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Abstract—The research on Deep Neural Networks (DNNs)
continues to enhance the performance of these models over a
wide spectrum of tasks, increasing their adoption in many fields.
This leads to the need of extending their usage also on edge
devices with limited resources, even though, with the advent
of Transformer-based models, this has become an increasingly
complex task because of their size. In this context, pruning
emerges as a crucial tool to reduce the number of weights in
the memory-hungry Fully Connected (FC) layers. This paper
explores the usage of neurons based on the Multiply-And-
Max/min (MAM) operation, an alternative to the conventional
Multiply-and-Accumulate (MAC), in a Vision Transformer (ViT).
This enhances the model prunability thanks to the usage of
Max and Min operations. For the first time, many MAM-based
FC layers are used in a large state-of-the-art DNN model and
compressed with various pruning techniques available in the
literature. Experiments show that MAM-based layers achieve
the same accuracy of traditional layers using up to 12 times less
weights. In particular, when using Global Magnitude Pruning
(GMP), the FC layers following the Multi-head Attention block
of a ViT-B/16 model, fine-tuned on CIFAR-100, count only 560000
weights if MAM neurons are used, compared to the 31.4 million
that remain when using traditional MAC neurons.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become the predom-
inant tool for solving multiple tasks, ranging from Natural
Language Processing [1] to Augmented Reality [2], [3], across
various sectors such as medicine [4], robotics [5] and precision
agriculture [6]. However, the increasing size of these neural
models poses a challenge, especially with the growing de-
mand to deploy these networks on resource-constrained edge
devices.

In the realm of computer vision, Fully Connected (FC)
networks were eclipsed by the introduction of Convolutional
Neural Networks (CNN) that started with LeNet [7] and
continued with more recent models like ResNet [8] and Incep-
tion [9]. Notably, CNNs are typically less resource-intensive
in terms of memory footprint compared to FC-based networks.
Nevertheless, the advent of Visual Transformers (ViTs) [10]
in this domain has reintroduced the use of models containing
predominantly FC networks, which are characterized by a
large number of weights. To contain the memory footprint of
these models, it is crucial to employ compression techniques,
such as structured [11], [12] or unstructured pruning [13], [14].

The general idea behind unstructured pruning consists in the
removal of weights from the model limiting the impairment
of its approximation capabilities. This is typically achieved
by assigning a score to each weight, with the lowest-scoring

weights being removed. The score can be the magnitude of
the weight or it may depend on its influence on the model’s
cost function (i.e., on the gradient with respect to the weight),
involving also a dependency on the network’s input. Score
comparisons can be performed locally [15], i.e., among the
interconnections of the same DNN layer, or globally [16],
i.e., among the interconnections of the whole DNN model.
Pruning techniques can be applied post-training [17], during
training [18] or before training by analyzing the values of the
weights after their initialization [19]. Some techniques, called
one-shot methods [20], [21], can be applied to a pre-trained
network without requiring further training. In contrast, other
approaches necessitate multiple training cycles [16], [22] and,
given the substantial training cost required for large neural
networks, this factor could make some of these strategies,
despite their efficiency, mostly impractical.

While many pruning strategies have been developed, only
little effort has been put into changing the inner structure of
the neurons to increase the performance of the already existing
techniques. This concept has been explored in [23], where the
authors introduced the Multiply-And-Max/min (MAM) neuron
which leverages Max and Min operations to replace the sum-
mation used by traditional Multiply-and-ACcumulate (MAC)
neurons to compute their output. In [23], the application of
MAM neurons to a single layer of a custom FC autoencoder
showed an accuracy similar to the one obtained with MAC
neurons with an enhanced prunability of the network. Starting
from that, in this paper:

• we evaluate the performance of MAM neurons for solv-
ing classical computer vision classification tasks using
MNIST [7], Fashion-MNIST [24], and CIFAR-100 [25]
datasets;

• we substitute multiple traditional FC layers with MAM-
based FC layers in a state-of-the-art ViT model;

• we leverage the vanishing contributions technique intro-
duced in [23] to avoid the retraining of the ViT model.

• we prune MAM neurons with methods in [17] together
with additional state-of-the-art techniques such as [18]
and [26] and we show how DNNs with MAM neurons
outperform DNNs using only MAC neurons in terms of
prunability;

The rest of the paper is structured as follows. In Section II,
we provide a brief summary of the structure of MAM neurons.
Then, in Section III, we present the pruning techniques used to
prune both MAC and MAM neurons. In Section IV, we show
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the results on a simple FC-based network and on a ViT-B/16
model [10]. Finally, the conclusion is drawn.

