the parameter 𝜒 enters in the
effective potential multiplying the function P. For instance, in the

Ann. Phys. (Berlin) 2023, 535, 2300090 © 2023 Los Alamos National Laboratory and The Authors. Annalen der
Physik published by Wiley-VCH GmbH

2300090 (5 of 9)

 15213889, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300090 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 4. Graphical representation of Equation (18). (Top) For small val-
ues of the applied voltage v, because of the convexity ofQ(r̄) in 0, the only
mean field parameter allowed equilibrium point is r̄ = 0, but as the volt-
age reaches a critical threshold, the system’s effective order parameter s
(e.g., equilibrium conductance) varies smoothly as a function of voltage
(inset). (Bottom) For a non-convex function Q̃(x), we can have first-order
transitions as a function of the voltage (inset).

reported experiments of this study, we have𝜒 ≈ 100. This implies
that in the effective potential of Equation (18), it enters as

Q
(
P−1

(
es − 1
𝜒

))
= avs (19)

As a result, the larger the values of 𝜒 , the smaller the value
of v at which these critical transitions occur. Since typically one
has the constraint r̄ ∈ [0, 1], one also must restrict the values of
s ∈ [smax, 0]. This, in turn, restricts the values of 𝜒 , which explains
why numerically one observes that there exists a minimum value
𝜒∗ in which these transitions occur. In this sense, the amount of
memory in the system is an important quantity for these transi-
tions to occur.

4. Discussion

The interplay between nonlinearity, Kirchhoff’s laws, and mem-
ristive dynamics underlies the observed complex behavior of self-
organizing memristive networks. Yet, as we show in this study,
because of Kirchhoff’s conservation laws much of this complex-
ity can be, at least in the case of two-probe conductance measure-
ments, reabsorbed into the effective parameters of a single junc-
tion. This drastic simplification is essentially due to the proper-
ties of projector operators.
In the present study, we derived an effective mean-field equa-

tion describing the behavior of the effective conductance of a NW
network, and the effective equations for a network of nanopar-
ticles. As we have seen, the dynamical behavior of the effective
conductance of a NW network can be well approximated by a
mean-field theory, derived from the microscopic equations de-

scribingmemristive dynamics of a single junction, and the Kirch-
hoff laws. This is a model that succinctly characterizes the global
switching behavior of a memristive NW network. For the case of
the experiments presented in this study, it is important to note
that the mean-field reduces the system of equations from 4N for
the case of N junction, to simply four, and only four numbers
of free parameters. As a result, this study shows that the appli-
cation of these graph theoretical techniques to a complex system
of self-organized NWs provides a quantitative explanation of the
response of the system to an applied voltage.
However, most importantly it shows that conductance transi-

tions in NW networks can be explained via the use of effective
mean field potentials inspired by the Landau theory of phase tran-
sitions. This result is the latest addition to a series of papers[14,37]

showing that there exists a typical phase diagram for the asymp-
totic conductance or resistance versus applied voltage or current.
Whilst the details of the switching region depend on the system
under scrutiny, we contend that the seemingly universal proper-
ties of these phase diagrams warrant further investigation. As we
have shown analytically and with minimal assumptions, the be-
havior of the system to the applied voltage can be cast in the form
of a standardizedmean field equation. The continuous or discon-
tinuous behavior of the conductance of the nanowire connectome
is in fact connected to the convexity of the effective potential as
a function of the voltage. In particular, we have also provided an
analytical explanation for the reason why it is a generic feature
that these transitions occur in systems with large memory, that
is, when the range of the effective conductance of the system is
large. As a result, this study opens a new way of analyzing and
classifying the behavior of a generic memristive connectome in
terms of the standard theory of phase transitions.
It is worth also mentioning that our graph theoretical tech-

niques have a range of applicability beyond nanowire and
nanoparticle networks. For instance, slime molds such as
physarum polycephalum,[48–50] which inspired a variety of opti-
mization algorithms,[51,52] can indeed be formulated as a mem-
ristive component with constraints given by network Kirchhoff’s
laws induced by the mapping between an incompressible fluid
flow and electrical circuits.
While this work attempts to provide a mean-field theory treat-

ment to memristive devices, it is worth mentioning that the
mean-field theory in ref. [37] showed the existence of symme-
try breaking, while it seems to be absent in our treatment of
memristive nanowires. It is also worth mentioning that our
method works within the approximation of discrete memristive
junctions, with a voltage drop that can be quantified by a low-
dimensional model for the conductance evolution (in our case,
one parameter g). In this framework, it is important to point out
that the dynamic behavior of memristive elements composing
the network is described by means of a model that, while captur-
ing the main features of dynamics, does not take into account
quantum conductance effects that can result in discrete levels
of conductance.[53] Additionally, the model does not take into ac-
count disorder due to variability effects in the initial pristine state
and in the memristive response of network elements. Despite
these assumptions, the mean-field theory approach is able to de-
scribe the main features of the emergent connectome behavior.
In general, while the models we considered in this study are

valid for specific initial conditions of both the nanowire and the
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nanoparticle states, and within the approximation of homoge-
neous properties of the single junctions, as discussed there is a
general message that can be evinced from the study of physically
relevant connectome models, also based on the discussion of the
memristive network toy model introduced in ref. [37]. It is how-
ever thus important to stress that more work is needed to bring
all these systems into a single theoretical framework. In princi-
ple, our techniques could be extended to more complex models
such as the one proposed in ref. [54], with a continuous family of
parameters. Both these extensions will be the scope of future in-
vestigations.

