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a b s t r a c t

In this paper, we introduce a new Virtual Element Method (VEM) not requiring
any stabilization term based on the usual enhanced first-order VEM space. The
new method relies on a modified formulation of the discrete diffusion operator that
ensures stability preserving all the properties of the differential operator.
©2023 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, in the context of Virtual Element Methods (VEM), a growing interest has been devoted to the
definition of bilinear forms not requiring a stabilization term. In [1], a lowest-order stabilization-free scheme
was proposed and analysed, proving that it is possible to define coercive bilinear forms based on polynomial
projections of virtual basis functions of suitable high-degree polynomial spaces. In [2], the proposed scheme
was compared to standard VEM, and results showed that the absence of a stabilization operator can reduce
the error and help convergence in case of strongly anisotropic problems.

In this paper, we propose a variation of the scheme introduced in [1], strongly exploiting the theory
developed in that paper to choose the smallest possible polynomial space that guarantees coercivity.

We consider an open bounded domain Ω ⊂ R2 and the following standard advection–diffusion–reaction
problem: find u ∈ H1

0(Ω) such that

(K∇u, ∇v)Ω + (β · ∇u, v)Ω + (γu, v)Ω = (f, v)Ω ∀v ∈ H1
0(Ω) , (1)
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where (·, ·)Ω denotes the L2(Ω) scalar product. We make standard assumptions on the coefficients in order to
uarantee the well-posedness of the problem, namely, all coefficients are L∞(Ω), K is a symmetric uniformly
ositive definite tensor, divβ = 0, and infx∈Ω γ(x) ≥ 0. Here we consider homogeneous Dirichlet boundary
onditions, but more general boundary conditions can be considered.

. Local spaces and projections

We consider a family of polygonal tessellations Mh of Ω , satisfying the following standard mesh
ssumptions: ∃κ > 0 such that ∀E ∈ Mh, E is star-shaped with respect to a ball of radius ρ ≥ κhE ,
nd ∀e ∈ EE , where EE is the set of edges of E, |e| ≥ κhE , where hE denotes the diameter of E. For any
iven E ∈ Mh, we define the following standard Virtual Element space [3]:

VE
h =

{
v ∈ H1(E) :∆v ∈ P1(E) , γ∂E(v) ∈ C0(∂E) , γe(v) ∈ P1(e) ∀e ∈ EE ,(

v − Π∇,E
1 v, p

)
E

= 0 ∀p ∈ P1(E)
}

,

here γω(v) denotes the trace of v on ω and Π∇,E
1 v ∈ P1(E) is defined such that

(
∇v − ∇Π∇,E

1 v, ∇p
)

E
= 0

p ∈ P1(E) and
∫

∂E
v =

∫
∂E

Π∇,E
1 v. The degrees of freedom of VE

h are the values of functions at the vertices
f the polygon E.

For any given ℓ ∈ N, we define the following spaces of harmonic polynomials of degree ℓ + 1:

Hℓ+1 (E) =
{

p ∈ Pℓ+1(E) :∆p = 0,

∫
E

p = 0
}

.

et ∇Hℓ+1 (E) be the space of gradients of functions in Hℓ+1 (E). We define the projector Π H,E
ℓ :

[
L2(E)

]2 →
Hℓ+1 (E) such that, ∀v ∈

[
L2(E)

]2,(
Π

H,E
ℓ v, ∇pℓ+1

)
E

= (v, ∇pℓ+1)E ∀pℓ+1 ∈ Hℓ+1 (E) . (2)

otice that, since Hℓ+1 (E) does not contain constants by definition, ∇pℓ+1 is never zero in (2) and
im ∇Hℓ+1 (E) = dimHℓ+1 (E) = 2ℓ + 2. Moreover, notice that [P0(E)]2 ⊆ ∇Hℓ+1 (E), and in particular
P0(E)]2 = ∇H1 (E).

