
09 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DE CIFRIS SEMINARS / Bazzanella, Danilo; Codogni, Giulio; Murru, Nadir; Zunino, Roberto. - 2:(2024).
[10.69091/koine/vol-2-I01]

Original

DE CIFRIS SEMINARS

Publisher:

Published
DOI:10.69091/koine/vol-2-I01

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991189 since: 2024-07-26T10:00:52Z

De Componendis Cifris APS



DE CIFRIS KOINE
Book Series
Volume II

DE CIFRIS SEMINARS



DE CIFRIS KOINE
Series Editorial Board

Editor-in-Chief
Massimiliano Sala,
De Componendis Cifris, Presidente
Managing editor
Antonino Alì,
Università di Trento, Professore

Editors
Gianira Nicoletta Alfarano,

KU Leuven, Researcher
Elena Berardini,

Université de Bordeaux, Chaire de Professeur Junior
Martino Borello,

Université Paris 8, Maître de Conférences
Alessio Caminata,

Università di Genova, Ricercatore
Michela Ceria,

Politecnico di Bari, Ricercatrice
Michele Ciampi,

The University of Edinburgh, Chancellor’s Fellow
Roberto Civino,

Università dell’Aquila, Ricercatore
Veronica Cristiano,

Telsy SpA, cryptographer
Daniele Friolo,

Università di Roma "La Sapienza", Ricercatore
Tommaso Gagliardoni,

Kudelski Security, cryptographer and Scientist
Giovanni Giuseppe Grimaldi,

Università di Napoli Federico II, Ricercatore
Annamaria Iezzi,

Université Grenoble Alpes, Maîtresse de Conférences
Michela Iezzi,

Banca d’Italia, Ricercatrice



III

Carla Mascia,
HIT - Hub Innovazione Trentino, Ricercatrice

Carmine Monetta,
Università di Salerno, Ricercatore

Andrea Monti,
Università di Chieti, Docente

Marco Moraglio,
Università dell’Insubria, Ricercatore

Nadir Murru,
Università di Trento, Professore

Giancarlo Rinaldo,
Università di Messina, Ricercatore

Francesco Romeo,
Università di Cassino e del Lazio Meridionale, Ricercatore

Carlo Sanna,
Politecnico di Torino, Ricercatore

Paolo Santini,
Università Politecnica delle Marche, Ricercatore

Lea Terracini,
Università di Torino, Professoressa

Marco Timpanella,
Università di Perugia, Ricercatore

Ilaria Zappatore,
Université de Limoges, Maîtresse de Conférences



DE CIFRIS KOINE
Book Series

De Cifris Koine è una collana editoriale curata da De Cifris Press, marchio dell’asso-
ciazione nazionale De Componendis Cifris dedicata allo studio e alla divulgazione
della crittografia e delle discipline correlate.

Questa collana rappresenta un punto di riferimento per la comunità crittografica
italiana, offrendo una panoramica delle ricerche e delle innovazioni nel campo. At-
traverso la pubblicazione degli atti di conferenze e workshop, De Cifris Koine fornisce
non solo approfondimenti scientifici, ma anche contributi divulgativi, mettendo in
luce i progressi e le attività dei principali esponenti in questo ambito.

La serie abbraccia un ampio spettro di argomenti, estendendosi oltre la crit-
tografia stessa per includere le sue molteplici applicazioni e intersezioni con altre
discipline. Tra queste, si annoverano la teoria dei codici, vari rami della matematica
come l’algebra, la teoria dei numeri e la geometria, l’informatica con un focus par-
ticolare sulla cybersecurity e sull’informatica teorica, nonché l’ingegneria elettrica,
le telecomunicazioni, la storia e gli aspetti legali legati alla crittografia.

Gli articoli pubblicati in questa collana sono accettati in tre lingue: italiano,
inglese e francese.

La periodicità della pubblicazione è trimestrale.

De Cifris Koine is a book series published by De Cifris Press, publishing house
of the national association De Componendis Cifris, whose activities focus on cryp-
tography and related topics. De Cifris Koine volumes form the voice of the Italian
cryptographic community, as they collect communications from both scientific and
educational events and summaries of papers of its members and of their activities.
In particular, De Cifris Koine hosts conference and workshop proceedings, including
short abstracts.

Topics covered in De Cifris Koine volumes relate to cryptography and its ap-
plications to and connections with other disciplines, as for example coding theory,
maths (mainly algebra, number theory and geometry), computer science (mainly
cyber security and theoretical computer science), electronic engineering, telecom-
munication engineering, history of cryptography and law.
Accepted articles are either in Italian, English or French.
Volumes are published quarterly.
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La De Cifris Koine est une collection publiée par la De Cifris Press de l’association
nationale italienne De Componendis Cifris. Elle est consacrée à l’étude et à la dif-
fusion de la cryptographie et des disciplines connexes.

Cette collection est une référence importante pour la communauté cryptographique
italienne, offrant une vue d’ensemble de la recherche et des innovations dans ce do-
maine. Grâce à la publication d’actes de conférences et de groupes de travail (work-
shops), la De Cifris Koine fournit non seulement des contributions scientifiques
académiques, mais aussi des contributions à destination du grand public, mettant
en lumière les progrès et les activités des principaux acteurs et des principales ac-
trices du domaine.

