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In an article by Thibault et al., 2002, we can find measurements of Raman linewidths in the Q branch 

of carbon monoxide, for mixtures with Argon at different temperatures. A plot is available for the Q(5) 

line with a fitted Voigt function. Here we show that a q-Gaussian Tsallis function can be used for fitting 

this line too. We will note that the fitted q-Gaussian has the wings which are not Lorentzian. At the 

same time, the wings are not Gaussian. Besides the use of q-Gaussians, a discussion will be proposed 

about the time correlation functions related to different line shapes (q-Gaussian, Egelstaff-Schofield, 

Kubo, BWF, Voigt, speed-dependent Voigt, Galatry, Rautian, HTP). Some of these line shapes have 

been proposed for the high-resolution spectroscopy of gases; however, their knowledge can be relevant 

also for the condensed matter spectroscopy. 
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Introduction 

The Voigt functions, convolutions of Gaussian 

and Lorentzian functions, and the q-Gaussian 

functions can be used as line shapes in Raman 

spectroscopy for the analysis of spectra 

(Sparavigna, 2023). The Voigtian convolution 

possesses a bell shape with a Gaussian kernel 

and wings (tails) which are of the Lorentzian 

form. According to Cope and Lovett, 1987, the 

asymptotic solution of Voigtian expansion has 

the leading term equal to 𝑎0 ⁄ 𝜋𝑥2, where x is 

the variable. The Voigt functions, or their 

approximations as pseudo-Voigtian functions, 

which are linear combinations of Gaussian and 

Lorentzian functions, are suggested for instance 

in Meier, 2005, because of their corresponding 

time correlation functions related to the 

fundamental mechanisms of Raman photonic 

emissions. Let us also note that the Voigt 

profiles are intermediate between the 

Lorentzian and Gaussian outlines. The reason 

of using the Voigt functions is therefore also 

motivated by the fact that “intermediate” 

profiles are usually displayed by the Raman 

spectral lines (Kirillov, 2004). 

The q-Gaussian functions have intermediate 

profiles too. The q-Gaussians, also known as 

"Tsallis functions", are probability distributions 

derived from the Tsallis statistics (Tsallis, 1988, 

1995, Hanel et al., 2009). The q-Gaussians are 

based on a generalized form of the exponential 

function (see discussion in Sparavigna, 2022), 

characterized by a continuous parameter q in 

the range 1 < q < 3.  As given by Umarov et al., 

2008, the q-Gaussian is based on function  

𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2) , where 𝑒𝑞(. ) is the q-

exponential function and 𝐶 a constant. The q-

exponential has expression: 

𝑒𝑥𝑝𝑞(𝑢) = [1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄  .  (1a) 

The function 𝑓(𝑥) possesses a bell-shaped 

profile. In the case that we have the peak at 

position 𝑥𝑜, the q-Gaussian is: 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝛽(𝑥 − 𝑥𝑜)2) = 

 𝐶[1 − (1 − 𝑞)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄    (1b) 

For q equal to 2, the q-Gaussian is the Cauchy-

Lorentzian distribution (Naudts, 2009). For q 

close to 1, the q-Gaussian is a Gaussian. For the 
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q-parameter between 1 and 2, the shape of the 

q-Gaussian function is intermediate between 

the Gaussian and the Lorentzian profiles. 

The q-Gaussian functions can imitate the Voigt 

convolutions, but they are different functions, 

in particular for what is regarding the behavior 

of the wings. So let us stress once more that, as 

told by Townsend, 2008, the Voigt function 

“looks like Gaussian for small x (i.e., near line 

center), and like Lorentzian for large x (i.e., out 

in line wings)”. We can also appreciate the 

same by observing the pseudo-Voigt function, 

which is generally used for approximating the 

Voigt function. Being the pseudo-Voigt the 

linear combination of Gaussian and Lorentzian 

functions, the wings must be necessarily 

Lorentzian and the kernel Gaussian-like. 

Consequently, if we use Voigt functions or 

pseudo-Voigt functions for fitting spectra, the 

wings of the Raman lines will be always 

described by a Lorentzian behavior. However, 

is this always the experimental case? That is, 

are we always observing Lorentzian wings for 

the Raman bands? To answer these questions, 

we started investigation in ChemRxiv1. We 

observed that a generalization of the pseudo-

Voigt functions obtained by means of a linear 

combination of two q-Gaussians can help us in 

describing the leading term of the line wings. In 

this manner, we can quantitatively measure the 

wing power law as well as answering 

qualitatively whether it is Lorentzian or not. 

The q-Gaussians are therefore the proper 

solution for investigation. Actually, for the 

spectra previously considered (Sparavigna, 

2023), the fitted functions are successfully in 

several cases, for instance graphite, 

ChemRxiv2, anatase ChemRxiv3, SERS 

spectra,  ChemRxiv4, and so on, SSRN.  

For what is regarding the physics of Voigt 

function, let us consider the convolution 

theorem. This theorem states that the Fourier 

transform of a convolution is the product of the 

Fourier transforms of the convoluted functions. 

It means that the two related phenomena must 

have probability distributions which are 

independent (see discussion in Sparavigna, 

2023). In the case of the Voigt convolution, the 

two distributions are those that we can find 

discussed for photonic emission in Svelto, 

1970. They are the exponential decay and the 

Gaussian time functions, so that a spectral 

Lorentzian function is generally assumed as 

describing the photonic emission of the material 

(or the broadening due to photonic interactions 

with phonons), and a spectral Gaussian function 

is considered to represent the thermal effects (or 

the effects of instrumentation). 

In the case of the q-Gaussian function, the 

physics of the q-parameter is in its ability to 

evaluate the power law of the wings, as 

previously discussed. Moreover, as recently 

shown in ijSciences, 2024, properly fitted q-

Gaussian functions can be also proposed for the 

Kubo lineshapes, which are the Fourier 

transforms of Kubo stochastic time-correlation 

functions. In this manner a q-Gaussian function, 

with its simple analytic expression, can be used 

as a substitute of Kubo lineshape, which is 

requiring a numerical Fourier transform 

calculation. The value of the q-parameter turns 

out to the related to the time scales of dynamics 

(fast q=2, mid q=1.4, and slow q=1). Then, 

besides its ability of evaluating the power law 

of wings, the q-Gaussian is also providing an 

estimation of the process modulation. 

Besides investigating the q-Gaussians for the 

Raman spectroscopy of condensed matter,  here 

we start considering further Raman bands, such 

as those of the isolated lines of gases, to explore 

the behavior of the wings and the scale of 

modulation processes.  