II. THE MAM NEURON

In a standard DNN, the output of a traditional FC layer
based on MAC neurons is defined as a column vector y ∈ RM

and computed as
z = Wx+ b (1)

y = f(z). (2)

where x ∈ RN is the input column vector, W ∈ RM×N is the
weights matrix, b ∈ RM is the bias column vector and f(·)
is the activation function, which is applied element-wise to z
to obtain the output vector y. The MAM neuron, presented
in [23], maintains the same map operation (i.e., multiply)
contained in (1) that can be isolated by defining the weighted
inputs matrix V ∈ RM×N whose elements are evaluated as

vij = wijxj with i ∈ {1, ..,M}, j ∈ {1, .., N} (3)

where vij and wij are the scalars at row i and column j of V
and W , respectively, and xj is the j-th element of the input
vector x. With this notation, the equation (1) of a traditional
MAC-based layer can be simply indicated as

zi =

N∑

j=1

vij + bi with i ∈ {1, ..,M} (4)

where zi is the i-th element of vector z. Similarly, the output
of a FC MAM-based layer is defined as

zi =
N

M
j=1

vij + bi with i ∈ {1, ..,M} (5)

where the reduce operation M is a suitable operator defined
as

N

M
j=1

vij ≜ max
j∈{1,..,N}

vij + min
j∈{1,..,N}

vij . (6)

It is important to emphasize that, given an input, the output
zi of a MAM neuron depends only on two weights. In other
words, whereas in traditional neurons the output is computed
using all the inputs and all the weights, in a MAM neuron the
output depends only on two inputs and two weights that are
selected by Max and Min operators and may be different when
changing the input. Yet, the probability of the weights being
selected is not uniform and many weights may have a very
low probability of contributing to the output. This intuition
may stand as an intuitive explanation of why MAM neurons
present better prunability properties. Figure 1 summarizes how,
starting from the same matrix V , MAC and MAM neurons
compute their output.

A. The vanishing contributions method: a tool for integrating
MAM neurons in large pre-trained neural models

During the training of MAM neurons, given a single input
instance, for each row of matrix V only a couple of gra-
dients are actually propagated backward. This dramatically
slows down the training process. In [23], authors propose the
vanishing contributions technique to speed up the training.
This technique consists in starting the training with a standard
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Fig. 1. Starting from the weighted input matrix V , a MAC neuron computes
its output zi using the summation (a) while a MAM neuron uses the M
operator (b) that sums only the maximum and the minimum values of each
row of V .

MAC-based neuron and gradually transitioning to a MAM-
based one during the initial epochs. This approach enables
more weight updates in the early training stages and it is
controlled by a parameter β, initially set to 1 and linearly
decreased, epoch by epoch, to reach β = 0. Consequently, the
neuron output can be expressed during training with an affine
combination of (4) and (5) as

zi = β

N∑

j=1

vij+(1−β)
N

M
j=1

vij+bi with i ∈ {1, ..,M} (7)

In this work we want to highlight that this technique not
only has the advantage of accelerating the convergence of the
network during training, but it makes the application of MAM
neurons to pre-trained large neural models possible. More
specifically, it enables the smooth substitution of standard
MAC-based neurons in a pre-trained model with MAM-based
ones, limiting the resources needed to retrain the DNN. This
is of great use when dealing with structures that require a very
long training process and a large amount of data, such as the
models based on Transformers.

III. STATE-OF-THE-ART PRUNING TECHNIQUES

In this section, we introduce the pruning techniques used to
compress both MAC and MAM neurons. All these methods
are being applied in Section IV-A to prune a small and easily
trainable FC network, to show that MAM neurons can rely
on less weights compared to traditional neurons to obtain
the same accuracy, even by using multiple different pruning
approaches. However, only the compression strategies that
do not require a complete training of the model are being
applied to the ViT model in Section IV-B – the full training
process of a ViT model is in fact impractical for most of its
users. In selecting these techniques, we draw the methods from
[17], supplementing them with some more recent approaches
introduced in [18] and [26]. A summary of the selected
methods follows.

1) Magnitude-based pruning: each weight is scored ac-
cording to its magnitude. Following the idea that the smaller
in magnitude a weight, the less it can influence the output,
the values with the lower magnitude are pruned. We use two
versions of this method, namely the Global Magnitude Pruning
(GMP) and the Layer-wise Magnitude Pruning (LMP). With
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LGP all layers are constrained to be pruned by the same
amount, while GMP has no constraints.

2) Gradient-based pruning: each weight is scored taking
into consideration the statistics of the input data fed into the
DNN. More precisely, given a set of inputs (i.e., the validation
dataset), the score of a weight is computed as the average of
the gradient of the loss function with respect to that weight
multiplied by the magnitude of the weight. Similarly to GMP
and LMP, we will use Global Gradient-based Pruning (GGP)
and Layer-wise Gradient-based Pruning (LGP).