Les articles de cette collection couvrent un large éventail de sujets allant de
la cryptographie à ses nombreuses applications et intersections avec d’autres disci-
plines. On y retrouve notamment la théorie des codes, diverses branches des mathé-
matiques telles que l’algèbre, la théorie des nombres et la géométrie, l’informatique,
avec un accent sur la sécurité informatique et l’informatique théorique, ainsi que le
génie électrique, les télécommunications et les aspects juridiques de la cryptogra-
phie. Les articles soumis à la De Cifris Koine sont acceptés en italien, anglais et
français. La fréquence de publication est trimestrielle.
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VIII Contents

PREFACE

De Componendis Cifris APS è stata costituita formalmente solo nel dicembre
2022, ma è attiva da molti anni con incontri ed eventi. Una delle sue iniziative è
stata l’organizzazione di numerosi seminari. È quindi opportuno che un libro Koine
raccolga alcuni dei nostri migliori seminari. Alcuni risultati possono essere obsoleti,
ma gli articoli forniscono ancora diversi spunti preziosi in molte aree della ricerca
crittografica, servendo al contempo da piacevole introduzione al campo specifico.
Il volume si conclude con due contributi interessanti e originali.

Riteniamo che i curatori del libro, Danilo Bazzanella, Giulio Codogni, Nadir
Murru e Roberto Zunino, abbiano fatto un lavoro pregevole nel selezionare sia un
interessante campione di seminari sia i due invited paper, entrambi attualissimi:
la crittografia post-quantistica basata su isogenesi e la fattorizzazione di interi.

De Componendis Cifris APS was formally established only in December 2022,
but it has been active for many years in meetings and events. One of its initiatives
has been the organization of many seminars. It is therefore fitting that a Koine book
collects some of our best seminars. Some results may be outdated, but the papers
still provide valuable insights into many areas of cryptographic research, while also
serving as nice introductions. This Koine volume concludes with two interesting and
original contributions.
We believe that the volume’s editors, Danilo Bazzanella, Giulio Codogni, Nadir
Murru and Roberto Zunino, have done a great job in selecting both an interesting
sample of seminars and the two invited papers: (isogeny-based) post-quantum
cryptography and integer factorization.

De Componendis Cifris APS n’a été officiellement créée qu’en décembre 2022,
mais elle est active depuis de nombreuses années dans le cadre de réunions et
d’événements. L’une de ses initiatives a été l’organisation de séminaires. Il est donc
tout à fait approprié que un livre Koine rassemble quelques-uns de nos meilleurs
séminaires. Certains des résultats peuvent être dépassés, mais les sujets traités four-
nissent toujours des aperçus précieux dans de nombreux domaines de la recherche
cryptographique et servent également d’introduction agréable au domaine spéci-
fique. Deux articles originaux et intéressants concluent le volume.
Nous pensons que les éditeurs du volume, Danilo Bazzanella, Giulio Codogni, Nadir
Murru et Roberto Zunino, ont fait un excellent travail en sélectionnant un échan-
tillon intéressant de séminaires et deux communications invitées: la cryptographie
post-quantique basée sur les isogénies et la factorisation des nombres entiers.

Massimiliano Sala & Antonino Alì
Editor in Chief & Managing Editor
De Cifris Koine
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Part I
Introduction



Introduction to De Cifris Seminars

Among the objectives of the national association De Componendis Cifris is the aim
of spreading the cryptographic culture in Italy. To achieve this purpose, in recent
years it has promoted and coordinated a series of seminars held in various Italian
universities. This volume is dedicated to collecting the extended abstracts of some
seminars organised by members of universities participating in the association, while
also containing two extensive research papers.

The seminars cover many of the most interesting topics in modern cryptog-
raphy, dealing with both theoretical aspects and their applications. In the part of
the volume dedicated to the theory, there are seven extended abstracts whose topics
range over cryptanalysis, post-quantum cryptography, and symmetric cryptography.

Part I contains a foreword by some members of De Cifris, who are also profes-
sors and researchers in the fields covered in this volume.

Part II addresses some theoretical aspects of scheme design and cryptanalysis.
In particular, the extended abstract "An overview on cryptanalysis of ARX ciphers"
(2019), by Stefano Barbero, describes some of the main cryptanalytic attacks against
ARX ciphers, a class of symmetric-key algorithms only employing modular addi-
tions, bitwise rotations and exclusive-OR’s.
Michela Ceria, Theo Moriarty and Andrea Visconti present "Efficient cryptanalysis
over multivariate Ore extensions" (2020), an attack specialized to the protocol of
Ore extensions exploiting advanced techniques of computational algebra.
Lorenzo Grassi, in "Cryptanalysis of round-reduced AES" (2019), describes some
progress in the cryptanalysis of the block cipher AES (Advanced Encryption Stan-
dard), with ingenious techniques from differential cryptanalysis.
Finally, "An investigation on integer factorization applied to public-key cryptogra-
phy" (2020), by Giordano Santilli provides an overview of the best factorization
methods that can be exploited for attacking those public key cryptosystems whose
security is based on the difficulty of the integer factorization problem.
The first extended abstract devoted to designing ciphers rather than breaking them
is "A Group Theoretical Approach for Symmetric Encryption" (2020). The security
of symmetric ciphers is related to the size of the symmetric group they generate.
Riccardo Aragona presents some results on the size of the subgroup generated by
these permutations.