 

Convolution 

As previously told, the Voigt profile is a 

convolution of a Lorentz distribution L and a 

Gaussian distribution G given by: 

𝑉(𝑘; 𝜎, 𝛾) = 

{𝐺*𝐿}(𝑘) = ∫ 𝐺(𝑘′; 𝜎)𝐿(𝑘 − 𝑘′; 𝛾)𝑑𝑘′
∞

−∞

 

where k, in spectroscopy, is representing the 

shift from the line center, and: 

𝐺(𝑘; 𝜎) =
𝑒−𝑘2 (2𝜎2)⁄

𝜎√2𝜋
 

𝐿(𝑘; 𝛾) =
𝛾

𝜋(𝑘2 + 𝛾2)
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The convolution theorem states that the Fourier 

transform of a convolution of two functions is 

the pointwise product of their Fourier 

transforms. Let us consider two functions 

𝐺(𝑘), 𝐻(𝑘) and their Fourier transforms 

𝑔(𝑥), ℎ(𝑥). As in the case of the Voigt function, 

the convolution is: 

𝑅(𝑘) = {𝐺*𝐻}(𝑘) = ∫ 𝐺(𝑘′)𝐻(𝑘 − 𝑘′)𝑑𝑘′
∞

−∞

 

And according to the convolution theorem: 

𝐹{𝑅(𝑘)}(𝑥) = 𝐹{{𝐺*𝐻}(𝑘)}(𝑥) = 

𝐹{𝐺(𝑘)}(𝑥) ⋅ 𝐹{𝐻(𝑘)}(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) 

Please consider that operator 𝐹 indicates the 

Fourier transform.  

Burke et al., 2019, in their introduction to radio 

astronomy, consider the convolution theorem 

“easily proven” and with “many practical 

applications” (Burke et al., 2019). For instance, 

the Fourier transform of the Voigt function is 

the pointwise product of the Fourier transforms 

of Gaussian and Lorentzian functions: 

𝐹{𝐺*𝐿}(𝑥) = 

𝐹{𝐺(𝑘)}(𝑥) ⋅ 𝐹{𝐿(𝑘)}(𝑥) = 𝑔(𝑥) ⋅ 𝑙(𝑥) 

The Fourier transform of a Gaussian is a 

Gaussian, so that, in the Wolfram formalism: 

𝑔(𝑥) = 𝐹{𝑒−𝑎𝑘2
}(𝑥) = √

𝜋

𝑎
𝑒−𝜋2𝑥2 𝑎⁄ , 

and in the case of the Lorentzian function: 

𝑙(𝑥) = 𝐹 {
1

𝜋

𝛤 2⁄

(𝑘 − 𝑘𝑜)2 + (𝛤 2⁄ )2} (𝑥) 

= 𝑒𝑥𝑝(−2𝜋𝑖𝑥𝑘𝑜 − 𝛤𝜋|𝑥|) 

This is the characteristic function of the Cauchy 

distribution. If we put the center ko at zero: 

𝑙(𝑥) = 𝑒𝑥𝑝(−𝛤𝜋|𝑥|) 

If we consider variable x as the time, we have 

that the Fourier transform of the Voigt function 

is proportional to the product: 

𝐹{𝑉(𝑘)}(𝑡) ∝ 𝑒𝑥𝑝(−𝛤𝜋|𝑡|) ⋅ 𝑒𝑥𝑝(−𝐴𝑡2) 

that is an exponential decay over time and a 

Gaussian function. 

Let us note that methods for the fast 

computation of Voigt Function are based on the 

Fourier transform too (Schreier, 1992, 

Mendenhall, 2007, see please also the 

discussion by Vogman, 2010). 

The use of the convolution theorem has been 

also appreciated for the comparison of different 

algorithms to evaluate the Voigt function 

(Abousahl et al., 1997). The approach by 

Abousahl and coworkers is based on 𝐹−1  

Fourier anti-transform, so that: 

𝑉(𝑘) = {𝐺*𝐿}(𝑘) = 𝐹−1{𝑔(𝑥) ⋅ 𝑙(𝑥)}(𝑘) 

 

Convolution (literature) 

Before considering the time correlation 

function corresponding to a q-Gaussian, let us 

further discuss for a while convolution and 

transfer function. 

As already made in ChemRxiv5, let us consider 

the words by Orazio Svelto, 1970, about the 

homogeneous broadening of the photonic 

emission. In the case that we have a dipole 

damped oscillator model, we can observe the 

spectral line of the spontaneous emission with a 

“natural” or “intrinsic” broadening. This 

homogeneous broadening produces a line 

profile described by a Lorentzian function. 

Svelto is also mentioning the photon-phonon 

interaction as generating homogeneous 

broadening and therefore a Lorentzian line 

shape too. An inhomogeneous broadening 

(such as those caused by the Doppler effect and 

thermal effect) is giving a Gaussian line shape. 

However, in spectroscopy, the most observed 

case is that of an intermediate profile, given by 

the convolution of the resonance relative 

probability and the broadening function, 

because the natural band can be modified by 

different mechanisms (Svelto, 1970). 

We have mentioned the natural broadening 

giving a Lorentzian profile, the thermal 

broadening introducing a Gaussian profile, and 

the general intermediate profiles as the most 

commonly observed case. A consequence is 

that the Voigt profile, that is the convolution of 

Gaussian and Lorentzian functions, is generally 

used to simulate the intermediate case. 

Voigt profile is also used in the case of the spin 

resonance lines. In solids, these lines “are 
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broadened by a number of mechanisms” 

(Stoneham, 1972). “Some of these mechanisms 

give a Gaussian lineshape, such as dipolar 

broadening in concentrated crystals (Van 

Vleck, 1948) and strain broadening by 

dislocations (Stoneham, 1966, 1969). Other 

mechanisms lead to a Lorentzian lineshape, 

such as the relaxation broadening due to the 

finite lifetime of a state” (Stoneham, 1972, is 

referring to the analogous broadening 

mechanism that we find in Svelto, 1970). 

According to Stoneham, “If the mechanisms 

which lead to Lorentzian and Gaussian 

broadening are independent, the lineshape is 

just the convolution of a Gaussian and a 

Lorentzian”. That is, a Voigt function. 

“Alternatively, [we can] suppose that the line is 

scanned by a spectrophotometer with a 

Gaussian sensitivity function” (Tatum, 2022). 

Then, in this experimental framework, we have 

the convolution of the line with the instrumental 

function profile. Let us remember that “the 

general expression that takes account of all the 

instrumentally induced distortion of the true 

band shape can be called the instrument 

function” (Seshadri and Jones, 1963). It is also 

known as the “instrumental transfer function” 

(Merlen et al., 2017). As told by S.G. Rautian, 

1958: “Each monochromatic component 

𝜑(𝑥)𝑑𝑥 of the true radiation is replaced by the 

apparatus [instrument] function, as a result of 

which, at some arbitrary point 𝑥′, there is 

created an illumination (or current) 

𝑎(𝑥′−𝑥)𝜑(𝑥)𝑑𝑥. Other monochromatic 

components of the true distribution also make a 

corresponding contribution to the illumination 

at the point 𝑥′, and as a result the observed 

distribution 𝑓(𝑥′) will be expressed by the 

following integral”: 

𝑓(𝑥′) = ∫ 𝑎
+∞

−∞

(𝑥′ − 𝑥)𝜑(𝑥)𝑑𝑥 

In the integral we have function 𝑎(𝑥) that 

considers “distortions both in the optical and 

recording parts of the apparatus” (Rautian, 

1958). In Rautian, 1958, we can find several 

different instrumental functions that can be 

convoluted with the true radiation. And the true 

radiation can be a convolution of different 

broadening mechanisms. 

The Voigt convolution is based on Lorentzian 

and Gaussian profiles because the analysis 

starts from a Lorentzian damping model 

(natural radiation) with a weight which is a 

Gaussian one. Different approaches exist 

(Kirillov, 2004), so that the true radiation line 

can be assumed different from a Lorentzian 

function; moreover, the weight function can be 

different from a pure Gaussian function. 

