
18 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HTVM: Efficient Neural Network Deployment On Heterogeneous TinyML Platforms / Van Delm, Josse; Vandersteegen,
Maarten; Burrello, Alessio; Sarda, Giuseppe Maria; Conti, Francesco; Pagliari, Daniele Jahier; Benini, Luca; Verhelst,
Marian. - (2023). (Intervento presentato al convegno Design Automation Conference (DAC) 2023 tenutosi a San
Francisco, CA (USA) nel 09-13 July 2023) [10.1109/dac56929.2023.10247664].

Original

HTVM: Efficient Neural Network Deployment On Heterogeneous TinyML Platforms

Publisher:

Published
DOI:10.1109/dac56929.2023.10247664

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991620 since: 2024-08-09T09:42:41Z

IEEE/ACM

HTVM: Efficient Neural Network Deployment On
Heterogeneous TinyML Platforms

Double-Blind review

Abstract—Optimal deployment of deep neural networks
(DNNs) on state-of-the-art Systems-on-Chips (SoCs) is crucial
for tiny machine learning (TinyML) at the edge. The complexity
of these SoCs makes deployment non-trivial, as they typically
contain multiple heterogeneous compute cores with limited,
programmer-managed memory to optimize latency and energy
efficiency. We propose HTVM – a compiler that merges TVM
with DORY to maximize the utilization of heterogeneous acceler-
ators and minimize data movements. HTVM allows deploying the
MLPerf™ Tiny suite on DIANA, an SoC with a RISC-V CPU,
and digital and analog compute-in-memory AI accelerators, at
123x improved performance over plain TVM deployment.

Index Terms—Compilers, Convolutional Neural Networks,
Heterogeneous Computing, Deep Learning Accelerators

I. INTRODUCTION

Nowadays, new smart digital applications increasingly rely
on near-sensor data processing to meet privacy, latency,
and energy requirements. To support this edge computing
paradigm for deep learning, embedded Systems-on-Chips
(SoCs) are enhanced with one or more on-chip hardware
accelerators [1]–[3]. These accelerators can efficiently perform
inference of (Deep) Neural Networks ((D)NNs), reducing
energy consumption by more than one order of magnitude
compared to general purpose processors [4]. However, such
on-chip accelerators usually support only a limited set of
DNN operators with specific constraints related to (low) bit
precision, data layout, or dimensions. Moreover, they typically
only have small onboard memories [5].

Deploying neural networks on such tiny machine learning
(TinyML) platforms is a daunting task for application develop-
ers since in-depth hardware-specific knowledge is required to
reach the SoC’s full potential. This problem exacerbates for
new advanced platforms since they entail complex memory
schemes and combine different specialized DNN accelerators.

Recently, many automated DNN deployment toolchains
have been proposed to cope with this problem, aiding devel-
opers to map their DNNs on edge platforms [5], [6]. How-
ever, off-the-shelf deployment toolchains are usually limited
either in generality - targeting specific SoCs or accelerator
architectures - or in performance - unable to exploit dedicated
accelerator hardware due to their generality maximally.

In this work, we aim to fill this gap by proposing HTVM,
a hybrid deployment toolchain. HTVM can efficiently deploy
DNNs on modern TinyML platforms consisting of a micro-
controller (MCU) CPU core, multiple accelerator cores with
varying data flows and sizes, and an N-level memory system.

Our contributions towards this goal are: (1) We extend
the TVM compilation flow with a memory-planning back-end

(DORY [5]) that generates code and optimizes data move-
ment for dedicated accelerator hardware. The proposed flow
works entirely ahead-of-time and enables efficient hardware
acceleration of a wide variety of DNN layers on memory-
constrained devices through hardware-aware layer tiling. (2)
We validate end extensively benchmark our approach by de-
ploying various layers on DIANA, a heterogeneous processing
platform encapsulating a RISC-V host, a 500k MAC/cycle
analog-in-memory-compute accelerator, and a digital DNN
accelerator with a 2-level memory system [2]. Our hardware-
aware tiling approach enables the tiled execution of large
layers and achieves up to 6.2× speed-up over hardware-
agnostic tiling. Also, it achieves respective performance levels
on average only 15.52% / 5.19% less than the digital/analog
accelerator theoretical peak performance for convolutional
layers. (3) With HTVM, we deploy end-to-end networks of
the MLPerfTM Tiny suite on DIANA and compare it with
other recently published results. By exploiting coarse-grained
accelerator instructions and a low-overhead runtime, the gen-
erated code can reduce overall binary size by up to 19.3%
at equal bit-precision compared to plain TVM. By combining
multiple accelerators, we need to dispatch less kernels from
the networks to the general-purpose CPU, decreasing the total
latency by up to 1.12×/8.02× over digital or analog-only
single-accelerator solutions, respectively. Our code is open-
source at https://url.blindedforreview.