3) Alternating Compressed / DeCompressed Training:
presented in [18], the AC/DC technique is a method to obtain
a sparse model based on the training approach. With this, one
selects in advance a percentage of weights to be removed and
alternates, during training, phases in which the model uses
all its weights with others where the model is pruned. The
resulting sparse model is then further pruned using GMP.
To use this technique with MAM neurons, we start from
the obtained MAC sparse model, we convert the traditional
neurons to MAM neurons, and we prune them with GMP.
This technique requires the full training of the model.

4) Parameter-free Differentiable Pruning: PDP is a novel
technique presented in [26], it proposes a training-time pruning
scheme based on the usage of soft pruning masks that do not
require the storage of additional learnable parameters. As for
AC/DC, it requires a full training process.

IV. EXPERIMENTS AND RESULTS

In this section, we present some comparisons between the
pruning performance with MAC and MAM layers. For the
comparisons, we use the standard computer vision datasets
MNIST, Fashion-MNIST and CIFAR-100. First, we show the
results on a small FC-based network that can be easily trained
so that every pruning method presented in Section III can
be applied. Then, we compare the performance of MAM and
MAC neurons on ViT, using the pruning techniques that do
not require full training of the model (GMP, LMP, GGP and
LGP).

A. Simple FC-based network

The model is composed of two hidden FC layers containing
784 and 256 neurons, respectively, each followed by the ReLU
activation function. These two layers are tested either with
MAC-based or MAM-based neurons. The final classification
layer (composed of 10 neurons) is kept MAC-based. The
hidden layers contain 266 240 weights, which are 99% of the
total number of learnable parameters.

We train the network on two different classical computer vi-
sion benchmarks, MNIST and FashionMNIST. These datasets
contain 10 classes and 70 000 b/w images of size 28x28 each.
Since both datasets comprise only one training set with 60 000
images and a test set with the remaining 10 000 images, we
randomly remove 5000 images from the training set to create a
validation set. Each pixel in the image is normalized between 0
and 1, and data augmentation is performed to improve the per-
formance of the network. In particular, images are randomly
shifted, rotated and scaled. The model undergoes training for
50 epochs, using Adam optimizer with a starting learning rate
of 0.001 and cross-entropy loss. With MAM neurons, the first

TABLE I
ACCURACY ON THE TEST SET OF THE SIMPLE FC-BASED NETWORK WHEN

TRAINED WITH MAC OR MAM NEURONS

MNIST Fashion-MNIST

MAC MAM MAC MAM

Accuracy 99.03% 99.02% 90.22% 90.03%

TABLE II
PERCENTAGE OF REMAINING WEIGHTS (AT 3% ACCURACY LOSS, THAT IS
96.03% FOR MNIST AND 87.22% FOR FASHION-MNIST) IN A SIMPLE FC

NETWORK USING MAM AND MAC LAYERS AFTER PRUNING

MNIST Fashion-MNIST

MAC MAM MAC MAM

GMP 34.23% 2.80% 38.14% 3.70%
LMP 31.83% 2.20% 38.14% 3.40%
GGP 19.92% 2.90% 39.04% 2.60%
LGP 19.62% 2.80% 47.35% 2.90%

AC/DC@90 7.61% 2.70% 7.61% 3.30%
AC/DC@95 2.90% 1.90% 3.40% 2.01%

PDP@85 - - 14.31% 4.30%
PDP@90 7.11% 2.60% - -
PDP@95 3.60% 1.88% - -

5 epochs are used to complete the vanishing contributions
transition. Table I shows the training results, where MAC and
MAM neurons have a comparable performance.

After training, the models are pruned. LMP and GMP
are the most straightforward pruning methods to apply since
they do not require further training of the model or gradient
evaluation. On the contrary, GGP and LGP require also
the computation of the gradient, making them slightly more
complex methods to apply. On average, the MAM model is
compressed 12 times more compared to the MAC model with
GMP and LMP and 11.3 times more with GGP and LGP.
For example, considering that each weight occupies 4 bytes
(single floating-point precision), the size of the entire model
(i.e., also considering the non pruned last layer) trained on
Fashion-MNIST and pruned with GMP, is of 51.8 KB when
using MAM neurons while it is of 437.3KB when using MAC
neurons.