5. Methods

One of the key advancements of this study is a technical interme-
diate step that allows integrating analytically the Kirchhoff laws
of Equations (5) and (6). In order to derive a mean-field equa-
tion, we use a graph theoretical formalism to formally evaluate
Kirchhoff’s laws. We call ̃ =  ∪ n1n2

, for example, the graph
with the single edge n1n2

= (n1, n2) added to the graph. For-

mally, it is possible to convert the current j⃗ext into an external
voltage source vN+1, in series to a conductance GN+1, and satis-
fying GN+1vN+1 = j. Since we now have N + 1 voltage drops in
the circuit, the vector of all voltage drops is given by Δvall, where
the first N components were Δv⃗ and the (N + 1)th component is
the voltage drop on the voltage source branch. As we show in
the Supporting Information (Section SA, Supporting Informa-
tion), we can write j⃗ext = GN+1B̃v⃗s, where (v⃗s)i = 0 for i ≠ n1, n2
and (v⃗s)i = ±vN+1∕2 for i = n1, n2, respectively. The parameter
gN+1 must satisfy G(gN+1) = GN+1, and it could be shown that
limGN+1→0 gN+1 = − 1

𝜒
.

Let ̃ be the augmented graph with an extra directed edge be-
tween node n1 and n2, and B̃ the corresponding directed inci-
dence matrix. As shown below, the voltage drops can be found
analytically, thus avoiding solving numerically for Equations (5)
and (6). In fact, we have (see Section SA1, Supporting Informa-
tion):

Lemma 1 (Network voltage integration). For a circuit composed of
memristive junctions satisfying Equation (1), we have the following
identity

Δv⃗all = lim
GN+1→0

GN+1

Gmin
(I + 𝜒Ωg)−1Ωv⃗s (20)

where Ω = B̃t(B̃B̃t)−1B̃ is a projector operator and g is the diagonal
matrix diag(g⃗, gN+1). The relevance of Equation (20) is that Kirch-
hoff’s laws have been integrated analytically. The underlying physi-
cal reason for the introduction of a projector operator, which has the
property Ω2 = Ω, is that it enforces the conservation of currents at
the nodes.[41] The matrix B̃ is the directed incidence matrix of the
augmented graph ̃ (see Figure S2, Supporting Information in Sec-
tion SA, Supporting Information), in which we have added an extra
edge where either the voltage or current generator has been added. The
matrix Ω, which represents the interactions between elements due to
Kirchhoff’s laws, has been studied in detail previously.[40] In the case
of planar circuits, for example, it was found that the interactions fall
off exponentially with distance.[55]

It is important tomention that Equation (20) is useful since we
can obtain both the voltage drops for the single junctions, which
we can insert in Equation (2) to time evolve the conductances
and to obtain the effective behavior of the memristive network.
In fact, the N + 1 component of Equation (20) must satisfy the
equation ΔvN+1Geff = j. Thus, one has to separate the matrix in-
verse of Equation (20) in blocks. In order to do that, first we divide
Ω on the subgraphs  and n1n2

as

Ω =

(
Ω̃ Ω⃗
Ω⃗t ΩN+1

)
(21)

Let us define the quantity

𝜌 = ΩN+1 − 𝜒Ω⃗tg̃(I + 𝜒Ω̃g̃)−1Ω⃗ (22)

where g̃ = diag(g⃗), for example, the parameters associated with
the junctions. Let us now give a physical interpretation of these
two quantities.
From the definitions above, we proved the following Corollar-

ies (See Section SA, Supporting Information, Sections 4 and 6):

Corollary 1 (Voltage drops). Let G̃ be an augmented circuit composed
of memristive junctions of the form of Equation (1). Then the voltage
drops on the junctions are given by

Δv⃗ =
vN+1

1 − 𝜌

GN+1

Gmin
(I + 𝜒Ω̃g̃)−1Ω⃗ (23)

We can also extract the effective conductance, and we have

Corollary 2 (Effective conductance). Let G̃ be an augmented circuit
composed of memristive junctions of the form of Equation (1). Then
the effective conductance between node n1 and n2 is given by

Geff = Gmin

1 + 𝜒gN+1𝜌

𝜌
(24)

We see that Corollary 1 and Corollary 2 are formal statements regard-
ing the voltage drops and effective resistance as a function of the pa-
rameters g⃗ and the circuit topology, contained in Ω. The Lemma and
Corollaries above can also be generalized to nonlinear conductance
functions, and we will see an example below and in Supporting Infor-
mation.