The rest of the paper is organized as follows. In Sec. II, we
discuss emerging hardware architectures and new deployment
tools. Sec. III details our contribution, while Sec. IV depicts
the results of HTVM. In this section, we use the DIANA SoC
as benchmarking platform. However, HTVM is general enough
to support a new off-the-shelf heterogeneous platform. Sec. V
concludes the paper with final remarks.

II. BACKGROUND AND RELATED WORKS

Hardware-software co-design is a crucial ingredient for
optimizing DNN inference at the edge. In this section, we
detail new AI-oriented hardware SoCs based on heterogeneous
architectures and software deployment stacks that cater for this
emerging class of heterogeneous multi-accelerator platforms.

A. Heterogeneous platforms for edge DNN inference

The breakdown of Dennard scaling has driven hardware
designers towards more specialized processor designs for
increased system performance. For DNN inference, this of-
fers excellent specialization opportunities since highly parallel
workloads (like Conv2D and GEMM) are prevalent. Recently,
to exploit this opportunity, there has been a trend towards

https://url.blindedforreview

heterogeneous computation, i.e., towards platforms that inte-
grate a CPU with different hardware accelerators/cores with
different trade-offs in terms of accuracy, latency, or energy
consumption. The goal is to realize platforms that can switch
between different computation domains based, for instance,
on the target application or the input complexity, for better
accuracy, higher energy efficiency, or lower latency.

There are many examples in both industry [7] and
academia [2], [8], [9] that embody these concepts. For in-
stance, the commercially available Jetson AGX Xavier from
NVIDIA includes an 8-core ARM CPU, an NVIDIA Volta
GPU, and 2 deep learning accelerators (NVDLA). Running
layers on NVDLA or GPU allows running end-to-end net-
works at lower latency or energy consumption [7]. Notably,
while the GPU can execute every workload, the NVDLA can
not, yet the supported workloads operate at higher energy effi-
ciency. Alternatively, the authors of [9] propose an architecture
with a scalable array of cores that can trade off energy vs.
accuracy. They integrate a 4-bit in-memory computing (IMC)
accelerator with a near-memory single-instruction multiple-
data (SIMD) digital accelerator with flexible accuracy to
minimize energy consumption. Similarly, authors of [2], [8]
propose SoCs which include a control unit (the CPU) and
a series of accelerators that offer a trade-off of accuracy vs.
energy efficiency. In [8], the authors include a 590-K IMC
accelerator specialized in 1-bit operations and a configurable
digital near-memory-computing (NMC) accelerator for scal-
able precision (1-8-bit) computation.

In this work, we use the DIANA SoC [2] as benchmarking
platform. It features a single-core RISC-V host CPU and two
accelerators with multiple local memories accessed through
Direct Memory Access (DMA). Sec. III gives further details
about the DIANA architecture.

B. Software DNN deployment tools

The diversity in specialized hardware is also reflected in
the development of a plethora of different DNN deployment
frameworks. They aim to optimize the execution of a collection
of manually or (semi-)automatically optimized routines (called
kernels) on a target hardware architecture.

TFLite Micro [10] is among the first frameworks introduced
for edge AI deployment. It allows converting a TensorFlow
model to a selected set of hand-optimized NN C++ kernels to
run on a minimal C++ runtime for MCUs. MCUNetv2 [11]
contains both an optimized runtime and kernel generator that
executes layers in a depth-first fashion [12] to reduce peak
memory consumption. Unfortunately, the generality of these
frameworks does not allow them to exploit platform-specific
optimizations, like memory planning and code generation for
embedded accelerators.