AC/DC and PDP are training techniques that require the full
training of the model with the goal of achieving a predefined
target sparsity. The resulting sparse models obtained with
AC/DC are then pruned with GMP while the ones obtained
with PDP are then pruned with LMP as suggested by the
original papers [18], [26]. We test AC/DC with a target sparsity
of 90% and 95% on both MNIST and Fashion-MNIST. PDP
is tested with 85% of sparsity on Fashion-MNIST and 90%
and 95% on MNIST. Both AC/DC and PDP methods require
to choose some hyperparameters. In this work, for AC/DC
we choose to train the model for 50 epochs starting with 3
epochs of warm-up followed by alternating compressed and
decompressed training phases (21 phases in total which last 2
epochs each) with 5 final epochs of fine-tuning. Similarly, for
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Fig. 2. Simplified representation of the ViT-B/16 model we use. We substitute
the blue FC MAC-based layers with MAM-based layers in each encoder for
a total of 24 MAM-based layers. These layers contain more than 56 million
weights which are 66% of the total number of trainable parameters (which is
84 million).

PDP we train for 50 epochs with the last 10 epochs dedicated
to fine-tuning (with ϵ = 0.05 and τ = 0.0001, more details
in [26]). As reported in Table II, using these two techniques,
the MAM-based model can be reduced on average 2.3 times
more compared to the MAC-based one.

Table II shows the percentage of remaining weights in the
hidden layers when the accuracy of the network is 3% below
what is reported in Table I for MAC. The missing values
in the table for PDP with 90% and 95% of target sparsity
on Fashion-MNIST mean that these methods were not able
to achieve the target accuracy. The table shows that, for any
pruning method, MAM neurons have an advantage in terms
of prunability compared to standard MAC neurons.

B. ViT-B/16 model

To assess the performance of MAM neurons in a state-
of-the-art architecture, we select the ViT-B/16 model [10]
represented in Figure 2. In each of the 12 encoders, we
replace the two MAC-based FC layers following the Multi-
head Attention block with two MAM-based layers. These
layers contain 56.6 million parameters contributing 66% to
the total number of learnable parameters of the model.

The MAC and the MAM-based models are both trained
starting from the available MAC-based network1 that has been
pre-trained on ImageNet-21K [27]. We fine-tune this model on
CIFAR-100 for 30 epochs. CIFAR-100 is a classical computer
vision benchmark that consists of a total of 60 000 color
images of size 32x32 divided into 10 classes. As for the
other datasets, we randomly eliminate 5000 images from the
training set and we use them as validation set. The same
data augmentation applied to MNIST and Fashion-MNIST is
performed. In the case of the MAM-based model, the initial
10 epochs are used to deploy the vanishing contributions
transition. We use the Adam optimizer with a starting learning
rate of 5·10−5. At the end of the fine-tuning process, the MAC-

1We used the ViT-B/16 Hugging Face pre-trained model.

TABLE III
PERCENTAGE OF REMAINING WEIGHTS (AT 3% ACCURACY LOSS, THAT IS

89.14%) AND MEMORY OCCUPATION OF THE PRUNED FC LAYERS
(VIT-B/16 MODEL)

CIFAR-100
MAC MAM

Remaining Model Remaining Model
weights size weights size

GMP 55.53% 125.9 MB 0.02% 1.2 MB
LMP 49.17% 111.5 MB 0.02% 1.2 MB
GGP 36.95% 84.1 MB 0.01% 0.6 MB
LGP 39.89% 90.05 MB 0.01% 0.6 MB

based model achieves 92.14% of accuracy which is almost
matched by the MAM-based model with 91.83%.

Since the full training of the model is not a viable option,
we show the comparisons between MAC and MAM layers
with the application of GMP, LMP, GGP and LGP only. The
percentage of remaining weights in the pruned layers when
the accuracy drops by 3% compared to the non-pruned MAC-
based model is reported in Table III, together with the size in
Megabyte of the FC layers. We highlight that, to account for
the whole size of the DNN, the reader should consider also
115.4 MB introduced by the multi-head attention blocks. With
any technique employed, the advantage of utilizing MAM-
based layers is substantial, as the MAM-based pruned layers
can maintain high the accuracy of the network with only
560 000 weights compared to the 20.7 million needed by MAC
neurons to let the ViT-B/16 model achieve the same accuracy
when pruned with GGP.

V. CONCLUSION

In this study, we have compared the prunability of MAM
neurons to the one of traditional MAC neurons when pruned
using state-of-the-art techniques. This comparison was con-
ducted by integrating MAM-based layers into a simple
FC-based neural network trained on classical computer vision
datasets, namely MNIST and FashionMNIST. Furthermore,
for the first time, MAM neurons were used in a Visual
Transformer, namely ViT-B/16, which was fine-tuned on
CIFAR-100. The vanishing contributions technique was also
employed to prevent the impractical training from scratch of
the transformer. Remaining weights in the pruned MAM and
MAC-based layers together with the memory occupation of
the model were measured in this context as well, highlighting
the significantly greater prunability of MAM neurons.
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