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Abstract—As the complexity of video games continues to
evolve, so does the importance of effective game testing method-
ologies. To this end, automated game testing has emerged as
a pivotal approach to ensure the quality and functionality of
modern games.

The objective of the present paper is to identify, through a
literature review and the application of Open and Axial coding,
the most commonly analysed and mentioned issues in automated
game testing literature.

The results of the study provide a taxonomy of 26 different
issues that are assessed in the software engineering literature
by automated game testing practice, grouped in five higher-level
categories.

The elicited taxonomy can serve as an instrument for game
testers, researchers and tool developers to evaluate testing
approaches and techniques, enable comparability of research
results, and design instruments to investigate functional aspects
of games in development.

Index Terms—Game development, Game testing, Quality As-
sessment

I. INTRODUCTION

Over the past few decades, the gaming industry has emerged
as one of the most lucrative sectors within the software
universe, with revenues soaring to an impressive US $249.60
billion in 20231. The development of modern video games
often involves massive budgets, extensive teams, and several
years of dedicated work before their launch. However, it’s also
become increasingly common for these games to be released
with a host of day-one bugs. These issues can be so severe
that they not only jeopardize a game’s financial success but
can also tarnish the reputation of even the most esteemed game
developers [1].

Software testing encompasses a broad range of practices
aimed at ensuring the reliability and performance of software
products across various platforms. The field of Software
Engineering has introduced numerous strategies for planning,
conducting, and evaluating software tests, along with a focus
on automating these processes to maintain high standards of
software quality across all domains.

Despite the critical role of software testing, the gaming
industry faces unique challenges in adopting automated testing
techniques, as noted in several comprehensive reviews [2]–[4].
To date, there has been a lack of efforts to systematize the

1https://bit.ly/472DrQZ

analysis of specific game-related issues that can be detected by
the application of automated game testing. Such categorization
is crucial for evaluating and improving testing methods and
tools, providing a basis for comparison in academic and
industry research alike.

The present paper aims to categorize, in the form of a
taxonomy, the types of issues analyzed or mentioned in the
automated game testing literature. The results of the present
study are preliminary outcomes of a larger-scale Systematic
Literature Review covering various facets of the software
testing process when applied to games. These results are com-
plementary with the coverage measures presented in Coppola
et al. [5].

The remainder of the manuscript is organized as follows:
Section II reports related literature in the field of automated
testing for games; Section III briefly describes the literature
review process employed for the collection of primary sources
and the definition of the taxonomy; Section IV reports the
taxonomy and provides pointers to existing literature for each
of the coverage metric defined; Section V concludes the paper
and provides future research directions.

II. BACKGROUND AND RELATED WORK

The academic literature summarizing the findings and re-
search directions related to automated game testing is quite
narrow to date, being a relatively more recent trend than
automated software testing in other domains. Within this
section, we report and discuss the main secondary studies that
are available in the literature.

Albaghajati and Ahmed have presented a comprehensive
evaluation framework in their work on testing activities within
the gaming domain [4]. In their paper, the authors mainly focus
on the way automated testing is performed, considering tech-
niques, objectives, tools and target games, rather than delving
into the types of defects that can be verified. The authors
categorize automated testing techniques into five main types:
search-based approaches, concentrating on exploring a game’s
state space; goal-directed approaches, employing automated
agents with predefined policies to navigate game scenarios;
human-like approaches, focusing on mimicking human be-
haviour through optimized agents; scenario-based approaches,
executing test sequences based on predetermined human-
made or requested actions; and model-based approaches,



which abstract game workflows into formal representations for
event and control verification. The authors also identify key
objectives of game testing, including functional correctness
(ensuring adherence to specified requirements), multiplayer
stability, performance, visual correctness, game design correct-
ness, game balance and fairness, progression and learnability,
and physical correctness. Notably, they underscore the absence
of universally applicable validation procedures in existing
literature. They emphasize the limited applicability of many
testing approaches to specific domains or game genres, urging
further research efforts to enhance the generalizability of
testing activities across diverse contexts.

In a first 2021 survey, Politowski et al. delved into white and
grey literature to provide insights into game testing practices
[2]. Their findings revealed a prevalent dependence on manual
play-testing and testers’ intrinsic knowledge among game
developers, leading to a dearth of automation. The authors
attributed this scarcity to the limited generalizability of exist-
ing techniques and the necessity for testing strategies tailored
to the nuances of game projects, in contrast to traditional
software in other domains. They concluded by advocating
for substantial academic and industrial efforts to broaden the
adoption of testing in video game development processes.