DORY [5] optimizes the memory traffic for DNN deploy-
ment on specialized edge devices. By generating C code
that tiles the execution of a dedicated kernel library, DORY
reduces the size of intermediate buffers. This is crucial since
microcontrollers often have limited level-1 (L1) memory. To
achieve this, DORY formalizes tiling as an optimized con-

Fig. 1. HTVM compilation flow.
straint programming problem with kernel-specific heuristics.
The produced code is more optimized but less general than
previous solutions. Using DORY on a new architecture re-
quires creating a new dedicated kernel library, new templates,
and reprogramming the tiler to tailor it to specific hardware.

A popular DNN deployment framework on high-
performance and edge devices that alleviates library
generation efforts is TVM [6]. TVM’s primary optimization
mechanism is autotuning: it quickly compiles differently-
scheduled yet equivalent kernel implementations, and after
running those on hardware, the most optimal kernel is
selected. As such, TVM can implicitly improve the execution
time on CPUs and GPUs and fine-grained general matrix
multiply (GEMM) accelerators like VTA [13]. Moreover,
TVM’s runtime can link in (vendor-provided) optimized
kernels in LLVM IR, CUDA C, C/C++ into a standalone
artifact with the bring your own codegen (BYOC) [14]
infrastructure. However, using TVM’s autotuning pipeline is
impractical for specialized coarse-grained accelerators since
proving coarse-grained kernel equivalence requires complex
loopnest analysis. This can be bypassed by using BYOC, but
in this way, many of the automatic optimization opportunities
presented by the framework are lost.

To overcome the problem of heterogeneous compilation
without creating “yet another custom toolchain”, we propose
HTVM. HTVM uses a hybrid flow that combines the best of
both worlds: it can exploit hardware accelerators by using
DORY to perform specialized C code generation and layer
tiling, and it leverages TVM’s general codegen for creating
fused C kernels that perform operations not supported by the
accelerator on a regular CPU. Notably, HTVM operates en-
tirely ahead-of-time and requires no costly online autotuning.

III. COMPILER FOR HETEROGENEOUS COMPUTING

HTVM, depicted in figure 1, ingests a quantized DNN graph
(yellow block) in common formats like TFLite or ONNX with
TVM’s front end. The ingested graph is translated into Relay
intermediate representation (IR) used by TVM to perform
initial optimizations, such as constant folding. Afterward,

Fig. 2. Time diagram of a neural network deployed with HTVM.

an accelerator-aware pattern matcher searches for operator
patterns in the Relay graph that the accelerator supports as
a single coarse-grained operator, e.g., an 8-bit 2D convolution
(Conv2D) followed by a 32-bit bias-add, 8-bit re-quantization,
and ReLU. Matched patterns are dispatched to the BYOC
DORY compiler backend (green block), which generates C-
code to drive the accelerator. Unmatched operators left in
the graph follow TVM’s native lowering pipeline (red block),
which produces operator-fused CPU kernels instead. Finally,
we use TVM to generate a single C function that executes all
kernels sequentially. HTVM also yields a memory schedule
for allocating and de-allocating intermediate activation tensors
in main memory (L2). A timing diagram of a network flow
produced by HTVM is reported in Fig. 2.

The remainder of this section will focus on two critical
enablers for our hybrid flow: (1) a rule-based dispatching
mechanism that supports offloading to multiple accelerators
with different capabilities, and (2) the DORY backend that
manages the accelerator while optimizing the accelerators’
local memory (L1) usage. Deployment with HTVM towards
a real heterogeneous SoC, DIANA, concludes the section.

A. Accelerator-aware dispatching

Our dispatching mechanism is based on a pattern matcher
and accelerator-aware rules. The pattern matcher determines
possible candidate patterns in the Relay IR graph that can
be offloaded to dedicated hardware. Our implementation
uses the TVM BYOC flow [14] and the Relay Pattern
Matching language. Listing 1 provides an example for a
Conv2D-BiasAdd-ReQuant-ReLU pattern matcher of the
coarse-grained 2D convolution instruction followed by bias
addition, re-quantization, and the ReLU activation function.
The accelerator-aware rules describe the constraints of the
accelerator in more detail and make the final decision whether
a pattern is sent to an accelerator or not, checking if all the
parameters (e.g., stride, kernel size, data layout, parameters
ranges, and bit-width, etc.) are supported by the accelerator.
If a pattern satisfies all rules of one of the accelerators,
the operations will be offloaded to it, and the accelerator-
specific flow is employed. When multiple accelerators on the
platform can execute the pattern, the flow selects the one best
optimized for that given operation. This choice is based on
factors like bit widths, layer geometries, or other user-defined
parameters. When a pattern is not “matched”, the native TVM
flow generates general C code kernels that are executed on
the CPU. Otherwise, the BYOC DORY backend takes on the
translation of the selected kernels.