Let us provide a brief interpretation of Equation (23). The vec-
tor Ω⃗ can be thought of as a network backbone of the response
function, for example, the effective voltage on junction imust be
proportional to (Ω⃗)i. Effectively, Equation (23) is the solution of
the voltage integration across the network, starting from the as-
sumption that the voltage is applied between two nodes, induc-
ing the separation of the matrix Ω given in Equation (21). The
matrix Ω̃ enters instead in the matrix inverse multiplying the in-
ternal junction conductances. Instead, Equation (24) is important
as it provides an interpretation of the quantity 𝜌 defined in Equa-
tion (22) in terms of global effective conductance.
However, these are static statements, which do not take into

account the fact that the junction conductances change over time.
To derive an effective mean-field theory, we introduce an effective
mean-field variable ⟨g(t)⟩ for the junction conductances.
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5.1. Mean-Field Approximation

All the equations above are exact. However, we can see that we
are still left with a matrix inverse given by (I + 𝜒Ω̃g̃)−1. In order
to simplify the equations and obtain a lower-dimensional system,
we define the mean-field variable ⟨g⟩ via
⟨g⟩ = argminḡ‖(I + 𝜒Ω̃g̃) − (I + ḡ𝜒Ω̃)‖2F (25)

where ‖‖2F represents the Frobenius matrix norm-squared, that
is, ‖M‖2F = Tr(MMt). It is indeed easy to see that if it minimizes
the function above, it alsominimizes a similar definition with the
matrix inverses. The exact solution is given by ⟨g⟩ = Tr(Ω̃2g)

Tr(Ω̃2)
. The

result is thus a complex function defined in terms of the single
junction parameters g⃗, and the network connectivity. This might
seem at first a drawback, as the mean-field parameter we are in-
terested in is defined in terms of a large number of unknown pa-
rameters, including the network topology. However, as we show
below, if we assume that such a mean-field order parameter ex-
ists, we reduce the number of parameters to be fit experimentally
to only four plus ⟨g⟩; these can then be fit experimentally. First,
it can be shown that

Geff(⟨g⟩) = 1 − ΩN+1

ΩN+1
G(⟨g⟩) (26)

We thus have that depending on where the external voltage (or
current) generator simply is reabsorbed into the Gmin and Gmax
parameters, and the conductance parameters can be fit experi-
mentally using the samemodel. The voltage for each memristive
junction is given, in the mean-field approximation, by

Δv⃗ ≈ Δv⃗mft =
GN+1vN+1

Gmin(1 − ΩN+1)
1

1 + ⟨g⟩𝜒 Ω⃗ (27)

where the vector Ω⃗ represents the response of eachmemristive el-
ement when a voltage is applied to the network between nodes n1
and nN . We now perform the second approximation. We replace
Ω⃗ with ⟨Ω⟩1⃗. Then, at this point summing cleverly on the left-
hand side gives a self-consistent single memristor equation (de-
tails in Section SC, Supporting Information), in which the pa-
rameters 𝜂P, 𝜂D, 𝜅P, and 𝜅D are multiplied by network-dependent
quantities. The applied voltage is instead multiplied by a factor

Δv → Δv∕(1 + 𝜒eff⟨g⟩) (28)

We thus see that by putting all these intermediate results to-
gether, we do obtain an effective system of equations as those
in Equations (1) and (2).

5.2. Other Memristive Systems

For the case of the model introduced in ref. [46], we consider the
followingmodel for the conductanceG(z) of each junction, given
by the set of equations

dz
dt

= 𝜇
V

D − z
− 𝜅z,G(z) = 𝛼e−𝛽(D−z) (29)

with 𝜇 = 0.346 nm2 V−1 and 𝜅 = 0.038 s−1. D is the distance be-
tween the nanoparticles or nanowires (in nm) and z(t) repre-
sents the effective gap between the evolving nano-filament and
the nano-wire/-particle. In the Supporting Information (in Sec-
tion SB, Supporting Information) we have obtained a generaliza-
tion of Lemma 1 in Methods, and the subsequent corollaries to
the case of a junction whose conductance is not a linear function
of the internal memory parameter g.
We provide here the necessary background to understand the

model of ref. [46]. Similarly to what we had done before, we
rewrite the equations above in terms of a single parameter g =
z∕D. Then, the effective mean-field can be obtained by imposing
g⃗ = ⟨g⟩1⃗. and we obtain the effective equations (see Section SB,
Supporting Information)

d
dt
⟨g⟩ = qeff(

1 − ⟨g⟩)(1 + 𝜒eff f (⟨g⟩)) − 𝜅eff ⟨g⟩ (30)

Geff(⟨g⟩) = Geff
min (1 + 𝜒efff (⟨g⟩)) (31)

with f (x) = e−a(1−x) − 1 and 𝜒eff = (Geff
max −Geff

min)∕G
eff
min. Above,

qeff = av, where a is a proportionality constant depending on the
microscopic parameters, while v is an effective voltage.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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