Now, given a function vh ∈ VE
h , consider the problem of computing Π

H,E
ℓ ∇vh. Let {hi, i = 1, . . . , 2ℓ + 2}

e a set of basis functions of Hℓ+1 (E). Then Π
H,E
ℓ ∇vh =

∑2l+2
j=1 dj∇hj , where the values dj can be computed

y solving the following system of equations:

2l+2∑
j=1

(∇hj , ∇hi)E dj = (∇vh, ∇hi)E ∀i = 1, . . . , 2ℓ + 2 . (3)

he right-hand side can be computed since we know vh analytically on the boundary, recalling that ∆hi = 0
nd applying Green’s theorem: (∇vh, ∇hi)E =

(
vh, ∂hi

∂n

)
∂E

, ∀i = 1, . . . , 2ℓ + 2 . On each edge, the right-
hand side is the integral of a polynomial of degree ℓ + 1, that can be computed exactly using ⌈ ℓ+2

2 ⌉ Gauss
quadrature nodes. Concerning the left-hand side of (3), a way to reduce the computational cost, with respect
to 2D quadrature rules, is to observe that (∇hj , ∇hi)E =

(
hj , ∂hi

∂n

)
∂E

, that is the integral of a piecewise
olynomial of degree 2ℓ + 1. Then, the integral can be computed by ℓ + 1 Gauss quadrature nodes on each
dge, reducing the number of function evaluations to ∼ N ℓ.
E

2
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3. Discrete variational formulation

Let Vh = {vh ∈ H1
0(Ω) : vh ∈ VE

h ∀E ∈ Mh} and let ℓE ≥ 0 be given ∀E ∈ Mh, possibly different from
ne polygon to another. Then, we look for uh ∈ Vh such that∑

E∈Mh

(
KΠ

H,E
ℓE

∇uh,Π
H,E
ℓE

∇vh

)
E

+
(

β · Π H,E
ℓE

∇uh,Π 0,E
0 vh

)
E

+
(

γΠ 0,E
0 uh,Π 0,E

0 vh

)
E

=
∑

E∈Mh

(
f,Π 0,E

0 vh

)
E

∀vh ∈ Vh ,
(4)

here Π 0,E
0 is the L2 projection operator onto constants. The following result provides the crucial ingredient

or the well-posedness of (4).

heorem 1. Assume that, ∀E ∈ Mh, 2ℓE + 2 ≥ NE − 1, NE being the number of vertices of E. Then
here exist α∗, α∗ > 0, depending on the mesh regularity parameter κ and on local variations of K, such that,
uh ∈ Vh, ∀E ∈ Mh,

α∗

√
K∇uh


E

≤
√

KΠ
H,E
ℓE

∇uh


E

≤ α∗
√

K∇uh


E

.

roof. The result follows from the theory developed in [1]. □

Theorem 1 provides us a sufficient condition for the coercivity of the diffusivity term of (4). The well-
osedness of the discrete problem is then obtained by the same arguments as in [3]. Optimal order a priori
rror estimates can be proved using the techniques in [1,3]. In particular, we get√

K∇(u − uh)

Ω

= O(h) , ∥u − uh∥Ω = O(h2).

emark 1. A basis of the space of harmonic polynomials of degree ℓ + 1 is known in closed form and is
iven by the recurrence relation (see [4]). Notice that the requirement of zero integral in Hℓ+1 (E) can be
isregarded in practice, since enforcing zero integral into basis functions would not change the results of the
equired computations.