1 conv2d_pattern():
2 conv2d = is_op("nn.conv2d")(
3 wildcard(), wildcard())
4 bias_add = is_op("nn.bias_add")(
5 conv2d, wildcard())
6 right_shift = is_op("right_shift")(
7 bias_add, is_constant())
8 clip = is_op("clip")(right_shift)
9 cast = is_op("cast")(clip).

10 has_attr({"dtype": "int8"})
11 act_or_cast = cast.optional(is_op("clip")(x))
12 return act_or_cast

Listing 1. Pattern Matching code for Conv2D-BiasAdd-ReQuant-ReLU.

B. BYOC DORY: Accelerator-aware code generation

To enable code generation for hardware accelerators while
optimizing memory and compute unit utilization, we integrated
the open-source DORY [5] framework in the HTVM flow.
DORY’s input is a DNN layer that has to be executed
on a heterogeneous platform with a general-purpose CPU
that drives one/many accelerators and manages a multi-level
memory system. For this input, DORY (1) produces a suit-
able optimized tiling solution to fit the accelerators’ memory
(L1), (2) generates accelerator-specific and memory-specific
instructions, (3) stores the weights in the SoC’s global memory
(L2) in the most optimal data layout (i.e., to avoid CPU
data-marshaling overheads), and (4) emits an explicit memory
management schedule to move the data between different
memory levels (L1 and L2).

First, DORY’s layer analyzer calls the tiling solver. Tiling is
needed whenever a layer does not fit into L1 memory, which
is typically the case in resource-constrained, edge systems
[5]. While maximizing resource (i.e., memory and compute
units) utilization (Equation 1), DORY’s tiler ensures that the
memory mapping meets the platform’s constraints at all times,
as expressed in Eq. 2:

max(α(Lweight
1 + Lout

1 + Lin
1) +

∑
i

βiHi) (1)

Lweight
1 + Lin

1 + Lout
1 < LA

1 (2)

where L
{weight,in,out}
1 indicates the amount of accelerator

memory allocated for the weights, inputs, and outputs, LA
1 rep-

resents the memory of the accelerator, and Hi are accelerator-
aware heuristics, which help to maximize the accelerator uti-
lization. Hyperparameters α and β control the balance between
maximizing memory utilization and maximizing platform-
specific heuristics. Sec. III-C details these heuristics for a
specific heterogeneous target platform, the DIANA SoC.

Finally, based on the dimensions of the tiles, the layer
generator creates code that performs weight allocation and
memory management and drives platform accelerators.

C. HTVM flow on DIANA SoC

To support a specific heterogeneous platform, the user has
to provide to HTVM only three components, i.e., (1) the
hardware specifications (memory dimensions, number and
type of accelerators, etc.) and operations supported by the

TCDM BUS

BOOTROMFLL

uD
M

A

RISC-V In
st

ru
ct

io
n

DMA

Activation memory
(L1) 256KB

W
ei

gh
t

m
em

or
y

64
 K

B

Digital PE array
16x16

AiMC
1152x512

Max pooling SIMD

DMA

Shared memory (L2) 512 KB

I/O
Digital core Analog core

CPU

In
st

ru
ct

io
n

Fig. 3. Measurement setup and DIANA architecture from [2].

dedicated hardware, (2) the heuristics to maximize the accel-
erator utilization and (3) the platform-specific instructions to
call accelerators and manage the memory through DMA calls.