De Cifris Koine – DE CIFRIS SEMINARS https://doi.org/10.69091/koine/vol-2-I01
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Introduction 3

"Shift Invariance in Symmetric Cryptography" (2019) by Luca Mariot is the ex-
tended abstract of a seminar titled "Boolean functions, S-Boxes and Evolutionary
Algorithms" focused on the design of (symmetric) ciphers exploiting Boolean func-
tions and cellular automata, as well as their related optimization problems which
can be tackled by genetic programming.
Lastly, "On adapting NTRU for Post-Quantum Public-Key Encryption" (2020), by
Simone Dutto, Guglielmo Morgari and Edoardo Signorini focusses on solving the
problem by introducing a PKE scheme obtained from the KEM proposed in the
NTRU submission at NIST.

Part III of the volume concerns applications, dealing with topics such as non-
interactive proofs, machine learning, blockchain, applications of post-quantum cryp-
tography, digital identity, and key derivation functions.
In particular, the paper "Non-interactive time-based proof-of-stake finality" (2019)
by Giovanni Antino and Iris Dimmi provides a glimpse inside the novel blockchain
technologies researched by AiliA SA for the Takamaka platform, investigating the
design of a unique Proof of Stake protocol, and studying its high performance and
robustness against Byzantine faults.
The next extended abstract concerns the seminar "Privacy-preserving Information
Sharing" (2019) by Carlo Blundo focussing on a functionality of secure multiparty
computation known as private set intersection (PSI). In short, PSI allows a client
to know which elements of its own private set are members of the server’s private
set, without learning about the non-members.
The extended abstract "The Links between Machine Learning and Blockchain"
(2020) by Andrea Gangemi is dedicated to presenting the possible applications of
Machine Learning to Blockchain technology, such as the (partial) deanonymization
of the cryptocurrencies’ holders, the prediction of future prices of cryptocurren-
cies and the construction of consensus algorithms for the blockchain. Conversely,
this paper also introduces some applications of Blockchain technology to Machine
Learning, such as the decentralization of datasets.
"Post-quantum cryptography and the automotive industry" (2021) by Efstathia
Katsigianni discusses the growing role of asymmetric encryption in the automotive
industry and consequent threats posed by quantum computing. The author works
for automotive industries, so she was able to give an up-to-date survey of the state
of the art.
Alessandro Tomasi, in "Digital Identity - modern tools and perspectives" (2020),
provides a quick overview of the main technologies and tools behind modern
authentication infrastructures, taking into account both their technical limitations
and relevant regulations.
Lastly, the abstract "KDFs: an essential (and usually transparent) component of
real-world applications" (2019) by Andrea Visconti discusses both Key Derivation
Functions and Hash functions, with a focus on real-world applications.



4 Introduction

Part IV contains two research papers.
The first one is "Isogenies Demystified", by Luca De Feo, providing an engaging
introduction to the family of asymmetric cryptosystems based on isogenies. This
fast-growing family is thought to be quantum-resistant; the analysis of its schemes
often relies on the study of isogeny graphs, namely graphs whose vertices are elliptic
curves and edges are isogenies. Isogeny graphs are also interesting from a theoretical
point of view. This survey, like all the chapters of this book, was written in 2021,
so it does not concern recent developments. In particular, it does not report, for
example, on some recent attacks on SIKE or on the newly developed zero-knowledge
proofs and signatures.
The second one, entitled "Continued Fractions, Quadratic Fields, and Factoring:
Some Computational Aspects" by Michele Elia, is a research paper devoted to
an original and promising factorisation method inspired by the famous SQUFOF
(SQUare FOrms Factorisation, by Daniel Shanks). More precisely, M. Elia exploits
the theory of continued fractions and quadratic fields to construct a novel factorisa-
tion method. Let N be the integer to factorise. He exhibits some special quadratic
forms arising from the convergents of the continued fraction expansion of the square
root of N . The author proves that some non-trivial factors of N can be found thanks
to these quadratic forms, by evaluating the regulator of the related quadratic field
(generated by the square root of N).

Danilo Bazzanella
Giulio Codogni

Nadir Murru
Roberto Zunino
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Group Theoretical Approach for Symmetric
Encryption

Riccardo Aragona

Department of Engineering and Computer Science and Mathematics, University of
L’Aquila, Italy

riccardo.aragona@univaq.it

A block cipher Φ is a family of key-dependent permutations

tEK | EK : M Ñ M, K P Ku,

where M is the message space, K the key space, and |M| ď |K|. The permutation
EK is called the encryption function induced by the master key K. The block cipher
Φ is called an iterated block cipher if there exists an integer r ě 2 such that for each
K P K the encryption function EK is the composition of r round functions, that is,
EK “ ε1,K ε2,K . . . εr,K . To provide efficiency, each round function is itself the com-
position of a public component provided by the designers and a private component
derived from the user key (by means of a public procedure known as key-schedule).

In the theory of modern iterated block cipher, two frameworks are mainly con-
sidered: Substitution-Permutation Networks (SPN), and Feistel Networks (FN). In
both cases, the principles of confusion and diffusion suggested by Shannon [18] are
implemented by considering each round function for an SPN and F-function for
an FN as the composition of key-induced permutation as well as non-linear confu-
sion layers (usually called S-Boxes) and linear diffusion layers, which are invertible
in the case of SPNs and preferably (but not necessarily) invertible in the case of FNs.

