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Abstract: Unmanned Aerial Vehicles (UAVs) are gaining momentum in many civil and military
sectors. An example is represented by the logistics sector, where UAVs have been proven to be
able to improve the efficiency of the process itself, as their cooperation with trucks can decrease the
delivery time and reduce fuel consumption. In this paper, we first state a mathematical formulation
of the Travelling Salesman Problem (TSP) applied to logistic routing, where a truck cooperates
synchronously with multiple UAVs for parcel delivery. Then, we propose, implement, and compare
different sub-optimal routing approaches to the formulated mFSTSP (multiple Flying Sidekick
Travelling Salesman Problem) since the inherent combinatorial computational complexity of the
problem makes it unattractable for commercial Mixed-Integer Linear Programming (MILP) solvers. A
local search algorithm, two hybrid genetic algorithms that permutate feasible and infeasible solutions,
and an alternative ad-hoc greedy method are evaluated in terms of the total delivery time of the
output schedule. For the sake of the evaluation, the savings in terms of delivery time over the
well-documented truck-only TSP solution are investigated for each proposed routing solution, and
this is repeated for two different scenarios. Monte Carlo simulations corroborate the results.

Keywords: TSP; genetic algorithm; last-mile delivery; task scheduling; local search algorithm; truck
and drones; UAV; heuristics; routing; urban air mobility; logistics; mFSTSP

1. Introduction

In recent years, last-mile delivery has witnessed an enormous increase in quality
demand in a continuously growing market, especially due to the rapid spread of online
shopping platforms. Usually, e-commerce retailers are required to deliver a huge number
of parcels within small time windows, to several customers and possibly without charging
any delivery fees. These requirements are obviously conflicting and they shall be tackled
with efficient management.

By definition, last-mile delivery refers to the final stage of the logistical process, when
the package is transported from the transportation hub to the destination of the final client.
It follows the main stages of the last-mile delivery process: (1) when a consumer places an
order, it is entered into a digital system where it can be tracked; (2) at the transportation
hub, where orders are waiting to be delivered, the logistic process starts; (3) orders are
strategically assigned to delivery employees based on delivery addresses with the aim
of optimizing the process itself; (4) orders are scanned before being loaded onto delivery
trucks in order to monitor the parcel on both the customer and corporate sides; (5) orders
are delivered successfully to their intended location, and the delivery status is updated
after a proof of accurate shipment is requested.

The fundamental paradox is also that, despite the fact that customers expect quick
and possibly free delivery services, the last-mile delivery process is the most expensive one
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along the entire logistical chain. Last-mile shipping costs can represent 53% of the entire
cost of a product, as reported in [1]. As a result, nowadays companies are pushing R&D
initiatives to incorporate new technology into their last-mile delivery operations in order to
outperform the competitors.

The deployment of autonomous vehicles is one of several trends that is most likely
to have a remarkable impact on last-mile delivery in the future. The use of autonomous
robots and Unmanned Aerial Vehicles (UAVs) is only one of several upcoming innovations
that will have an impact on last-mile delivery.

An example of this new trend in logistics and, in particular, last-mile delivery is
represented by “Prime Air”, Amazon’s drone delivery service, first introduced in 2013.
The original idea was to employ UAVs to deliver packages, which would take off from
warehouses and use GPS to navigate to the customer’s location. The program’s most recent
announcement took place in 2019, when they unveiled the drone design that will be used
in the “Prime Air” program. This drone can carry packages under 5 pounds and serve
customers in less than 30 min, with a battery autonomy up to 15 miles. In order to boost
safety that would not be assured just by communication systems for situational awareness,
it also includes powerful artificial intelligence (AI) technology, as described in [2]. As a
result, Amazon was given a certificate by the FAA allowing it to fly its aircraft in permitted
airspace. Furthermore, the company claims that by using drones for deliveries, it will reach
50% of shipments with environmental zero-impact by 2030 [3].

Considering the logistics sector of the urban air mobility context, as highlighted in [4],
UAVs employment has been demonstrated to be able to optimize the logistics process
and induce the reduction in conventional resources’ usage, i.e., manned ground vehicles,
traffic, and CO2 emissions. Drones have already been demonstrated to be able to bring a
significant strategic advantage in terms of delivery; indeed, in traffic conditions, UAVs are
generally faster than conventional ground delivery vehicles. Furthermore, UAVs are not
subject to any route restriction, unless flight-restricted areas are present. Their flexibility
represents a key factor to manage the delivery process optimally.

UAVs’ adaptability is essential for managing the delivery time well, as this is one
of the most crucial requirements of the process. Nevertheless, the payload capacity, the
flight range, and the battery life, are the key technological constraints on the widespread
use of UAVs, therefore their use is not without drawbacks. Furthermore, managing risks
associated with devices’ failures in operative conditions is still challenging. For the sake of
completeness, it is worth noticing that there are still some barriers that limit the widespread
adoption of drones in urban scenarios, mainly due to security and safety issues, social
acceptance issues, and regulatory aspects. Refer to the works in [5–12] for a more detailed
introduction to logistics and urban air mobility perspectives and challenges. For the sake
of clarity, the addressed problem of this work considers a scenario where those barriers
have been addressed properly, at least for the majority part.

The tandem truck-drone delivery method has been growingly studied over the last
decade to be used in the last-mile delivery process in order to partially address the battery
and payload capacity issues. Due to the complementarities between the truck’s and the
drone’s characteristics in terms of speed, weight, payload capacity, and energy consumption,
the tandem truck-drone solution is promising, as reported in [13].

The drone’s flight range can be effectively extended by the truck transporting it, as it
would otherwise only be able to fly within a range proportional to its endurance duration
around the distribution center. This final situation would be crucial because moving depots
to densely populated areas would be expensive for the businesses. Instead, in the case of
the truck-drone tandem, the UAV can be carried close to clients by the truck and it can
make deliveries while the vehicle is driving to another customer, resulting in an effective
time management of the delivery process. Additionally, the orders can be assigned to either
the truck or the drone according to their weight, location, and time due date, seeking for an
optimization of the delivery process.
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Comprehensive literature reviews of the applications of drones in the last-mile delivery
domain are proposed in [14–16]. An example of an application is represented by the
multiple Flying Sidekick Travelling Salesman Problem (mFSTSP), where a fleet of UAVs
is used in combination with a truck that simultaneously performs other delivery tasks
and can also serve as a platform for the launch and the recovery of the drones. A similar
application is considered in this work.

The problem of scheduling parcel delivery tasks to a truck operating in combination
with a fleet of UAVs is a variant of the Travelling Salesman Problem (TSP). In computer
science, the TSP is still an open problem to be solved in a globally optimal way due to the
intractability of its inherent combinatorial nature. A problem is said to be intractable if the
computational complexity is superpolynomial. The TSP is defined as an NP (Nondeter-
ministic Polynomial) problem, which means that a solution can be verified in polynomial
time, but the optimal solution cannot be computed in polynomial time. However, it has
not been proven yet that a polynomial resolution algorithm does not exist for these kinds
of problems. In this case, scheduling parcel delivery tasks to a delivery system made
by a truck and many drones belongs to the class of NP-hard problems, i.e., problems
hard at least as the hardest problem in the NP-class of decision problems. The fact that
the considered TSP problem can be formulated as a decision problem is straightforward.
Due to the intractability issue of the optimal solving algorithms of the mFSTSP, and any
TSP problem in general, several optimization methods have been developed over the
last decades to address NP-hard problems. They are divided mainly into four categories
based on the process of inspiration: evolution (e.g., genetic algorithms [17]), hunting (e.g.,
particle swarm optimization [18,19]), nature science (e.g., simulated annealing [20]) and
behavioral/strategic processes (e.g., colony search optimization [21,22]). Refer to [23] for a
comprehensive survey about the TSP problem’s applications, the state-of-the-art solution
approaches, and the complete taxonomy.

In this paper, we propose a mathematical programming statement of a particular
extension of the TSP: the mFSTSP. Trivially, this problem becomes increasingly difficult if
realistic constraints are considered and added to the formulation, such as the modeling of
the tasks of launching and retrieving the drones, the parcel service time to complete the
delivery, the drones’ battery discharge, the synchronization between the truck and drones,
the presence of more than one drone in the fleet, etc. Thus, we believe our work provides a
significant contribution to the current state-of-the-art about the mFSTSP formulations and
solution methods, since our formulation accounts also for some last-mile delivery specific
issues, such as the service delivery time of the parcels, which is an inefficiency factor of the
process, as highlighted in [10].

