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Abstract Westudy how and towhat extent the existence of non-local diffusion affects the transport of chemical
species in a composite medium. For our purposes, we prescribe the mass flux to obey a two-scale, non-
local constitutive law featuring derivatives of fractional order, and we employ the asymptotic homogenisation
technique to obtain an overall description of the species’ evolution. As a result, the non-local effects at the
micro-scale are ciphered in the effective diffusivity, while at themacro-scale the homogenised problem features
an integro-differential equation of fractional type. In particular, we prove that in the limit case in which the
non-local interactions are neglected, classical results of asymptotic homogenisation theory are re-obtained.
Finally, we performnumerical simulations to show the impact of the fractional approach on the overall diffusion
of species in a composite medium. To this end, we consider two simplified benchmark problems, and report
some details of the numerical schemes based on finite element methods.

Keywords Asymptotic homogenisation · Fractional Calculus · Non-local diffusion · Composite media ·
Effective diffusivity

Mathematics Subject Classification 35K57 · 26A33 · 35B27 · 92B99 · 92C10

1 Introduction

Themain purpose of the theory of homogenisation is to predict the overall properties of heterogeneousmedia in
connectionwith the intrinsic features of their internal structure [20]. In themodelling ofmulti-scale composites,

All authors have equally contributed to this work.

A. Ramírez-Torres · A. Grillo (B)
Dipartimento di ScienzeMatematiche (DISMA) “G. L. Lagrange”, Dipartimento di Eccellenza 2018–2022, Politecnico di Torino,
Torino, Italy
E-mail: alfio.grillo@polito.it

A. Ramírez-Torres
E-mail: ariel.ramirez@polito.it; Ariel.RamirezTorres@glasgow.ac.uk

A. Ramírez-Torres
Present address:
School of Mathematics and Statistics, Mathematics and Statistics Building, University of Glasgow, University Place, Glasgow
G12 8QQ, UK

R. Penta
School of Mathematics and Statistics, Mathematics and Statistics Building, University of Glasgow, University Place,
Glasgow G12 8QQ, UK
E-mail: Raimondo.Penta@glasgow.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-020-01880-3&domain=pdf


560 A. Ramírez-Torres et al.

homogenisationmethods permit to decouple the structural characteristic length scales [2,10,40,42,55,57], and,
in particular, the asymptotic homogenisation technique [15,17,27,74] makes use of multiple scale expansions
of the unknown fields to acquire an effective description of the medium at its coarser scales.

Usually, local constitutive laws are adopted in the description of the constituents of composite materials
or heterogeneous media, thereby leading, in the majority of cases, to a homogenised local response of the
composite. However, in certain circumstances, this has conducted to discrepancies with the experimental
studies on heterogeneous media whose macro-scale properties could be more appropriately modelled by
constitutive laws of non-local type. For instance, according to the experiments performed in [18,36,45,48], a
medium with an involved structure may develop spontaneous restrictions on the way in which the transport
processes occurring inside it are to take place. In turn, these restrictions, dictated by the medium’s internal
geometry, apply to the various length scales characteristing the transport processes and may result into non-
local diffusion, thereby yielding non-Fickian diffusion [18,21,29,48]. Furthermore, it is worth noticing that,
although the response of the constituents of a composite is often taken to be of local type at the lowest scale,
in some cases, non-locality in time or space may arise as a result of homogenisation processes [9,26,37], or
even by the adoption of standard concepts of solid mechanics [78], without having recourse to homogenisation
techniques. For instance, as shown in [19], viscoelasticity can be obtained from suitable upscaling of a fluid–
structure interaction problem between an elastic medium and a Newtonian fluid.

1.1 Scopes and novelties

To the best of our knowledge, there exist few works in which the constitutive laws of the constituents of
composite media are assumed to be non-local already at the lower scales [20,79]. For instance, in [20], the
homogenised properties of thermoelastic composites are studied by considering non-local integral operators
for the characterisation of the stress–strain constitutive laws. In [20], the Author motivates the need for this
constitutive choice by relating it to the complex geometrical and physical connections among the spatial
length-scale of real materials, as is the case of hierarchical composite media [46].

In this work, motivated by the interest towards diffusion in highly heterogeneous biological media, we
study a problem in which the mass flux of a chemical species in each constituent is related to the species’
concentration gradient by means of a spatially non-local constitutive law. We do this by admitting that, in
principle, two types of non-locality coexist: one pertains to the micro-scale and is thus associated with each
constituent of the composite medium, while the other one is introduced a priori to allow for a non-local
behaviour at the macro-scale. Note that these two types of non-locality are, in general, independent of each
other. In the following, wewill address each of these two non-localities through dedicated benchmark problems
(see Sect. 5).

Several types of non-locality can be accounted for. For instance, as mentioned in [67], one can introduce
higher-order gradients or integro-differential relations in the constitutive laws [4,8,14,31,34,38,47]. In the
present work, continuing the research lines initiated in [67], we exploit Fractional Calculus [7,23,64] to
describe diffusion processes thatmaydeviate fromFick’s lawbecause of possible non-local behaviours in space.
This modelling choice is motivated by the “success” of Fractional Calculus in addressing such phenomena
[24,25,52,54]. In doing this, we have taken inspiration from the works [22,67,75].

In an attempt to realise how and to what extent non-local diffusion may affect the overall evolution of a
given chemical substance in a composite medium, we prescribe a two-scale, non-local constitutive law for the
mass flux of the considered substance. With this aim, we consider the asymptotic homogenisation technique
to determine the effective diffusivity and the macroscopic evolution of the species. In doing this, we end up
with an effective characterisation of the composite that is subjected to the existence of non-local interactions
at both the micro- and the macro-scale. This is one of the novelties of this work.

As remarked in [67], the numerics of fractional diffusion in bounded domains requires special care because
of the way in which the integro-differential operators featuring in the constitutive laws are to be handled, e.g.
within FE methods. These difficulties increase if the medium in which fractional diffusion takes place is
heterogeneous, as is the case in this work. A standard way of addressing numerically fractional differential
equations in bounded domains is to have recourse to finite differences, specifically in the form of Grünwald–
Letnikov schemes (see, e.g. [50,53]), although we are aware of works in which FE procedures are adopted
[35,43,67,71]. However, this is not done for fractional differential equations in a multi-scale context, at least
to our knowledge.

Another novelty of our work is that we address the FE discretisation of benchmark problems that include
the non-local nature of the mass flux and the role of the heterogeneous structure of the medium under study. In
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this respect, we report the most important aspects of the FE discretisation and discuss some of the properties
of the stiffness matrix and nodal force vector that feature in the resulting algebraic equations.

In summary, the main novelties of this work are:

(i) The establishment of a combined framework in which some constitutive laws involving fractional deriva-
tives are studied in conjunction with asymptotic homogenisation, in order to solve problems characterised
by non-local diffusion at different scales.

(ii) The realisation of a numerical scheme capable of putting together FE techniques with the integro-
differential operators from Fractional Calculus.

Our main result is the quantification of the impact of the spatially non-local diffusion of fractional type
of chemical substances, resolved at the macro- and at the micro-scale of a strongly heterogeneous composite
medium, on the transport of such substances within the medium. By employing asymptotic homogenisation to
determine the effective diffusivity coefficient of the considered medium, our computations predict that, at the
macro-scale, the attainment of the stationary state of the diffusion process is appreciably hindered by the non-
local interactions accounted for by the operators of fractional differentiation that define the diffusion fluxes.
This retardationmanifests itself for decreasing values of a real parameter (the fractional order of differentiation)
that defines the strength of such non-local interactions, at the micro- and at the macro-scale.

Finally, we mention that, in this work, we adopt a formalism that can be easily adapted to a two- or three-
dimensional context. However, since it can be challenging to study non-local phenomena in composite media
via asymptotic homogenisation, we prefer, for the time being, to contextualise our mathematical model in a
one-dimensional framework. Moreover, we remark that the results presented hereafter can be adapted in a
straightforward manner to the study of thermal diffusion. Still, in the sequel, we shall only discuss diffusion
of chemical species because the main problems that we have in mind come from the transport of chemical
species in biological tissues.

1.2 Organisation of our work

Themanuscript is organised as follows: in Sect. 2, some aspects of the topology of the composite are discussed,
and we introduce the multi-scale governing equations describing the non-local diffusion of the chemical
species. In Sect. 3, we consider the separation of scales between the macro- and the micro-scale, we illustrate
the topology of the micro-structure, and discuss some aspects regarding periodicity in a two-scale context.
Additionally, we reformulate the original governing equations to account for the two-scale nature of the
non-local phenomena. In Sect. 4, the main mathematical tools of the asymptotic homogenisation technique are
introduced, andwe derive the effective properties and the homogenised equations for the composite under study.
Furthermore, in Sect. 5, we specialise the general theory by presenting two different benchmark problems and
discuss the results produced by numerical simulations. Moreover, we provide some details on the numerical
schemes based on FE methods. Finally, in Sect. 6, we highlight the main results and outline some future
developments.

2 Formulation of the problem

2.1 Topology of the composite

Let B =]0, L[, with L > 0, be an open and bounded set of the one-dimensional Euclidean space, taken
as the representation of a heterogeneous cylinder with periodic structure at the micro-scale, in which the
heterogeneity is only along the axis of the cylinder. In particular, the open subsetsB1 = ∪N

i=0]X2i , X2i+1[⊂ B

and B2 = ∪N
i=0]X2i+1, X2i+2[⊂ B form the periodic structure of B and, for every i , each pair of intervals

]X2i , X2i+1[ and ]X2i+1, X2i+2[ represents two different constituents of the compositeB. Moreover, it holds

that B = B1 ∪ B2 and B1 ∩ B2 = B1 ∩ B2 = ∅, where the bar symbol indicates the closure of the set.
In addition, we use the notation I to specify the interface separating the constituents B1 and B2, namely
I = B1 ∩ B2 = ∪N

i=0{X2i+1} (see Fig. 1).
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2.2 Diffusion of chemical species

The diffusion of a chemical species in the compositeB is described by

∂tC(X, t) + ∂X Q(X, t) = 0, in (B \ I)×]0, tf [, (1a)

�C(X j , t)� = 0, t ∈ ]0, tf [, (1b)

�Q(X j , t)� = 0, t ∈ ]0, tf [, (1c)

with {X j = X2i+1}Ni=0 ⊂ I, together with suitable initial and boundary conditions. Note that for ease of
exposition these conditions will be specified later, when the benchmark problems are presented.

Equations (1b) and (1c) describe the contact on I, which in this case is assumed to be ideal, and the
operator

�
Φ(X j , t)

�
denotes the jump of Φ across the interfaceI, i.e.

�Φ(X j , t)� := lim
X→X−

j

Φ(X, t) − lim
X→X+

j

Φ(X, t), X j ∈ I. (2)

Moreover, Q denotes the mass flux of the chemical species and, as done in [67], we propose to express it in
terms of the following non-local constitutive law,

Q(X, t) := −
∫
B

D(X, X̃)∂X̃C(X̃ , t)d X̃ , (3a)

D(X, X̃) := F(X − X̃)D(X, X̃), (3b)

where D(X, X̃) is referred to as non-local diffusivity, and is written as the product of the scalar quantity
F(X − X̃) and the fractional diffusivity D(X, X̃), both taken to be strictly positive. We emphasise that F is
defined for X �= X̃ , and that both D and D have, in general, physical dimensions different from those of
standard diffusivity, depending on the prescription on F. Additionally, C and Q are continuous in B, which
means that they are prolonged at the interfaces.

It is worth noticing that further generalisations to the study of transport processes, involving for instance
Darcy’s law, can be found, e.g. in [1]. This work, however, pursues goals different from ours, since it considers
constitutive laws that relate the time fractional derivative of the mass flux with the time fractional deriva-
tive of the classical pressure gradient. On the other hand, a one-dimensional diffusion problem in a bounded
homogeneous medium is studied in [76], wherein Darcy’s equation is generalised with a fractional integral
in space. Furthermore, in the context of hierarchical materials, such as bones and ligaments, a generalised
viscoelastic approach has been proposed to describe their rheological properties by using fractional derivatives
and integrals [3,30], while numerical methods have been developed for the case of hereditary-ageing materials
in [16]. Additionally, we notice that in [81] the analytical and numerical solution of a generalised heat con-
duction equation was studied by considering a fractional time derivative instead of the first-order partial time
derivative of the temperature. Moreover, in [5], the authors considered a model in which, in addition to the
fractional derivative in time, the heat conduction equation in a homogeneous material is extended by replacing
the classical gradient of the temperature with its symmetrised Caputo fractional derivative. Finally, we point
out that, in the context of viscoelastic composites, the Rabotnov exponential kernel [66], which is employed
to construct a type of fractional derivative, has been considered in [70].