Algebraic attacks might represent serious threats. It is possible to link some al-
gebraic properties of confusion / diffusion layers and some algebraic weaknesses of
the corresponding cipher. Firstly, in 1975 Coppersmith and Grossman [12] consid-
ered a set of functions which can be used to define a block cipher and, by studying
the permutation group generated by those, they opened the way to a new branch
of research focused on group-theoretical properties which can reveal weaknesses of
the cipher itself. As it has been proved in [14], if such a group is too small, then the
cipher is vulnerable to birthday-paradox attacks. Recently, in [7] the authors proved
that if such group is contained in an isomorphic image of the affine group of the
message space induced by a hidden sum, then it is possible to embed a dangerous
trapdoor in it. More relevant in [17], Paterson built a DES-like cipher, resistant to
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Group Theoretical Approach for Symmetric Encryption 7

both linear [15] and differential [5] cryptanalysis, whose encryption functions gen-
erate an imprimitive group and showed how the knowledge of this trapdoor can be
turned into an efficient attack to the cipher. For this reason, a branch of research in
symmetric cryptography is focused on studying the group generated by the encryp-
tion functions Γ8pΦq “ xεh,K | 1 ď h ď r,K P Ky of a cipher Φ, and in particular,
on showing that this group is primitive and not of affine type (see e.g. [2], [3], [4],
[11], [10], [13], [19], [20], [21]).

For translation-based ciphers, which include the most common SPN ciphers,
in [10] the authors provided two cryptographic conditions on S-Boxes (i.e., the
weakly differential uniformity and the strongly anti-invariance) which guarantee
the primitivity of the group generated by the round functions of the cipher. Fur-
thermore, in [11], using the O’Nan-Scott classification of finite primitive groups,
together with another cryptographic assumption, it has been proved that the group
in question is the alternating group. Unfortunately, both of these results are not
applicable to many lightweight ciphers. Motivated by this, in [2], joint work with
Calderini, Tortora and Tota, we continue the study of the group generated by the
round functions of an SPN. In particular, we prove the primitivity of the group Γ8

generated by the round functions of a translation-based cipher satisfying different
cryptographic assumptions with respect to the result given in [10]. More precisely,
we consider the (strong) differential uniformity which allows us to relax the hypo-
thesis on the strongly anti-invariance. Then, we provide some additional conditions
from which it follows that Γ8 is the alternating group. As an immediate conse-
quence, we deduce that the round functions of some lightweight ciphers, such as
PRESENT, RECTANGLE and PRINTcipher, generate the alternating group.

It is well-known that the non-linearity of the confusion layer is a crucial pa-
rameter for the security of the cipher. In particular, in order to prevent statistical
attacks (e.g. differential [5] and linear [15] cryptanalysis), block ciphers’ designers
are very interested in invertible S-boxes reaching the best possible differential uni-
formity, which is two. Functions satisfying such property are called almost-perfect
non-linear (APN) [16] and are extensively studied. Unfortunately, APN permuta-
tions are known only when the dimension s of the input space for the S-box is an
odd number, except for the case of the Dillon’s function (s “ 6) [6], which nowadays
represents the only isolated case [9]. It has been shown that no permutation with
s “ 4 is APN [8] and the problem is still without answers for s ě 8. On the other
hand, the cases when s P t4, 8u are the most used for implementation reasons. In [1],
we propose a new general framework for block ciphers, called wave cipher, combin-
ing a typical structure of an SPN round function within a Feistel Network, which
may feature injective APN S-Boxes of even size. We show that this framework pro-
duces provably secure ciphers, under some cryptographic assumptions, with respect
to the imprimitivity attack. In particular we prove a group-theoretical result, which,
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as a consequence, links the primitivity of the action of an SPN with that of an FN.
From that follows the primitivity of the group generated by the round functions
of a wave cipher. Instead, in order to prove the security of the given wave cipher
with respect to other classical statistical attacks, it may be necessary to analyse the
single instance under consideration.
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The purpose of this overview is to describe the main cryptanalytic attacks cur-
rently used against ARX ciphers. ARX ciphers are block or stream ciphers described
by easy algorithms with fast performance on PCs, compact implementation and es-
sentially no risks of timing attacks. Considering n-bit strings they are defined using
the natural bijection between pF2qn and Z{2nZ

x “ pxn´1, xn´2, . . . , x1, x0q Ø xn´12
n´1 ` xn´22

n´2 ` ¨ ¨ ¨ ` x12 ` x0

and three main operations: the addition mod 2n indicated by ‘; the r–bit rotation,
where

x Î r “ pxn´r´1, xn´r´2, . . . , x1, x0, xn´1, . . . xn´rq

and
x Ï r “ pxr´1, . . . , x1, x0, xn´1, xn´2, . . . , xrq

respectively indicate a constant distance left rotation or right rotation of r bits (r ă

n) of a n-bit word x “ pxn´1, xn´2, . . . , xr, . . . , x0q, and the XOR bitwise addition
indicated by ‘. Thanks to these operations and assuming constants included, the
ARX schemes are functionally complete (see, e. g., [9]): every possible logic gate can
be realized as a network of gates using ARX operations and constants. However,
ARX ciphers have also some basic disadvantages: they are not best trade–off in
hardware, although there are some different attempts of optimizations for various
ARX ciphers; it is still not so completely clear which is their security against some
cryptanalytic tools (e.g., [7, 8]) such as linear and differential cryptanalysis, it is also
still not so clear which is their security against side channel attacks, i. e., attacks
based on all hardware information detected from their implementation.