 

Neglecting the transfer function 

In Merlen et al., 2017, researchers are telling 

that “If we do not take into account the 

instrumental transfer function that can be 

negligible in many cases (...), the total intensity 

of one phonon mode with a wavevector 𝑞0 and 

a frequency 𝜔(𝑞0), in a perfect crystal, is spread 

on a symmetric profile which is Lorentzian”. 

Merlen et al. are also discussing the presence of 

asymmetric peaks in the framework of the 

approach by Richter et al., 1981. In the case of 

investigating the first order region of the Raman 

spectra of carbonaceous materials, for its fitting 

procedure, Merlen et al. suggest the use of 

Lorentzian and Gaussian functions for 

symmetric profiles and of the Breit-Wigner-

Fano (BWF) line shape for asymmetric peaks. 

In discussing the spectroscopy of carbonaceous 

materials, in particular G and G’ bands, Merlen 

and coworkers tell the following. For “One 

band: The G band is fitted by a Lorentzian if 

symmetric, and by a BWF if not symmetric”. 

We have discussed G and G’ bands of graphite 

in ChemRxiv2 and we used q-Gaussians. We 

used q-Gaussians too for other carbonaceous 

materials (biochar and nanotubes) in SSRN. 

The behavior of the peaks we considered is q-

Gaussian, that is, not Lorentzian or Gaussian 

but q-Gaussian. For what is regarding the BWF 

asymmetric line shape, we started investigation 

about the Raman LO mode band in Silicon 

Carbide. 

 

WolframAlpha approach 

“The physical argument employed in 

establishing the Voigt profile is that the effects 

of Doppler and collision broadening are 

decoupled. Thus we argue that every point on a 
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collision-broadened lineshape is further 

broadened by Doppler effects” (Ronald K. 

Hanson, 2018). Hanson is mentioning 

refinements with Galatry profiles (collision 

narrowing) and Berman profiles (speed-

dependent broadening). 

Before the discussion of refinements of the 

Voigt profile, let us consider software 

WolframAlpha to visualize the behavior of a 

Voigtian time correlation function, that is the 

product of exponential decay and Gaussian time 

functions. This product is producing, by means 

of its Fourier transform, a spectral Voigt 

convolution. Software is providing the plot of 

the function and its Fourier transform, as in the 

following example. 

 
 

 

where erf is the error function and erfc the complementary error function.   

 

q-Gaussians and Bessel functions 

For what is regarding the q-Gaussian function 

and its Fourier transform, we need to tell that 

the specific formulation of the transform is 

quite complex (Rodrigues & Giraldi, 2015). 

However, we can find that the Fourier 

transform of the q-Gaussian contains the K 

functions (modified Bessel function of the 

second kind). Here, let us consider (1) in the 

following form, with dimensionless variable 𝑤 

about 𝑤𝑜 = 0: 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝑤2) = 

𝐶[1 − (1 − 𝑞)𝑤2]1 (1−𝑞)⁄       (2) 

and search for the Fourier transform of it, 

remembering that the Fourier transform of a 

Lorentzian line shape is producing a time 

correlation function which is an exponential 

decay over time, and that, in the case of the 

Gaussian line shape, we have a correlation with 

is a Gaussian function of time. Being the q-

Gaussian a line shape which is intermediate 

between Lorentzian and Gaussian profiles, the 

related time correlation function must be 

intermediate between the exponential decay 

over time and a Gaussian function. 

As previously told, Rodrigues and Giraldi, 

2015, have considered in detail the Fourier 

transform of the q-Gaussian functions. Here we 

use a more phenomenological approach. Let us 

start from the link between the q-Gaussians and 

the Bessel functions.  

In Wikipedia we find that the “Bessel functions 

can be described as Fourier transforms of 

powers of quadratic functions”. Function 𝐾𝑣 is 

a modified Bessel function of the second kind, 

order 𝑣. For instance: 

 

 

 

To have further cases, we can use the Fourier 

transform calculator by WolframAlpha. 

Following the notation in Wikipedia, we can 

find, for instance: 

https://doi.org/10.26434/chemrxiv-2024-18sbg ORCID: https://orcid.org/0000-0003-4502-8974 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://en.wikipedia.org/wiki/Bessel_function
https://www.wolframalpha.com/
https://doi.org/10.26434/chemrxiv-2024-18sbg
https://orcid.org/0000-0003-4502-8974
https://creativecommons.org/licenses/by/4.0/


 

6 

1

√2𝜋
∫ (1 + (𝐴𝑡)2)−1 2⁄

∞

−∞

𝑒𝑖𝑤𝑡𝑑𝑡

=
1

√𝐴2
⋅ √

2

𝜋
⋅ 𝐾0 (

 |𝑤|

√𝐴2
) 

Note that, in this example, we can see 

evidenced the time/frequency scaling, by using 

A factor.  

 

 

The Fourier transform (WolframAlpha) of the 

function with exponent −1 (𝑞 − 1)⁄ , that is  

1 (1 − 𝑞)⁄  as in (2), from the frequency domain 

w to the time domain t (dimensionless 

variables) is given as follows: 

 

𝐹𝑤[(1 + 𝑤2)−1 (𝑞−1)⁄ ](𝑡)=
1

𝛤(
1

𝑞−1
)

⋅ 2
𝑞−2

𝑞−1 ⋅ |𝑡|
1

𝑞−1
−

1

2 ⋅ 𝐾 1

𝑞−1
−

1

2

(𝑡 sgn(𝑡)) 

Posing 𝜉 = 1 (𝑞 − 1)⁄ : 𝐹𝑤[(1 + 𝑤2)−𝜉](𝑡)=
1

𝛤(𝜉)
⋅ 2(𝑞−2)𝜉 ⋅ |𝑡|𝜉−

1

2 ⋅ 𝐾
𝜉−

1

2

(𝑡 sgn(𝑡)) 

 

To illustrate the behavior of the Fourier 

transform, let us consider different values of q, 

starting from q=3, including q=2 (Lorentzian), 

to find the corresponding time correlations. 

From WolframAlpha, we have: 

𝐹𝑤[(1 + 𝑤2)−1 (3−1)⁄ ](𝑡) = √
2

𝜋
𝐾0(𝑡 sgn(𝑡)) 

By the way, the q-Gaussian is defined for q 

ranging from 1 to 3. 

 

 

Fourier transform in the case q=3 (plot 

courtesy WolframAlpha) 

 

 

 

𝐹𝑤[(1 + 𝑤2)−1 (2.5−1)⁄ ](𝑡) = 0.930437 ⋅ |𝑡|0.166667 ⋅ 𝐾0.166667(𝑡 sgn𝑡) 

𝐹𝑤[(1 + 𝑤2)−1 (2−1)⁄ ](𝑡) = √
𝜋

2
𝑒−|𝑡|   (a) 

(Fourier transform of the Lorentzian function). In (a) we can find the Laplace distribution, that is the 

exponential decay over time.  