3 Multi-scale formulation of the problem

3.1 Separation of scales

In the characterisation of the two-scale nature of the composite, we assume the existence of two characteristic
length scales, associated with the composite as a whole and its internal structure. Specifically, for our purposes,
we denote by Lc and � the characteristic length scales of the composite medium and of its internal structure,
respectively. Moreover, we require that the considered length scales are well separated by enforcing that
�/Lc 	 1. Therefore, we introduce the dimensionless, smallness parameter ε, referred to as the scaling
parameter, which is defined as the ratio

ε := �

Lc
	 1. (4)
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We notice that ε characterises the heterogeneity of the composite, and permits to explicitly specify the two-
scale nature of a given physical quantityΦ : B×[0, tf [→ R. In fact, following the discussion given in [32,63],
one can take into account the multi-scale character of Φ(X, t) by rewriting it as Φ(X, t) = Φ̌(X, t; �, Lc). As
a particular case of this writing, we can impose that Φ̌(X, t; �, Lc) = Φ̂(X/Lc, X/�, t), so that the dependence
on the characteristic length scales is explicit. In this way, we have that

Φ(X, t) = Φ̌(X, t; �, Lc) = Φ̂(X/Lc, X/�, t)

= Φ̂(x, x/ε, t) = φ(x, y, t), (5)

where the dimensionless variables x := X/Lc and y := x/ε are referred to as the macroscopic, or slow,
variable, and the microscopic, or fast, variable, respectively. Note that, within this non-dimensional setting,
B becomes X := ]0, L/Lc[ and, accordingly, the non-dimensional variables x and y vary in X and in
X/ε = ]0, L/�[=]0, 1

ε
L/Lc[, respectively.

As stated in Eq. (5), one is able to express Φ as a function of two formally independent variables, thereby
distinguishing the two scales characterising its nature. This means that, for every time t , the newly introduced
function φ is defined, in general, as φ(·, ·, t) : Dx × Dy → R, where Dx ⊆ X and Dy ⊆ X/ε.

Finally, we note that, by using the representation (5) and employing the chain rule, we can write

∂XΦ(X, t) = 1
Lc

[
∂xφ(x, y, t) + 1

ε
∂yφ(x, y, t)

]
. (6)

3.2 Topology of the micro-structure

At the micro-scale, the reference or elementary cell is the open interval ]0, �[, which in a non-dimensional
formalism becomesY= ]0, 1[⊂ X/ε. Specifically, we assumeY to consist of two non-empty, open subsets
Y1 = ]0, yI[ and Y2 =]yI, 1[, where yI ∈ ]0, 1[ denotes the interface between the intervals Y1 and Y2 (see
Fig. 1). Furthermore, we consider that

Y = Y1 ∪Y2 and Y1 ∩Y2 = Y1 ∩Y2 = ∅. (7)

Here, for the sake of simplicity, we adopt the assumption ofmacroscopic uniformity [41,60,61]. This choice
allows to choose the elementary cell,Y, independently of themacroscopic variable x , so thatY is representative
of the composite’s micro-structure (see Fig. 1). Moreover, for the type of functions φ(·, ·, t) : Dx ×Dy → R

used in the forthcoming calculations, we assume Y \ {yI} ⊂ Dy and the existence of the lateral limits
limy→1± φ(x, y, t) and limy→0+ φ(x, y, t). In the sequel, this property will be used to formalise the periodicity
of φ with respect to its microscopic variable (this will be referred to asY-periodicity), especially in the case
in which Dy has the form

Dy = ∪N−1
p=0 (]p, p + yI[ ∪ ]p + yI, p + 1[) , (8)

where N is a sufficiently large natural number. These considerations imply that it is sufficient to reformulate
the problem at hand in the reference cellY = ]0, 1[, along with the lateral limits outlined above, although for
some physical quantities yI does not belong to the set in which they can be evaluated.

Fig. 1 Schematic representation of the topology of the compositeB and of its micro-structure



564 A. Ramírez-Torres et al.

In addition, since Y is chosen independently of the macroscopic variable x , also the following relation
holds

∂x

{∫
Y

φ(x, y, t)dy

}
=
∫
Y

∂xφ(x, y, t)dy. (9)

In general, however, if the hypothesis of macroscopic uniformity is not valid, the topology and geometry of
the reference cell,Y, could vary with respect to the macroscopic spatial variable x and, thus, the reference cell
should be regarded as a function of x ,Y(x). In this case, Reynolds’ transport theorem prescribes to rewrite
the derivative of the left-hand side of Eq. (9) as

∂x

{∫
Y(x)

φ(x, y, t)dy

}
=
∫
Y(x)

∂xφ(x, y, t)dy

+
∫

∂Y(x)
φ(x, y, t)wn(x, y)dy, (10)

where wn(x, y) is the normal “velocity” with which the boundary of the cell varies (see, e.g. [33,63] and the
references therein for more details).

3.3 Periodicity

From the point of viewof the small characteristic length scale �, the bodyB can be approximated as unbounded,
so that one can assume B = R. Within this approximation, a function Φ is said to be �-periodic in the sense
that Φ(X, t) = Φ(X + p�, t), for all p ∈ Z, provided X and X + p� are points in which the function can be
evaluated [27].

Within the context of asymptotic homogenisation, one rephrases the periodicity of Φ in terms of the
periodicity of the corresponding function φ with respect to the microscopic variable y. To this end, and to
account for the fact that φ may be undefined for some values of y, it is necessary to express the periodicity of
φ in the weaker sense supplied by

φ(x, y±∗ , t) = φ(x, (y∗ + 1)±, t), (11)

with φ(x, y±∗ , t) = limy→y±∗ φ(x, y, t), for all y∗ for which both lateral limits exist. This picture is consistent
with the case in which φ(x, ·, t) is defined in a setDy of the type specified in (8) and y∗ is either p or p + yI,
with p = 1, . . . , N − 2. In particular, the case y∗ = p + yI is important for performing the continuous
prolongation at the interface of those physical quantities that have to be continuous at this point (for instance,
the fluxes).

As anticipated above, the macroscopic uniformity, along with theY-periodicity of the functions of interest
for the problem at hand, enable us to restrict a given physical quantity to a single cell. For this purpose, one
may choose the reference cellY = ]0, 1[ , and take the restriction φ(x, · , t)|Y . Furthermore, to account for the
presence of the interface, which splits the cell in the disjoint union of two materials with different properties,
we define φ(x, · , t)|Y as the piecewise function

φ(x, y, t)|Y =
{

φ1(x, y, t) y∈ ]0, yI[ ,
φ2(x, y, t) y∈ ]yI, 1[ . (12)

In particular, to describe the periodicity at y∗ = 0, we invoke Eq. (11), so that,

φ(x, 0+, t) = φ(x, 1+, t). (13)

Granted this result, we notice that, if φ is a function for which the continuity condition at the boundary of the
periodic cell must be respected (for example, a concentration or mass flux), we also find

φ2(x, 1
−, t) = φ1(x, 1

+, t), (14)

and, thus, because of periodicity,

φ2(x, 1
−, t) = φ1(x, 0

+, t). (15)
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3.4 Multi-scale non-local diffusion

Upon adopting the above considerations, and recalling the identities (5) and (6), we rephrase the original
problem (1a)–(1c) as follows (see Remark 1 for further details),

∂t ck(x, y, t) + (
∂x + 1

ε
∂y
)
qα,βk (x, y, t) = 0, (16a)

c1(x, yI, t) = c2(x, yI, t), (16b)

qα,β1(x, yI, t) = qα,β2(x, yI, t), (16c)

with (x, y, t) ∈ X ×Yk×]0, tf [, and where the index k∈ {1, 2} indicates in which sub-cell Eq. (16a) and the
quantities ck and qα,βk are defined. Particularly, the two-scale, non-local flux qα,βk is given by

qα,βk (x, y, t) := −
∫
X×Yk

dα,βk (x, x̃, y, ỹ)
(
∂x̃ + 1

ε
∂ỹ
)
ck(x̃, ỹ, t)dx̃d ỹ, (17a)

dα,βk (x, x̃, y, ỹ) := fα,βk (x − x̃, y − ỹ)dα,βk (x, x̃, y, ỹ), (17b)

where dα,βk (x, x̃, y, ỹ) represents a two-scale “version” of the non-local diffusivity coefficient D(X, X̃).
More precisely, by using Eq. (5), we have that D(X, X̃) is replaced by dα,βk (x, x̃, y, ỹ), which means that
the parameters α and βk (see below) are already present in D(X, X̃). Analogously, fα,βk (x − x̃, y − ỹ) and
dα,βk (x, x̃, y, ỹ) replace F(X − X̃) andD(X, X̃) in the decomposition (3b), but describe the non-locality and
the fractional diffusivity resolved on the two different scales accounted for in this work. Particularly, α ∈ R

+
is referred to as the macro-scale non-locality parameter and characterises the non-local interactions in the
region X. On the other hand, βk ∈ R

+, with k = 1, 2, is the micro-scale non-locality parameter describing
the non-locality within the sub-cellYk . Note that qα,βk absorbs the factor 1/Lc that stems from the chain rule
(6) when one switches to the two-scale representation of the flux.

Remark 1 The representation of the two-scale, non-local mass flux in Eqs. (17a) and (17b) does not follow
directly from (3a). This is because the double integral overX ×Yk defining qα,βk cannot be obtained by only
applying the two-scale representation prescribed by (5) and (6) to the integrand of (3a). Rather, to account for
the two-scale resolution of the flux, a further step is needed, which requires to pass from a single integration in
the variable X̃ to a double integration in the two auxiliary variables x̃ and ỹ. In this respect, it must be clearly
stated that the flux qα,βk is not equal to Q, and it is introduced ad hoc as a mathematical tool with the purpose
of resolving the two-scale dependence of the original flux. Hence, the definition of qα,βk must be regarded as
a conjecture, which in the limit ε → 0, and within the asymptotic homogenisation approach, converges to an
effective flux that represents the limit of Q [refer to Eq. (45b)]. Proving this rigorously is part of our current
investigations, which involve, among others, the concept of two-scale convergence [27,58,80].

We remark that the introduction of the non-local parameters α and βk follows from the fact that we interpret
non-local effects by using the notions of Fractional Calculus [7], in which derivatives and integrals of fractional
order are considered. The parameter α accounts for the intensity of non-locality at the macro-scale, whereas
we have intentionally introduced two different non-locality parameters, β1 and β2, at the microscopic level to
describe the existence of “long-range” interactions even at the scale of each sub-cell Yk . This is indeed the
essence of the micro-scale non-locality.

We further notice that, if the concentration ck is dimensionless, the flux qα,βk must have the physical
dimensions of the reciprocal of time, and it follows fromEq. (17b) that the samemust be true for the dimensions
of dα,βk . To guarantee the latter condition, and keeping in mind that dα,βk is a (fractional) diffusivity, we take
the dimensions of dα,βk to be [dα,βk ] = lengthξ(α,βk )/time, where ξ(α, βk) is a real number expressed as a
function of α and βk , and, consequently, we take [fα,βk ] = length−ξ(α,βk ). In the local case, the non-locality
function may be taken dimensionless, which means that ξ(α, βk) must tend towards zero, and the fractional
diffusivity becomes a pure rate, that is [dα,βk ] = time−1.

In the sequel, we assume that every field is periodic with respect to the micro-scale variable y. Moreover,
the spatial fractional diffusivity dα,βk is considered to be independent of x , x̃ and y, and with a slight abuse of
notation, we simply write dα,βk (ỹ). This simplification, however, has not major repercussions in the results of
the following sections.
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4 Two-scale asymptotic homogenisation approach

In this work, we adopt the asymptotic homogenisation technique and prescribe a formal two-scale expansion
for ck in power series of the smallness parameter ε > 0, namely

ck(x, y, t) =
+∞∑
n=0

c(n)
k (x, y, t)εn, k = 1, 2, (18)

where each c(n)
k (x, ·, t), n = 0, 1, 2, . . ., is assumed to be periodic with respect to y (said more rigorously:

periodic with respect to its second argument).
Before substituting the formal expansion (18) into (16a)–(16c), we find it convenient to rewrite Eqs. (16a)–

(16c) as follows

ε2∂t ck(x, y, t) + ε2∂xQα,βk (x, y, t) + ε∂xqα,βk (x, y, t)

+ ε∂yQα,βk (x, y, t) + ∂yqα,βk (x, y, t) = 0, (19a)

c1(x, yI, t) = c2(x, yI, t), (19b)

εQα,β1(x, yI, t) + qα,β1(x, yI, t)

= εQα,β2(x, yI, t) + qα,β2(x, yI, t), (19c)

where the following notation has been adopted

Qα,βk (x, y, t) := −
∫
X×Yk

fα,βk (x − x̃, y − ỹ)dα,βk (ỹ)∂x̃ ck(x̃, ỹ, t)dx̃d ỹ, (20a)

qα,βk (x, y, t) := −
∫
X×Yk

fα,βk (x − x̃, y − ỹ)dα,βk (ỹ)∂ỹck(x̃, ỹ, t)dx̃d ỹ. (20b)

Specifically, in (20a) and (20b), the uppercase and lowercase symbols Qα,βk and qα,βk indicate the partial
differentiation of ck inside the integral with respect to x̃ and ỹ, respectively. Moreover, it holds that qα,βk =
Qα,βk + ε−1qα,βk .