Perhaps, one of the most interesting cryptanalytic methods against ARX ciphers
is Algebraic Cryptanalysis, which mainly consists of a deterministic key-recovery
attack based on finding and solving an equation system, with coefficients in F2, that
represents the encryption (or decryption) function (see, e. g., [2]). The set of inde-
terminates of the system represents a plaintext as well as a ciphertext, the internal
states of the cipher, and the encryption/decryption key. The set of polynomial equa-
tions of the system arising from the ARX scheme can be solved using algorithms
involving algebraic tools like Gröbner bases and SAT–solvers.
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In order to attack block ciphers like DES and FEAL, Matsui [11] developed
Linear Cryptanalysis, which usefully applies when it is possible to find an "effective"
linear expression describing a given cipher algorithm. In this case we obtain one or
more linear relations among the parities of plaintext, ciphertext and the secret key.
Let P , C and K denote the plaintext, the ciphertext and the key, respectively.
Considering fixed bit locations i1, i2, . . . , ia, j1, j2, . . . , jb, k1, k2, . . . , kc, if we have
with probability p ‰ 1

2 and effectiveness |p´ 1
2 | that

P ri1, i2, . . . , ias ‘ Crj1, j2, . . . , jbs “ Krk1, k2, . . . , kcs,

for a randomly given plaintext P and the corresponding ciphertext C, we are able to
determine one key bit Krk1, k2, . . . , kcs with a straightforward algorithm, described
by Matsui [11], based on the maximum likelihood method and using N plaintexts.
The success rate of this method increases when N or |p´ 1

2 | does.
Another important cryptanalytic tool has been introduced by Biham and Shamir

(see, e. g., [3], [4], and [5]), in order to attack the previous standard DES. The
idea of their XOR–Differential Cryptanalysis is finding some couples of differentials
∆X “ X 1 ‘ X2, ∆Y “ Y 1 ‘ Y 2, where a pair of plaintexts X 1, X2 yields to a
pair of ciphertexts (or internal states of the cipher) Y 1, Y 2 such that ∆Y is not
uniformly distributed. Finding one or more differentials can help to distinguish a
ciphertext from randomness and to recover the (partial) key used in the cipher.
Indeed, we may encrypt many pairs of chosen plaintexts having difference ∆X and
try to decrypt the corresponding ciphertexts using all the possible subkeys to get
the outputs (or internal states) Y. Checking the frequency of ∆Y , we can select
with high probability the correct subkey, observing that this frequency of ∆Y must
be close to the conjectured value of the probability Pr∆Y |∆Xs.

Resting on the same core ideas, Additive Differential Cryptanalysis focuses on
the difference of two outputs of a standard ARX operation taking into account the
effects of modular addition. Since a standard ARX operation is defined as

ARXpa, b, d, rq “ ppa‘ bq Î rq ‘ d

where a, b, d are n–bit vectors, fixing the additive differences ∆α, ∆β, ∆λ and ∆µ,
we may define the difference ∆e between two outputs of ARX as

∆e “ ARXpa‘∆α, b‘∆β, d‘∆λ, rq aARXpa, b, d, rq.

Additive differences pass through modular addition with probability 1, thus we have
∆γ “ ∆α ‘∆β and we may define the additive differential probability of ARX as

adpARX “ p∆γ,∆λ
r

ÝÑ ∆µq “
| tpa‘ b, dq : ∆e “ ∆µu |

| tp a‘ b, dqu|
.

As pointed out by Velichkov et alii [12], S–functions are the best tool one could use
in order to estimate adpARX .
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Another way to attack an ARX scheme is studying rotational differentials, i. e.,
investigating the propagation of rotations throughout the encryption steps of an
ARX scheme applying Rotational-Differential Cryptanalysis. A rotation of r bits
passes across XOR and across another bit rotation with probability 1, while the
probability that it passes across a modular addition of two n–bit strings is given
by pr “ 1

4 p1 ` 2r´n ` 2´r ` 2´nq (see, e. g., [6] and [10]). This probability is maxi-
mized to 2´1.415 when n is large and r “ 1, therefore in an ARX scheme with q not
chained modular additions, we can detect nonrandomness if pp1qq ą 2´n, i. e., if the
implementation consists of q ă n

1.415 not chained modular additions. The case of
chained modular additions is deeply discussed in [10], where an algorithm for com-
puting the rotational probability of ARX ciphers with chained modular additions
is given and applied to mount rotational–differential attacks against BLAKE2 and
a simplified version of Skein. The main obstacle in applying Rotational–Differential
Cryptanalysis is the possible presence of constants in the ARX scheme. In this case
one could try to use the Rotational–XOR Cryptanalysis with constants, recently
developed by Ashur and Liu [1]. In particular the authors evaluate for large n the
probability that the following equality holds

ppx‘ a1q ‘ py ‘ b1q ‘∆1q Î 1 “ ppx Î 1q ‘ a2q ‘ ppy Î 1q ‘ b2q ‘∆2

where x, y are independent random n–bit strings and ai, bi, ∆i, i “ 1, 2 are constant
n-bit strings. They use their results in order to find a 7–round distinguisher based
on Rotational–XOR differences for SPECK32/64.
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Key exchange protocols are cryptographic protocols that allow two parties to
share a common secret while communicating through an insecure channel. This
enables the two parties to use a symmetric algorithm to communicate, without the
high costs of transmitting securely the common cryptographic key.