In this section, we briefly describe these three components
for DIANA, the platform used to benchmark HTVM, in section
IV. DIANA is a heterogeneous platform that integrates a
RISC-V (RV32IMCFXpulpV2) microcontroller as a primary
computational node and two accelerators: the first is based on
a 2D SIMD array of 16×16 processing elements (PE) which
delivers up to 256 multiply-accumulate (MAC) operations in
8-bit precision per cycle. The accelerator also allows executing
re-quantization, ReLU and some pooling operations at the
output. The Conv2D layers are mapped unrolling the output
channels (K) and output feature map width (ox) in the
two physical dimensions of the array; fully-connected (FC)
layers are instead unrolled along input channels (C) and K.
The second accelerator is an analog IMC accelerator, which
embeds an array of 1152×512 SRAM cells to execute MAC
operations with 7-bit inputs and ternary weights. Also, this
accelerator supports batch normalization, residual addition,
pooling, activation functions, and re-quantization. Both accel-
erators share a 256kB L1 input/output memory, and each has
its weight memory (64kB for digital and 144kB analog).

To support DIANA in HTVM, we add (1) memory sizes,
specific instruction formats, etc. to DORY and supported
operators to the Relay pattern matcher. Since both accelerators
support convolutions, we discern which accelerator to use by
simply looking at the provided weights’ bit-width of the con-
volution: 8-bit precision goes to digital, and ternary precision
goes to analog. For (2), we design a series of heuristics to
support the optimization of individual accelerator utilization
and memory transfers. To maximize analog accelerator utiliza-
tion, we spatially unroll C and K as much as possible. For
the digital accelerator, we favor the C and ix (input width)
dimensions to be multiples of 16 to exploit all the PEs (16
rows and 16 columns). To minimize non-contiguous input data
transfers on the digital accelerator, since they are stored and
processed using C − y− x layout, we maximize the iy (input
height) dimension. As an example, the heuristics that DORY
maximizes to optimize DIANA’s digital accelerator utilization
are:

Hpe digital C = (Ct − 1) mod 16 (3)
Hpe digital ix = (itx − 1) mod 16 (4)
HDMA = ity. (5)

Accelerator u�liza�on (Eq. 3-4)

Accelerator u�liza�on + Memory transfers
(Eq. 3-4-5)

Only �le size (Baseline)L0 -- 2.36 MACs -- PARAM. SIZE = 2.25kB

Layers characteris�cs Op�miza�on strategies

L1 -- 9.44 MACs -- PARAM. SIZE = 9kB

L2 -- 18.9 MACs -- PARAM. SIZE = 18kB

L3 -- 75.5 MACs -- PARAM. SIZE = 72kB

Fig. 4. Latency effect of tiling with accelerator-aware heuristics for decreasing
L1 memory budget to execute different layers on DIANA’s digital accelerator.

Where Ct is the tile size for the input channel dimensions of
the computation, and ity and itx are the input width and height
dimension tile size, respectively. Each optimization objective
Hi is then combined in eq. 1. Note that even though the
accelerators can execute arbitrarily sized input feature maps,
the tile sizes strongly influence the overall accelerator spatial
utilization, as shown in Sec. IV.

Finally, for the DIANA-specific instructions (3), we im-
plemented dedicated libraries to offload computation to the
analog and digital accelerators. The code is open source at
https://blindedforreview.

IV. EXPERIMENTAL RESULTS

Throughout this section, we show the flexibility and perfor-
mance of our proposed compilation flow, optimizations, and
lightweight runtime. As mentioned earlier, DIANA is used as
the target platform. All the benchmarks were directly deployed
on the DIANA platform (see our measurement setup in Fig. 3).
Cycles and latencies are measured at 260MHz with dedicated
hardware performance counters on the RISC-V core. This
section starts by demonstrating the possibilities of hardware-
aware tiling. Afterward, we benchmark single-layer execution
on both accelerators. The final subsection highlights HTVM’s
end-to-end performance on the MLPerfTM Tiny benchmarks
exploiting both accelerators, and compares this with the SotA.