After substituting (18), truncated to the order ε2, into (19a)–(19c), (20a) and (20b), the problem reduces
to finding the leading order coefficients c(n)

k of the power series (18), which solve the boundary problems
resulting from equating all the terms in the same powers of ε. To this end, it is useful to write explicitly the
generic coefficients of the expansion of the fluxes qα,βk and Qα,βk , i.e.

q
(n)
α,βk

(x, y, t) := −
∫

X×Yk

fα,βk (x − x̃, y − ỹ)dα,βk (ỹ)∂ỹc
(n)
k (x̃, ỹ, t)dx̃d ỹ, (21a)

Q
(n)
α,βk

(x, y, t) := −
∫

X×Yk

fα,βk (x − x̃, y − ỹ)dα,βk (ỹ)∂x̃ c
(n)
k (x̃, ỹ, t)dx̃d ỹ, (21b)

for n = 0, 1, 2, . . ., so that, in the limit ε → 0, qα,βk and Qα,βk can be approximated by

qα,βk = q
(0)
α,βk

+ εq
(1)
α,βk

+ ε2q
(2)
α,βk

+ o(ε2), (22a)

Qα,βk = Q
(0)
α,βk

+ εQ
(1)
α,βk

+ ε2Q
(2)
α,βk

+ o(ε2). (22b)

Next, the problem (16a)–(16c), truncated to the order ε2, splits into three sub-problems, one for each of the
considered orders of ε.

In the sequel, to avoid the proliferation of indices, we simplify the notation as follows

q
(n)
α,βk

≡ q
(n)
k , (23a)

Q
(n)
α,βk

(x, y, t) ≡ Q
(n)
k . (23b)

Analogously, we set fα,βk ≡ fk and dα,βk ≡ dk .
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(i) To the order ε0,

∂yq
(0)
k (x, y, t) = 0, in X ×Yk×]0, tf [, (24a)

c(0)
1 (x, yI, t) = c(0)

2 (x, yI, t), t ∈ ]0, tf [, (24b)

q
(0)
1 (x, yI, t) = q

(0)
2 (x, yI, t), t ∈ ]0, tf [. (24c)

Equation (24a) implies that q(0)
k is independent of the microscopic variable, since its partial derivative with

respect to y is zero. One possible way of ensuring this condition could be to drop the dependence of fk on the
micro-scale variables. However, this assumption would eliminate the possibility of keeping track of the non-
locality at the micro-scale, which is clearly in contrast with our purposes. Instead, to guarantee the fulfilment
of Eq. (24a) and to make sure we remain within a non-local setting, we require c(0)

k to be independent of y.
Hence, with a slight abuse of notation, we set

c(0)
k (x, y, t) = c(0)

k (x, t), (25)

thereby satisfying Eqs. (24a)–(24c), since q
(0)
k = 0, without having to rebut the dependence of fk on the

micro-scale. The above consideration is a standard result of linear asymptotic homogenisation, whereas it is
often assumed for nonlinear problems (see, e.g. [28,65,68]). A direct consequence of (25) is that c(0)

1 and c(0)
2

coincide with each other, so that we can write

c(0)(x, t) := c(0)
1 (x, t) = c(0)

2 (x, t). (26)

(ii) To the order ε1 By taking into consideration Eq. (25), we have that

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (27a)

c(1)
1 (x, yI, t) = c(1)

2 (x, yI, t), (27b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t)

= q
(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (27c)

with (x, y, t) ∈ X ×Yk×]0, tf [. The structure of (27a) implies that, in general, this equation must be solved
in the spatial domain X × Yk , which in the context of asymptotic homogenisation means that one needs to
consider a problem defined inYk for each x ∈ X.

Remark 2 (A comment on the solution to (27a)–(27c)) The local counterpart of the problem (27a)–(27c) (see
[15,27]) can be obtained by choosing the non-locality function

fk(x − x̃, y − ỹ) = δ(x − x̃)δ(y − ỹ), (28)

where δ is Dirac’s delta. Specifically,

− ∂y

{
dk(y)

[
∂yc

(1)
k (x, y, t) + ∂xc

(0)(x, t)
]}

= 0, (29a)

c(1)
1 (x, yI, t) = c(1)

2 (x, yI, t), (29b)

d1(yI)
[
∂yc

(1)
1 (x, yI, t) + ∂xc

(0)(x, t)
]

= d2(yI)
[
∂yc

(1)
2 (x, yI, t) + ∂xc

(0)(x, t)
]
, (29c)

with (x, y, t) ∈ X × Yk×]0, tf [. In Eqs. (29b) and (29c) the evaluation in yI of dk and ∂yc
(1)
k are to be

understood in the sense of lateral limits y → y±
I . In this particular case, the problem (29a)–(29c) admits a

unique solution, which is defined up to a function depending solely on time, t , and on the slow variable, x
[15,27]. This unique solution is usually expressed through the ansatz

c(1)
k (x, y, t) = ϑk(x, y, t)∂xc

(0)(x, t) + ϕ(x, t), (30)



568 A. Ramírez-Torres et al.

where ϑk is the new unknown of the problem (29a)–(29c) and ϕ is a function of x and t that spans the family of
all the solutions [11,63]. To the best of our knowledge, in the non-local case there is no theorem that guarantees
the existence and uniqueness (even in the sense explained above) of the solution. Still, in the absence of a
supporting theory, we guess that, similarly to the local case, the solution should have the form (30), with ϑk
suitably parametrised by α and βk . ��

By substituting (30) into (27a)–(27b), we require the auxiliary functions ϑk to satisfy the non-local cell
problem,

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (31a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (31b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t)

= q
(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (31c)

with (x, y, t) ∈ X ×Yk×]0, tf [ and

q
(1)
k (x, y, t) = −

∫
X×Yk

fk(x − x̃, y − ỹ)dk(ỹ)∂ỹϑk(x̃, ỹ, t)∂x̃ c
(0)(x̃, t)dx̃d ỹ, (32a)

Q
(0)
k (x, y, t) = −

∫
X×Yk

fk(x − x̃, y − ỹ)dk(ỹ)∂x̃ c
(0)(x̃, t)dx̃d ỹ. (32b)

We notice that the structure of the non-local problem (31a)–(31c) does not permit, in general, to factorise the
macroscopic term ∂x̃ c(0)(x̃, t). This implies that one should account for the macroscopic contributions at the
micro-structural level and, thus, for the interchange of information between the two length scales.

(iii) To the order ε2,

∂t c
(0)(x, y, t) + ∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}

+ ∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}
= 0, (33a)

c(2)
1 (x, yI, t) = c(2)

2 (x, yI, t), (33b)

q
(2)
1 (x, yI, t) + Q

(1)
1 (x, yI, t)

= q
(2)
2 (x, yI, t) + Q

(1)
2 (x, yI, t), (33c)

with (x, y, t) ∈ X ×Yk×]0, tf [.
Before going further in our analysis, we introduce, for a given field φ, defined in the cellY or in a subset

of it having the same measure, the operators

〈φ〉k(x, t) := 1

|Y|
∫
Yk

φ(x, y, t)dy, k ∈ {1, 2}, (34)

such that the sum 〈φ〉1 + 〈φ〉2 = 〈φ〉 is the average of φ over the cellY. Then, by applying these operators to
(33a), we have

〈∂t c(0)(x, t)〉k +
〈
∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}〉
k

+
〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k

= 0. (35)

Because of Eq. (26), c(0) depends only on x and t and then,

〈∂t c(0)(x, t)〉k = |Yk |
|Y| ∂t c

(0)(x, t). (36)
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Moreover, the assumption of macroscopic uniformity (see Sect. 3.2) implies that the differential operator ∂x
and the integral operator 〈·〉k commute, so that, the second term of (35) rewrites as,

〈
∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}〉
k

= ∂x

〈
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

〉
k
. (37)

Therefore, summing up Eq. (35) over k and taking into account the relations (36) and (37), we obtain

∂t c
(0)(x, t) + ∂x

{
2∑

k=1

〈
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

〉
k

}

+
2∑

k=1

〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k

= 0. (38)

We notice that the third term of (38) can be computed as

2∑
k=1

〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k

= 1

|Y|
2∑

k=1

∫
Yk

∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}
dy

= 1

|Y|
{(

q
(2)
1 (x, y−

I , t) + Q
(1)
1 (x, y−

I , t)
)

−
(
q

(2)
1 (x, 0+, t) + Q

(1)
1 (x, 0+, t)

)

+
(
q

(2)
2 (x, 1−, t) + Q

(1)
2 (x, 1−, t)

)

−
(
q

(2)
2 (x, y+

I , t) + Q
(1)
2 (x, y+

I , t)
)}

= 0, (39)

where we have employed Gauss’ theorem and the continuity of the fluxes at the interface and at the boundaries
of the cell. Specifically, because of the continuity of the fluxes at the interface yI, it holds true that(

q
(2)
1 (x, y−

I , t) + Q
(1)
1 (x, y−

I , t)
)

−
(
q

(2)
2 (x, y+

I , t) + Q
(1)
2 (x, y+

I , t)
)

= 0, (40)

which eliminates the first and the fourth summand on the far right-hand side of Eq. (39). Moreover, the flux
computed at the right boundary of the cell, i.e. q(2)

2 (x, 1−, t) + Q
(1)
2 (x, 1−, t), must be equal to the flux

entering or leaving the neighbouring cell, which can be written as q(2)
1 (x, 1+, t) + Q

(1)
1 (x, 1+, t). Therefore,

by invoking theY-periodicity of the flux, we can conclude that the second and the third term of Eq. (39) also
cancel themselves, i.e.

(
q

(2)
2 (x, 1−, t) + Q

(1)
2 (x, 1−, t)

)

−
(
q

(2)
1 (x, 0+, t) + Q

(1)
1 (x, 0+, t)

)

=
(
q

(2)
1 (x, 1+, t) + Q

(1)
1 (x, 1+, t)

)

−
(
q

(2)
1 (x, 0+, t) + Q

(1)
1 (x, 0+, t)

)

= 0. (41)
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Equations (40) and (41) explain in detail the reasonwhyEq. (39) holds true. Before going further, we emphasise
that the considerations done so far hold true also for all the other orders of the asymptotic expansion of the
flux, like, for instance, q(1)

k + Q
(0)
k .

Then, the substitution of (39) into (38) yields the homogenised problem for the leading order term c(0), i.e.

∂t c
(0)(x, t) + ∂xq

eff(x, t) = 0, (42)

where

q eff(x, t) := −
∫
X

d eff(x, x̃, t)∂x̃ c
(0)(x̃, t)dx̃ (43)

is referred to as the non-local effective mass flux, while d eff is defined through the expression

d eff(x, x̃, t) :=
2∑

k=1

〈 ∫
Yk

fk(x − x̃, y − ỹ)dk(ỹ)

[1 + ∂ỹϑk(x̃, ỹ, t)]d ỹ
〉
k

= 1

|Y|
2∑

k=1

∫
Yk×Yk

fk(x − x̃, y − ỹ)dk(ỹ)

[1 + ∂ỹϑk(x̃, ỹ, t)]d ỹdy, (44)

and represents the non-local effective diffusivity. We notice that the homogenised equation (42) has the same
structure as (1a), but, in this case, the contributions of themicro-structure are resolved bymeans of the non-local
effective coefficient d eff .

Finally, according to [63,68] we introduce the notation Xh to denote the homogenised version of the
composite medium, and we reformulate the homogenised problem (42) and (43) as follows

∂t c
(0)(x, t) + ∂xq

eff(x, t) = 0, inXh×]0, tf [, (45a)

q eff(x, t) = −
∫
Xh

d eff(x, x̃, t)∂x̃ c
(0)(x̃, t)dx̃, (45b)

which has to be supplemented with appropriate initial and boundary conditions for the unknown c(0).