In their milestone paper [8], Diffie and Hellman proposed a key exchange scheme,
basing its security on the Discrete Logarithm Problem on the multiplicative group
of integers modulo a prime p, then generalized to finite cyclic groups. Since then,
many other algorithms in the same fashion have been developed by several authors
and, in particular, in this paper we focus on those ones that are developed over
noncommutative algebra frameworks.

The protocol described in [5] is the first one employing polynomial algebra; more
precisely, it relies on evaluation of univariate polynomials on the elements of a public
noncommutative ring R.

The first involved party, Alice, takes a, b P R, m,n P N and a secret polynomial
f P Zrxs; then she sends to the second involved party, Bob, m,n, a, b and A “

fpaqmbfpaqn. Bob selects secretly h P Zrxs and sends to Alice B “ hpaqmbhpaqn.
The common secret is S “ fpaqmBfpaqn “ hpaqmAhpaqn.

We remark also that the most general setting employing polynomial algebra is
the one defined in [10]; for other results in similar fashion and some cryptanalysis,
see [7] and the references therein.

In this paper, we deal with a protocol [4] developed over multivariate Ore ex-
tensions [6], and we will present an attack to this protocol.

Given a (non-necessarily commutative) domain R, consider the left R-module
of formal polynomials RrY s. To make it a ring such that the multiplication of
polynomials is associative and both-sided distributive and the degree of a product
is equal to the sum of the degree of the factors, Ore [12] needed to define the product
Y ¨ r, r P R, requiring the existence of two maps α, δ : R Ñ R such that

Y ¨ r “ αprqY ` δprq for each r P R .
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An Ore extension is given by RrY s with the ring structure such that

1. for each r P R, αprq “ 0 implies r “ 0;
2. α is a ring endomorphism;
3. δ is an α-derivation of R, namely an additive map satisfying
δprr1q “ αprqδpr1q ` δprqr1 for each r, r1 P R.

Such a structure is usually denoted by RrY ;α, δs. Extending this idea, an iterative
Ore extension is a ring defined as

Rn :“ RrY1;α1, δ1srY2;α2, δ2s ¨ ¨ ¨ rYn;αn, δns,

where, for every i ą 1, αi is an endomorphism and δi an αi-derivation of the iterative
Ore extension

Ri´1 :“ RrY1;α1, δ1s ¨ ¨ ¨ rYi´1;αi´1, δi´1s.

It is possible to extend αi to an endomorphism of Rn and δi to an αi-derivation in
Rn, by setting αipYjq “ Yj and δipYjq “ 0 for each i ď j ď n. Finally, a multivariate
Ore extension is an iterative Ore extension which satisfies

– αjδi “ δiαj , for each i, j, i ‰ j;
– αiαj “ αjαi, δiδj “ δjδi for i ă j ď n;
– αjpYiq “ Yi, δjpYiq “ 0 for i ď j ď n.

We can now describe Burger-Heinle’s protocol. Consider a multivariate Ore ex-
tension T with constant subring R and three non-mutually commuting elements
L,P,Q P T. Denoting

C “ tf P Rrts,degpfq ą 0, fp0q ‰ 0u,

we can define the sets Cl :“ tfpP q, f P Cu, Cr :“ tfpQq, f P Cu. All these data
are publicly available. Alice chooses secretly pPA, QAq P Cl ˆ Cr and Bob does the
same by choosing pPB , QBq P Cl ˆ Cr. Then, Alice sends A “ PALQA to Bob and
gets B “ PBLQB from him. The shared secret is S “ PABQA “ PBAQB .
Note first that the protocol can be verbatim generalized to the context of iterated
Ore extensions with power substitutions [11], as explicitly done in [7]; moreover,
both the original and the extended protocols can be broken via the attack we are
going to propose now, whose only ingredients are Buchberger reduction [1–3, 9] and
left/right divisibility. We show now how to recover the polynomials f, g P Rrts such
that fpP q “ PA, gpQq “ QA from A. Let us write gptq “

řd
i“a cit

i “ ta ¨
řd´a

i“0 ca`it
i,

where a :“ minti : ci ‰ 0u ď d, so that QA “
řd

i“a ciQ
i and, for a fixed term order

on T, let us denote by MpQq the leading monomial of Q and by QpQq :“ Q´MpQq

the tail. We define a new variable U and, setting MpQq Ñ QpQq`U (so substituting
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all occurrences of the leading monomial with the tail), we reduce A from the right
a` 1 times, getting

A “ fpP qLgpQq “ fpP qL
d
ÿ

i“a

ciQ
i

Ñ fpP qL
d
ÿ

i“a`1

ciQ
i´a´1U ¨ Ua ` fpP qLcaU

a

“ XU ¨ Ua ` Y Ua,

where Y “ fpP qLca and X “ fpP qL
řd

i“a`1 ciQ
i´a´1. This implies that

– we can find fpP q by dividing Y by L from the right and we can get f by reducing
with respect to P ;

– we can get
řd

i“a`1 ciQ
i´a´1 by dividing X by Y from the left, and from that

we can deduce g by reduction.