𝐹𝑤[(1 + 𝑤2)−1 (1.9999−1)⁄ ](𝑡) = 0.999988 ⋅ |𝑡|0.5001 ⋅ 𝐾0.5001(𝑡 sgn𝑡)    (a’) 

We can deduce that the exponential decay is equal to a K Bessel function multiplied by a square root, 

so that: 

𝐾0.5(𝑡 sgn𝑡) = √
𝜋

2

1

√|𝑡|
𝑒−|𝑡|. 

𝐹𝑤[(1 + 𝑤2)−1 (1.9−1)⁄ ](𝑡) = 0.977728 ⋅ |𝑡|0.611111 ⋅ 𝐾0.611111(𝑡 sgn𝑡)    (b) 

𝐹𝑤[(1 + 𝑤2)−1 (1.7−1)⁄ ](𝑡) = 0.838525 ⋅ |𝑡|0.928571 ⋅ 𝐾0.928571(𝑡 sgn𝑡)   (c) 

𝐹𝑤[(1 + 𝑤2)−1 (1.5−1)⁄ ](𝑡) =
0.626657

𝑡2 ⋅ 𝑒−|𝑡| ⋅ |𝑡|2 ⋅ (|𝑡| + 1)=0.626657 ⋅ 𝑒−|𝑡| ⋅ (|𝑡| + 1)   (d) 

𝐹𝑤[(1 + 𝑤2)−1 (1.4999−1)⁄ ](𝑡) = 0.499777 ⋅ |𝑡|1.5 ⋅ 𝐾1.5(𝑡 sgn𝑡) 
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We have, as given by WoframAlpha, that: 𝐾1.5(𝑡) =
1.253314137

√𝑡
⋅ 𝑒(−𝑡) ⋅ (

1

𝑡
+ 1), and therefore (d). 

 

𝐹𝑤[(1 + 𝑤2)−1 (1.4−1)⁄ ](𝑡) = 0.265962 ⋅ |𝑡|2 ⋅ 𝐾2(𝑡 sgn𝑡) 

𝐹𝑤[(1 + 𝑤2)−1 (1.3−1)⁄ ](𝑡) = 0.0714233 ⋅ |𝑡|2.83333 ⋅ 𝐾2.83333(𝑡 sgn𝑡) 

𝐹𝑤[(1 + 𝑤2)−1 (1.15−1)⁄ ](𝑡) = 0.000050 ⋅ |𝑡|6.16667 ⋅ 𝐾6.16667(𝑡 sgn𝑡) 

 

 

 

Fourier transforms of four cases given above (plots courtesy WolframAlpha). 

 

 

Let us add some further results, obtained by means of WolframAlpha.  

𝐹𝑤[(1 + 𝑤2)−1 (1.25−1)⁄ ](𝑡) =
𝐴

𝑡4sgn(𝑡)4
|𝑡|3.5𝑒−𝑡 sgn(𝑡)√𝑡 sgn(𝑡) 

𝐴 = (0.0261107 𝑡3sgn(𝑡)3 + 0.156664 𝑡2sgn(𝑡)2 + 0.391661 𝑡 sgn(𝑡) + 0.391661) 

 

𝐹𝑤[(1 + 𝑤2)−1 (1.2−1)⁄ ](𝑡) =
𝐴′

𝑡5sgn(𝑡)5
|𝑡|4.5𝑒−𝑡 sgn(𝑡)√𝑡 sgn(𝑡) 

𝐴′ = (0.00326384 𝑡4sgn(𝑡)4 + 0.0326384 𝑡3sgn(𝑡)3 + 0.146873 𝑡2sgn(𝑡)2 + 0.342703 𝑡 sgn(𝑡)
+ 0.342703) 

 

And also: 

 

 

Using the results given above and considering the scaling (𝑞 − 1)𝑤2 into  𝑡 √(𝑞 − 1)⁄ , we can plot 

some time correlations as in the Figure 1 (linear and semi logarithmic scales). 
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Figure 1: Left: Fourier transforms of some q-Gaussians as given by WolframAlpha, for some values 

of the q parameter. Right: The same, in semi-logarithmic scale. For q=2, we have a correlation which 

is an exponential decay function (straight red line). For q closer to 1, the curve is Gaussian-like 

(parabolic behavior in the semi-log plot). 

 

 

In Wikipedia we can find mentioned the Sargan 

distributions, given in the following form: 

𝑓𝑝(𝑥) =
1

2
𝑒𝑥𝑝(−𝛼|𝑥|)

1 + ∑ 𝛽𝑗
𝑝
𝐽=1 𝛼𝑗|𝑥|𝑗

1 + ∑ 𝑗
𝑝
𝑗=1 ! 𝛽𝑗

 

Note the presence of the exponential decay. 

In the functions given above, we can find 

suggested the Sargan distributions indeed. As 

told by Kotz and coworkers (2001), "For 𝜆 =
𝑟 + 1 2⁄ , where  𝑟 is a non-negative integer, the 

Bessel function 𝐾𝜆 has the closed form": 

𝐾𝑟+1 2⁄ (𝑢) = √
𝜋

2𝑢
𝑒−𝑢 ∑

(𝑟 + 𝑘)!

(𝑟 − 𝑘)! 𝑘!

𝑟

𝑘=0

(2𝑢)−𝑘 

(*) 

This is formula A.0.10 in Kotz et al., 2001. For 

𝑟 = 0, we have (A.0.11): 

𝐾1 2⁄ (𝑢) = √
𝜋

2𝑢
𝑒−𝑢 

(see also the discussion at 4.4.3 in Kotz et al., 

2001). 

Let us consider again 𝐾1.5(𝑡) =
1.253314137

√𝑡
⋅

𝑒(−𝑡) ⋅ (
1

𝑡
+ 1), for instance. It is easy to find 

that this expression agrees with (*). 

For further discussion, see Appendix. 

We have not to be surprised to find time 

correlations containing Bessel functions. For 

instance, in Hall and Helfand, 1982, we can find 

them in time-correlation functions of the 

conformational state relaxation in polymers. 

Hall and Helfand studied the “relaxation 

processes in polymer molecules which proceed 

via conformational transitions of the chain 

backbone from one rotational isomeric state to 

another. … The resulting correlation functions 

contain a modified Bessel function which is 

associated with the diffusional nature of the 

process. This functional form has recently 

proven useful in fitting time-correlation 

functions determined in polymer simulations, 

which indicates that it will be of value in fitting 

data obtained in relaxation experiments on 

polymers” (Hall & Helfand, 1982). 

 

Egelstaff-Schofield lineshape 

With the aim of formulating the Fourier 

transform of the q-Gaussian function in a 

simpler manner (that is, to have a simpler 

function for the time correlation), in a previous 

article we discussed the Egelstaff-Schofield 

(ES) line shapes and the related fitted q-

Gaussians. In fact, the ES profiles can be 

imitated by the q-Gaussians.  
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Let us stress that the ES profiles can be Fourier 

transformed into a simple analytical expression 

(Kirillov, 1999): 

𝛷(𝑡) = 𝑒𝑥𝑝{−[(𝑡2 + 𝜏1
2)1 2⁄ − 𝜏1] 𝜏2⁄ } 

According to Kirillov, 1999, we have this 

function which becomes Gaussian for 𝑡 ≪ 𝜏1, 

and an exponential for 𝑡 ≫ 𝜏1.  