A. Hardware-aware Tiling

The first important feature of HTVM is its ability to leverage
DORY’s accelerator-aware tiling to fit the execution of large
layers into TinyML systems with small memories. Fig. 4
shows the latency required to execute convolutional layers, of
different sizes with increasing memory constraints, adopting
different optimization approaches for tiling. The different
markers in the figure indicate the number of cycles for memory
tiling with different heuristics. The round markers indicate
the cycle count of tiled layers without any applied heuristics;
square and round ones add the heuristics discussed in sec.
III-C: square markers employ both the heuristics in Eq. 3 and
Eq.4, while diamond markers additionally use Eq. 5. Note
that solutions whose evaluation falls in the grey area do not

https://blindedforreview

Peak HTVM Compiled

Fig. 5. Single layer overhead characterization on digital and analog acceler-
ators with Conv2D, FC, and DWConv2D layer types, evaluated for different
geometries. For the analog layers, a distinction is made between scaling the
channels, or the spatial dimension to explore different geometries. For the
digital layers, we explore spatial scaling with Conv2D, and channel scaling
with FC layers.
require tiling, as the local memory is big enough to host the
entire size of the layer. The figure clearly shows that applying
both heuristics incurs lower or equivalent cycle counts in all
experiments. From the round markers, we can notice that,
when not adding any heuristics to the optimizer, we could
either have good tiles (e.g., in the middle of the red curve)
or very bad tiles (beginning of the red curve), given that the
utilization of the accelerator could be either high or low, as it
is not taken into account during optimization. The advantage
of employing the heuristics is indeed evident in all curves,
reaching up to 6.2× faster execution.

B. Single Layer Overhead Characterization

Performing a DNN layer on a DIANA accelerator requires
some setting up, handshaking, and shutting down/cleaning
up. For example, in the case of a tiled convolution, a loop
iterates over all tiles, and each individual tiled call has to
move data from the main memory (L2) to the accelerator
input/output memory (L1). To characterize this overhead, we
profiled generated kernels of various kinds and geometries on
the two accelerators in two ways. On one hand, we have the
peak performance of the accelerator, i.e., the measured time
between the triggering of the accelerator and its completion.
On the other hand, we have the full kernel call as generated by
HTVM, measured between the call and return on the RISC-
V host. Note that the weights transfer is also included in the
peak performance, as this transfer is orchestrated in the same
instruction to execute the layer.

Fig. 5 (top) shows different geometries by increasing the
channels or the spatial dimension of the layer (at different no.
of MACs of convolutional (Conv2D) layers and the equivalent

TABLE I
LATENCY AND BINARY SIZE OF DEPLOYED MLPERFTM TINY

BENCHMARKS ON THE DIANA SOC IN DIFFERENT CONFIGURATIONS.

Platform DIANA SoC
Core CPU CPU + Dig. CPU + Ana. CPU + Both
Compiler TVM Peak HTVM Peak HTVM Peak HTVM
DSCNN - Keyword Spotting
Lat. (ms) 5.07 1.78 1.92 13.7 13.8 1.69 1.72
Size (kB) 62 51 50 94 93 72 70
MobileNet - Visual Wake Words
Lat. (ms) OoM* 6.19 6.75 40.5 41.2 5.81 6.01
Size (kB) 292 258 257 241 239 245 242
ResNet - Image Classification
Lat. (ms) 135 0.64 1.21 1.44 1.63 0.46 1.09
Size (kB) 122 107 107 127 127 106 107
ToyAdmos - Anomaly Detection
Lat. (ms) 4.75 0.19 0.36 0.65 0.80 0.36 0.523
Size (kB) 287 315 315 171 171 275 275
*Out of Memory (OoM)

execution throughput on the analog core. The lower plot
of Fig 5 shows the same setup for the digital core, which
also supports (FC) and depthwise convolutional (DWConv2D)
layers. For convolutional layers, both graphs show a small
overhead. On the analog core, the average throughput loss
is about 5.20% on average, with a minimum of 0.51% for
highly computationally intensive layers. The digital Conv2D
loses at best only 1.32% in throughput. On the other hand,
the throughput loss for the fastest FC layer is about 54.5%.
The reason is two-folded: for small layers, given the very
low amount of computation cycles of the digital accelera-
tor, the overhead of the HTVM runtime is more tedious.
Bigger layers require many tiling iterations (given the low
arithmetic intensity), which results in overhead for DMA calls
for input/output buffers. DWConv2D layers use only one row
of PE’s on DIANA’s digital accelerator at a maximum peak
throughput of 3.75MACs/cycle. Here the full kernel is never
more than 20.7% slower. Overall, we can notice that for more
common and expensive workloads (i.e., Conv2D), we keep a
very low overhead, meaning that HTVM can reach excellent
performance on end-to-end networks, as shown in the next
section.