Remark 3 Note that, since fk and dk are short-hand notations for fα,βk and dα,βk , both the non-local effective
diffusivity, d eff , and the non-local effective flux, q eff , depend on the collection of all the parameters that
describe the non-locality of the problem, i.e. α, β1 and β2. Hence, the effective quantities d eff and q eff keep
track simultaneously of the non-locality occurring both at the scale of the sub-cells, through β1 and β2, and at
the scale of themedium, throughα. In the following,with the purpose of leaving the notation at aminimum level
of complexity, we shall keep the symbols d eff and q eff , although we mean d eff

α,β1,β2
and q eff

α,β1,β2
, respectively.

��
Remark 4 In summary, the equations to be solved are (31a) for ϑk and (45a) for c(0). We notice that, in general,
these equations are coupled in contrast to the local case of the standard asymptotic homogenisation in which the
cell and the homogenised problems are uncoupled. As anticipated above, this is due to the fact that ∂xc(0)(x, t)
cannot be factorised out the integral in Eq. (32a). ��
Remark 5 It is worth noticing that if the non-locality function is fk(x − x̃, y − ỹ) = δ(x − x̃)δ(y − ỹ), we
end up with classical results of homogenisation theory [15,27,63,69]. That is, by substituting this expression
for fk into Eq. (31a), the cell problem reads

− dy
{
dk(y)[1 + dyϑk(y)]

} = 0, (46)

where dyϑk(y) denotes the total derivative of ϑk . Furthermore, the non-local effective diffusivity, d eff , is

d eff(x, x̃) = δ(x − x̃)
2∑

k=1

〈
dk(y)[1 + dyϑk(y)]

〉
k
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= δ(x − x̃)d̂ eff
st , (47)

with d̂ eff
st being entirely defined by the sum over k in (47). In this case, d̂ eff

st is a constant coefficient that
coincides with the effective diffusivity of a standard diffusion problem in a composite medium [15,51,56].
Furthermore, after substitution of (47) into (45a), we obtain the standard homogenised equations

∂t c
(0)(x, t) + ∂xq

eff
st (x, t) = 0, (48a)

q eff
st (x, t) = −d̂ eff

st ∂xc
(0)(x, t), (48b)

where standard Fick’s law is re-obtained for the flux. ��
Remark 6 We notice that in the present framework, we do not take into account the timescales associated with
the problems (24a), (27a) and (33a), since we intend to focus on the spatial connections between heterogeneity
and non-locality. Nevertheless, one can notice that the characteristic length scales Lc and � associated with
the composite medium and with its internal structure, respectively, induce different timescales (see, e.g. [49]).
In fact, by virtue of a reference diffusivity dR, these can be expressed as

ζc = L2
c

dR
and ηc = �2

dR
. (49)

Since in the sequel we specialise Eq. (49) to the case of media with different diffusivities inside the sub-cells
Y1 andY2, we can prescribe dR := min{d1R, d2R}.

By employing (49), we deduce the following relationship between the characteristic time scales,

ηc

ζc
= ε2 < ε 	 1. (50)

Now, before proceeding further, we mention that in this multi-scale framework, a given physical quantity
Φ(X, t) can be rewritten as

Φ(X, t) = Φ̂(x, x/ε, ζ, ζ/ε2) = φ(x, y, ζ, η), (51)

with ζ := t/ζc and η := ζ/ε2 (compare Eq. (51) with Eq. (5) in which time was not rescaled). Therefore,
Eq. (16a) rewrites

1
ζc

(∂ζ + 1
ε2

∂η)ck(x, y, ζ, η)

+ (
∂x + 1

ε
∂y
)
qα,βk (x, y, ζ, η) = 0, (52)

which, after substituting the two-scale expansion (18) and equating in the same powers of ε, up to the order
ε2, yields

ε0 : 1
ζc

∂ηc
(0)
k (x, y, ζ, η) + ∂yq

(0)
k (x, y, ζ, η) = 0, (53a)

ε1 : 1
ζc

∂ηc
(1)
k (x, y, ζ, η) + ∂xq

(0)
k (x, y, ζ, η)

+ ∂y

{
q

(1)
k (x, y, ζ, η) + Q

(0)
k (x, y, ζ, η)

}
= 0, (53b)

ε2 : 1
ζc

∂ηc
(2)
k (x, y, ζ, η) + 1

ζc
∂ζ c

(0)
k (x, y, ζ, η)

+ ∂x

{
q

(1)
k (x, y, ζ, η) + Q

(0)
k (x, y, ζ, η)

}

+ ∂y

{
q

(2)
k (x, y, ζ, η) + Q

(1)
k (x, y, ζ, η)

}
= 0. (53c)

As Eqs. (53a)–(53c) prescribe, this approach calls for the solution of diffusion problems at each order of ε.
Moreover, the consideration of the separation of the time scales conduces to leading-order problems that are
characterised by the presence of the rapid time variable η. The analysis of these equations is part of our current
research.



572 A. Ramírez-Torres et al.

5 Description of the benchmark problems

In this section, we present two simplified models in which the non-local effects are only present at the macro-
scale or at the micro-scale, and we report some details of the numerical schemes based on FE methods.

It is worth mentioning that the cell and the homogenised problems obtained in this work feature integro-dif-
ferential equations of fractional type in bounded domains and, therefore, the classical solution techniques, such
as Laplace and Fourier transforms, used in Fractional Calculus are not suitable. Consequently, either dowe need
to develop dedicated numerical algorithms or we resort to well-established numerical methods, and we adapt
them to take into account the presence of fractional differential operators in the considered problems. Here, we
follow the second path and, indeed, we write a numerical scheme based on a finite element (FE) discretisation
of the original integro-differential problems. In doing this, we need to emphasise that, partly because of the
very easy geometry of the problems (we deal, in fact, with one-dimensional benchmark studies), and partly
because the focus of our work is not on the numerics, the presentation of the FE scheme is very elementary.
Indeed, it can be obtained by appropriately rephrasing the one-dimensional formulation of the FE method as
presented, e.g. in [44]. Moreover, we do not fuss over some technical aspects of the finite element procedures,
such as the “element point of view” [44] et similia, since our scope is solely meant to highlight how the
symmetrised Caputo fractional derivatives affect the stiffness matrix and the nodal force of the discretisation.
Clearly, a more detailed numerical study is required, and this is part of our current investigations. We highlight
that previous works in this direction are [35,43,71]. In particular, the work we took major inspiration from is
[43].

In the remainder of this work, the following considerations are adopted.
(i) Fractional diffusivity.We prescribe d1 and d2 to be constant inY1 andY2, respectively. Then, by recalling
the discussion made in Sect. 3.4, we express each dk as

dk = dkRL
−2+ξ(α,βk )
c , k = 1, 2, (54)

where dkR is the constant reference diffusivity of Yk and it has the dimensions of a standard diffusivity, i.e.
length squared over time [67].
(ii) Initial and boundary conditions for the homogenised equation. We enforce an initial spatial distribution
for c(0) of the form

c(0)(x, 0) = cin(x) := 1 − k exp

(
−2

(x − x0)2

(r/Lc)2

)
, (55)

where k, r and x0 are model parameters.
To contextualise our work, we mention that the initial condition cin(x) in (55) is sometimes employed

to simulate the initial concentration of molecules after photobleaching in a Fluorescence recovery after pho-
tobleaching (FRAP) experiment [13]. In this way, following [39], the model is prepared to describe the
fluorescence recovery pattern of molecules surrounding a certain region of a tissue (in particular, articular
cartilage) after being photobleached, by using a high-intensity laser beam. Here, we do not go into the tech-
nical details pertaining to a FRAP experiment, since this is not the focus of our work, and the benchmark
proposed hereafter is also markedly different from the one developed in [39]. Thus, we do not claim that our
results are meant to simulate a FRAP experiment. Still, since the setting presented in [39] refers to a tissue
with hierarchical internal structure, as is the case of articular cartilage, our work might bring some new insight
into the interpretation of the experimental results. To this end, we adapt the framework described in [39] to the
setting of the homogenised problem (45a)–(45b) and, specifically, we identify k, r and x0 with the bleaching
depth parameter, the dimension of the bleached area, and the centre of the bleached region, respectively.

We notice that, since this work is framed in a one-dimensional setting, r characterises the measure of a
line-segment ofXh, and we choose x0 as the centre of the macroscopic domainXh, namely x0 = 1

2 (L/Lc). In
addition, we adapt the boundary conditions given in [39] to the geometry of our problem, and impose Dirichlet
boundary conditions for c(0) at x = 0 and x = L/Lc. Specifically, we set

c(0)(0, t) = cin(0), (56a)

c(0)(L/Lc, t) = cin(L/Lc), (56b)

which implies

cin(0) = cin(L/Lc) =: cb. (57)
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Table 1 List of parameters used in the numerical simulations

Parameter Value Unit Equation Reference

Lc L = 10 mm (4) [72]
� 10−2 mm (4) This work
d1R d2R/2 mm2/s (54) This work
d2R 3.2 × 10−3 mm2/s (54) [77]
k 0.7 − (55) [39]
r 1 mm (55) This work
yI

1
2 − (16b) This work

(iii) Parameters. In Table 1, we provide the values of the parameters used in our numerical simulations. We
notice that the value of r is meant to “cover” 100 reference cells.

5.1 Benchmark problem I: micro-scale non-locality

Let us consider the case in which the non-locality is accounted for only at the micro-scale. This can be achieved
by prescribing

fk(x − x̃, y − ỹ) = δ(x − x̃)gk(y − ỹ), (58)

that is, we accept the existence of “long-range” interactions in each sub-cellYk . Note that we use quotation
marks because the concept of long-range interactions has to be understood with respect to each sub-cell, which
is microscopic, and, in this context, as a synonym of non-locality. We also notice that the index k in gk allows
to characterise two different non-local frameworks occurring in each sub-cellYk . For instance, as discussed
above, we could enforce that the non-local interactions exist only in one of the two sub-cells, although here
we consider non-locality acting in both sub-cells.

Clearly, different forms for gk can be considered, each of which leading to diverse non-local models of
diffusion. In this work, we adopt the decaying power-law [6,22,59,67,76]

gk(y − ỹ) := L1−βk
c

2Γ (1 − βk)

1

|y − ỹ|βk , (59)

where Γ (·) denotes the Euler Gamma function and βk ∈ ]0, 1[. From here on, we set β1 = β2 = β, thereby
obtaining g1 = g2 = g and f1 = f2 = f. We notice that g scales multiplicatively with L1−β

c because it is
expressed as a function of dimensionless variables. Accordingly, the physical dimensions of the fractional
diffusivities dk are given by [dk] = L−1+β

c t−1
c for each k = 1, 2. Hence, Eq. (54) yields

dk = dkRL
−2+(−1+β)
c = dkRL

−3+β
c . (60)

5.1.1 The non-local cell problem

By considering Eqs. (58) and (59), the non-local cell problem is given by

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (61a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (61b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t)

= q
(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (61c)

where (x, y, t) ∈ X ×Yk×]0, tf [ and

q
(1)
k (x, y, t) = −dkRL−2

c ∂xc(0)(x, t)

2Γ (1 − β)

∫
Yk

∂ỹϑk(x, ỹ, t)

|y − ỹ|β d ỹ, (62a)
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Q
(0)
k (x, y, t) = −dkRL−2

c ∂xc(0)(x, t)

2Γ (1 − β)

∫
Yk

1

|y − ỹ|β d ỹ. (62b)

As shown in (62a) and (62b), the assumption of non-locality only at the micro-scale permits to factorise
∂xc(0) from the integrals expressing q

(1)
k and Q

(0)
k . Consequently, the auxiliary unknowns ϑ1 and ϑ2 can be

reformulated as functions of y only, and for further use, the following notation is introduced

qk(y) := − dkRL−2
c

2Γ (1 − β)

∫
Yk

dỹϑk(ỹ)

|y − ỹ|β d ỹ, (63a)

Qk(y) := − dkRL−2
c

2Γ (1 − β)

∫
Yk

1

|y − ỹ|β d ỹ. (63b)

We notice that the quantities qk(y) and Qk(y) defined in (63a) and (63b) represent, up to the sign, “dressed”
diffusivities rather than fluxes. In fact, we may write

q
(1)
k (x, y, t) = qk(y)∂xc

(0)(x, t), (64a)

Q
(0)
k (x, y, t) = Qk(y)∂xc

(0)(x, t). (64b)

We further mention that, in the proper limit, qk(y) and Qk(y) return the negative of the standard diffusivities
(seeRemark 7). Particularly, in Eqs. (63a) and (63b),we recognise the symmetrisedCaputo fractional derivative
of order β ∈ ]0, 1[ [7]. Then, it holds true that

qk(y) = −dkRL
−2
c D

β
k [ϑk](y), (65a)

Qk(y) = −dkRL
−2
c D

β
k [κ](y), (65b)

where κ(y) = y, and

D
β
k [φ](y) := 1

2Γ (1 − β)