Due to the NP-hard nature of the addressed problem, heuristics approaches can often
provide efficient and effective solutions. Heuristics algorithms do not guarantee an optimal
solution but can provide good approximations in a reasonable amount of time. On the
contrary, commercial solvers may not be suitable to solve our mFSTSP problem due to
the addition of constraints and variables associated with the drones and their interactions
with the truck. The problem becomes more complex, especially as the number of drones
and the size of the problem increases. As also discussed in [24,25], the computational
requirements of finding an exact solution to the mFSTSP using commercial solvers can
become impractical or time-consuming, even for small-scale instances. For these reasons,
we implement and evaluate a few sub-optimal heuristic resolution approaches: a local
search solution, an evolutionary-based solution with two variants, and a lightweight ad-hoc
greedy solution.

The main contributions of this work are (i) the formulation of a mathematical pro-
gramming representation of a well-defined delivery scheduling problem with a truck and
multiple drones and considering numerous constraints, which are generally partially eval-
uated at the state-of-the-art, (ii) the design of a hybrid evolutionary-based approach to be
compared to both a computationally fast greedy solution method and the well-known local
search method, (iii) the presentation of realistic simulation results in an urban environment.
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This paper is organized as follows. Section 2 discusses the related work conducted in
recent years concerning routing and task scheduling algorithms for last-mile delivery with
truck and drones. Section 3 presents the problem formulation and the assumptions, as well
as the proposed solution approaches and the simulation settings. Section 4 presents and
discusses the simulation results obtained by comparing the performances of the proposed
methods in terms of the total completion time of the delivery cycle for two scenarios of
reference. Our conclusions and future research directions are drawn in Section 5.

2. Related Work

A literature review of heuristic routing solutions and mathematical formulations for
tandem truck-drone problems is presented in the following.

The work in [26] proposes a mathematical formulation of TSP for an energy-efficient
delivery system based on the use of UAVs in cooperation with the public transport sys-
tem, showing the potential to optimize drones’ energy consumption and battery charge
by exploiting public transport vehicles as carriers. In [27], taking into account truck and
drone’s synchronization and minimization of total delivery time, two heuristic algorithms
are proposed for solving large-size problems: Drone Truck Construction (DTC) and Large
Neighborhood Search (LNS). The DTC algorithm tackles the routing problem of the first
truck route from the depot to the scheduled customers, and the LNS algorithm schedules
the drone routes considering the truck as a movable depot. The research in [28] suggests
a hybrid genetic search algorithm based on a split algorithm, crossover, and local search
operations. A restore strategy is designed to enhance the convergence properties of the
algorithm, as well as an adaptive penalization mechanism to dynamically balance the
search between feasible and infeasible solutions in order to solve the TSP-D (Travelling
Salesman Problem with Drones), in the single drone variant. Simulation results show
the capability of the evolutionary-based method to efficiently handle both min-cost and
min-time optimization. Another hybrid genetic algorithm is proposed in [24] to tackle the
mFSTSP, since commercial solvers like CPLEX cannot compute the optimal solution for
more than fifteen customers due to computation time explosion. In this case, the proposed
algorithm includes a sweep strategy as local search method, such that several neighbor-
hoods of the solutions are generated for inserting and swapping orders. A combined
drone-vehicle collaborative problem is solved in [29] by, firstly, planning truck and drones’
routes independently while accounting for vehicle capabilities and restricted areas, and,
secondly, exploiting a genetic search for finding the optimal task scheduling. The research
in [30] proposes a genetic algorithm to compute the truck route in between the drone launch
sites and a K-means clustering algorithm to compute the optimal launch sites of the UAVs,
minimizing the total delivery time and the energy consumed by the vehicles. A genetic
algorithm is also proposed in [31] to tackle the formulated mFSTSP that also includes the
possibility of carrying Autonomous Transport Vehicles (ATVs) on the truck. Randomly
generated instances demonstrate the validity of the approach. A genetic algorithm in
combination with a pseudo-random heuristic rule in the crossover phase enhances the
exploration capability of the search space in the work proposed in [32]. The proposed
approach finds both the take-off points and the delivery schedules of the UAVs while mini-
mizing the total completion time using the evolutionary-based strategy. Another genetic
algorithm is proposed in [33] to address a scheduling problem of an mFSTSP, minimizing
the total distance traveled. In this case, the Clarke and Wright’s savings algorithm is used
sequentially with the genetic algorithm to enhance the performances. Other genetic-based
routing and scheduling solutions can be found in [34–36]. In [35], a particle swarm algo-
rithm solution is compared to an evolutionary-based solution, showing the superiority
of the latter in finding solutions corresponding to a higher level of optimality. The work
in [36] implements a multipath genetic algorithm for allocating parcel delivery tasks in
emergencies, with some nodes having higher priorities over others. An alternative to
evolutionary-based approaches is represented by computationally lighter greedy solutions
that, on the other hand, are less likely to produce a more optimal allocation with respect to
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genetic algorithms. The study in [37] demonstrates the capability of a fast heuristic method
to effectively handle an mFSTSP: the methodology combines (i) a multi-armed bandit
selection for selecting the truck’s customers’ partitions from the whole customers’ set, (ii) a
stochastic local search algorithm that explores the search space, and (iii) a greedy scheduler
for estimating the solution quality. The works [38–40] show an example of how to address
a mFSTSP (in the single drone formulation) and the corresponding heuristic resolution
method design in [38], the extension of the formulation to a fleet of multiple drones in [39],
and, finally, a further formulation extension for optimizing the drones’ speeds within the
decision variables domain in [40]. These works show how heavily simplifications and
assumptions can influence the formulation and the resolution of such problems. A Truck
and Drone Routing Algorithm (TDRA) based on Adaptive Large Neighborhood Search
(ALNS) is proposed in [41], since the MILP formulation yields to a drastic computation time
increase with more than eight customers. It is worth noticing that, beside the optimization
methodologies that sub-optimally solve such problems, a way to address the scalability
issues of the commercial solvers is to design new mathematical statements of the problem.
An example is represented by the study in [25], where a set of mFSTSP formulations are
analyzed with the aim of enhancing the size of the largest instances solved in the literature.

3. Materials and Methods
3.1. Assumptions and Problem Formulation

The single truck-multiple drones routing problem, i.e., the mFSTSP, is the problem
of allocating a set of parcel delivery tasks either to a truck or to the multiple UAVs that
operate in coordination with it. A parcel delivery task consists of a customer, i.e., a location
or node, to be visited exactly once either by the truck or by one of the UAVs of the fleet,
which is assumed to be homogenous (all drones have the same characteristics). It is
possible that not all of the customers are feasibly serviceable by the UAVs: the set of such
customers is defined as the truck only nodes set. The reasons behind the definition of
this set may be due to the parcel’s weight that exceeds the UAVs’ capacity, the difficult
landing conditions at the customer’s location, the requirement of customer’s signature,
etc. truck node and drone node denote nodes exclusively served by the truck or a UAV
respectively, while drone eligible node is the set of nodes that can be served either by a truck
or a UAV. truck route (or tsp tour) denotes, given a set of customers, the minimum cost
sequence of nodes visited by the truck.

The delivery process starts with the truck and the drones departing from the depot
and ends with the return of all of the vehicles to the depot itself. Each UAV of the fleet
can travel toward customers being transported by the truck, conserving its battery life,
or can perform a drone sortie, consuming the energy stored in the battery. A drone sortie
consists of a set of three nodes from which the UAV is launched, delivers the parcel, and is
recovered by the truck. A drone sortie is feasible if the UAV does not exceed its endurance
limit; the loaded UAV may be launched from the initial depot or from a customer’s node;
the recovery node may be another customer’s node or the final depot, in the latter case
no synchronization between the truck and the UAV is needed since it is assumed that
some personnel are always available to recover the drone. Multiple drone sorties can
be performed by each UAV in the delivery cycle. drone travel defines a UAV operation
moving from one node to another. During the execution of a drone sortie, the truck may
go from the launch node to the recovery node or it can accomplish multiple deliveries
(accounting for the synchronization constraints that impose on the truck to be present
at the recovery node before the battery life of the UAV expires). sub− route denotes the
sub-set of the truck route delimited by the node where the drone is launched and the node
where the drone is retrieved. The set of all sub− route of a given tsp tour is defined as the
truck sub− route. Some truck driver’s service times must be considered in order to model
a realistic drone-based last-mile delivery service: the service time for, possibly, charging a
UAV and loading it with the parcel, a service time to physically deliver the parcel to the
customer, and a service time to allow the recovery of a landing UAV.
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The adopted notation is defined as follows:

• Q = {1, 2, . . . , v}: set of available UAVs for the delivery process.
• C = {1, 2, . . . , c}: set of customers to be served either by the truck or a UAV.
• C′ = {1, 2, . . . , c′} ⊆ C: sub-set of customers that may be served by a UAV.
• N = {0, 1, . . . , c + 1}: set of nodes to be visited exactly once in the delivery process