C. Networks: TinyML Benchmarks

To characterize the end-to-end performance of our ap-
proach, we deployed the four networks of the MLPerfTM Tiny
Benchmark suite version 1.0 [15]. This suite includes four
topologies: a ToyAdmos Deep Auto Encoder (DAE), an audio
processing CNN (DS-CNN), MobileNet V1, and CIFAR10
ResNet image classifier. These models represent typical edge
platform workloads, including (DW)Conv2D, FC, element-
wise addition, average pooling, and softmax layers.

HTVM’s flexibility allows quickly deploying each of these
networks to different configurations of DIANA, exploiting one
or both of the accelerators. The columns of table IV-C show
binary size and latency for each deployment scenario discussed
below. All C code is -O3-compiled with an XpulpV2-aware
RISC-V GCC. Peak measurements are done in the same
fashion as in section IV-B and do not affect TVM-generated
kernels, to be indicative of how effective HTVM can utilize
the accelerators. As a performance baseline on DIANA, the

Digital TVM (8-bit) configuration only uses DIANA’s RISC-
V core. In this configuration, MobileNet stops running with an
error, since more than 512kB of memory has to be allocated.

In the Digital HTVM configuration, all (DW)Conv2D, FC,
and Add layers are offloaded to DIANA’s 8-bit digital acceler-
ator. For ResNet, this results in an impressive speedup of 112×
over the TVM baseline. At the same time, the binaries shrink
for 3 benchmarks since DIANA’s coarse-grained accelerator
requires fewer instructions than the RISC-V core to perform
certain operators. This effect is most pronounced in DS-CNN,
where a reduction of 19.3% is achieved at equal bit-precision.

In the “Analog” column, we display the performance of
ternary layers on DIANA’s analog accelerator, which only
supports Conv2D layers. We can still deploy all networks by
implementing FC layers as Conv2Ds and by offloading the
other unsupported layers with TVM to the RISC-V core in
8-bit1 albeit at a much lower performance. MobileNet and
DS-CNN suffer from this performance drop because of their
DWConv2D layers. Also, on the other two networks, we still
have worse performance compared to the digital accelerator,
given the low amount of channels of these networks and the
overhead of filling the analog accelerator weight memory for
each layer. As can be seen for ToyAdmos and MobileNet,
ternary weights data require less storage. In the other networks
on DIANA, however, some layer dimensions require padding
the L2 memory with zeros to fill a part of the large IMC macro
which ultimately leads to a larger overall binary.

HTVM also allows for a “mixed configuration” where
we combine the abilities of both accelerators. The first and
last accelerator-eligible layers and all DWConv2D layers are
executed digitally, remaining Conv2D’s are executed on the
analog core. The rationale is to execute all the layers that
do not cause an accuracy drop on the analog accelerators.
By offloading more kernels to the different accelerators, we
achieve the best latency in 3 out of 4 benchmarks. For instance,
the mixed DS-CNN configuration is 8.02× faster than its
analog counterpart, and the mixed MobileNet is 1.12× faster
than the fully digital one. Furthermore, the HTVM Mixed
ResNet has 123× improvement over plain TVM deployment.
Overall, we show that HTVM is flexible enough to offload
single kernels to different hardware blocks, enabling the easy
porting of neural networks with a wide range of different
layers on a real-standing heterogeneous platform.

D. Comparison with state-of-the-art
Table IV-D compares our work with results submitted at

[15] at a normalized clock frequency of 260MHz. We compare
8-bit solutions for all the competitors and us. HTVM on
DIANA beats ResNet on a regular STM microcontroller with
TVM-generated kernels by 180x lower latency. If the same
MCU also offloads to CMSIS-NN kernels (an open-source
backend for ARM CPUs), HTVM on DIANA can still perform
MobileNet inference 23× faster. Networks compiled with
GapFlow on GAP9, a manually-tuned commercial closed-
source TinyML platform, still outperform our results. Note that

1TVM does not support generating ternary kernels.