. Numerical results

In this section, we propose some numerical experiments to validate our method. We first give numerical
vidence of the coercivity of our local bilinear form, then we present some convergence tests that assess the
heoretical estimates and compare the errors

e0 =

√ ∑
E∈Th

u − Π∇,E
1 uh

2

E

∥u∥Ω
, e1 =

√ ∑
E∈Th

√
K

(
∇u − ∇Π∇,E

1 uh

)2


E√
K∇u


Ω

, (5)

ith respect to the one made by the standard Virtual Element Method [5].
In the first test, we consider a set of different polygons, with different geometrical features, such as

oncavities, symmetries, and aligned edges. For each polygon, choosing ℓE according to Theorem 1, we assess
he local stability of the discrete diffusion operator (4) (K = 1, β = 0, and γ = 0), evaluating the second
mallest singular value of the elemental stiffness matrix denoted by σr. The results, reported in Table 1,
onfirm the stability of the method and good robustness with respect to the geometrical complexity being
3
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Table 1
σr of the elemental stiffness matrices related to different kinds of polygons.

Fig. 1. Meshes used in the numerical experiments. Left: Distorted squared mesh. Center: Distorted Voronoi mesh. Right:
ighly-distorted Voronoi mesh.

r always well detached from zero, i.e. substantially distant from the machine precision (the smallest singular
alue of the elemental stiffness matrix is always vanishing).

In the second test, we compare the stabilization-free Virtual Element Method (SFVEM in short) with the
tandard VEM with the dofi-dofi stabilization term (VEM in short) [3] by plotting the relative errors e0 and
1 (5), and computing their rates of convergence on three families of distorted and highly-distorted meshes.
he fourth refinement of each family of meshes is shown in Fig. 1. Before performing the comparison, we
nalyse the minimum σr, as in Table 1, over the polygons of each family of meshes. We obtain σr = 4.97e−01
or the distorted squared mesh Fig. 1(a), σr = 7.02e−02 and σr = 7.16e−03 for the distorted Voronoi mesh
ig. 1(b) and the highly-distorted Voronoi mesh Fig. 1(c), respectively. In order to show the advantages of
FVEM with respect to the standard VEM, as suggested in [2], we consider an anisotropic diffusion tensor
. Let Ω be the unit square, we consider the advection–diffusion–reaction problem (1) with coefficients

K = G
[
1 0

]
GT , G =

[
cos(θ) − sin(θ)

]
, β(x, y) =

[
β1(x, y)

]
,
0 1.0e-09 sin(θ) cos(θ) β2(x, y)

4
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Fig. 2. Behaviour of errors e0 and e1 (5) w.r.t. h. First column: Distorted squared mesh. Second column: Distorted Voronoi mesh.
Last column: Highly-distorted Voronoi mesh.

and γ(x, y) = x(1 − x)y(1 − y), where G is the Givens rotation matrix with θ ∈ R. For R1, R2 ∈ [0, 1], we
define [6]

β1(x, y; R1) = 250000x4y3(R1 − x)(1 − x)4[
4R2

(
1 − 5y + 9y2 − 7y3 + 2y4)

− 5y + 24y2 − 42y3 + 32y4 − 9y5]
,

β2(x, y; R2) = −β1(y, x; R2),

and we fix R1 = 0.9, R2 = 0.3 and θ = π
6 . We choose f(x, y) in such a way the exact solution is

u(x, y) = β1(x, y).
In Fig. 2, we plot the convergence curves of errors e0 and e1 (5) and the ratio between their values for

VEM and SFVEM (right axis of each figure). The legends report the rates of convergence of the errors (α0

and α1, respectively). The performances of the two methods are almost equivalent concerning the e1 error,
see Figs 2(a)–2(c). Whereas in Figs 2(d)–2(f) SFVEM easily reaches the asymptotic rates of convergence
on all the meshes and displays a smaller e0 error, whereas VEM is still in a pre-asymptotic regime on
highly-distorted Voronoi meshes and displays an error between two and three times w.r.t. SFVEM.

5. Conclusion

We propose a new first-order stabilization-free VEM that exploits projections on harmonic polynomials to
build a self-stabilized bilinear form. We modify the polynomial projection proposed in [1], strongly exploiting
theoretical results presented in that paper, in order to construct the smallest possible polynomial space that
ensures coercivity of the induced bilinear form. Numerical results show good stability of the method and

optimal rates of convergence.

5
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Data availability

Data will be made available on request.
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