(initial and final node correspond to the same location, i.e., the depot).
• N0 = {0, 1, . . . , c}: set of nodes from which the vehicles can depart from.
• N+ = {1, 2, . . . , c + 1}: set of nodes to which the vehicles can head.
• τij: truck travel time from node i ∈ N0 to node j ∈ N+.
• τ′ijq: travel time of UAV q from node i ∈ N0 to node j ∈ N+.
• sL: service time for launching a UAV from a customer’s node.
• sR: service time for recovering a UAV at a customer’s node.
• ε: UAVs’ flight endurance.
• δt: time to physically deliver the parcel to a customer.
• M: sufficiently large number for constraints’ linearization, if needed.
• (i, j, k)q: drone sortie of UAV q, i.e., tuple describing the operation of UAV q being

launched at node i, delivering the parcel at node j and being recovered at node k.
• Pq: set of all possible tuples (i, j, k)q feasibly flown by UAV q.
• xij = {0, 1}: decision variable representing whether the truck travels from node i ∈ N0

to node j ∈ N+(xij = 1) or not (xij = 0).
• yijkq = {0, 1}: decision variable representing whether UAV q flies from node i ∈ N0

to node j ∈ N+ and is recovered at node k ∈ {N+ : (i, j, k) ∈ P} (yijkq = 1) or not
(yijkq = 0).

• tj: truck arrival time at node j ∈ N+.
• t′jq: UAV q arrival time at node j ∈ N+.
• pij = {0, 1}: decision variable representing whether customer i ∈ C has been visited

before customer j ∈ {C : i 6= j} by the truck (pij = 1) or not (xij = 0).
• 1 ≤ ui ≤ c+2: integer position variable of node i ∈ N+ in the truck’s travel.

It follows the mathematical programming-based formulation of the addressed syn-
chronized single truck-multiple UAVs problem, with notation and assumptions stated
above.

min (tmax) , subject to : (1)

∑i ∈ N0
i 6= j

xij + ∑q∈Q ∑i ∈ N0
i 6= j

∑ k ∈ N+

(i, j, k)q ∈ Pq

yijkq = 1; ∀j ∈ C, (2)

∑j∈N+
x0j = 1, (3)

∑i∈N0
xi,c+1 = 1, (4)

ui − uj + 1 ≤ (c + 2)
(
1− xij

)
; ∀i ∈ C, j ∈ {N+ : j 6= i}, (5)

∑i ∈ N0
i 6= j

xij = ∑k ∈ N+

k 6= j

xjk; ∀j ∈ C, (6)

∑j ∈ C
i 6= j

∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq ≤ 1; ∀i ∈ N0, q ∈ Q, (7)
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∑i ∈ N0
i 6= k

∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq ≤ 1; ∀k ∈ N+, q ∈ Q, (8)

2yijkq ≤∑h ∈ N0
h 6= i

xhi + ∑l ∈ C
l 6= k

xlk; ∀i ∈ C, j ∈ {C : j 6= i}, k ∈
{

N+ : (i, j, k)q ∈ Pq

}
, q ∈ Q, (9)

y0jkq ≤∑h ∈ N0
h 6= k

xhk; ∀j ∈ C, k ∈
{

N+ : (0, j, k)q ∈ Pq

}
, q ∈ Q, (10)

uk − ui ≥ 1− (c + 2)

1−∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq

; ∀i ∈ C, k ∈ {N+ : k 6= i}, q ∈ Q, (11)

t′iq ≥ ti −M

1−∑j ∈ C
i 6= j

∑ k ∈ N+

(i, j, k)q ∈ Pq

yijkq

; ∀i ∈ C, q ∈ Q, (12)

t′iq ≥ ti + M

1−∑j ∈ C
i 6= j

∑ k ∈ N+

(i, j, k)q ∈ Pq

yijkq

; ∀i ∈ C, q ∈ Q, (13)

t′kq ≥ tk −M

1−∑i ∈ N0
i 6= k

∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq

; ∀k ∈ N+, q ∈ Q, (14)

t′kq ≤ tk + M

1−∑i ∈ N0
i 6= k

∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq

; ∀k ∈ N+, q ∈ Q, (15)

tk ≥ th + τhk + sL

1−∑q∈Q ∑l ∈ C
l 6= k

∑ m ∈ N+

(k, l, m)q ∈ Pq

yklmq

+

sR

∑q∈Q ∑i ∈ N0
i 6= k

∑ j ∈ C
(i, j, k)q ∈ Pq

yijkq

+ δt −M(1− xhk); ∀h ∈ N0, k ∈ {N+ : k 6= h},

(16)

t′jq ≥ t′iq + τ′ijq + δt −M

1−∑ k ∈ N+

(i, j, k)q ∈ Pq

yijkq

; ∀j ∈ C′, i ∈ {N0 : j 6= i}, q ∈ Q, (17)
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t′kq ≥ t′jq + τ′jkq + sR −M

1−∑ i ∈ N0
(i, j, k)q ∈ Pq

yijkq

; ∀j ∈ C′, k ∈ {N+ : j 6= k}, q ∈ Q, (18)

t′kq −
(

t′jq − τ′ijq

)
≤ e + M

(
1− yijkq

)
; ∀k ∈ N+, j ∈ {C : j 6= k}, i ∈

{
N0 : (i, j, k)q ∈ Pq

}
, q ∈ Q, (19)

ui − uj ≥ 1− pij(c + 2); ∀i ∈ C, j ∈ {C : j 6= i}, (20)

ui − uj ≤ −1 + (c + 2)
(
1− pij

)
; ∀i ∈ C, j ∈ {C : j 6= i}, (21)

pij + pji = 1; ∀i ∈ C, j ∈ {C : j 6= i}, (22)

t′lq ≥ t′kq −M

3−∑ j ∈ C
(i, j, k)q ∈ Pq

j 6= l

yijkq −∑ m ∈ C
m 6= i 6= k 6= l

∑ n ∈ N+

(l, m, n)q ∈ Pq

n 6= i 6= k

ylmnq − pil

;

∀i ∈ N0, k ∈ {N+ : k 6= i}, l ∈ {C : l 6= i 6= k}, q ∈ Q,

(23)

t0 = t′0q = 0, (24)

p0j = 1; ∀j ∈ C, (25)

xij ∈ {0, 1}; ∀i ∈ N0, j ∈ {N+ : j 6= i}, (26)

yijkq ∈ {0, 1}; ∀i ∈ N0, j ∈ {C : j 6= i}, k ∈
{

N+ : (i, j, k)q ∈ Pq

}
, q ∈ Q, (27)

1 ≤ ui ≤ c + 2; ∀i ∈ N+, (28)

ti ≥ 0; ∀i ∈ N, (29)

t′iq ≥ 0; ∀i ∈ N, q ∈ Q, (30)

pij ∈ {0, 1}; ∀i ∈ N0, j ∈ {C : j 6= i} (31)

Equation (1) is the objective function that seeks to minimize the makespan, i.e., the
total completion time, of the delivery cycle: it is equivalent to minimize the latest arrival
time either of the truck or the latest UAV, i.e., min

(
max

(
tc+1, t′c+1,1, t′c+1,2, . . . , t′c+1,v

))
.

This equivalence is justified by Constraints (14) and (15) that impose a time synchronization
among the truck and the UAVs at rendezvous nodes. Constraint (2) imposes the single visit
condition for each customer, (3) and (4) impose that the truck starts and ends the delivery
cycle at the depot exactly once, and (5) eliminates the truck sub-tours with the bounds of
the auxiliary variable ui being set by (28). Constraint (6) imposes that if the truck visits
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node j, it must depart from node j once the delivery task is performed, (7) and (8) establish
that the UAVs can be launched and retrieved at any node, (9) imposes that if a UAV is
launched at node i and retrieved at node k, both nodes i and k must belong to the truck
tour, and (10) expresses an analogous condition for the UAVs. Constraint (11) expresses
that if a UAV is launched at node i and retrieved at node k, the truck must visit i before k.
Constraints (12) and (13) avoid that either a UAV or the truck are not present at a launch
node; analogously, (14) and (15) avoid the lack of coordination between the truck and the
UAVs at a rendezvous node. Constraint (16) regulates the time update of the truck tour if
the truck travels from node h ∈ N0 to node k ∈ N+: the truck arrival time at node k includes
the potential launch and recovery time of the UAVs, and the service time to physically
deliver the parcel at node k. Constraint (17) regulates the time update for UAV q tour from
node i to node j, considering the UAV flight time and the service time to physically deliver
the parcel. Constraint (18) includes the travel time of UAV q from node j to node k and
the recovery time of the UAV. The endurance limitations of the UAVs are expressed by
Constraint (19), which becomes active if the UAVs’ travels take place. Constraints (20),
(21), (22) establish the correct ordered truck’s path. Constraints (23) and (25) prevent that a
UAV is launched from node l before being retrieved at node k. Constraint (24) defines the
starting time of the truck and the UAVs. The domain of the decision variables is defined by
Constraints from (26) to (31).