Let us write the expression previously given as: 

𝛷(𝑡) = 𝑒𝑥𝑝{−[(𝑡2 + 𝑎2)1 2⁄ − 𝑎] 𝑏⁄ }. 

The following plot is giving the behavior of this 

function. 

 

 

Fig.2: Behavior of the Egelstaff-Schofield time correlation. From the semi log scale, we can 

appreciate the deviation from the exponential decay at short times.  

 

Breit-Wigner-Fano lineshape 

Since we have mentioned it before, let us 

consider how can we express the time 

correlation function related to the Breit-

Wigner-Fano line shape.  

 

Let us consider it as defined in Origin, with the 

same parameters. In WolframAlpha, let us use 

the input (1+w/40)^2/(1+(w/4)^2), we have 

plots: 

 

Plots courtesy WolframAlpha for the input given above. 

 

The Fourier transform (Wolfram Alpha) is given as: 
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Plot of the BWF Fourier transform (courtesy WolframAlpha). 

 

In the case that 𝑡 > 0, the Fourier transform reduces to: (99 25⁄ + 4 𝑖 5⁄ )√
𝜋

2
𝑒−4𝑡. In general, for input 

(q+w)^2/(1+w^2), that is 
(𝑞+𝑤)2

(1+𝑤2)
 as in Misochko and Lebedev, 2015, we find (WolframAlpha): 

 

This is the expression given for q and t real. In the case 𝑡 > 0, it remains the exponential decay. 

 

Beyond the Voigt profile 

Besides the behavior of the wings, a relevant 

problem for the use of Voigt functions needs to 

be noted. To evaluate these functions, it is 

required a numerical approach because the 

convolution is an integral which cannot be 

solved analytically. The result is consequently 

depending on the model representing the 

convolution and, also, on the language used to 

implement the calculus and the related compiler 

required to obtain the numerical results. Some 

could claim that, today, due to the speed of 

computers we have no problems in any 

numerical calculus, however the problem of the 

used models remains, because it has nothing to 

do with the speed of the calculus. 

About the experimental data used for fitting, we 

must further consider that the raw signals have 

been processed by instrumentation and related 

software, before being proposed to the user as 

raw data for further processing. As previously 

told, the “transfer function” exists. We can 

guess it is negligible, but it could be not so. 

Forthomme et al., 2015, asserted that the “Voigt 

profile (VP) is the standard lineshape model 

used in high resolution spectroscopy databases 

for its simplicity and its fast computation time”.  

An example of database is HITRAN (high-

resolution transmission molecular absorption 

database) which contains a compilation of 

molecular spectroscopic parameters. It “is used 

by various computer codes to predict and 

simulate the transmission and emission of light 

in gaseous media (with an emphasis on 

terrestrial and planetary atmospheres)” 

(Gordon et al., 2022). 

However, as observed in Forthomme et al., 

2015, “with the ever-increasing sensitivity and 

accuracy of measurement techniques, more 

subtle effects on the experimental data are now 

commonly observed”. Therefore, the Voigt 

profile needs to be revised. At low to moderate 

pressures, the “attempts to model measured 

lineshapes with a VP typically leaves a ”w” 

shaped residual” (Forthomme et al., 2015). This 

difference is “associated with the narrowing 

that is not represented in the VP” (Forthomme 

et al. are mentioning the book by Hartmann et 

al., 2008). Let us note that the “w” shape 

residual is produced also by the fact that the 

wings of Voigt functions are Lorentzian. In our 

https://doi.org/10.26434/chemrxiv-2024-18sbg ORCID: https://orcid.org/0000-0003-4502-8974 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-18sbg
https://orcid.org/0000-0003-4502-8974
https://creativecommons.org/licenses/by/4.0/


 

11 

previously investigated cases, Sparavigna, 

2023, the wings of the spectrum are not 

Lorentzian. Therefore, we can consider further 

lines from Raman spectroscopy, such as those 

of the isolated lines of gases, to evaluate the 

behavior of the wings by means of a q-Gaussian 

power law. 

“A wide variety of models of various degrees of 

complexity have been proposed” to investigate 

spectral lines and to consider deviations from 

the Voigt profile: Forthomme and coworkers 

used the Hartmann-Tran profile. Besides this 

profile, we can find as quite popular the Rautian 

and Galatry symmetric profiles, and the 

asymmetric speed-dependent Voigt profile 

(Ivanov et al., 2014). The use of the Hartmann-

Tran profile (HTP) was recommended in a 

IUPAC technical report regarding the “line 

profiles of isolated high-resolution rotational-

vibrational transitions perturbed by neutral 

gas-phase molecules” (Tennyson et al., 2014). 

Tennyson and coworkers are stressing that the 

Voigt profile has “well-documented 

inadequacies” (no references are given, and 

inadequacies not mentioned at all). We can find 

told that HT profile “can be computed in a 

straightforward and rapid manner, and reduces 

to simpler profiles, including the Voigt profile, 

under certain simplifying assumptions”. 

The HT profile is given in Eqs. (5),(6),(7) in 

arXiv, and it contains seven parameters. 

According to Table II, the HTP profile can be 

reduced to Voigt, Rautian, speed-dependent 

Voigt and speed-dependent Rautian functions. 

Let us stress, however, that we must calculate 

the complex Voigt integrals (with error 

function, see Eq. 6 in the arXiv article) by 

numerical methods and therefore we need to 

refer to some related models. Voigt and 

complex error functions and related 

computational methods have been discussed by 

Schreier, 1992.  

 

The Q(5) line 

Being the Tsallis q-Gaussian function 

characterized by three parameters C,β and q, 

instead of comparing it with HTP (seven 

parameters when normalized to unit area), let us 

consider the Voigt function. We do comparison 

to understand the behavior of the spectral line 

wings for gases. Let us start from a Raman line 

in the Q branch of the carbon monoxide in 

mixture with Argon, that we can find in an 

article by Thibault et al., 2002. A plot is 

available for the Q(5) line and its fitted Voigt 

function. Here, in the following Figure 3, we 

show that a q-Gaussian Tsallis function can be 

fitted onto data recovered from the figure.   

From the Figures 3a,b, we can note that the 

wings are not Lorentzian. The q parameter is 

equal to 1.87. This means that the Raman lines 

of gases are interesting for further research 

about the power law of line wings. 

Thibault and coworkers tell that the “spectral 

lines were individually fitted to the Voigt 

profile and the hard collision model profile of 

Rautian and Sobel’man. Since the collisional 

width determined from both models was within 

the error bars of the fitted parameter, [Thibault 

and coworkers] used only the Voigt profile for 

all measured lines. Figure 1 [in Thibault et al.] 

shows, as an example, the Q(5) line at 195 K 

and total pressure of 123.8 mbar for a 3% 

CO/Ar mixture spectrum. From the observed 

fitted residuals, it can be seen that the Voigt 

model fits the observed profile to within the 

noise”. Being within the noise, the Voigt line is 

proper for fitting. 

The difference between the data recovered from 

Fig.1 in Thibault et al. and fitted q-Gaussian, 

shown in the lower part of the Figure 3, is of 

about plus/minus 1%. According to the Figure 

1 of Thibault et al., 2002, the Voigt function is 

giving a difference of about plus/minus 3%. 