Since a is unknown, we still need a way to understand whether we performed the
correct number of reduction steps, so that

Y :“ fpP qLca

and

X :“ fpP qL
d
ÿ

i“a`1

ciQ
i´a´1.

For this aim we test whether L divides Y from the right: in the positive case, the
attack can be concluded as above; otherwise, we continue by reducing until the
positive case is reached. Note that, by symmetry, we can find LgpQq and f .

We conclude by saying that [4] presents also a three-pass exchange protocol,
which can be broken with a variation of the attack above, as examined in [7].
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1 Introduction

The main research project on Post-Quantum Cryptography (PQC) is the NIST
PQC Standardization Process [1], which focuses on selecting post-quantum Key
Encapsulation Mechanisms (KEMs) and Digital Signature Schemes.

Public-Key Encryption (PKE) schemes will not be standardized since, in general,
the submitted KEMs are obtained from PKE schemes and the inverse process is
simple. However, there are cases for which this is not straightforward, like the NTRU
submission [2].

This work focuses on solving this problem by introducing a PKE scheme obtained
from the KEM proposed in the NTRU submission, while maintaining its IND-CCA2
security (indistinguishability under adaptive chosen ciphertext attack).

2 The NTRU submission

NTRU [2] is a finalist in the NIST PQC Standardization Process that presents a
KEM in which the security is based on the Shortest Vector Problem (SVP) on the
NTRU lattice [6] (several variations and generalization exist, see e.g. [8, 4, 5]).

The proposed KEM achieves IND-CCA2 security by exploiting an OW-CPA
(one-wayness under chosen plaintext attack) PKE scheme with either of two sets
of parameters: NTRU-HPS and NTRU-HRSS-KEM. Because of its larger range of
addressed security levels, we focused on NTRU-HPS.
More precisely, let Zq “ t´

q
2 , . . . , 0, . . . ,

q
2 ´ 1u and Z3 “ t´1, 0, 1u, given

pn, qq P tp509, 2048q, p677, 2048q, p821, 4096qu

corresponding to three different security levels, with p “ 3 and d “
q
8 ´ 2, and

considering ϕnpxq “ 1 ` x` . . .` xn´1 P Z3rxs or ϕnpxq P Zqrxs, all polynomials
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are represented as arrays in the three following rings:
- Rq “ Zqrxs{pxn ´ 1q,
- Sq “ Zqrxs{pϕnq,
- T “ Z3rxs{pϕnq.

Moreover, T pdq “
␣
řn´2

i“1 tix
i P T |#tti “ 1u “ #tti “ ´1u “ d{2

(

.
The OW-CPA PKE scheme consists of the following algorithms.

OWCPA.keygen(seed) OWCPA.encrypt(h, (r, m))
1. seed Ñ f P T 1. return c “ r ¨ h ` m P Rq

2. seed Ñ g P T pdq OWCPA.decrypt((f, f3,hq), c)
3. fq “ f´1

P Sq 1. a “ c ¨ f P Rq

4. h “ 3g ¨ fq P Rq 2. m “ a ¨ f3 P T

5. hq “ h´1
P Sq 3. r “ pc ´ mq ¨ hq P Sq

6. f3 “ f´1
P T 4. if pr,mq P T ˆ T pdq return pr,m, 0q

7. return h, pf, f3,hqq 5. else return (0, 0, 1)

Since the message m P T pdq is ternary and constrained, and the security is only
OW-CPA, this is not directly suitable for PKE.

3 Obtaining a PKE scheme from NTRU

In order to obtain a PKE scheme using the OW-CPA PKE scheme from NTRU
[2], another work is considered: NTRUEncrypt [3], a first round submission that
inspired NTRU-HPS in NTRU [2].

NTRUEncrypt exploits a padding function to encode the message in a ternary
polynomial with at least 256 bits of entropy and a message masking to achieve
IND-CPA security (indistinguishability under chosen plaintext attack). Then, the
NAEP transformation [7] is adopted to obtain an IND-CCA2 PKE scheme.

3.1 Message padding function

The padding is an invertible map Pad : pZ28qLˆt0, 1u˚ Ñ T pdq with Padpmsg, seedq “

m, where the seed allows to add bits of entropy. Since in NTRU-HPS m P T pdq,
while in NTRUEncrypt it has no constraints, a new padding is required. Our defi-
nition uses an encoding function to obtain a ternary polynomial, and then exploits
the seed to add bits of entropy and achieve the constraint.

Considering a bijection ζ : pZ2q5 Ñ pZ3q4 with outputs among the permutations
of the elements of the arrays p0, 0, 1,´1q, p0, 1, 1,´1q, p0, 1,´1,´1q, our encoding
function is ζ : pZ28qL Ñ pZ3q32L{5, with

ζpm1, . . . ,mLq“ζ
`

m1r1:5s
˘

}ζ
`

m1r6:8s}m2r1:2s
˘

} . . . }ζ
`

mLr4:8s
˘

.
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In the encoded message

8 ¨ L{5 ď #t11su,#t´11su ď 16 ¨ L{5 ,

so that the maximum length of msg is L P N such that 5 divides L and 16L{5 ď d{2,
i.e. L “ 5td{32u.