The MILP formulated above is inspired by the one formulated in [38]. The formulation
is modified to include more than one UAV and the service times required to physically
deliver the parcels. The problem is NP-hard and a few sub-optimal resolution approaches
are presented in the next sections through a set of heuristic algorithms.

3.2. Local Search Algorithm

The Local Search Algorithm (LSA) is one of the first and most adopted heuristic
algorithms in operation research. It is a heuristic method that evaluates a sub-space
of the search space of the problem, an instance of the class of TSPs in this case, until,
in general, a sub-optimal solution is found. At each step, the local search algorithm
explores the neighboring solutions of a current solution to find a better solution, given an
evaluation criterion. It focuses on a single solution and its immediate neighbors, rather
than maintaining a population of solutions. It follows the main steps of an LSA:

• Algorithm Initialization: The algorithm starts the search process from an initial solution.
• Fitness Evaluation: The fitness or objective function value of the solution is computed;

the fitness of the solution represents its quality or suitability.
• Neighborhood Generation: The algorithm generates solutions neighboring the current

solution through small modifications of the current solution. These modifications can
include swapping elements, adding and removing elements, or altering values within
the encoding of the solution itself.

• Neighbor Selection and Evaluation: From the set of generated neighboring solutions, one
neighbor is selected as the next solution to explore. The selection process can vary
based on different criteria, such as selecting the neighbor with the best improvement
in fitness value or choosing a neighbor randomly.

• Solution Update: If the neighbor solution’s quality is better than the current solution, the
neighbor solution is set as the new current solution. Otherwise, the current solution
remains unchanged.

• Algorithm Termination: The algorithm repeats steps Fitness Evaluation, Neighborhood
Generation, Neighbor Selection and Evaluation, and Solution Update until a termination
condition is met. The termination condition can be a maximum number of iterations,
reaching a satisfactory solution quality, or the lack of solution optimality improvement
for a certain number of iterations.

Local search algorithms are particularly useful for solving optimization problems
where the objective is to find a solution that satisfies certain constraints or criteria. They
are often applied to large search spaces or problems with a high degree of complexity,
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where exploring the entire solution space is computationally infeasible. However, LSAs
may end up being trapped in local optima, which are suboptimal solutions with better
optimality level than their immediate neighbors, but with worse optimality level than the
global optimum.

Considering the formulated mFSTSP, the proposed LSA starts from the conventional
tsp tour, i.e., the routing solution with a single truck and no drones obtained by a TSP
solver, then either sequentially removes nodes from the tsp tour and assigns them to one of
the UAVs of the fleet or swaps the nodes of the TSP solutions seeking for an improvement
of the solution itself. This process is repeated until the LSA does not find any improvement.
An example of how the algorithm works is shown in Figure 1. The pseudo-code of the
main body of the proposed mFSTSP-related LSA solution is shown in Algorithm 1.

Algorithm 1 Main body of the Local Search Algorithm
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  if 𝑚𝑎𝑥 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 > 0 do 
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   exit; 
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 end 

end 
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Figure 1. Representation of the functioning logic of the LSA with a truck and one drone. Grey nodes
represent the depot, red nodes represent truck-only nodes and green nodes represent drone-eligible
nodes. (a) The TSP tour computed by the TSP solver; (b) 1st iteration of the LSA: node 4 is removed
from the TSP tour and assigned to the UAV, which is launched at node 2 and retrieved at node 3;
(c) 2nd iteration of the LSA: node 5 is removed from the TSP tour and assigned to the UAV, which is
launched at node 3 and retrieved at the depot.

The set of drone-eligible nodes C′ is obtained removing the truck only nodes from the
whole node set C. The tsp tour is calculated through a solver that minimizes the total truck
travel time given the input C. The computed tsp tour is split into many sub-tours, called
sub− route, that includes the truck nodes where the UAVs are launched and recovered.
The set of all sub-routes of the truck is the sub− routes vector; it is initialized in Line 3 and
progressively modified when UAV assignments are made through the algorithm execution.
Analogous considerations hold for i∗, j∗ and k∗, which indicate the UAVs’ launch, delivery,
and recovery nodes. At each iteration and for each UAV, the LSA allocates a delivery task
to the UAV with a greater value of max savings. Each UAV is considered independently, as
for a single drone FSTSP problem. The savings() function, shown in Algorithm 2, is called
every time a drone eligible node j is investigated in order to compute the time reduction
related to the removal of node j from the tsp tour. The cost truck() function, shown in
Algorithm 3, is called every time a drone eligible node cannot be assigned to a UAV because
the UAV is already operating on the considered sub− route. The function evaluates the
insertion of node j in a sub− route as a truck node and swaps the truck node if this brings
a reduction in the waiting time between the UAV and the truck. The cost uav() function,
shown in Algorithm 4, evaluates the potential assignment of a drone eligible node to a
uav sortie, if the node j does not belong to a sub− route where UAV travel has already
been assigned. The per f orm update() function updates the tsp tour, the truck sub-routes,
the UAVs’ assignments and the arrival time of the truck at each node of the tsp tour.
per f orm update(), shown in Algorithm 5, is called once all drone eligible nodes have been
evaluated and if the LSA is able to produce an improvement to the solution.

In order to ensure the synchronization between the UAVs and the truck at the re-
covery nodes, the time update() function, shown in Algorithm 6, is called within the
per f orm update() function. time update() regulates the awaiting of the truck by each UAV
and vice versa, updating the truck arrival time vector at each node, denoted by t. For
instance, if the UAV’s travel time is greater than the corresponding sub− route, the truck
should wait for the UAV recovery at a recovery node before serving the next customer. On
the other hand, the UAV should hover in place waiting for the truck if the drone travel time
is smaller than the corresponding sub− route.
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Algorithm 2 savings () function
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Algorithm 4 cost uav () function
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 insert 𝑗∗[𝑛] in the new position in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟; 
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  end 

 end 
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end 
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 insert 𝑗’ in 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 of 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒;  

 𝑡𝑖𝑚𝑒 𝑑𝑟𝑜𝑛𝑒 = 𝜏௔௝ᇲᇱ + 𝛿௧ + 𝜏௝ᇲ௕ᇱ ; 
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 end 

 if 𝑡𝑖𝑚𝑒 𝑑𝑟𝑜𝑛𝑒 > 𝜀 || 𝑡𝑖𝑚𝑒 𝑡𝑟𝑢𝑐𝑘 > 𝜀 do 

  set schedule as infeasible; 

 end 

end 

 
 
 

 

 

 

 

 

 

 

 

3.3. Hybrid Genetic Algorithm—Feasible Variant

The evolutionary-based algorithm is a heuristic algorithm that performs optimization
by applying methodologies of exploration of the search space inspired by the evolution
mechanisms of nature. This algorithm explores, with a progressive improvement of the op-
timality level, a sub-set of the solution space of the problem. According to the terminology
of this method, a population made by individuals, i.e., either the delivery schedule of the
truck or the delivery schedule of the UAVs in this case, gives part of its “genetic” material
to the individuals of the next algorithm’s iterations in such a way that a cost function’s
valuable improvement is followed in the next generations. During the reproduction phase,
the individuals are modified in order to meet certain fitness criteria: for instance, another
heuristic methodology may be adopted to generate a new set of solutions, which partially
contain the information, i.e., the genetic material of the solutions of the current iteration
and partially derive from the designed further exploration methodology of the search space.
It follows the main steps of evolutionary search methods:
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• Algorithm Initialization: The algorithm starts by creating a population of potential
solutions to the problem. Each individual of the population is a potential solution to
the problem.

• Fitness Evaluation: Each solution in the population is evaluated and assigned to a
fitness value based on how well it solves the problem. The fitness value is represented
by the total delivery time of truck and UAVs.

• Natural Selection: Solutions with higher fitness values are more likely to be selected
for the next generation. This process mimics the natural selection of individuals with
favorable traits.

• Individuals Reproduction: The selected solutions are used to create offspring for the
next generation. This is done through crossover and mutation operations, which
mimic the genetic processes of recombination and unexpected mutation in nature. The
crossover phase involves combining genetic material from two parent solutions to
create one or more offspring solutions. This is done by selecting a crossover point and
exchanging genetic material beyond that point between the parents. The mutation
phase introduces small random changes in the genetic material of offspring solutions.
It helps explore new regions of the solution space that may lead to better solutions.