Our fitted q-Gaussian seems being able of 

giving even better results than the fitted Voigt 

function.  

In the Figures 3a,b here proposed, data and q-

Gaussians are given as functions of integers n 

(equally spaced points used in fitting), for the 

x-axis which is representing the Raman shift. A 

convenient scale is used for the y-axis (intensity 

axis). The fitting calculation is obtained by 

minimizing the sum of the squares of the 

deviations (sum from n=1 to n=270).  
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Fig.3a: The Q(5) Raman line of the carbon monoxide as given in the Figure 1 of the article by Thibault et al., 

2002, is here proposed with red points. The peak is at about 2142.75 cm−1.The blue line is its fitted q-Gaussian. 

The q parameter of this function is equal to 1.87 . In the lower part of the figure, the difference between data 

and q-Gaussian function is given. Note please that the difference is oscillating between plus/minus 1%. 

 

 

Figure 3b: The same as in the Figure 3a, in semi logarithmic scale. 
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Let us stress that our “data” are the intensity 

values that we can obtain from the Figure 1 of 

Thibault et al., 2002, interpolated to have the 

red dots shows in our Figures 3a,3b. 

Fitted q-Gaussian seems being better than fitted 

Voigt function, because of a lower misfit. But 

we must remark that our “data” are not the 

original point values obtained by Thibault and 

coworkers. Therefore, any further specific 

comparison could be questionable.  

The Voigt function is usually approximated by 

a linear combination of a Lorentzian and a 

Gaussian function. This linear combination is 

known as the pseudo-Voigt. Here we can try to 

fit the peak in the Figure 3 with a linear 

combination of two q-Gaussians. The result is 

given in the following plot. 

 

 

Fig.4: The green line is representing the fitted linear combination of two q-Gaussians. The q parameter of the 

main component (blue) is equal to 1.84 . In the lower part of the figure, the difference between data and two-q-

Gaussians combination is given. Note please that the difference is oscillating between plus/minus 0.65%. 

 

 

Is the fit in Figure 4 better than that given in the 

Fig.3? In the Figure 4 the misfit is lower, 

however both fits seem being within the noise 

band, and therefore we cannot assert that the 

fitted line in Fig.4 is better than the fitted line in 

Figure 3. In any case, the value of q of the main 

component changed just of 1.5%. 

 

Discussion 

Tennyson and coworkers tell that the 

“spontaneous emission of radiation is 

responsible for the natural lifetime broadening 

or intrinsic line width. This component of the 

overall line shape is described by a Lorentzian 

profile which is, however, sufficiently narrow 

to be safely neglected in favour, …” of two 
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contributions which are the Doppler effect and 

the collisional broadening. The “well-known 

Doppler effect” has a profile (Doppler profile, 

DP), which is “expressed in terms of the 

Doppler half-width, ΓD, by a Gaussian 

function” (Tennyson et al., 2014). The 

collisional broadening is producing a 

Lorentzian profile. “At low pressures the 

Doppler effect dominates, and as the pressure 

increases the effects of collisions become 

increasingly important. As a first 

approximation to get the resulting line shape, 

the convolution of an inhomogeneous Doppler 

profile with a homogeneous Lorentzian profile 

is commonly used. It defines the so-called VP 

[Voigt profile], which contains Doppler and 

Lorentzian shapes as limiting cases.” 

(Tennyson et al., 2014). And also: “The 

standard three-parameter VP, as already 

mentioned above, is the simplest line shape 

accounting for the pressure and Doppler 

effects.” Let us stress once more that the wings 

of VP are always of Lorentzian type, and that 

VP is based on causes of broadening which are 

statistically independent. 

In Thibault et al., 2002, a detailed discussion is 

given about the determination of the Lorentzian 

contribution in the fitted Voigt profile, to 

evaluate the collisional width. The researchers 

“fixed the Gaussian width in the Voigt profile 

to that corresponding to the convolution of the 

expected Doppler width for every line and 

temperature, and a Gauss function of 0.0026 

cm−1 FWHM [full width at half maximum] to 

account for the apparatus function. Then, the 

collisional width was obtained as the Lorentz 

width resulting from the fit” (Thibault et al., 

2002). In our Figures 3,4 the wings are not 

Lorentzian, because the fitted q-Gaussian has q-

parameter equal to 1.85. This value of q-

parameter tells us that we are quite close to a 

Lorentzian wing, so the collisional effect is the 

most relevant one.  

 

The apparatus 

In Thibault et al. we find mentioned the role of 

the apparatus, given as Gaussian. When the VP 

approach is used, many researchers assume that 

the Gaussian in the convolution is coming from 

the apparatus, with the result of a pure 

Lorentzian profile for the photonic emission. 

However, other effects, such as the Doppler 

effect considered in Thibault et al., with 

Gaussian influences participate to the 

broadening. Moreover, the Dicke effect exists 

producing a narrowing of Doppler broadening. 

The Dicke Effect, that is the “collision 

narrowing”, is the following. In the case that the 

mean free path of an atom is quite smaller than 

the wavelength of the radiative transition, a 

narrowing of the line is produced. The atom is 

changing its speed and direction several times 

during photonic emission or absorption. In 

average on the different Doppler states, we find 

that the atomic line width is narrower than the 

Doppler width (Basu, 2007, Demtröder, 1982).  

“Of course, the choice of an appropriate line 

shape function is not a purely theoretical 

exercise and must be guided by fits to high 

accuracy measurements, which also need to 

consider the appropriate instrumental line shape 

function” (Tennyson et al., 2014). About the 

instrumental function and its role in the choice 

of the line shape, no discussion is given by 

Tennyson and coworkers. 

 

Doppler effect and q-Gaussians 

The q-Gaussian Tsallis distribution has been 

proposed by Silva Jr et al.,1998, for being 

applied to the q-Doppler broadening of spectral 

lines. Silva Jr and coworkers discussed the 

Doppler effect “using the q-Maxwellian 

velocity distribution”. However, the q-

Gaussian is a function which can be able of 

expressing not only the Doppler 

(inhomogeneous) limiting case, but also the 

(homogeneous) collisional limiting case. 

Therefore, the q-Gaussian profile needs to be 

considered in a more general framework. 

 

Time correlation functions 

In Rohart et al., the time correlation function of 

the Voigt model is given as: 

𝛷 = 𝑒𝑥𝑝 [𝑖𝜔0𝑡 − 𝛤𝑡 − (
𝑘𝑣𝑎0𝑡

2
)

2

] 

or the product of two exponential functions: 
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𝛷 = 𝑒𝑥𝑝[𝑖𝜔0𝑡 − 𝛤𝑡] ⋅ 𝑒𝑥𝑝 [− (
𝑘𝑣𝑎0𝑡

2
)

2

] 

𝜔0, 𝛤 are the line center frequency and the 

collisional relaxation rate (given in s−1). The 

wave number and the most probable value of 

the absorber speed are  𝑘 = 𝜔0 𝑐⁄ , 𝑣𝑎0 =

√2𝑘𝐵 𝑇 𝑚𝑎⁄ . T is the temperature, kB the 

Boltzmann constant and ma the molecular mass 

of the absorber.  