∫
Yk

dỹφ(ỹ)

|y − ỹ|β d ỹ (66)

denotes the symmetrised Caputo fractional derivative of order β of a generic differentiable function φ. Fur-
thermore, we notice that Qk(y) can be computed explicitly for each k = 1, 2, and reads

Qk(y) = − dkRL−2
c

2Γ (1 − β)
Ak(y;β), (67)

where the functions A1 and A2 are given by

A1(y;β) =
∫
Y1

1

|y − ỹ|β d ỹ =
∫ yI

0

1

|y − ỹ|β d ỹ

= y1−β + (yI − y)1−β

1 − β
, (68a)

A2(y;β) =
∫
Y2

1

|y − ỹ|β d ỹ =
∫ 1

yI

1

|y − ỹ|β d ỹ

= (y − yI)1−β + (1 − y)1−β

1 − β
. (68b)

Because of these results, the flux (64b) admits the explicit expression

Q
(0)
k (x, y, t) = − dkRL−2

c

2Γ (1 − β)
Ak(y;β)∂xc

(0)(x, t), (69)

while, for the time being, no explicit expression can be given to qk , since the functions ϑk are still unknown.
Upon recalling the definition (12), in which a given function restricted to the elementary cell is assigned in a



Two-scale, non-local diffusion in homogenised heterogeneous media 575

piecewise manner, the fluxes Q(0)
1 and Q

(0)
2 in (65) can be rejoined in a unique flux, whose restriction toY is

given by

Q(0)(x, y, t)|Y =
{
Q

(0)
1 (x, y, t) y∈ ]0, yI[ ,

Q
(0)
2 (x, y, t) y∈ ]yI, 1[ . (70)

Now, for the function Q(0) given in (70), we can employ the definition of periodicity specified in (13), so that
it holds

Q(0)(x, 0+, t) = Q(0)(x, 1+, t). (71)

It follows from this result that Q(0) isY-periodic and that such periodicity does not depend on the point yI in
which the interface is placed within the elementary cell.

By using the above results, the non-local cell problem (61a)–(61c) can be rewritten as

dyqk(y) = −dyQk(y), (72a)

ϑ1(yI) = ϑ2(yI), (72b)

q1(yI) − q2(yI) =
[
d1Ry

1−β
I − d2R(1 − yI)1−β

]
L−2
c

2Γ (2 − β)
, (72c)

where the right-hand side of (72c) is the result of the differenceQ2(yI)−Q1(yI).We recall that all the expressions
at the interface are to be understood for the values of the limits of the corresponding physical quantities for
y → y±

I . Indeed, for instance, Q1(yI) means, with a slight abuse of notation, Q1(yI) = limy→y−
I
Q1(y).

Remark 7 We notice that for y ∈ Yk , it holds

lim
β→1− Qk(y) = − lim

β→1−
dkRL−2

c Ak(y;β)

2Γ (1 − β)
= −dkRL

−2
c , (73)

while

lim
β→1− Qk(yI) = −dkRL−2

c

2
, (74a)

lim
β→1−[Q2(yI) − Q1(yI)] = [d1R − d2R] L−2

c

2
. (74b)

Then, it follows from Eqs. (73)–(74b) that the convergence of Qk for β → 1− is not uniform inYk .
By comparing with classical results of the asymptotic homogenisation technique, the above computations

suggest that, for β → 1−, the solution of the non-local cell problemmust approach the solution of the classical,
local cell problem. We notice that the 2 in the denominator of (74b) does not appear in the formulation of
the standard cell problem. Nevertheless, it compensates with the 2 in the denominator of the left-hand side of
(72c), hidden in the fractional derivatives defining qk , which can be determined after finding ϑk . ��

5.1.2 The homogenised equation

By taking into account Eqs. (58) and (59), the non-local effective coefficient can be rewritten as

d eff(x, x̃, t) = δ(x − x̃)
2∑

k=1

〈
dkRL−2

c

2Γ (1 − β)

∫
Yk

1 + dỹϑk(ỹ)

|y − ỹ|β d ỹ

〉
k
, (75)

and, therefore, according to Eq. (43), the effective flux is given by

q eff(x, t) = −
∫
Xh

d eff(x, x̃, t)∂x̃ c
(0)(x̃, t)dx̃

= −d̂ eff(β)∂xc
(0)(x, t), (76)
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where we have set

d̂ eff(β) :=
2∑

k=1

〈
dkRL−2

c

2Γ (1 − β)

∫
Yk

1 + dỹϑk(ỹ)

|y − ỹ|β d ỹ

〉
k

=
2∑

k=1

〈
dkRL

−2
c

[
Ak(y;β)

2Γ (1 − β)
+ D

β
k [ϑk](y)

] 〉
k
. (77)

Hence, the effective fractional diffusivity, d̂ eff(β), can be expressed in terms of the symmetrised Caputo
fractional derivative of ϑk . We notice that, in this particular case, d̂ eff(β) does not depend on space and time,
while it is parametrised by β. Furthermore, from its mathematical expression it is clear that it ciphers the
information on the non-local interactions at the micro-scale.

Remark 8 The form of the effective fractional diffusivity (77) recalls the relation obtained in the standard case
by means of asymptotic homogenisation [12,15,69]. Particularly, by Fubini’s theorem and Eq. (67), d̂ eff(β)
can be equivalently rewritten as

d̂ eff(β) =
2∑

k=1

1

|Y|
∫
Yk

dkRL−2
c

2Γ (1 − β)
Ak(ỹ;β)[1 + dỹϑk(ỹ)]d ỹ

= −
2∑

k=1

1

|Y|
∫
Yk

Qk(ỹ)[1 + dỹϑk(ỹ)]d ỹ. (78)

Therefore, taking into account Eq. (73), we obtain that

lim
β→1− d̂ eff(β) =

2∑
k=1

1

|Y|
∫
Yk

dkRL
−2
c

[
1 + dyϑk(y)

]
dy, (79)

which coincides with the effective diffusivity of a standard diffusion problem with unitary reference cell (see,
e.g. [27]).

Furthermore, since Eqs. (77) and (78) provide equivalent writings for d̂ eff(β), from (79) it follows that, in
the limit β → 1−, the symmetrised Caputo fractional derivative of ϑk converges to the first derivative of ϑk ,
namely,

lim
β→1− D

β
k [ϑk](y) = dyϑk(y), (80)

and therefore, we can conclude that q(1)
k (see Eq. (64a)) recovers Fick’s law in bounded domains. ��

Finally, taking into account Eq. (77) and the initial and boundary conditions (55)–(57), the homogenised
problem reads

∂t c
(0)(x, t) − d̂ eff(β)∂2x c

(0)(x, t) = 0, in Xh×]0, tf [, (81a)

c(0)(x, 0) = cin(x), (81b)

c(0)(0, t) = c(0)(L/Lc, t) = cb. (81c)

We notice that, in this simplified case, the non-local cell problem (72a)–(72c) and the homogenised problem
(81a)–(81c) are not coupled.
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5.1.3 Numerical solution

In this section, we solve numerically the mathematical model given by the non-local cell problem (72a)–(72c)
and the homogenised problem (81a)–(81c). In particular, the homogenised problem is characterised by a partial
differential equation, while the non-local cell problem features an integro-differential equation of fractional
type.

For solving Eqs. (72a)–(72c) in a bounded domain, the techniques based on Fourier and Laplace transforms
are of little help and, consequently, we implement a numerical algorithm. Specifically, we solve the non-local
cell problem bymeans of a FE schemewhich accounts for fractional derivatives and interface conditions. Since
the homogenised problem (81a)–(81c) involves classical FE techniques, in what follows we report only on the
numerical scheme to be used for solving the non-local cell problem (72a)–(72c), and for the computation of
the non-local effective diffusivity (77).

Before going further,wenotice that, in the classical homogenisation literature, the uniqueness of the solution
of the cell problem is guaranteed by imposing that 〈ϑk〉k is equal to zero. However, from a computational point
of view, a more feasible condition is to fix the value of the auxiliary variables ϑk at one point in the cell [62].
Accordingly, here, we impose that ϑ1 is zero at y = 0, and by periodicity ϑ2 is also zero at y = 1.

Now, let us introduce the following spaces of test functions

W12 = {
v1 ∈ H1(Y1) : v1(0) = 0, v1(yI) = v2(yI)

}
, (82a)

W21 = {
v2 ∈ H1(Y2) : v2(1) = 0, v2(yI) = v1(yI)

}
, (82b)

where H1(Yk) is the Sobolev space of functions of L2(Yk) with finite L2(Yk)-norm of their distributional
derivatives up to order one [73]. Then, by multiplying Eq. (72a) by vk , integrating overYk , and adding over
k = 1, 2, we obtain

−
{

2∑
k=1

∫
Yk

qk(y)dyvk(y)dy

}
+ q1(y)v1(y)

∣∣yI
0

+ q2(y)v2(y)
∣∣1
yI

=
{

2∑
k=1

∫
Yk

Qk(y)dyvk(y)dy

}

− Q1(y)v1(y)
∣∣yI
0 − Q2(y)v2(y)

∣∣1
yI
. (83)

Hence, due to the continuity condition at the interface (72c), and the restrictions made for vk , Eq. (83) reads

−
2∑

k=1

∫
Yk

qk(y)dyvk(y)dy =
2∑

k=1

∫
Yk

Qk(y)dyvk(y)dy. (84)

Equation (84) represents the weak formulation of the non-local cell problem (72a)–(72c), and is discretised
by employing the FE technique. Therefore, we introduce forY1 andY2, N1+1 and (N2+1)−N1 discretisation
points, respectively, and the function bases {ψ1

i }N1
i=0 and {ψ2

i }N2
i=N1

, with N1 > 1 and N2 > N1 + 1 and, for
each k = 1, 2,

ψk
i (y j ) = δi j =

{
1, i = j,
0, i �= j,

(85)

with yN1 = yI. Then, the test functions vk are approximated by

v̌k(y) =
{∑N1

j=1 υ1
jψ

1
j (y), k = 1,

∑N2−1
s=N1

υ2
s ψ

2
s (y), k = 2,

(86)

where υk
j , k = 1, 2, are nonzero, arbitrary constants. Analogously, the approximated trial functions ϑ̌k(y) are

written as
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ϑ̌k(y) =
{∑N1

i=1 ω1
i ψ

1
i (y), k = 1,∑N2−1

r=N1
ω2
rψ

2
r (y), k = 2,

(87)

whereωk
i are unknown constant coefficients representing the nodal values of ϑ̌k .Wenotice that, in this particular

case, the coefficients ωk
i do not depend on time, whereas in a more general setting they should be defined as

functions of time.
Next, by substituting expressions (87) and (86) into (84), we obtain the following system of equations for

ωk
i ,

N1∑
j=1

N1∑
i=1

υ1
j

[
L1j i (β)ω1

i + F1
j (β)

]

+
N2−1∑
s=N1

N2−1∑
r=N1

υ2
s

[
L2sr (β)ω2

r + F2
s (β)

] = 0, (88)

where

Lkji (β) := dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψk

i ](y)dy, (89a)

Fk
j (β) := dkRL−2

c

2Γ (1 − β)

∫
Yk

Ak(y;β)dyψ
k
j (y)dy, (89b)

represent, for each k = 1, 2, the components of the fractional stiffness matrix of the FE discretisation of the
sub-cellYk , and of the nodal fractional force associated with the j-th node ofYk , respectively.

Remark 9 (Density and limit of Lk(β) and Fk(β)) It is worth noting that, whereas in the standard cell problem
the stiffness matrix is tridiagonal for each k = 1, 2, in the present framework it is dense because the cross
integrations between the derivatives of the basis functions lead to nonzero components of

Lkji (β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψk

i ](y)dy

= dkRL−2
c

2Γ (1 − β)

∫
Yk

dyψ
k
j (y)

[∫
Yk

dỹψ
k
i (ỹ)

|y − ỹ|β d ỹ
]
dy, (90)

for each pair of j and i . This is due to the non-locality introduced by the fractional derivatives D
β
k [ψk

i ], as
reported in the far right-hand side of Eq. (90). Specifically, even though two discretisation nodes are far away
from each other, the entries of the matrix corresponding to those nodes are nonzero. This results in a dense
stiffness matrix and, the stronger the non-locality, the denser the matrix will be. Nevertheless, the fractional
stiffness matrix will converge to a tridiagonal matrix when β → 1−. Indeed, as discussed in Remark 8, when
β → 1− we obtain

lim
β→1− Lkji (β) = dkRL

−2
c

∫
Yk

dyψ
k
j (y)dyψ

k
i (y)dy. (91)

Analogously, from the definition of Fk
j (β), i.e.