• Individuals Replacement: The offspring solutions replace some of the less fit solutions
in the current population. This ensures that the population evolves over time and
improves its overall fitness.

• Algorithm Termination: The algorithm continues to iterate through Fitness Evaluation,
Natural Selection, Individuals Reproduction, and Individuals Replacement steps until a ter-
mination condition is met. This condition could be a maximum number of generations,
a specific fitness threshold, or a predefined computational limit.

By iteratively repeating the steps indicated above, the evolutionary approach explores
the solution space, favoring solutions with higher fitness values. Over time, the population
tends to converge towards better solutions, but not, in general, to the global optimal solution.
The proposed algorithm is a hybrid genetic algorithm that includes optimization and a local
search-based heuristic rule during the mutation phase. For this variant of the proposed
genetic algorithms, the individuals of the population of each iteration can only correspond
to feasible task schedules. The fitness improvement criterion of the solution aims at the
minimization of the delivery time of the delivery process. The first proposed variant of
the proposed evolutionary-based routing method is the Hybrid Genetic Algorithm—Feasible
Variant, shown in Algorithm 7.

Algorithm 7 Main body of the Hybrid Genetic Algorithm—Feasible Variant
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while 𝛾 < 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do 

 𝛾 = 𝛾 + 1; 
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Starting from a random population of n individuals, with an individual being defined
as a tsp tour without the initial and final depots, the parents selection() function, shown in
Algorithm 8, selects the TSP solutions that provide the basis genetic material for the child
generation phase. The child generation() function, shown in Algorithm 9, generates new indi-
viduals that carry the genetic material of the selected parents with some diversification, to
enlarge the solution space explored. The crossover and mutation phases takes place through
the split(), local search() and restore() functions that split, modify, and re-assemble individ-
uals in order to generate new genetic material, seeking for an improvement of the solution
optimality level with respect to the previous generations. The split() function is reported
in Algorithm 10, while its inner functions create uav sorties(), insert in f easible customers(),
truck sub− routes update() are reported in Algorithm 11, Algorithm 12, and Algorithm 13
respectively. create uav sorties() assigns all the drones eligible nodes to the UAVs, but if this
results in an infeasible assignment, insert in f easible customers() re-inserts the infeasible
nodes as truck nodes in the child vector.

The minimum number of customers that can be served by v UAVs, nd, is computed by
means of Equation (32), with the quantity

⌈ c−v
v+1
⌉

being taken from [38] and denoting the
minimum number of customers to be served by the truck in presence of v UAVs.

nd = c−
⌈

c− v
v + 1

⌉
, i f

(
nd > c′

)
→ nd = c′ (32)

Once all nodes are assigned either to the truck or the UAVs, truck sub− routes update()
updates the solution. The population generated by the Hybrid Genetic Algorithm—Feasible
Variant considers only feasible solutions, i.e., solutions that do not violate the endurance
constraints of the UAVs. When the child has been educated by the local search() function,
which is the same as in Algorithm 1, the restore() function, shown in Algorithm 14, gener-
ates an individual coherent with the others, since the LSA returns each truck sub− route.
The select survivors() function, shown in Algorithm 15, discards the individuals with poor
characteristics either in terms of fitness values (the completion time of the delivery cycle)
or in terms of diversification from the other individuals. At the end of the whole process,
the select f ittest individuals() function selects the best solution according to the minimum
makespan criterion.

Algorithm 8 parents selection () function
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parents with some diversification, to enlarge the solution space explored. The crossover 
and mutation phases takes place through the 𝑠𝑝𝑙𝑖𝑡() , 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ()  and 𝑟𝑒𝑠𝑡𝑜𝑟𝑒() 
functions that split, modify, and re-assemble individuals in order to generate new genetic 
material, seeking for an improvement of the solution optimality level with respect to the 
previous generations. The 𝑠𝑝𝑙𝑖𝑡() function is reported in Algorithm 10, while its inner 
functions 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠() , 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠() , 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 −𝑟𝑜𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒()  are reported in Algorithm 11, Algorithm 12, and Algorithm 13 
respectively. 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠()  assigns all the 𝑑𝑟𝑜𝑛𝑒𝑠 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠  to the UAVs, 
but if this results in an infeasible assignment, 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠() re-inserts 
the infeasible nodes as 𝑡𝑟𝑢𝑐𝑘 𝑛𝑜𝑑𝑒𝑠 in the 𝑐ℎ𝑖𝑙𝑑 vector.  

The minimum number of customers that can be served by 𝑣 UAVs, 𝑛ௗ, is computed 
by means of Equation (32), with the quantity ቒ௖ି௩௩ାଵቓ being taken from [38] and denoting 
the minimum number of customers to be served by the truck in presence of 𝑣 UAVs.  𝑛ௗ = 𝑐 − ቒ𝑐 − 𝑣𝑣 + 1ቓ  , 𝑖𝑓  (𝑛ௗ > 𝑐ᇱ) → 𝑛ௗ = 𝑐ᇱ (32) 

Once all nodes are assigned either to the truck or the UAVs, 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 −𝑟𝑜𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒() updates the solution. The population generated by the Hybrid Genetic 
Algorithm—Feasible Variant considers only feasible solutions, i.e., solutions that do not 
violate the endurance constraints of the UAVs. When the 𝑐ℎ𝑖𝑙𝑑 has been educated by the 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ() function, which is the same as in Algorithm 1, the 𝑟𝑒𝑠𝑡𝑜𝑟𝑒() function, 
shown in Algorithm 14, generates an individual coherent with the others, since the LSA 
returns each 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒. The 𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠() function, shown in Algorithm 
15, discards the individuals with poor characteristics either in terms of fitness values (the 
completion time of the delivery cycle) or in terms of diversification from the other 
individuals. At the end of the whole process, the 𝑠𝑒𝑙𝑒𝑐𝑡 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠() function 
selects the best solution according to the minimum makespan criterion. 

Algorithm 8. 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛() function. 

Input: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑠; 

Output: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠; 

for 𝑖 = 1,2 do 

 sample randomly 𝑘 = 2 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

 select 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 among 𝑘 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠; 

 assign 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 to 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[𝑖]; 
end 
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Algorithm 9. 𝑐ℎ𝑖𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛() function. 
Input: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

Output: 𝑐ℎ𝑖𝑙𝑑; 

Initialize 𝑟 ∊ [0,10] 𝑎𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒;  

insert depots to 𝑝𝑎𝑟𝑒𝑛𝑡𝑠; 

if 𝑟 < 5 || 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 = ∅ do 

 select first parent, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[1]; 
 sample [𝑎, 𝑏] from 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[1], with 𝑎 before 𝑏 in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟; 

 assign 𝑛𝑜𝑑𝑒𝑠 of 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[1] between 𝑎 and 𝑏 to 𝑐ℎ𝑖𝑙𝑑; 

 if 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 ∈ [𝑎, 𝑏] do 

  skip 𝑛𝑜𝑑𝑒𝑠 ∈ 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

 end 

 assign remaining 𝑛𝑜𝑑𝑒𝑠 to 𝑐ℎ𝑖𝑙𝑑 from 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2]; 
else 

 sample [𝑎, 𝑏] from 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠[1], with 𝑎 before 𝑏 in 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

 assign 𝑛𝑜𝑑𝑒𝑠 of 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠[1] between 𝑎 and 𝑏 to 𝑐ℎ𝑖𝑙𝑑; 

 if TSP 𝑛𝑜𝑑𝑒𝑠 of 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[1] ∈ [𝑎, 𝑏]  do 

  skip 𝑛𝑜𝑑𝑒𝑠 of 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[1]; 
 end 

 assign remaining 𝑛𝑜𝑑𝑒𝑠 to 𝑐ℎ𝑖𝑙𝑑 from 𝑝𝑎𝑟𝑒𝑛𝑡𝑠[2]; 
end 
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Algorithm 10. 𝑠𝑝𝑙𝑖𝑡() function. 

Input: 𝑐ℎ𝑖𝑙𝑑; 

Output: 𝑠𝑝𝑙𝑖𝑡 𝑐ℎ𝑖𝑙𝑑, 𝑡, 𝑠𝑝𝑙𝑖𝑡 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑠𝑝𝑙𝑖𝑡 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

select 𝑛ௗ as in Equation (32); 

sample randomly 𝑛ௗ 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 from 𝐶’; 
remove assigned 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 from 𝑐ℎ𝑖𝑙𝑑; compute 𝑡 for 𝑐ℎ𝑖𝑙𝑑; 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠(𝑐ℎ𝑖𝑙𝑑, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝑛ௗ, 𝑡); 

while 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ≠ ∅ do 

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑐ℎ𝑖𝑙𝑑, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟); 

 reset assigned 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠; 

 update 𝑡; 

 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠(𝑐ℎ𝑖𝑙𝑑, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝑛ௗ, 𝑡); 

end 

reset 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝐶’; 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐ℎ𝑖𝑙𝑑, 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠, 𝑣); 𝑡𝑖𝑚𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠); 
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Algorithm 11. 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠() function. 