Beyond VP, we find in Ngo et al., 2013, 

mentioned the work by Boone et al., 2007, in 

relation to the speed-dependent Voigt (SDV) 

profile. This profile “is the real part of the 

Fourier transform of the polarization 

correlation function” as given by Rohart, et al., 

2003. The modification of the Voigt function, 

shown by Rohart et al., maintains the 

exponential factor related to the Fourier 

transform of the Lorentzian function, but the 

Gaussian is substituted by two factors, one of 

which is containing an irrational function. As 

proposed in the Eq.9 by Rohart et al., 2003, and 

Eq.7 in 2008, we have: 

𝛷 = 𝑒𝑥𝑝{𝑖𝜔0𝑡 − (𝛤0 − 3 𝛤2 2⁄ )𝑡}

⋅
1

(1 + 𝛤2𝑡)3 2⁄

⋅ 𝑒𝑥𝑝 {
−(𝑘𝑣𝑎0𝑡)2

4(1 + 𝛤2𝑡)
} 

(2) 

where 𝛤0. 𝛤2 are the mean relaxation rate over 

molecular speeds, and the speed dependence of 

the relaxation rate. Rohart and coworkers are 

also mentioning the Galatry profile (the HTP 

has not it as limit case). So let us show what is 

the correlation function generating the Galatry 

profile: 

𝛷 = 𝑒𝑥𝑝[𝑖𝜔0𝑡 − 𝛤0𝑡] 

⋅ 𝑒𝑥𝑝 {
1

2
(𝑘 𝑣𝑎0 𝐵⁄ )2 ⋅ {1 − 𝐵𝑡 − 𝑒𝑥𝑝(−𝐵𝑡)}} 

(3) 

where 𝛤, 𝐵 are the relaxation rate and the 

optical diffusion rate.  We can find the Galatry 

profile given also in Dore, 2003.  

In Ivanov et al., 2014, the Voigt and the Rautian 

profiles are formulated in the following manner 

(see please the parameters x,y,z defined in the 

article by Ivanov et al.). The Voigt profile: 

𝑓𝑉(𝑥, 𝑦) = 𝑅𝑒𝑎𝑙𝑃𝑎𝑟𝑡[𝑤(𝑥, 𝑦)] 

where 

𝑤(𝑥, 𝑦) =
1

𝜋
∫

𝑒𝑥𝑝(−𝑡2)

𝑥 + 𝑖𝑦 − 𝑡

∞

−∞

𝑑𝑡 

And the Rautian profile: 

𝑓𝑅(𝑥, 𝑦, 𝑧) 

𝑅𝑒𝑎𝑙𝑃𝑎𝑟𝑡 [
𝑤(𝑥, 𝑦 + 𝑧)

1 − √𝜋 ⋅ 𝑧 ⋅ 𝑤(𝑥, 𝑦 + 𝑧)
] 

 

For what is regarding the Rautian line shape, we 

can find it proposed in Rautian and Sobel'man, 

1967. "A simultaneous account of radiative 

decay and the Doppler effect involves no 

difficulties, since these causes of broadening 

are statistically independent. As we know, the 

correlation function in this case equals the 

product of the correlation functions describing 

each of the causes of broadening individually". 

But Rautian and Sobel'man are also stressing 

that "broadening due to interaction and that due 

to the Doppler effect are statistically dependent 

in the general case. Broadening due to 

interactions involves a phase shift of the atomic 

oscillator when the atom collides with 

surrounding particles. Obviously, both the 

phase of the oscillations and the velocity of 

translational motion of the atom can be altered 

in the same collision."  

The Rautian and Sobel'man correlation function 

is not proposed in the simple forms as in (2) and 

(3). This is also the case of the correlation 

giving HTP line shape. Let us add that the 

Lorentzian profile is not a lower-order line 

model of HTP, that is, the Lorentzian profile is 

not given in the Table II by Tennyson et al. 

 

Caveats 

Adkins and Hodges, 2019, in their “assessment 

of the precision, bias and numerical correlation 

of fitted parameters” obtained by means of the 

Hartmann-Tran profile, tell that IUPAC-

recommended HTP “has emerged as a widely 

utilized spectroscopic model profile for high 
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resolution spectroscopy with the caveat that its 

use requires high signal-to-noise ratio data, 

adequate constraints, and a wide pressure 

range”.  Adkins and Hodges also tell: “Many 

laboratories … use custom software for 

conducting multi-spectrum HTP fits with 

known and unknown differences in how the line 

shape and other parameters are defined. 

Differences between models used in the fitting 

and parameterization for spectroscopic 

databases can lead to incompatibility in line 

parameters and down-stream algorithms such 

that they cannot be used to reproduce fits to 

experimental data”. Let us add that, if we need 

functions which are numerically calculated, we 

have also to know the numerical methods used 

to define them, that is, the used subroutines, and 

the compiler involved in calculations too. 

 

The Kubo case 

Kubo, in 1969, proposed a stochastic theory of 

line shapes. His Gaussian–Markovian 

approach, or Kubo approach, “remains the most 

common and widely used in spectroscopic 

practice” (Kirillov, 1999). Kirillov is referring 

to condensed matter spectroscopy. The 

correlation is given by (M2 is the second 

spectral moment and τω a relaxation time): 

𝛷 = 𝑒𝑥𝑝{−𝑀2𝜏𝜔
2 [𝑒𝑥𝑝(−𝑡 𝜏𝜔⁄ ) − 1 + 𝑡 𝜏𝜔⁄ ]} 

that is 

𝛷 = 𝑒𝑥𝑝{−𝑀2𝜏𝜔𝑡} 

⋅ 𝑒𝑥𝑝{𝑀2𝜏𝜔
2 [1 − 𝑒𝑥𝑝(−𝑡 𝜏𝜔⁄ )]} 

(4) 

Here the frequency is referred to the position of 

the unshifted frequency. Note please once more 

that correlations (2) and (3), such as (4), have 

an exponential decaying factor, which is the 

Fourier transform of a Lorentzian function; that 

is, we have the line subjected to homogeneous 

broadening mechanisms. Let us also remember 

that, considering independent phenomena, they 

appear as factors in the correlations. 

The Kubo case, in the Lecture Notes by 

Tokmakoff, 2009, is given as: 

𝐹 = 𝑒𝑥𝑝[−𝛥2𝜏𝑐
2(𝑒𝑥𝑝(−𝑡 𝜏𝑐⁄ ) + 𝑡 𝜏𝑐⁄ − 1)] 

where 𝜏𝑐 is the time scale of dynamics. 

Parameter 𝜅 = 𝛥 ⋅ 𝜏𝑐 is introduced, and three 

cases are given: fast, 𝛥 = 1, 𝜏𝑐 = 0.2, 𝜅 = 0.2, 

mid, 𝛥 = 1, 𝜏𝑐 = 1, 𝜅 = 1, and slow 𝛥 =
1, 𝜏𝑐 = 10, 𝜅 = 10. The absorption lineshapes 

are given by Tokmakoff as in the following plot 

(Fig.5). 

 

   Fig.5. 