In 2022, based on the paper collected in their previous
work, Politowski et al. expanded the starting pool of sources
with snowballing and conducted a comprehensive analysis of
game test automation tools [3], enriching the findings from
the literature with survey responses from 12 developers. The
surveyed developers, well-versed in both traditional software
development and game development (with 58% having more
than four years of experience in the latter), expressed scepti-
cism toward automated agents for game testing. The results of
the literature review emphasized that existing testing tools and
frameworks primarily focus on AI-based approaches for game
modelling and exploration rather than advancing functional
and user-oriented testing of video games. The authors under-
lined a preferential reliance towards the adoption of manual
play-testing in the game development community, citing a
lack of automation due to the low generalizability of available
techniques (as already pointed out by Albaghajati et al.) and
the need for testing strategies tailored to the unique aspects of
game projects.

Categorizing and describing bugs is a crucial activity to be
able to recognize and report them, especially with automatic
approaches. In their study, Li et al. developed and made
publicly available a dataset of bugs and a framework, namely
GBGallery based on that for automated game testing [6]. The
authors, in close contact with the developers, relied on five real
games to obtain the data and perform an empirical experiment.
The authors found a set of 76 bugs, which they classified
into five different categories: Crash, Stuck, Game logic, Game
Balance and Display.

Although the said categorization provides valuable support,
being based on only five games it cannot be considered
exhaustive, as the authors themselves state in their validity
threats section. Hence, the present study aims to expand the

knowledge around game bugs, developing a non-ambiguous
taxonomy that can be adopted in all the game-related domains.

III. METHODOLOGY

The work aims to identify, through a literature review, the
most common issues detected by automated gaming testing
tools and to define a taxonomy for the game-testing commu-
nity.

The taxonomy shall guide testers to identify which game
issues are addressed in research and practice and provide
researchers with an instrument to compare different game-
testing approaches.

The methodology used in this work can be separated into
two steps: (i) literature review, and (ii) formulation of the
taxonomy through Open Coding.

A. Literature Review

We performed a targeted literature review by applying a
search string on a set of scientific literature repositories. To
that extent, we applied a subset of Kitchenham’s guidelines to
conduct Systematic Literature Reviews [7].

• Selected Digital Libraries: As digital libraries for our
search, we selected IEEE Xplore, ACM Digital Li-
brary, Science Direct, Springer Link, Scopus and Google
Scholar.

• Search String: We formulated our search string to include
the terms Game* (or gaming), test*, automat*. The
search string was adapted to fit the syntaxes of the six
selected digital libraries.

• Inclusion Criteria: To gather only sources relevant to our
research goals, we defined the following criteria: (i) the
source is directly related to the topic of game testing;
(ii) the source defines or mentions explicitly issues to
be found through the application of game testing; (iii)
the source is an item of white literature with available
full text, with publication date between 2012 and 2023;
(iv) the source is written in a language that is directly
comprehensible by the authors (English or Italian).

B. Coding

To construct a comprehensive taxonomy guiding game
testing, we employed Ralph’s guidelines for taxonomy de-
velopment, adhering to the Grounded Theory approach [8].
We adhered to the Straussian definition of Grounded Theory,
defining beforehand our research question, aligning with Van
Niekerk’s approach [9].

The codes for the taxonomy were defined by applying the
Open Coding technique, i.e., analyzing text data to capture
the information of the theory under construction. Through
Open Coding, we identified and defined lower-level categories
or codes within the taxonomy. A set of common definitions
served as the framework, with each individual issue or bug
sourced from literature assigned to a specific code. The
categories are considered mutually exclusive (i.e., one issue in
the literature sources can be assigned to only one code). The
taxonomy took shape incrementally, with new codes added



Fig. 1. Number of distinct literature sources per category

whenever an issue definition or usage in the reviewed literature
did not align with the existing pool of codes.

Following Open Coding, we transitioned to Axial Coding to
establish categories of codes. Per Straussian Grounded Theory,
Axial Coding is the process of understanding how codes
and related concepts are linked to one another, to identify a
structure in the taxonomy and define levels in it. Axial Coding
was applied by performing two passes (by all the authors)
over all the codes of the taxonomy and defining themes (i.e.,
higher-level categories) of issues.