Input: 𝑐ℎ𝑖𝑙𝑑, 𝑡, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝑛ௗ; 

Output: 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠; 

Initialize: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 = [[0] as many 𝑛𝑜𝑑𝑒𝑠 in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟];  

for 𝑛 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑛ௗ) do 

 for 𝑗 ∊ 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 do 

  for 𝑖 ∈ 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟 do 

   find 𝑛𝑜𝑑𝑒 𝑘 in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟 after 𝑖; 
   if 𝜏௜௝ᇱ + 𝛿௧ + 𝜏௝௞ᇱ < 𝜀 & 𝜏௜௞ < 𝜀 do 
    𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛𝑠[𝑗] = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛𝑠[𝑗] + 1; 
   end 
  end 
 end 

end 

while unassigned 𝑛𝑜𝑑𝑒𝑠 ≠ ∅ do 

 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 = ∞; pick 𝑗 as 𝑛𝑜𝑑𝑒 with minimum 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛𝑠; 

 if 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛𝑠[𝑗] = 0 do 

  insert 𝑗 in 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠;  

 else 

  𝑗 = 𝑗ᇱ; 
  for 𝑖 ∈ 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟 do  

   for 𝑛 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑢𝑎𝑣[𝑖] do 

    find 𝑘: node after 𝑖 in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟; 

    if 𝜏௜௝ᇱ + 𝛿௧ + 𝜏௝௞ᇱ < 𝜀 & 𝜏௜௞ < 𝜀 do 

    𝑤 = 𝜏௜௝ᇱ + 𝛿௧ + 𝜏௝௞ᇱ − 𝑡[𝑘] − 𝑡[𝑖]; 
    if 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 ≥ 0 & 𝑤 < 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 || 0 < 𝑤 < 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 do 

     𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 = 𝑤; [𝑛∗, 𝑖∗, 𝑗∗, 𝑘∗] = [𝑛, 𝑖, 𝑗ᇱ, 𝑘]; 
    end 

    end 

   end 

  end 

  if 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 = ∞ do 

   insert 𝑗ᇱ in 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠; 

  else 

  assign 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒 = (𝑛∗, 𝑖∗, 𝑗∗, 𝑘∗); 

  end 

 end 

end 
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Algorithm 12. 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠() function. 

Input: 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠; 

Output: 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟; 

while 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ≠ ∅ do 

 for 𝑖 ∊ 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 do 

  for 𝑘 ∊ 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟  do 

   find 𝑝: position of 𝑘 in 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟; 

   find 𝑛𝑜𝑑𝑒 ℎ before 𝑛𝑜𝑑𝑒 𝑘;  

   (𝑝∗, 𝑖∗) = arg min(௣,௜)∈௧௦௣ ௧௢௨௥(𝜏௛௜ + 𝛿௧ + 𝜏௜௞ − 𝜏௛௞); 

  end 
 end 
 insert 𝑖∗ in position 𝑝∗ of 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟;  

end 
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Algorithm 13. 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒() function. 

Input: 𝑐ℎ𝑖𝑙𝑑, 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠, 𝑣; 

Output: 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠; 

for 𝑛 ∊ 𝑟𝑎𝑛𝑔𝑒(𝑛ௗ) do 

 for each 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒 do 

  𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒 = (𝑛, 𝑖, 𝑗, 𝑘); 

remove 𝑖,𝑗,𝑘 from 𝐶’; 
  for 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒 ∊ 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠[𝑛]  do 

   remove 𝑗 from 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒; 

   split 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠;  

   update 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠;  

   exit; 
  end 
 end 

end 
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Algorithm 14 restore () function
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Algorithm 14. 𝑟𝑒𝑠𝑡𝑜𝑟𝑒() function. 

Input: 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑐ℎ𝑖𝑙𝑑, 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

Output: 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑; 

for 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒 ∈ 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠 do 

 find 𝑎: first node of 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒; 

 find 𝑏: last node of 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒; 

 insert randomly 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 associated to 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒 between 𝑎,𝑏; 

 remove 𝑑𝑒𝑝𝑜𝑡𝑠; 

end 

 

  
Algorithm 15 select survivors () function
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Algorithm 15. 𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠() function. 
Input: 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑, 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑐ℎ𝑖𝑙𝑑; 

Output: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

if each 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ≠ 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑 do 

 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 of 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑 < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 do 

  remove 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

  insert 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑 in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

  set 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

 else 

  ignore 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑; 

 end 

else 

 remove 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 with maximum 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒; 

 insert 𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑 in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

 set 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

end 

3.4. Hybrid Genetic Algorithm—Infeasible Variant 
The second proposed variant of the evolutionary-based solution approach of the 

formulated mFSTSP is the Hybrid Genetic Algorithm—Infeasible Variant, shown in 
Algorithm 16. The main difference with the Hybrid Genetic Algorithm—Feasible Variant is 
that the requirement of feasible solution output of the 𝑠𝑝𝑙𝑖𝑡()  function, shown in 
Algorithm 17, does not hold, and the definition of the additional 𝑟𝑒𝑝𝑎𝑖𝑟()  function, 
shown in Algorithm 18, is needed. The second variant considers infeasible individuals 
with the aim of diversifying the exploration of the search space and avoiding incurring 
local minima. 

  

3.4. Hybrid Genetic Algorithm—Infeasible Variant

The second proposed variant of the evolutionary-based solution approach of the
formulated mFSTSP is the Hybrid Genetic Algorithm —Infeasible Variant, shown in Algorithm
16. The main difference with the Hybrid Genetic Algorithm—Feasible Variant is that the
requirement of feasible solution output of the split() function, shown in Algorithm 17, does
not hold, and the definition of the additional repair() function, shown in Algorithm 18, is
needed. The second variant considers infeasible individuals with the aim of diversifying
the exploration of the search space and avoiding incurring local minima.
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Algorithm 16 Main body of the Hybrid Genetic Algorithm—Infeasible Variant
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Algorithm 16. Main body of the Hybrid Genetic Algorithm—Infeasible Variant. 

Initialize: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑡𝑟𝑢𝑐𝑘 𝑜𝑛𝑙𝑦 𝑛𝑜𝑑𝑒𝑠, 𝑠ோ, 𝑠௅, 𝑣, 𝜀, 𝛿௧, 𝜔, 𝜂, µ; 

generate randomly 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠; 𝛾 = 0; 

while 𝛾 < 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do 

 𝛾 = 𝛾 + 1; 

 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑠); 

 𝑐ℎ𝑖𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠); 

 𝑠𝑝𝑙𝑖𝑡(𝑐ℎ𝑖𝑙𝑑); 

 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ(𝑠𝑝𝑙𝑖𝑡 𝑐ℎ𝑖𝑙𝑑); 

 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑐ℎ𝑖𝑙𝑑, 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠); 
 if 𝑠𝑝𝑙𝑖𝑡 𝑐ℎ𝑖𝑙𝑑 is infeasible do 

  sample randomly 𝑃 ∊ [0,100]; 
  if 𝑃 > 50 do 

   𝑟𝑒𝑝𝑎𝑖𝑟(𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 𝑡𝑟𝑢𝑐𝑘 𝑡𝑟𝑜𝑢𝑡𝑒); 

   𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝑐ℎ𝑖𝑙𝑑, 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠); 

   update 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

  else 

   update 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; increase 𝜔; 

  end 

 else 

  update 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; decrease 𝜔; 

 end 

 if 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 > 𝜂 || 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 > µ do 

  𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛); 
 end 

end 𝑠𝑒𝑙𝑒𝑐𝑡 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒𝑠); 

 
In this case, since 𝑡𝑠𝑝 𝑡𝑜𝑢𝑟 and 𝑑𝑟𝑜𝑛𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 are generated pseudo-randomly, 

both feasible and infeasible solutions are considered. Then, according to a well-defined 
probability 𝑃, the 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ() function is entitled to either improving the pseudo-
random feasible mFSTSP solution or repairing the infeasible solution. 𝜂 and µ denote 
the maximum number of infeasible and feasible individuals in the population. The 
penalizing term 𝜔 is defined as a penalizing factor for the travel time computation when 
the feasibility constraints are violated, as follows: 