 

“We see that for a fixed distribution of 

frequencies 𝛥 the effect of increasing the time 

scale of fluctuations through this distribution 

(decreasing 𝜏𝑐) is to gradually narrow the 

observed lineshape from a Gaussian 

distribution of static frequencies with width 

(FWHM [Full width at half maximum]) of  

2.35 ⋅ 𝛥 to a motionally narrowed Lorentzian 

lineshape with width (FWHM) of 𝛥2 𝜏𝑐 𝜋⁄ =
𝛥 ⋅ 𝜅 𝜋⁄ ." (Tokmakoff, 2009). Here again we 

are facing the problem to find the 
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“intermediate” function between Lorentzian 

and Gaussian profiles. 

Of this profile, we discussed in detail in the 

article “Kubo Lineshape and its Fitted q-

Gaussian Tsallis Function”, in 2024 ijSciences. 

It has been shown that properly fitted q-

Gaussian functions can be proposed for the 

Kubo lineshape, which is the Fourier transform 

of Kubo stochastic time-correlation function. 

As already told in the introduction, the value of 

the q-parameter turns out to the related to the 

time scale of dynamics (fast q=2, mid q=1.4 and 

slow q=1). The q-Gaussian can provide an 

estimation of the process modulation. 

In Kirillov, 2004, it is told that “the Kubo TCF 

[time correlation function] corresponds to 

vibrational lines whose profiles vary from 

Gaussian to Lorentzian”.  

In the analysis proposed in ijSciences, where 

we used fitted q-Gaussians to characterize the 

Kubo profile with the q-parameter, we 

concluded that the fast case has a q-parameter 

equal to 2 and the Kubo line shape is almost 

equal to a Lorentzian function. However, the 

slow case does not become a Gaussian profile. 

The result is shown in the following Figure 6. 

The difference is in the far wing.  

 

 

Fig. 6: Kubo line shapes in red and q-Gaussian 

in green. Being the line shape symmetric, only 

the right side is given in the semi-log plot. 

 

The generalized Kubo case 

As previously told, Kirillov, 1999, proposed a 

time correlation function corresponding to the 

Egelstaff-Schofield (ES) line shape. His aim 

was that of being able to manage the 

Rothschild-Kubo model (Rothschild et al., 

1987, Feng and Wilde, 1988). 

“Efforts to apply a simple Gauss-Markov 

theory have proven unsuccessful for aqueous 

ionic solutions, where strong Coulombic and 

dipolar forces promote vibrational relaxation, 

and the hydrogen bonding of the water inhibits 

anion reorientation. An alternate modeling 

function, the stretched exponential, has been 

proposed to explain inhomogeneously 

broadened Raman spectra” (Feng & Wilde, 

1988). Feng and Wilde consider the 

“vibrational autocorrelation function C(t), 

which is obtained by Fourier transforming the 

isotropic band”. C(t) is given here as: 

𝛷 = 𝑒𝑥𝑝 (𝑖𝜔0𝑡 − ∫ (1 − 𝜏)
𝑡

0

𝜒(𝜏)𝑑𝜏)   ;  

𝜒(𝑡) = 𝑀2𝑒𝑥𝑝{−(𝑡 𝑇⁄ )𝛼} 

M2 is the second spectral moment. 

Rothschild et al., 1987, wrote this time 

correlation as: 

𝛷 = 𝑒𝑥𝑝 (−𝑀2𝑇2 ∑
(−1)𝑛(𝑡 𝑇⁄ )2+𝑛𝛼

𝑛! (1 + 𝑛𝛼)(2 + 𝑛𝛼)

∞

𝑛=0

) 

(5) 

In fact, Rothschild and coworkers, in 1987, 

aimed to improve the Kubo model using the 

stretched exponentials. In Kirillov, 2004, we 

can find the Rothschild-Perrot-Guillaume 

(RPG) model as in Eq.(5), discussed with the 

Burshtein-Fedorenko-Pusep (BFP) model too. 

"Differences in TCFs [time correlation 

functions] lead to very unlike line profiles. …  

the Kubo TCF corresponds to vibrational lines 

whose profiles vary from Gaussian to 

Lorentzian” (Kirillov, 2004). “The Rothschild-

Perrot-Guillaume TCF corresponds to 

vibrational lines of quite specific, over-

Gaussian form. They are less sharp than 

Gaussian in their central part, and much faster 

fall to zero in the wings. The Burshtein, 

Fedorenko and Pusep TCF corresponds to over-

Lorentzian line profiles. They are sharper than 

true Lorentzians in their central part, and 

broader in the wings" (Kirillov, 2004). 

https://doi.org/10.26434/chemrxiv-2024-18sbg ORCID: https://orcid.org/0000-0003-4502-8974 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://www.ijsciences.com/pub/article/2742
https://www.ijsciences.com/pub/article/2742
https://doi.org/10.26434/chemrxiv-2024-18sbg
https://orcid.org/0000-0003-4502-8974
https://creativecommons.org/licenses/by/4.0/


 

18 

To use (5) in spectroscopy, we need its Fourier 

transform to determine the corresponding line 

profile. Being the Fourier transform calculation 

too heavy for Raman bands deconvolution, 

Tagliaferro et al., 2020, have proposed a 

synthetic profile mimicking the lineshape. It is 

a profile named “GauLor”, which is a piecewise 

symmetric function with a Lorentzian central 

part and wings which are Gaussians; actually, it 

seems being the opposite of the Voigt profile 

(Gaussian central part and Lorentzian wings). 

In GauLors, the onset of the wing happens at a 

frequency threshold, determined by the overall 

fitting approach. At the threshold, the 

Lorentzian and Gaussian piece functions and 

their derivatives are continuous. Supposing the 

existence of the threshold within the Raman 

scan range, the GauLor has the onset of the 

Gaussian wing which can be very close to the 

center of the line (in the kernel) or quite far 

from it (in the far line wings). In fact, we have 

two families of intermediate functions between 

Lorentzian and Gaussian line shapes, and they 

are the q-Gaussians and the GauLors.  

Further investigation is necessary about the 

generalization of the Kubo line shapes. 

 

Appendix 

In Yin and Dong, 2023, we can find the “Bessel 

function expression of characteristic function”.  

The researchers are proposing a “unified 

method to derive the classical characteristic 

functions of all elliptical and related 

distributions in terms of Bessel functions”. 

They are presenting “the simple closed form of 

characteristic functions for commonly used 

distributions such as multivariate t, Pearson 

Type II, Pearson Type VII, Kotz type and 

Bessel distributions”, so we can enlarge the 

basin of functions which can be investigated by 

means of WolframAlpha. In fact, in Yin and 

Dong arXiv, we can find the modified Bessel 

function of the second kind, with order ν, 

defined by the following WolframAlpha 

integral: 

 

√
2

𝜋
∫ (1 + 𝑤2)−(𝑣+1 2⁄ )∞

0
𝑐𝑜𝑠(𝑡𝑤)𝑑𝑤 =  

21 2⁄ −𝑣|𝑡𝑣|𝐾𝑣(𝑡𝑠𝑔𝑛(𝑡))

𝛤(𝑣 + 1 2⁄ )
 

This is the Fourier transform that we can obtain 

by means of the WolframAlpha software of 

function: 

(1 + 𝑤2)−(𝑣+1 2⁄ ) 

The expression of Pearson Type VII, is given in 

Origin-Help for instance, where it is told that 

the “peak function is a Lorentz function raised 

to a power”. In this case too we can use 

WolframAlpha to obtain its Fourier transform 

and therefore its time correlation function. 
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