IV. RESULTS

After the application of the search string on the selected
digital libraries, the application of inclusion criteria and the
removal of duplicates, 29 sources were found mentioning the
types of issues that can be found by performing automated
game testing.

For the formulation of the bug taxonomy, we did not rely
on any previous definitions that are typical from a software
testing background. The motivation behind this choice is that
we did not want to influence the taxonomy with bug definitions
commonly referred to in software. These, in fact, typically
originate from flaws in the program code or the underlying
layers. In the gaming context, however, user experience is a
priority and the environment is complex, resulting in different
types of issues that need to be characterized.

By analyzing the manuscripts, and the application of the
coding procedure, 26 codes (i.e., issue definitions) were de-
fined. All the metrics definitions are reported in Table I.

In fig. 1 we report the number of distinct literature sources
mentioning each of the coded macro-categories.

The application of axial coding led to the identification of
6 bug categories. We describe below the categories of issues
found:

• Environmental: environmental issues are related to the
movement of the agents in the game scene and the reach-
ability of the different areas of the game. Environmental
issues can be different according to the type of in-game
scenes that are available in the game (e.g., 2D vs 3D
games) and the different explorations that are available
to the game agents.

• Logical: logical issues are related to wrong implemen-
tation and unexpected outcomes of the game mechanics
and features.

• Simulation: simulation issues are related to any kind of
simulation applied to the game objects in the game scene
by the adopted engine.

• Multimedia: multimedia issues are related to the render-
ing of the audiovisual aspects of the game. They are
unrelated to gameplay mechanics and features, i.e., they
typically do not render the game unplayable like the other
categories of issues. Multimedia issues can be related
to underlying resource issues but are distinguished from
generic bugs in the sense that the fault occurrence affects
the multimedia aspect of the game.

• Production: production issues are malfunctions in the
game production code or engine that are not related to
the game aspects of the software. It can lead to freezes
or termination of the game under test.

V. DISCUSSION

The higher-level analysis in Fig. 1 highlights that literature
in automated testing for games appears principally focused on
the detection of issues related to the game logic and to the
audio-video appearance of the games, rather than on environ-
mental and simulation issues. A limited amount of sources
focused on non-game related issues (i.e., Production issues).
We justify this aspect with two reasonings: (i) literature in
game testing is highly specialized in the execution of playtest-
ing activities, leaving the search for resource and regression
issues to established testing techniques; (ii) automated game
testing tools are in most cases used to execute End-2-End test
cases (e.g. IV4XR [34]), thereby allowing only the detection
of issues that are reflected by the multimedia appearance of
the game under test.

The analysis of issues in the game’s internal logic or how the
game objects are rendered and simulated by the game engine
requires careful instrumentation and integration of the tool
with the game engine. Such practice would imply game testers
being domain experts and having a profound knowledge of the
production code of the games under test. The instrumentation
may also require significant effort and be a time-consuming
and costly practice, hardly fitting in the game development
lifecycle.

The categories of issues found in this study can be compared
with existing related categorizations available in the literature.
One prominent example is the GBGallery benchmark by Li et
al. [6]. The authors of such paper identify five main categories
of issues: crashes (i.e., abnormal exits from the game), stuck
(i.e., the graphical user interface is stuck and preventing the
user from continuing); game logic (anomalies in how the
game logic works); game balance (i.e., non-functional bugs
impacting the experience perceived by players); display (i.e.,
issues pertaining the GUI or audio playing). These categories
of issues can be directly mapped to (sub)categories of the
taxonomy discussed in the present paper and therefore validate



TABLE I
DEFINITIONS OF THE CODED ISSUES

Category Bug Definition Refs

Environmental Stuck Issues leading players to abnormal states, where they can no longer continue the natural
flow of interactions preventing them from proceeding any further due to wrong level
design.

[10], [11]

Wrong interaction with
objects

Wrong interaction with objects occurs when a player interacts with items or elements
within the game world in a manner that does not behave as intended or expected.

[12], [13], [14]

Reachability issues Issues related to positions in the game scene that should be reachable by the player
under certain circumstances, but that is not due to environmental design errors.

[13], [14], [15],
[16], [17], [18]

Unintended path to goal Issues related to positions in the game scene that should not be reachable by the player,
but that can be reached by exploiting environment design errors.