TABLE II
PERFORMANCE COMPARISON OF DEPLOYED MLPERFTM TINY

BENCHMARKS WITH HTVM AND SOTA TOOLS AND PLATFORMS [15]

Compiler TVM TVM + GreenWaves HTVM
CMSIS-NN GAPFlow (This paper)

Platform** STM32L4R5ZIT6U GAP9 DIANA Digital
Benchmarks - Latency* (ms)
DSCNN 66.6 46.1 0.68 1.92
MobileNet 155 139 1.61 6.75
ResNet 180 180 0.88 1.21
ToyAdmos 5.4 3.97 0.256 0.36
*Normalized for the same clock frequency (260 MHz)
**Fastest HW-SW operating configuration

while our results are strongly worse on networks containing
DW layers (DIANA is not optimized for these kinds of
layers), we are closer for the other two benchmarks (37.5%
slower on ResNet). However, HTVM already performs very
competitively without any manual tuning and does not prevent
further tuning. To enable further tuning on a platform, HTVM
can easily be expanded with other BYOC codegens to deploy
hand-tuned CPU kernels.

V. CONCLUSIONS

In this paper, we present HTVM, an open-source com-
piler that combines the strengths of TVM and DORY to
allow smooth DNN deployment towards a broad class of
accelerators while enabling effective hardware utilization on
resource-constrained TinyML platforms. We show that our
fully ahead-of-time flow results in a smaller binary size, orders
of magnitude faster execution, and close-to-peak accelerator
performance on the DIANA SoC. We prove this by showing
performance competitive with the state of the art on the
MLPerfTM Tiny benchmark suite.

REFERENCES

[1] H. Genc et al., “Gemmini: Enabling systematic deep-learning architec-
ture evaluation via full-stack integration,” in DAC, 2021.

[2] K. Ueyoshi et al., “DIANA: An End-to-End Energy-Efficient Digital
and ANAlog Hybrid Neural Network SoC,” in ISSCC, 2022.

[3] V. Jain et al., “TinyVers: A 0.8-17 TOPS/W, 1.7 µW-20 mW, Tiny
Versatile System-on-chip with State-Retentive eMRAM for Machine
Learning Inference at the Extreme Edge,” in VLSI, 2022.

[4] G. Kaiyuan et al. Neural Network Accelerator Compari-
son. [Online]. Available: https://nicsefc.ee.tsinghua.edu.cn/projects/
neural-network-accelerator/

[5] A. Burrello et al., “DORY: Automatic end-to-end deployment of real-
world DNNs on low-cost IoT MCUs,” IEEE Trans Comput., 2021.

[6] T. Chen et al., “TVM: An automated End-to-End optimizing compiler
for deep learning,” in OSDI, 2018.

[7] I. Dagli et al., “Axonn: Energy-aware execution of neural network
inference on multi-accelerator heterogeneous socs,” in DAC, 2022.

[8] H. Jia et al., “A programmable heterogeneous microprocessor based on
bit-scalable in-memory computing,” JSSC, 2020.

[9] H. Jia et al., “Scalable and programmable neural network inference
accelerator based on in-memory computing,” JSSC, 2022.

[10] R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning
for TinyML Systems,” in MLSys, 2021.

[11] J. Lin et al., “Mcunetv2: Memory-efficient patch-based inference for
tiny deep learning,” 2021.

[12] K. Goetschalckx et al., “Breaking High-Resolution CNN Bandwidth
Barriers With Enhanced Depth-First Execution,” JETCAS, 2019.

[13] T. Moreau et al., “A hardware–software blueprint for flexible deep
learning specialization,” Micro, 2019.

[14] Z. Chen et al., “Bring Your Own Codegen to Deep Learning Compiler,”
arXiv preprint arXiv:2105.03215, 2021.

[15] MLPerf Tiny Benchmark V1.0 Results. [Online]. Available: https:
//mlcommons.org/en/inference-tiny-10/

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://mlcommons.org/en/inference-tiny-10/
https://mlcommons.org/en/inference-tiny-10/

	Introduction
	Background and Related Works
	Heterogeneous platforms for edge DNN inference
	Software DNN deployment tools

	Compiler for Heterogeneous Computing
	Accelerator-aware dispatching
	BYOC DORY: Accelerator-aware code generation
	HTVM flow on DIANA SoC

	Experimental Results
	Hardware-aware Tiling
	Single Layer Overhead Characterization
	Networks: TinyML Benchmarks
	Comparison with state-of-the-art

	Conclusions
	References