𝑡௣ = 𝑡 + 𝜔·𝑚𝑎𝑥 ቌ0, ෍ 𝜏௜௝௜ୀ௝ିଵ
௝∈௦௨௕ି௥௢௨௧௘ , 𝜏௜௝௤ᇱ +  𝜏௝௞௤ᇱ  ቍ  (33) 

where 𝑡௣ is a penalizing cost in the truck time vector 𝜏 at each node, 𝑡 is the actual truck 
travel time at the node, ∑ 𝜏௜௝௜ୀ௝ିଵ௝∈௦௨௕ି௥௢௨௧௘  denotes the truck travel time for serving all 
customers of the 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒 and 𝜏௜௝ᇱ +  𝜏௝௞ᇱ  is the travel time of a UAV in order to 
complete the 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒:  (𝑖, 𝑗, 𝑘)௤. In case many infeasible solutions are being produced 
by the 𝑠𝑝𝑙𝑖𝑡()  function, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  reduces the number of nodes randomly 
assigned to the UAVs. This contains the number of infeasible solutions in the customers 

In this case, since tsp tour and drones deliveries are generated pseudo-randomly, both
feasible and infeasible solutions are considered. Then, according to a well-defined probabil-
ity P, the local search() function is entitled to either improving the pseudo-random feasible
mFSTSP solution or repairing the infeasible solution. η and µ denote the maximum number
of infeasible and feasible individuals in the population. The penalizing term ω is defined
as a penalizing factor for the travel time computation when the feasibility constraints are
violated, as follows:

tp = t + ω·max

(
0,

i=j−1

∑
j∈sub−route

τij, τ′ijq + τ′jkq

)
(33)

where tp is a penalizing cost in the truck time vector τ at each node, t is the actual truck

travel time at the node, ∑
i=j−1
j∈sub−route τij denotes the truck travel time for serving all customers

of the sub− route and τ′ij + τ′jk is the travel time of a UAV in order to complete the uav sortie:
(i, j, k)q. In case many infeasible solutions are being produced by the split() function,
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increment variable reduces the number of nodes randomly assigned to the UAVs. This
contains the number of infeasible solutions in the customers node set if the node locations
are too far to be served by the UAVs. The create uav sortie() function assigns all the
customers to the uav sortie independently on their feasibility.

Algorithm 17 split () function of Hybrid Genetic Algorithm—Infeasible Variant
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node set if the node locations are too far to be served by the UAVs. The 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒() function assigns all the customers to the 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒 independently 
on their feasibility.  

 

Algorithm 17. 𝑠𝑝𝑙𝑖𝑡() function of Hybrid Genetic Algorithm—Infeasible Variant. 

Input: 𝑐ℎ𝑖𝑙𝑑; 

Output: 𝑠𝑝𝑙𝑖𝑡 𝑐ℎ𝑖𝑙𝑑, 𝑡, 𝑠𝑝𝑙𝑖𝑡 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑠𝑝𝑙𝑖𝑡 𝑑𝑟𝑜𝑛𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 

select 𝑛ௗ as in Equation (32); 

sample randomly 𝑛ௗ 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 from 𝐶’;  

if 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝜂 || 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 0 do 

 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 1; 

 if 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = ௡೏ଶ  do 

  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 0; 𝑛ௗ = 1; 

 end 

end 𝑛ௗ = 𝑛ௗ − 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒; 

remove assigned 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠 from 𝑐ℎ𝑖𝑙𝑑; compute 𝑡 for 𝑐ℎ𝑖𝑙𝑑; 

reset 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝐶’; 𝑐𝑟𝑒𝑎𝑡𝑒 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠(𝑐ℎ𝑖𝑙𝑑, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠, 𝑛ௗ, 𝑡); 𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐ℎ𝑖𝑙𝑑, 𝑢𝑎𝑣 𝑠𝑜𝑟𝑡𝑖𝑒𝑠, 𝑣); 𝑡𝑖𝑚𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑟𝑢𝑐𝑘 𝑠𝑢𝑏 − 𝑟𝑜𝑢𝑡𝑒𝑠, 𝑑𝑟𝑜𝑛𝑒 𝑛𝑜𝑑𝑒𝑠); 

 

  Algorithm 18 repair () function

Input: restored truck route;
Output: repaired child, repaired drone deliveries;
Initialize: drone deliveries = ∅;
add depots to restored truck route;
local search(restored truck route, drone deliveries);

3.5. Ad-hoc Method

The alternative solution method Ad-hoc Method, shown in Algorithm 19, is a greedy
algorithm that differs from the other optimization algorithms that iteratively try to improve
a set of sub-optimal solutions, and generates a unique solution with a systematic procedure.
A greedy algorithm is a simple, intuitive, and often efficient algorithmic approach that
makes locally optimal choices at each step, aiming at finding an optimal solution. At each
step of the algorithm, a well-defined strategy builds the best possible solution at the current
step, without considering the overall consequences of that choice. It follows a general
outline of how a greedy algorithm works:

• Algorithm Initialization: The algorithm starts with an empty or partial solution.
• Greedy Strategy: At each step, the algorithm makes a locally optimal choice based on a

certain rule. It selects the most favorable available at the current stage of the process,
without considering its impact on future steps.

• Solution Feasibility and Update: The algorithm checks if the selected choice is feasible or
satisfies certain constraints. If the choice violates any constraints, it may be discarded,
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and an alternative option may be considered. The selected choice is added to the
current solution or modifies the partial solution.

• Algorithm Termination: The algorithm iterates through Greedy Strategy and Solution
Feasibility and Update steps until a termination condition is met. This condition could
be reaching a final solution, satisfying a specific objective, or exhausting the avail-
able choices.

Greedy algorithms do not guarantee an optimal solution for all problems, as in this
case. Therefore, the correctness and optimality of a greedy algorithm depend on the specific
problem being solved, the methodology exploited by the greedy algorithm itself and the
properties of the problem instance. Greedy algorithms are often used when finding an
optimal solution for a problem requires a lot of computational resources or is not feasible
within a reasonable time frame. Additionally, greedy algorithms are commonly used as
building blocks or components within more complex algorithmic approaches.

The greedy approach proposed in this work for the formulated mFSTSP is inspired
by the work in [38], which also formulated a greedy strategy for a mFSTSP. The proposed
greedy solution consists of a poor computationally expensive ad-hoc resolution method of
the formulated mFSTSP problem that computes a feasible schedule solution according to a
specific methodology of synchronization between the UAVs’ delivery schedules and the
truck’s delivery schedule.

Algorithm 19 Main body of the Ad-hoc Method
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LTL (Lower Truck Limit) denotes the minimum number of customers that can be
served by the truck if v UAVs are available. Maximizing the number of customers to be
served by the UAVs aims at reducing the total completion time as much as possible and,
at the same time, LTL may be increased for feasibility reasons if the maximum number
of customers cannot be assigned to the UAVs. C′ and tsp tour are initialized at every
loop start and the cost truck calculation() function, shown in Algorithm 20, outputs the



Drones 2023, 7, 407 24 of 32

shortest possible tsp tour given LTL customers. Firstly, the truck− only nodes are inserted
in the tsp tour, since they cannot be assigned to any UAV; secondly, the customers nodes are
inserted in the tsp tour from the truck input.

The customer division() function decouples the nodes to be served by the truck and
the nodes to be served by the UAVs. Then, the proposed algorithm tentatively creates a
sub-optimal mFSTSP solution according to the available tsp tour and uav customers, and
repeats the process increasing LTL if the solution is not feasible or if a reduction in the
makespan can be made, even if the solution is feasible.

Algorithm 20 cost truck calculation () function
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gramming language. In particular, the DEAP library is exploited for ease of management of
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the genetic algorithm variables. The settings of the evolutionary algorithms’ parameters are
as follows: γ = 1000, n = 20, ω = 1, η = 15, µ = 25. The parameter settings for the fleet
of UAVs are reported in Table 1. Note that all the customers nodes are considered eligible
for the UAVs. As far as the optimization of the process’ makespan, this choice allows us to
highlight the benefits of drones’ usage in cooperation with a truck.

Table 1. Fleet of UAVs’ parameters setting.

Parameter Value

ε [s] 1500
sR [s] 60
sL [s] 60

UAV average speed [m/s] 11.1
c′ c

The delivery operational area of either the truck or the drones is defined as a rectangu-
lar portion of the city of Turin, Italy. The fleet is assumed to be composed of v = 2 UAVs. δt
is set to 200 seconds. The truck-only TSP solutions are obtained with the Google OR tools
solver [42], with the parameter local search metaheuristic set as guided local search and the
parameter time limit set to 30 s. The capability of the proposed approaches of managing the
formulated mFSTSP is tested considering two scenarios and the results are corroborated by
Monte Carlo simulations. Scenario A consists of c = 10 customers to be served (plus the
depot, denoted with 0, from which the truck departs and returns to end the delivery cycle),
randomly sampled in the operational area. Table 2 shows the customers’ coordinates. Such
coordinates are given to the Bing Maps API REST Services [43] in order to obtain the truck
travel times and the drones travel times, encoded as cost matrixes. Scenario B is defined
analogously, this time considering c = 20 customers to be served in a larger rectangular
area defined in the city of Rome, Italy. This is done to test the proposed solutions with
a more challenging scenario, with a higher number of customers and greater travel dis-
tances. Table 3 shows the randomly sampled customers’ coordinates, the corresponding
cost matrixes are derived with the same procedure adopted for Scenario A.