Fk
j (β) = dkRL−2

c

2Γ (1 − β)

∫
Yk

Ak(y;β)dyψ
k
j (y)dy

= dkRL−2
c

2Γ (1 − β)

∫
Yk

[∫
Yk

1

|y − ỹ|β d ỹ
]
dyψ

k
j (y)dy, (92)
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Fig. 2 Comparison of the symmetrised Caputo fractional derivative of ψ(y), for different values of β ∈ ]0, 1[, with the classical
first derivative of ψ(y)

we infer that the existence of the non-locality function implies that the entries of Fk
j (β) are nonzero. Further-

more, recalling that limβ→1−[Ak(y;β)/2Γ (1 − β)] = 1, for y ∈ Yk , we have that

lim
β→1− Fk

j (β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)dy. (93)

Equation (93) returns 0 for all j �= N1 and dkRL−2
c if j = N1.

To exemplify the limit of the symmetrised Caputo fractional derivative of the bases functions, we report
in Fig. 2 a comparison of the symmetrised Caputo fractional derivative of order β ∈ ]0, 1[ of the function

ψ(y) =

⎧⎪⎨
⎪⎩

y − 0

1/2 − 0
, 0 ≤ y < 1/2,

1 − y

1 − 1/2
, 1/2 ≤ y ≤ 1,

(94)

which recalls a Lagrange polynomial of the first order, with the classical first derivative of the same function.
��

Next, to obtain the algebraic form of the FE procedure, we introduce the notation

{υ} := {υ1
1 , . . . , υ

1
N1−1, υ

I
N1

, υ2
N1+1, . . . , υ

2
N2−1}T, (95a)

{ω} := {ω1
1, . . . , ω

1
N1−1, ω

I
N1

, ω2
N1+1, . . . , ω

2
N2−1}T, (95b)

where υI
N1

= υ1
N1

= υ2
N1

and ωI
N1

= ω1
N1

= ω2
N1

are the nodal values of the virtual concentration and of the
unknown concentration at the interface, and we write the final forms of the fractional stiffness matrix and of
the fractional nodal force as follows

[L] :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[L1j i ], j, i = 1, . . . , N1 − 1,

[L1j N1
], j = 1, . . . , N1 − 1,

[0], j = 1, . . . , N1 − 1, i = N1 + 1, . . . , N2 − 1,

[L1N1i
], i = 1, . . . , N1 − 1,

[L1j i + L2sr ], j, i, s, r = N1,

[L2N1r
], r = N1 + 1, . . . , N2 − 1,

[0], s = N1 + 1, . . . , N2 − 1, r = 1, . . . , N1 − 1,

[L2sN1
], s = N1 + 1, . . . , N2 − 1,

[L2sr ], s, r = N1 + 2, . . . , N2 − 1,

(96a)

{F} := {F1
1 , . . . , F1

N1−1, F
1
N1

+ F2
N1

, F2
N1+1, . . . , F

2
N2−1}T. (96b)

Note that in (96a) and (96b), we have omitted the dependence on β , although this dependence is understood.
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Then, by using the notation introduced in Eqs. (95a)–(96b), Eq. (88) can be rewritten as

{υ}T[L(β)]{ω} = −{υ}T{F(β)}, (97)

which leads to the algebraic equation

[L(β)]{ω} = −{F(β)}. (98)

On the other hand, by using the expression for ϑ̌k given in (87), the approximation of the effective fractional
diffusivity (77) can be numerically calculated as

d̂ eff
num(β) := d1RL

−2
c

〈
A1(y;β)

2Γ (1 − β)
+

N1∑
i=1

ω1
i D

β
1 [ψ1

i ](y)
〉

1

+ d2RL
−2
c

〈
A2(y;β)

2Γ (1 − β)
+

N2−1∑
r=N1

ω2
r D

β
2 [ψ2

r ](y)
〉

2

, (99)

which we call numerical effective fractional diffusivity. We provide details about the explicit form of Eqs. (98)
and (99) in “Appendix A”.

5.1.4 Results and discussion

In this section, we show the numerical results for the benchmark problem described above, and we discuss the
influence of the micro-scale non-local interactions on the homogenised behaviour of the concentration.

To begin with, in Fig. 3, we report the profile of the solution of the non-local cell problem (72a)–(72c), i.e.
ϑ̌k , and compare it with the solution of the standard, local cell problem. Specifically, the solid lines distinguish
the solutions of the non-local cell problem for different values of the non-locality parameter β ∈ ]0, 1[, and the
dashed line represents the solution of the standard, local cell problem. In particular, the space discretisation of
the computational domain was done by fixing the grid size to h := yi − yi−1 = 1.3 × 10−3 uniformly with
respect to i . We notice that the results of the finite element analysis are not affected appreciably by subsequent
mesh refinements.

In Fig. 3, we observe that the spatial distribution of ϑ̌k varies with β and it converges to the solution of the
local cell problem as β → 1− (dashed line in Fig. 3). This outcome is coherent with the theoretical results
previously obtained in this section. Furthermore, we notice that the non-local solutions fluctuate around the
local one, and they intersect each other and the local solution in symmetric points. Nevertheless, the non-local
solutions are not symmetric with respect to the line y = yI.

Before going further, few words should be spent about the issue of symmetry. To this end, let us assume
just for this discussion that the interface between the sub-cells, yI, is not the midpoint of the cellY= ]0, 1[,
and let us start with the local case (recovered for β → 1−). In the local case, the solution of the cell problem,
here denoted by ϑ local and defined as ϑ local(y) = ϑ local

1 (y) for y ∈ [0, yI] and ϑ local(y) = ϑ local
2 (y) for

y ∈ ]yI, 1], is in general not symmetric because the diffusivity coefficients are distributed within the cell in
a non-symmetric way (clearly, this asymmetry would disappear if the diffusivities were equal to each other).
Within the framework studied here, the solution will have, indeed, the shape of a non-symmetric “roof”, with
an increasing straight line on [0, yI] and a decreasing straight line on ]yI, 1], whose slopes have different
signs and different absolute values. In other words, the inequality d1R �= d2R and the position of the interface
break the symmetry that the solution would have in the homogeneous case (the solution of the problem at
hand would trivially boil down to a constant in the homogeneous case). Symmetry, however, can be partially
restored if the interface is assumed to be placed at themidpoint, as is the case in our simulations. This condition,
indeed, places a geometric constraint that forces the solution to be symmetric, thereby acquiring the shape of
a symmetric “roof”, with the slope of the straight line on [0, yI] being the opposite of the slope of the straight
line on ]yI, 1]. This means that we have passed from the continuous symmetry of the homogeneous solution
to the discrete symmetry of the heterogeneous solution with interface in the midpoint of the cell.

The picture just described changes considerably when the non-local case is studied. Indeed, for β ∈ ]0, 1[,
the fractional derivatives featuring in the non-local cell problem are an additional source of symmetry breaking
that, together with the heterogeneity of the diffusivity, make the solution even more non-symmetric. This
remains true even though yI is the midpoint of the cell. More importantly, since the local solution is symmetric
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Fig. 3 Solution of the non-local cell problem and comparison with the solution of the standard cell problem

Fig. 4 Effective fractional diffusivity for ten different values of β ∈ [0, 1], and comparison with the standard effective diffusivity
resulting from the local counterpart of the cell problem (72c)–(72a)

for yI = 1/2 in spite of the heterogeneity of the diffusivity, this setting singles out the contribution of the
fractional derivatives to the symmetry breaking of the problem.We believe that the asymmetry of the non-local
solution, which decreases with β, may be ascribable to an interplay between non-locality and heterogeneity:
in the sub-cell in which the medium is more diffusive, the solution is “stiffer” which results into moderate
deviations from the standard solution; on the other hand, in the sub-cell in which the diffusivity is smaller, the
solution is more “compliant”, thereby producing large deviations from the local solution.

Now, once ϑ̌k is known, we can compute the effective fractional diffusivity d̂ eff
num as prescribed by formula

(99). Particularly, in Fig. 4, we plot the values of this homogenised coefficient for varying β ∈ [0, 1] and
compare them with the classical effective diffusivity, i.e. the one resulting from the local case. Specifically,
a closer look at the data reported in Fig. 4 reveals that, for increasing β, the value of the effective fractional
diffusivity resulting from a non-local setting is higher. In particular, as discussed in Remark 8, as β tends to 1
from below, the approximated effective fractional diffusivity converges to the standard effective one given by
the local case.

We notice that for β = 0 the auxiliary problem is ill-posed and, thus, ϑ̌k cannot be determined. This is also
reflected by the fact that the stiffness matrix of the problem, L(0), becomes singular for β = 0, and ϑ̌k becomes
non-differentiable at y = yI and at the boundaries of the cell. On the other hand, for β > 0, the gradients of
ϑ̌k exist at these points but their magnitude increases for β → 0+. Nevertheless, it is worth remarking that,
for very small values of β, the numerical solution almost does not change. Particularly, the L∞-norm of the
error between the numerical solutions for β = 10−8 and β = 10−3 is of the order of 10−4. In addition to these
considerations, we would like to point out that neither ϑ̌k nor its gradient are observable physical quantities.
Rather, ϑ̌k(y) is just an auxiliary quantity for determining the observables q

(1)
k (x, y, t), qk(y), and, more

importantly, the effective fractional diffusivity and the homogenised solution. To this end, we notice that, in
fact, d̂ eff(β) and c(0) are well behaved for all values of β ∈ ]0, 1[ as shown in Figs. 4 and 5, and also for β = 0.
Specifically, in spite of the technical difficulty for β = 0, which makes the employment of the FE method
impossible, it is still possible to determine the variations
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Fig. 5 Numerical solution of the homogenised equation for different values of β and different times. The diffusion of chemical
species is rather slow for β = 0.1, while it is much faster for β = 0.9, thereby conducing to the standard diffusion predicted by
Fick’s law

ϑ1(yI) − ϑ1(0) = ϑ1(yI) = −ϑ2(1) + ϑ2(yI) = ϑ2(yI)

= d2R − d1R

2(d1R + d2R)
, (100)

which return the value of ϑk at the interface. This calculation allows us to compute, even in this limit case, the
effective diffusivity coefficient d̂ eff(β), which, as shown in Eq. (77), we rephrase as a function of β and, for
β = 0, reads

d̂ eff
0 = d1Rd2R

2(d1R + d2R)L2
c
. (101)

Since, as per Fig. 4, which is the plot of Eq. (77), d̂ eff(β) is a continuous and monotonically increasing
function of β ∈ [0, 1], it occurs that the value d̂ eff

0 represents the absolute minimum of the effective diffusivity
coefficient, i.e. d̂ eff

0 = minβ∈[0,1]{d̂eff(β)}, and the absolute maximum is d̂ eff(1) = maxβ∈[0,1]{d̂ eff(β)}.
The above result describes, for each β ∈ [0, 1], the influence of the micro-scale non-locality on the

macroscopic distribution of the concentration c(0) (see Fig. 5). In particular, for β tending towards zero, i.e. for
increasing “strength” of the micro-scale non-locality, the macro-scale diffusion of the considered substance
is hindered, and c(0)(x, t) consistently tends to vary rather slowly in time. On the contrary, in the limit case
β → 1−, c(0)(x, t) varies more rapidly in time, since the diffusion tends to acquire the “classical” behaviour
predicted by Fick’s law (see Fig. 5). In this respect, the consideration of non-local interactions at the micro-
scale influences the way in which diffusion takes place in the composite medium. Returning to the FRAP
experiment in the context of the benchmark problem, this theoretical behaviour implies that the recovery
pattern of chemical species after being photobleached is slower for β near 0, whereas it is faster for β close to
1, thereby simulating a standard diffusion process.