[16]

Wrong positioning Wrong positioning refer to instances where objects, characters, or environmental
features are placed incorrectly within the game world.

[19]

Logical Incorrect implementa-
tion

A scenario where a game’s feature, mechanic, or element does not work as intended
due to errors in its design or programming

[20], [21], [22]

Exploitable features Elements or mechanics that players can manipulate or use in unintended ways to gain
advantages

[23]

Invalid or conflicting
states

These issues occur when a game enters a condition that was not anticipated by the
developers. This can happen due to a variety of reasons, such as conflicting game logic
or unforeseen player actions

[20], [10], [19],
[24]

Deadlocks Deadlocks refer to a situation in which the game makes the game unplayable due to
unforeseen combinations of game states.

[20]

Softlocks Softlocks refer to a situation in which the game continues to run but the player is
unable to proceed any further because of combinations of attributes or parameters of
the game.

[25], [14]

Balancing issues Balancing issues refer to the lack of equilibrium among game elements, leading to
certain strategies, characters, items, or abilities

[10], [26], [27],
[28]

Simulation Incorrect object move-
ment

Issues related to inconsistencies in the movements of the players or the objects in the
game scene.

[29], [30]

Wrong Collisions Issues related to inconsistencies in the simulated outcomes of collisions between the
players and objects in the environment.

[30], [19]

Object Mutual Interac-
tivity

Issues related to inconsistencies in the simulated outcomes of collisions between
multiple objects in the environment.

[13], [14]

Missing or wrong colli-
sion box / mesh

Issues related to errors in the size, shape or position of collision boxes of the objects
rendered on screen.

[16], [23], [22]

Multimedia FPS drops FPS drops refer to a decrease in the frame rate, leading to less smooth gameplay and
visual stuttering.

[12]

Sound issues Sound issues encompass a range of problems related to the game’s audio output,
including missing sound effects, music, or dialogue; distorted or glitchy audio; or sound
effects playing at inappropriate times.

[29], [11], [31]

Animation issues Animation issues refer to problems with the movement and behaviour of characters
or objects in the game. This can include jerky, unrealistic, or glitched animations,
characters moving in ways that defy the game’s physics, or animations failing to play
under the correct circumstances.

[11]

Rendering issues Rendering issues involve problems with the game’s graphical display, such as textures
not displaying correctly, objects appearing transparent or black, lighting glitches, or
shadows behaving unrealistically.

[29], [32], [33],
[16], [19], [34],
[24], [35]

Voice issues Voice issues pertain to problems with the voice acting or dialogue in the game,
including synchronization problems where the voice does not match the character’s
lip movements, lines of dialogue cutting off or overlapping, or the quality of the voice
recordings being poor.

[29], [11]

Graphical output issues Graphical output issues cover a broad spectrum of problems related to how the game
visually presents itself, beyond just rendering issues. This includes incorrect resolution,
aspect ratio problems, flickering, screen tearing (where a frame shows information from
multiple frames at once), and colour inaccuracies.

[11], [35], [36]

Hud issues HUD (Heads-Up Display) issues refer to problems with the game’s on-screen inter-
face that provides players with critical information, such as health bars, maps, and
ammunition counters.

[29]

Production Crash Bugs leading the game to an incorrect state causing the exit from the game and/or
eventual shutdown of the underlying environment.

[10], [37], [11]

Freeze Freezes refer to situations where a game becomes unresponsive or ”freezes” during
gameplay, causing the game to stop functioning or responding to user input.

[11]

Regression Bugs Regression bugs are defects that occur when a feature that was previously working
correctly becomes broken after the introduction of new changes or updates to the game’s
codebase.

[38]

Resource Issues Resource availability issues pertain to situations where the game does not efficiently
manage its resources (e.g., memory, CPU usage, GPU usage), leading to performance
degradation, crashes, or other undesirable behavior.

[38]

the present study as an extension of the current state of the
art.

VI. CONCLUSION AND FUTURE WORK

In future research endeavours, several research directions
are present for further exploration and development in the
context of automated testing tools and bug database creation



within the game development domain.
Firstly, there is a compelling opportunity to engage tool

developers, as well as those interested in contributing to the
establishment of bug databases, to foster a shared knowledge
repository of issues within the gaming landscape, as done by
Li et al. [6]. Collaboration with tool developers can facilitate
the enhancement of existing tools and the creation of new
ones tailored to efficiently detect various categories of bugs.
This collaborative effort aims to streamline bug detection and
resolution processes, thereby improving overall game quality.