Table 2. Customer nodes’ coordinates for Scenario A (10 customers and 1 depot), generated randomly
via [44] in a rectangular map comprehending the Turin urban area.

Customer Node ID Latitude [◦] Longitude [◦]

0 45.0902 7.8638
1 45.0047 7.8187
2 45.9967 7.5445
3 45.1337 7.6307
4 45.0593 7.7530
5 45.0595 7.7048
6 45.1062 7.6360
7 45.1539 7.8095
8 45.0488 7.6658
9 45.0314 7.6910
10 45.0925 7.8468
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Table 3. Customer nodes’ coordinates for Scenario B (20 customers and 1 depot), generated randomly
via [44] in a rectangular map comprehending the Rome urban area.

Customer Node ID Latitude [◦] Longitude [◦]

0 41.8958 12.6744
1 41.8908 12.6671
2 41.7953 12.6604
3 41.0029 12.4694
4 41.8829 12.4764
5 41.8375 12.6567
6 41.9343 12.3555
7 41.8671 12.5108
8 41.8006 12.5615
9 41.8086 12.5555
10 41.9577 12.3447
11 41.9377 12.3337
12 41.8076 12.5186
13 41.9187 12.4850
14 41.9137 12.5509
15 41.9083 12.3323
16 41.9459 12.4253
17 41.8403 12.4315
18 41.9021 12.4312
19 41.8344 12.5388
20 41.8054 12.3754

4. Results and Discussion

Considering either Scenario A or Scenario B, the improvement that is obtained in terms
of total completion time adopting the UAVs in combination with the truck with respect
to the conventional truck-only TSP solution is shown in Table 4. Considering a single
iteration of the proposed algorithms, Table 4 also shows the level of optimality in terms of
the makespan of the delivery cycle that can be achieved by each routing method for the
two scenarios of references.

Table 4. Makespan and savings over truck-only TSP of each proposed solution for Scenario A and
Scenario B.

Scenario Algorithm Makespan [s] Savings over
Truck-Only TSP [%]

A

LSA 6700 5.5
HGA-Feasible Variant 3028 57.3

HGA-Infeasible Variant 3028 57.3
Ad-hoc Method 3223 54.5

B

LSA 18,689 5.6
HGA-Feasible Variant 13,254 33.1

HGA-Infeasible Variant 15,392 22.2
Ad-hoc Method 18,215 8

The results show that the enhanced solution space exploration capability of the genetic
algorithms results in the highest savings over the TSP solutions among the proposed
algorithms, regardless of the instance size. This is also confirmed in the works [31–34]
where evolutionary-based methods outperform most of the alternative approaches.

Nevertheless, the computational complexity of the evolutionary approach is not
justified for small size instances. This is confirmed by the results of Scenario A: the greedy
method generates a delivery schedule with a slightly lower optimality level (~3%) with
respect to the evolutionary methods, but with a noticeable gain of computational time.
This is no longer the case when a bigger instance size is considered, as shown by the
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results of Scenario B. The differences between the two variants of the evolutionary approach
emerge in Scenario B, as the feasible variant is more likely to find a better optimal solution
when the maximum number of iterations is limited. When the search space is broader, the
genetic material of feasible solutions that is passed from one population to the next one
represents a sub-optimal search direction of the solution space. If the size of the problem
instance increases, this is most likely to produce a better optimal solution with respect to the
infeasible variant. For the sake of clarity, a visual representation of the solutions obtained
with the TSP solver and the proposed routing algorithms is given in Figures 2–6 for Scenario
A, starting from the conventional TSP solution up to the Ad-hoc Method solution. Each of
the mentioned figures shows the truck and drones’ travels on the map of the portion of the
city of Turin, Italy, and the corresponding Gantt Chart with the timed schedules.
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Figure 6. Ad-hoc Method solution representations of Scenario A. (a) mFSTSP tour reported on the
map of the operational area, with the paths of the truck (blue), drone 1 (orange) and drone 2 (red);
(b) Gantt chart of the mFSTSP solution. The numbers from 1 to 10 in the map and the Gant chart
represent the Customer Node IDs.

Considering either Scenario A or Scenario B, one hundred Monte Carlo simulations
are performed for each scenario in order to corroborate the capability of the proposed
evolutionary algorithms to handle the formulated mFSTSP. Table 5 shows the results.
The infeasible variant of the evolutionary-based task scheduling method has enhanced
exploration capability of the solution space and it is less likely to stop at local minima too
early. This is demonstrated with Scenario A, where both the minimum and the maximum
makespan results are smaller than the ones related to the feasible variant. Nevertheless,
with a more complex scenario and a bigger operational area, i.e., as in Scenario B, the
optimality level of the solution produced by the Hybrid Genetic Algorithm—Infeasible Variant
is worse. This is due to the fact that, when the search space is much broader as for this
scenario, the constraint of considering only feasible schedules during the crossover phase
restricts the investigated solutions to the neighborhood of the feasible solutions and this is
more likely to generate a more optimal schedule, given a “reasonable” maximum number of
iterations of the genetic algorithms. As expected, and accordingly to the search strategies of
the two evolutionary-based methods, the variability of the results is smaller for the feasible
variant than for the infeasible variant. By paying the price of heavier computational loads,
both the variants of the evolutionary-based methods ensure a greater solution’s optimality
level than either the greedy Local Search Algorithm or the Ad-hoc Method, for both Scenario A
and Scenario B.

Table 5. Monte Carlo simulation results: total completion time of the delivery process.

Scenario Algorithm Minimum [s] Maximum [s] Average [s]

A

LSA - - 6700
HGA-Feasible Variant 2951 3127 3041

HGA-Infeasible Variant 2916 3107 3040
Ad-hoc Method - - 3223

B

LSA - - 18,689
HGA-Feasible Variant 12,679 14,029 13,254

HGA-Infeasible Variant 13,163 20,242 15,393
Ad-hoc Method - - 18,215
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As far as the problem addressed in this work is concerned, the choice of the most
suitable method between the feasible and the infeasible variants depends on the instance
of the problem itself and on the available computational resources. Considering both
the inherent features of the proposed routing algorithms and the simulation results, the
summarizing considerations of this work are reported in Table 6.

Table 6. Summarizing consideration about the proposed routing algorithms.

Algorithm Advantages Disadvantages

Local Search
• Flexibility
• Good computational efficiency with

respect to neighborhood size

• Local optimality
• Limited explainability
• Poor hill climbing capability

Evolutionary

• Enhanced exploration capabilities of
search space • Limited explainability

• Hill climbing through randomness and
solution mutation • Computational complexity

• Directional exploration of search space
• Parallel computing
• Solution optimality

• Extensive tuning of evolutionary
parameters (population dimension,
probability of mutation, . . . )

Greedy
• Intuitiveness
• Computational efficiency
• Explainability

• Local optimality
• Poor flexibility
• Difficulty in recognition of bad decisions
• Deep understanding of the problem

5. Conclusions

In this paper, a few heuristic methods were designed, implemented, and compared for
a last-mile delivery (LMD) Travelling Salesman Problem with a truck and multiple drones.
Firstly, a mathematical formulation of the problem was proposed considering the case of a
truck that cooperates synchronously with a fleet of Unmanned Aerial Vehicles. The problem
formulation accounts for most of the key representative elements of an LMD service, such
as the delivery due dates of the parcels, the service time required to process the orders, the
battery capacities of the UAVs, etc. The goal was to find a combined truck-UAVs feasible
schedule to minimize the total completion time of the delivery process while respecting
the constraints related to either the delivery tasks or the vehicles’ capacities. Secondly,
given the addressed NP-hard problem, we designed a local search solution approach, two
variants of an evolutionary-based solution and an ad-hoc heuristic solution specifically
designed for addressing the formulated problem. The latter was conceptually different
from the other proposed methods as it generated a solution systematically, considering
the features of the specific problem. The evolutionary-based strategy was split into two
variants depending on the feasibility feature of the solutions that were permutated at each
execution step. The proposed solutions were evaluated over two realistic urban air mobility
scenarios. The capability of the methods to produce an optimal schedule was corroborated
through Monte Carlo simulation campaigns.

Future research directions will include the extension of the problem formulation
to multiple trucks and heterogenous drones and the design of a dynamic task allocation
strategy in order to account for environmental uncertainties and order modifications during
task execution. The design and implementation of other routing methods may also be
investigated and compared to the algorithms proposed in this work.
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