5.2 Benchmark problem II: macro-scale non-locality

In this section, we assume that the non-local interactions are present at the macro-scale only. Thus, by special-
ising fα,βk in (17b) to the limit case βk → 1−, we consider the following form for the non-locality function

fα(x − x̃, y − ỹ) = hα(x − x̃)δ(y − ỹ). (102)
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Hence, since hα depends only on the difference x − x̃ , the non-local character of the diffusion process is
accounted for at the macroscopic level only, and similarly to what was done in the previous section, we write

hα(x − x̃) := L1−α
c

2Γ (1 − α)

1

|x − x̃ |α . (103)

In this particular case, the physical dimensions of the fractional diffusivities dk are [dk] = L−1+α
c t−1

c and
hence, from (54), we have that

dk = dkRL
−3+α
c . (104)

5.2.1 The cell problem

By considering the expressions (102)–(104), the non-local cell problem (31a)–(31c) rewrites

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (105a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (105b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t)

= q
(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (105c)

where (x, y, t) ∈ X ×Yk×]0, tf [ and
q

(1)
k (x, y, t) = − dkRL−2

c

2Γ (1 − α)

∫
X

∂x̃ c(0)(x̃, t)

|x − x̃ |α ∂yϑk(x̃, y, t)dx̃, (106a)

Q
(0)
k (x, y, t) = − dkRL−2

c

2Γ (1 − α)

∫
X

∂x̃ c(0)(x̃, t)

|x − x̃ |α dx̃

= −dkRL
−2
c Dα[c(0)](x, t). (106b)

In (106b), Dα[c(0)] represents the symmetrised Caputo fractional derivative of order α∈ ]0, 1[ of c(0).
Particularly, the computational complexity of the above cell problem is significantly reduced if the solution

ϑk is x-constant (which in the present framework also implies that it is constant in time). Then, with a slight
abuse of notation we write ϑk(x, y, t) = ϑk(y), and q

(1)
k in (106a) becomes

q
(1)
k (x, y, t) = −dkRL

−2
c dyϑk(y)

[
1

2Γ (1 − α)

∫
Xh

∂x̃ c(0)(x̃, t)

|x − x̃ |α dx̃

]

= −dkRL
−2
c dyϑk(y)D

α[c(0)](x, t), (107)

while Eq. (105a) rewrites

− dy
{
dkRL

−2
c [1 + dyϑk(y)]

}
Dα[c(0)](x, t) = 0. (108)

We notice that c(0)(x, t) ≡ c(0)(t) is the only solution of the equation Dα[c(0)](x, t) = 0 [6]. Therefore, by
excluding this case, the cell problem can be written in the more standard form

− dy
{
dkRL

−2
c [1 + dyϑk(y)]

} = 0, (109a)

ϑ1(yI) = ϑ2(yI), (109b)

− d1RL
−2
c dyϑ1(yI) − d1RL

−2
c

= −d2RL
−2
c dyϑ2(yI) − d2RL

−2
c . (109c)

In this specific case, the analytical solution of the cell problem (109a)–(109c) can be found by using standard
techniques for differential equations. However, since our scope is to find the effective coefficient, this is not
necessary. Indeed, from (109a) we can deduce that

dkRL
−2
c [1 + dyϑk(y)] = ak, (110)
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where ak , with k = 1, 2, are two constants to be determined. In particular, substituting (110) in (109c) yields
a1 = a2 ≡ a, and the constant a can be computed by invoking periodicity and (109b). In fact, from (110), it
follows that

dyϑk(y) = ak

dkRL
−2
c

− 1, (111)

and, by applying the operators defined in (34) to the last equation, we have

0 =
2∑

k=1

〈
dyϑk

〉
k = a

d1RL
−2
c

yI + a

d2RL
−2
c

(1 − yI) − 1, (112)

which implies that

a = d1Rd2RL−2
c

d2RyI + d1R(1 − yI)
. (113)

Therefore, after substitution of (102) and (103) into Eq. (44), and using (110) and (113), the non-local effective
coefficient can be computed as

d eff(x, x̃) = 1

2Γ (1 − α)

1

|x − x̃ |α
2∑

k=1

〈
dkRL

−2
c [1 + dyϑk(y)]

〉
k

= d1Rd2RL−2
c

d2RyI + d1R(1 − yI)

1

2Γ (1 − α)

1

|x − x̃ |α . (114)

It is worth mentioning that, even though, in this particular formulation, the cell and the homogenised problems
have been decoupled, the non-local effective diffusivity (114) is still influenced by the non-local interactions
occurring at the macroscopic level through the scalar function |x − x̃ |−α . Note also that the last two factors of
d eff(x, x̃) in (114) are the kernel of the operator defined in (103).

5.2.2 The homogenised equation

By using the previous results, the effective non-local mass flux can be recast in the form

q eff(x, t) = −
∫
Xh

d eff(x, x̃)∂x̃ c
(0)(x̃, t)dx̃

= − d̂ eff
st

1

2Γ (1 − α)

∫
Xh

∂x̃ c(0)(x̃, t)

|x − x̃ |α dx̃

= − d̂ eff
st Dα[c(0)](x, t), (115)

which is thus entirely determined by the symmetrised Caputo fractional derivative of order α of the leading
order concentration c(0) and by the effective diffusivity coefficient

d̂ eff
st := d1Rd2RL−2

c

d2RyI + d1R(1 − yI)
. (116)

We notice that definition (116) coincides (not surprisingly) with the constant a defined in Eq. (113), and
with the standard effective diffusivity [15,27,63]. Besides, the physical dimensions of d̂ eff

st are those of the
reciprocal of time.

Finally, the homogenised equation (45a), with the boundary and initial conditions given in (55) and (57),
reduces to

∂t c
(0)(x, t) − ∂x

{
d̂ eff
st Dα[c(0)](x, t)

}
= 0, (117a)

c(0)(x, 0) = cin(x), (117b)

c(0)(0, t) = c(0)(L/Lc, t) = cb. (117c)
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5.2.3 Numerical solution

In this section, we find the numerical solution of the non-local, homogenised problem (117a)–(117c) by means
of FE methods. As we previously mentioned, in this context, the effective diffusivity can be found without
recurring to solve the cell problem (compare Eqs. (116) and (113)).

To start with, we discretise the time interval [0, tf ] in M subintervals, which we assume of equal amplitude
τ . Then, for simplicity of notation, we set c(0)(x, tm) = um(x) and we adopt an implicit Euler scheme for
Eq. (117a), which is thus approximated as

um+1(x) − τ d̂ eff
st ∂x

{
Dα[um+1](x)} = um(x). (118)

Next, by introducing the space of test functions [73]

V = {v ∈ H1(Xh) : v|∂Xh = 0} ≡ H1
0 (Xh), (119)

where H1(Xh) is defined analogously to H1(Yk), we put Eq. (118) in weak form. To this end, we multiply
Eq. (118) by the test function v ∈ V, and after integrating overXh, we find∫

Xh

um+1(x)v(x)dx + τ d̂ eff
st

∫
Xh

Dα[um+1](x)dxv(x)dx =
∫
Xh

um(x)v(x)dx . (120)

Next, we discretise the spatial domainXh in N finite elements, and introduce the function basis {ψi }Ni=0, with
ψi (x j ) = δi j and i, j = 0, . . . , N . Then, we approximate v(x), the initial condition u0(x), and um(x), for all
m, as

v̌(x) :=
N−1∑
i=1

υiψi (x), (121a)

ǔ0(x) := cbψ0(x) +
N−1∑
i=1

cin(xi )ψi (x) + cbψN (x), (121b)

ǔm(x) := cbψ0(x) +
N−1∑
i=1

ωm
i ψi (x) + cbψN (x), (121c)

where ωm
i , with m = 1, . . . , M + 1, are constant coefficients to be determined and tM+1 = tf . Thus, by

substituting (121a) and (121c) into (120), and adopting a standard procedure in FE, we find

N−1∑
j=1

N−1∑
i=1

υ j
[
M j i + τL j i (α)

]
ωm+1
i =

N−1∑
j=1

N−1∑
i=1

υ jM j iω
m
i −

N−1∑
j=1

υ jτF j (α), (122)

where

L j i (α) := d̂ eff
st

∫
Xh

dxψ j (x)D
α[ψi ](x)dx, (123a)

M j i :=
∫
Xh

ψ j (x)ψi (x)dx, (123b)

F j (α) := d̂ eff
st

∫
Xh

{
cbD

α[ψ0](x)
+cbD

α[ψN ](x)} dxψ j (x)dx . (123c)

It is worth to remark that both the stiffness matrix L j i (α) and the nodal force F j (α) depend on the parameter
α∈ ]0, 1[.

Then, Eq. (122) can be rewritten as

{υ}T ([M] + τ [L(α)]) {ωm+1} = {υ}T ([M]{ωm} − τ {F(α)}) , (124)

which, by factorising {υ}T, leads to the linear system

([M] + τ [L(α)]) {ωm+1} = [M]{ωm} − τ {F(α)}. (125)

Details about the explicit form of Eq. (125) are provided in “Appendix B”.
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5.2.4 Results and discussion

We notice that, in the present framework, to find the numerical solution of the homogenised problem, we only
need to know d̂ eff

st as prescribed by Eq. (116). Particularly, by using the values reported in Table 1, we obtain

d̂ eff
st = d1Rd2RL−2

c

d2RyI + d1R(1 − yI)
= 2.13̄ × 10−5 s−1. (126)

Then, in Fig. 6, we show the distribution of c(0) for different values of α∈ ]0, 1[ and for different instants of
time. According to the plots, and similarly to the previous benchmark problem, the variation of the non-locality
parameter influences the way in which diffusion takes place, and in which the stationary state is attained. That
is, the progression of the solution towards the stationary states for α = 0.1 is much slower than in the case
determined by α = 0.9. In particular, when α approaches 1 from below, the standard diffusion is recovered.
We remark that, although we have imposed an initial concentration with very small spatial derivative at the
boundary, once time initiates to increase, the tails of the concentration profile tend to raise. This behaviour can
be explained by the production of concentration gradients that are needed for the chemical species to diffuse,
in this case, towards the centre of the specimen. However, such gradients tend to “turn off” themselves in the
course of time since the concentration has to move towards its stationary value.

It is worth noticing that the way in which the non-local interactions are introduced influences the diffusion
profile of the chemical species (see Fig. 7). Indeed, when considering the existence of non-local interactions
at the micro-scale, these are ciphered into the effective coefficient d̂ eff(β), which is parametrised by β, while
the effective mass flux has the classical form given by Fick’s law. On the other hand, the consideration of
long-range interactions at the macro-scale leads, as prescribed by (114), to a non-local effective diffusivity
that depends on the spatial points, and thus to a homogenised equation of fractional type for the leading order
of concentration. In this case, as shown in Fig. 7, there is a strong memory of the initial concentration, that
is, the fractional operators appearing in Eq. (117a) help to preserve the information of the initial distribution
of chemical species as time passes. This phenomenon is less pronounced when the non-locality is considered
only at the micro-scale, and indeed, for t ≤ 6 h the diffusion near the boundary of the composite is slower. We
further notice that, by comparing the curves resulting from the benchmark problem I with the ones from the
standard, local framework, the assumption of the non-locality at the micro-scale produces a slower diffusion

Fig. 6 Numerical solution of the homogenised equation for different values of α and different times. For α = 0.1, there is a
strong memory of the initial distribution, whereas for α near 1 the standard diffusion is attained
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Fig. 7 Comparison of the numerical solutions resulting from the benchmark problems I and II with the ones from the local
framework. The way in which non-locality is introduced influences the diffusion of the chemical species

of the species. Thus, we can conclude that the consideration of non-local effects at the micro-structure impacts
the evolution of the concentration at the macro-scale.

Finally, we remark that for α → 1− and β → 1− both benchmark tests restore the standard diffusion given
by Fick’s law and, thus, they become indistinguishable in the limit. For this reason, in Fig. 7, we report only
the cases in which there is a strong non-locality, that is when α and β are near zero.

6 Conclusions

In this work, we study the two-scale, non-local diffusion of a chemical species in a composite medium. This
is addressed by prescribing a two-scale constitutive law of fractional type for the mass flux of the chemical
species and, with the aid of the asymptotic homogenisation technique, by solving the homogenised version of
the original problem. Specifically, we obtain an effective characterisation of the composite, which is subjected
to the existence of non-local interactions at both length scales. In fact, we prove that if non-locality is neglected,
we recover the classical results of homogenisation theory.

To quantify the effects of the non-locality in our model, we present two simplified benchmark tests in which
long-range interactions are considered at the micro-scale or at the macro-scale only. In both cases, we prove
that in the limit in which the non-locality parameters β (in the benchmark test I) and α (in the benchmark test
II) tend to 1 from below, the fractional cell and homogenised problems lead to the standard ones given in the
classical homogenisation literature.

Furthermore, we perform numerical simulations and report the most important steps leading to the finite
element discretisation.We remark that the formulation of the FE scheme is very basic andwas adapted from the
one developed in [44] for one-dimensional problems. Nevertheless, the simplicity of the numerics allows us to
discuss some of the specific properties of the algebraic equations resulting from the discretisation process. In
particular, in the benchmark problems, the presence of the symmetrised Caputo fractional derivative results in
fractional stiffness matrices and fractional nodal forces. More specifically, we prove that the fractional stiffness
matrices are symmetric and, although they are dense because of the presence of the fractional derivatives, in the
limits α → 1− and β → 1− they become the standard stiffness matrices of tridiagonal form. The numerical
simulations are in harmony with these theoretical predictions.

It is important to emphasise that the way in which the non-local interactions influence the macroscopic
behaviour of the system depends on the scale at which these interactions are introduced. When the non-local
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interactions are considered at the micro-scale, they emerge also at the macro-scale through the effective frac-
tional diffusivity d̂ eff(β) and by slowing down the diffusion. However, the effect of the non-local interactions
is more evident when those are accounted for at the macro-scale, and occurs through a deceleration of the
diffusion process that is stronger than in the previous case. Hence, the information enclosed in the initial
distribution of the concentration is kept for a “longer” time.