Secondly, further investigation is warranted into leveraging
existing automated testing tools, such as IV4XR [34], to detect
different categories of bugs and issues effectively. By im-
plementing tailored detection mechanisms within these tools,
game developers can benefit from more comprehensive bug
identification and resolution capabilities, ultimately leading to
more robust and polished game experiences.

Additionally, future research endeavours could focus on
extending the survey to encompass the mapping of coded
issues to coverage measures, tools, approaches, and testing
methodologies. This extension aims to provide deeper insights
into the testing landscape by correlating identified issues
with specific testing strategies and methodologies. By gaining
a better understanding of the relationship between testing
practices and identified bugs, developers can refine their testing
approaches to mitigate common issues more effectively.

Continued efforts in these areas have potential for advancing
the state-of-the-art in automated testing within game develop-
ment, ultimately contributing to the creation of higher quality
and more resilient gaming experiences.
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[3] C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo, “Towards automated
video game testing: still a long way to go,” in Proceedings of the
6th International ICSE Workshop on Games and Software Engineering:
Engineering Fun, Inspiration, and Motivation, 2022, pp. 37–43.

[4] A. M. Albaghajati and M. A. K. Ahmed, “Video game automated testing
approaches: An assessment framework,” IEEE transactions on games,
2020.

[5] R. Coppola, T. Fulcini, and F. Strada, “How to measure game testing:
a survey of coverage metrics,” in Proceedings of the 8th International
ICSE Workshop on Games and Software Engineering: Engineering Fun,
Inspiration, and Motivation, 2024.

[6] Z. Li, Y. Wu, L. Ma, X. Xie, Y. Chen, and C. Fan, “Gbgallery :
A benchmark and framework for game testing,” Empirical Software
Engineering, vol. 27, no. 6, p. 140, Jul 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10158-x

[7] B. A. Kitchenham, “Systematic review in software engineering: where
we are and where we should be going,” in Proceedings of the 2nd inter-
national workshop on Evidential assessment of software technologies,
2012, pp. 1–2.

[8] P. Ralph, “Toward methodological guidelines for process theories and
taxonomies in software engineering,” IEEE Transactions on Software
Engineering, vol. 45, no. 7, pp. 712–735, 2018.

[9] J. C. Van Niekerk and J. Roode, “Glaserian and straussian grounded
theory: similar or completely different?” in Proceedings of the 2009
Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists, 2009, pp. 96–103.

[10] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[11] J. Pfau, J. D. Smeddinck, and R. Malaka, “Automated game testing
with icarus: Intelligent completion of adventure riddles via unsupervised
solving,” in Extended abstracts publication of the annual symposium on
computer-human interaction in play, 2017, pp. 153–164.

[12] X. Wang, “Vrtest: an extensible framework for automatic testing of vir-
tual reality scenes,” in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings, 2022,
pp. 232–236.

[13] R. Tufano, S. Scalabrino, L. Pascarella, E. Aghajani, R. Oliveto, and
G. Bavota, “Using reinforcement learning for load testing of video
games,” in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 2303–2314.

[14] R. Ferdous, F. Kifetew, D. Prandi, I. Prasetya, S. Shirzadehhajimahmood,
and A. Susi, “Search-based automated play testing of computer games:
A model-based approach,” in International Symposium on Search Based
Software Engineering. Springer, 2021, pp. 56–71.

[15] C. Lu, R. Georgescu, and J. Verwey, “Go-explore complex 3d game
environments for automated reachability testing,” IEEE Transactions on
Games, 2022.

[16] A. Sestini, L. Gisslén, J. Bergdahl, K. Tollmar, and A. D. Bagdanov,
“Automated gameplay testing and validation with curiosity-conditioned
proximal trajectories,” IEEE Transactions on Games, 2022.

[17] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood, “An automated
model based testing approach for platform games,” in 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 2015, pp. 426–435.

[18] R. Mawhorter and A. Smith, “Automated testing in super metroid with
abstraction-guided exploration,” in Proceedings of the 18th International
Conference on the Foundations of Digital Games, 2023, pp. 1–9.

[19] S. Varvaressos, K. Lavoie, S. Gaboury, and S. Hallé, “Automated
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