As a first step in our investigations, we conceived a model in one dimension. Clearly, this model can be
generalised to higher dimensions. However, there are some issues that must be tackled. One of them is that
the non-locality function and the normalisation factors should be conceived in a symmetry- and dimension-
dependent way. Moreover, a more detailed numerical study would be required. These issues are part of our
current research.
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A FE discretisation of the non-local cell problem. Benchmark problem I

Here, we calculate the matrices appearing in Eq. (98) and the non-local effective diffusivity (99). Firstly, we
recall that the system (98) reads

[L(β)]{ω} = −{F(β)}, (127)

with

Lkji (β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψk

i ](y)dy, (128a)

Fk
j (β) = dkRL−2

c

2Γ (1 − β)

∫
Yk

Ak(y;β)dyψ
k
j (y)dy. (128b)

For the sake of simplicity, let us consider that the basis functions are Lagrange polynomials of the first order,

ψk
i (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y − yi−1

yi − yi−1
, yi−1 ≤ y < yi ,

yi+1 − y

yi+1 − yi
, yi ≤ y ≤ yi+1,

0, elsewhere,

(129)

for i = 1, . . . , N1 − 1 if k = 1, and i = N1 + 1, . . . , N2 − 1 for k = 2, and at the interface yN1 = yI, we
prescribe

ψ1
N1

(y) =
⎧⎨
⎩

y − yN1−1

yN1 − yN1−1
, yN1−1 ≤ y < yN1,

0, elsewhere,
(130a)

http://creativecommons.org/licenses/by/4.0/
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ψ2
N1

(y) =
⎧⎨
⎩

yN1+1 − y

yN1+1 − yN1

, yN1 ≤ y ≤ yN1+1,

0, elsewhere.
(130b)

Then, from the above expressions, the fractional stiffness matrices Lkji (β) are computed in two steps. First,
we calculate the symmetrised Caputo fractional derivatives of (129)–(130b) and then, we substitute the results
into (128a) and (128b). However, before doing this, we find it convenient to compute the following integrals,

Cp,q(y;β) := (1 − β)

∫ yq

yp

1

|y − ỹ|β d ỹ

= |y − yp|1−βsign(y − yp)

− |y − yq |1−βsign(y − yq), (131a)

H
p,q
k,l (β) := (2 − β)

∫ yl

yk
Cp,q(y;β)dy

= |yq − yk |2−β − |yq − yl |2−β

+ |yp − yl |2−β − |yp − yk |2−β. (131b)

From here on, for the sake of a lighter notation, we omit the dependence of Hp,q
k,l on β. Moreover, we notice

that

A1(y;β) = C0,N1(y;β)/(1 − β), (132a)

A2(y;β) = CN1,N2(y;β)/(1 − β). (132b)

Therefore, by using the definitions for the basis functions ψk
i and (131a), the symmetrised Caputo fractional

derivative of ψk
i is given by

D
β
k [ψk

i ](y) = 1

2Γ (2 − β)

{
Ci−1,i (y;β)

yi − yi−1
− Ci,i+1(y;β)

yi+1 − yi

}
, (133)

where i = 1, . . . , N1 − 1, if k = 1, and i = N1 + 1, . . . , N2 − 1, if k = 2. Besides,

D
β
1 [ψ1

N1
](y) = 1

2Γ (2 − β)

CN1−1,N1(y;β)

yN1 − yN1−1
, (134a)

D
β
2 [ψ2

N1
](y) = − 1

2Γ (2 − β)

CN1,N1+1(y;β)

yN1+1 − yN1

. (134b)

We remark that, by taking the limit in expressions (133)–(134b) for β → 1−, we obtain

lim
β→1− D

β
k [ψk

i ](y) = dyψ
k
i (y)

=

⎧⎪⎨
⎪⎩

1
yi−yi−1

, yi−1 < y < yi ,

− 1
yi+1−yi

, yi < y < yi+1,

0, y < yi−1 and y > yi+1,

(135)

for y �= yi , i = 1, . . . , N1 − 1, N1 + 1, . . . , N2. Moreover, for y �= yN1 ,

lim
β→1− D

β
1 [ψ1

N1
](y) = dyψ

1
N1

(y), (136a)

lim
β→1− D

β
2 [ψ2

N1
](y) = dyψ

2
N1

(y). (136b)

Therefore, the results (135)–(136b), as previously proved, imply that the symmetrised Caputo fractional deriva-
tive of ψk

i tends to the first derivative of ψk
i for β → 1−.
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A.1 Computation of Lk

From (131b), we have that for j, i = 1, . . . , N1 − 1, if k = 1, and j, i = N1 + 1, . . . , N2 − 1, if k = 2, the
components of the fractional stiffness matrix are

Lkji (β) = dkRL−2
c

2Γ (3 − β)

{
1

yi − yi−1

(
H

j−1, j
i−1,i

y j − y j−1
− H

j, j+1
i−1,i

y j+1 − y j

)

− 1

yi+1 − yi

(
H

j−1, j
i,i+1

y j − y j−1
− H

j, j+1
i,i+1

y j+1 − y j

)}
. (137)

Furthermore,

• if j = 1, . . . , N1 − 1 and i = N1

L1j N1
(β) = d1RL−2

c

2Γ (3 − β)

1

yN1 − yN1−1

(
H

j−1, j
N1−1,N1

y j − y j−1
− H

j, j+1
N1−1,N1

y j+1 − y j

)
, (138)

• if j = N1 and i = 1, . . . , N1 − 1

L1N1i (β) = d1RL−2
c

2Γ (3 − β)

1

yN1 − yN1−1

(
H

N1−1,N1
i−1,i

yi − yi−1
− H

N1−1,N1
i,i+1

yi+1 − yi

)
, (139)

• if i, j = N1

L1N1N1
(β) = d1RL−2

c

2Γ (3 − β)

1

(yN1 − yN1−1)2
H

N1−1,N1
N1−1,N1

, (140a)

L2N1N1
(β) = d2RL−2

c

2Γ (3 − β)

1

(yN1+1 − yN1)
2H

N1,N1+1
N1,N1+1 , (140b)

• if j = N1 and i = N1 + 1, . . . , N2 − 1

L2N1i (β) = − d2RL−2
c

2Γ (3 − β)

1

yN1+1 − yN1

(
H

N1,N1+1
i−1,i

yi − yi−1
− H

N1,N1+1
i,i+1

yi+1 − yi

)
, (141)

• if j = N1 + 1, . . . , N2 − 1 and i = N1

L2j N1
(β) = − d2RL−2

c

2Γ (3 − β)

1

yN1+1 − yN1

(
H

j−1, j
N1,N1+1

y j − y j−1
− H

j, j+1
N1,N1+1

y j+1 − y j

)
. (142)

By looking at the above expressions, and exploiting the symmetry of Hp,q
k,l (here, symmetry means that the

subscripts can be exchanged with the superscripts), namely

H
p,q
k,l (β) = |yq − yk |2−β − |yq − yl |2−β + |yp − yl |2−β − |yp − yk |2−β

= |yl − yp|2−β − |yl − yq |2−β + |yk − yq |2−β − |yk − yp|2−β

= Hk,l
p,q(β), (143)

it can be proven that the non-local stiffness matrices (one for each sub-cell) are symmetric as in the standard
case, i.e.

Lkji (β) = Lki j (β), ∀β ∈ ]0, 1[. (144)
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A.2 Computation of Fk

By recalling the definition of Fk(β) given in (128b), and using the expressions (132a)–(134b), the components
of the nodal fractional force are given by

• if j = 1, . . . , N1 − 1

F1
j (β) = d1RL−2

c

2Γ (3 − β)

(
H

0,N1
j−1, j

y j − y j−1
− H

0,N1
j, j+1

y j+1 − y j

)
, (145)

• if j = N1

F1
N1

(β) = d1RL−2
c

2Γ (3 − β)

H
0,N1
N1−1,N1

yN1 − yN1−1
, (146a)

F2
N1

(β) = − d2RL−2
c

2Γ (3 − β)

H
N1,N2
N1,N1+1

yN1+1 − yN1

, (146b)

• if j = N1 + 1, . . . , N2 − 1

F2
j (β) = d2RL−2

c

2Γ (3 − β)

(
H

N1,N2
j−1, j

y j − y j−1
− H

N1,N2
j, j+1

y j+1 − y j

)
. (147)

A.3 Numerical approximation of the effective coefficient

By using the definitions introduced in the previous sections, the numerical effective diffusivity d̂ eff
num in Eq. (99)

can be computed as

d̂ eff
num = d1RL−2

c

2Γ (3 − β)

{
H

0,N1
0,N1

+
N1−1∑
i=1

ω1
i

(
Hi−1,i
0,N1

yi − yi−1
− Hi,i+1

0,N1

yi+1 − yi

)

+ω1
N1

H
N1−1,N1
0,N1

yN1 − yN1−1

}

+ d2RL−2
c

2Γ (3 − β)

{
H

N1,N2
N1,N2

− ω2
N1

H
N1,N1+1
N1,N2

yN1+1 − yN1

+
N2−1∑

r=N1+1

ω2
r

(
Hr−1,r

N1,N2

yr − yr−1
− Hr,r+1

N1,N2

yr+1 − yr

)⎫⎬
⎭ . (148)

We notice that in Eq. (148), the coefficients ωk
i are the solutions of the algebraic equation (98) and represent

the nodal concentrations. Therefore, the effective coefficient can be computed after the non-local cell problem
has been solved.

B FE discretisation of the non-local homogenised problem. Benchmark problem II

Analogously to what has been done above, we consider the basis functions to be defined by Lagrange polyno-
mials of the first order, i.e.

ψ0(x) =
⎧⎨
⎩

x1 − x

x1 − x0
, x0 ≤ x < x1,

0, elsewhere,
(149a)
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ψi (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − xi−1

xi − xi−1
, xi−1 ≤ x < xi ,

xi+1 − x

xi+1 − xi
, xi ≤ x ≤ xi+1,

0, elsewhere,

i = 1, . . . , N − 1 (149b)

ψN (x) =
⎧⎨
⎩

x − xN−1

xN − xN−1
, xN−1 < x ≤ xN ,

0, elsewhere.
(149c)

Then, by using (149b), the mass matrix is given by

M j i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x j − x j−1)/6, i = j − 1,
(x j+1 − x j−1)/3, i = j,
(x j+1 − x j )/6, i = j + 1,
0, otherwise.

(150)

Now, by recalling the expressions (131a) and (131b), with a slight abuse of notation, we have that

Cp,q(x;α) := |x − xp|1−αsign(x − xp)

− |x − xq |1−αsign(x − xq), (151a)

H
p,q
k,l (α) := |xq − xk |2−α − |xq − xl |2−α

+ |xp − xl |2−α − |xp − xk |2−α, (151b)

where x replaces y, and the parameter α replaces β. In the following discussion, we omit the dependence of
H

p,q
k,l on α.

Thus, by using expressions (151a) and (151b), and the symmetrised Caputo derivative of order α of ψi ,
i = 1, . . . , N , i.e.

Dα[ψi ](x) = 1

2Γ (2 − α)

{
Ci−1,i (x;α)

xi − xi−1
− Ci,i+1(x;α)

xi+1 − xi

}
, (152)

the fractional stiffness matrix L(α) can be computed as follows

L j i (α) = d̂effst

2Γ (3 − α)

{
1

xi − xi−1

(
H

j−1, j
i−1,i

x j − x j−1
− H

j, j+1
i−1,i

x j+1 − x j

)

− 1

xi+1 − xi

(
H

j−1, j
i,i+1

x j − x j−1
− H

j, j+1
i,i+1

x j+1 − x j

)}
. (153)

Moreover, by taking into account that

Dα[ψ0](x) = − 1

2Γ (2 − α)

1

x1 − x0
C0,1(x;α), (154a)

Dα[ψN ](x) = 1

2Γ (2 − α)

1

xN − xN−1
CN−1,N (x;α), (154b)

the elements of the fractional nodal force F(α) are given by

F j (α) = d̂effst

2Γ (3 − α)

{
− cb
x1 − x0

(
H0,1

j−1, j

x j − x j−1
− H0,1

j, j+1

x j+1 − x j

)

+ cb
xN − xN−1

(
HN−1,N

j−1, j

x j − x j−1
− HN−1,N

j, j+1

x j+1 − x j

)}
. (155)

As previously discussed, also in this case both the fractional stiffness matrix and the fractional nodal force
tend to their classical counterparts when α → 1−.
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