The last r “ n ´ 1 ´ 32L{5 coefficients are generated through the seed, while
reaching the constraint and adding at least 256 bits of entropy. In the worst cases,
the missing 1’s and ´1’s are a “ d{2 ´ 16L{5 and b “ d{2 ´ 8L{5 (or viceversa).
Thus, the possible completions are

`

r
a

˘`

r´a
b

˘

and the minimum entropy is

Hmin “ log2

ˆˆ

r

a

˙ˆ

r ´ a

b

˙˙

.

The obtained results are:
- for n “ 509, q “ 2048, L “ 35, Hmin “ 301;
- for n “ 677, q “ 2048, L “ 35, Hmin “ 367;
- for n “ 821, q “ 4096, L “ 75, Hmin “ 399.

Finally, Pad´1 takes the first 32L{5 entries and applies the inverse of ζ.
Its output is always a byte array of length L.

3.2 Message masking

As in NTRUEncrypt, the IND-CPA security is achieved by masking the message.
However, the only way to mask m “ Padpmsg, seedq P T pdq while maintaining
the constraint is to apply a permutation, which is not secure. Thus, the message
is masked before the padding function using the digest of the required random
polynomial r P T , resulting in

m “ Padpmsg ‘ Hashprq, seedq P T pdq .

3.3 The PKE scheme

The algorithm for key generation is OW-CPA.keygen from NTRU.
To encrypt msg P pZ28qL using the public key h, the steps are:

– to sample r P T , obtain m “ Padpmsg ‘ Hashprq, seedq P T pdq;
– to return c “ OW-CPA.encryptph, r,mq.

To decrypt c with the secret key pf, f3, hqq, the algorithm procceds as follows:

– pr,m, failq “ OW-CPA.decryptpf, f3, hq, cq;
– if fail “ 0 then return msg “ Pad´1

pmq ‘ Hashprq, else return K.
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4 Conclusions

In this work a IND-CCA2 PKE scheme is obtained from the KEM in the NTRU [2]
submission to the NIST PQC Standardization Process. Inspired by NTRUEncrypt,
the NAEP transformation is used and two new functions are introduced: i) a padding
function that adds more than 256 bits of entropy and encodes messages of 35 or 75
bytes depending on the security level; ii) a message masking that gives IND-CPA
security to the resulting scheme. Performance and data-size of the obtained PKE
scheme are analogous to those of the KEM in NTRU (benchmarks available in [9]),
making the PKE scheme a valid post-quantum alternative.
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AES is the best known and most widely used secret key cryptosystem, and
determining its security is one of the most important problems in cryptanalysis.
Since no known attack can break the full AES significantly faster than via exhaustive
search, researchers have concentrated on attacks which can break reduced round
versions of AES. While such attacks do not pose any practical threat to the AES,
they give new insights in the cipher that is probably responsible for the largest
fraction of encrypted data worldwide.

Such attacks are important for several reasons. First of all, they enable us to
assess the remaining security margin of AES, defined by the ratio between the
number of rounds which can be successfully attacked and the number of rounds in
the full AES. In addition, there are many proposals for using reduced round AES
(and especially its 4 or 5 rounds versions) as components in larger schemes, and
thus successful cryptanalysis of these variants can be used to attack those schemes.
Finally, new cryptanalysis techniques can enable us to develop new attack strategies
which may become increasingly potent with additional improvements. In most of
the cases, it took several years – and a series of subsequent improvements – from
the invention of the technique until it was developed into its current form. As a
concrete example, consider the impossible differential cryptanalysis on AES. When
it was proposed in 2001 by Biham and Keller [2], the impossible differential attack
could attack (“only”) 5 rounds of AES and it was not competitive with respect to
others attacks, as the integral one. It took approximately 6 years before that attack
was extended and set up against 7-round AES-128 [15], becoming one of the few
attacks on such number of rounds. Finally, only recently Boura et al. [5] improved
it into its best currently known variant which breaks 7-round AES with an overall
complexity of about 2107.

In the follow-up we are going to recall some of our recent results regarding the
cryptanalysis of round-reduced AES: among others, here we focus on the “multiple-
of-8” [14] and on the mixture differential [10] properties, which are the starting point
for new competitive secret-key distinguishers and key-recovery attacks.
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AES: Brief Description & State of the Art

AES [6] is a Substitution-Permutation network that supports key sizes of 128, 192,
and 256 bits. The 128-bit plaintext initializes the internal state as a 4 ˆ 4 matrix
of bytes as values in the finite field GF p28q. Depending on the version of AES, Nr

rounds are applied to the state, where Nr “ 10 for AES-128, Nr “ 12 for AES-192,
and Nr “ 14 for AES-256. An AES round Rpxq “ K‘MC ˝SR˝ S-Boxpxq applies
four operations to the state matrix:

SubBytes (S-Box) – applying the same 8-bit to 8-bit invertible non-linear S-Box
16 times in parallel on each byte of the state;

ShiftRows (SR) – cyclic shift of each row to the left;
MixColumns (MC) – multiplication of each column by a constant 4 ˆ 4 MDS

matrix;
AddRoundKey (ARK) – XORing the state with a 128-bit subkey.

In the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

State of the Art. Before our works, secret-key distinguishers1 that are inde-
pendent of the key were known for 2-, 3- and 4-round AES. They include truncated
differential distinguishers for 2 and 3 rounds (see e.g. [13] for details), impossible
differential distinguisher [2] for 4 rounds and integral distinguishers [7] for 3 and 4
rounds.

Providing a list of all possible key-recovery attacks on round-reduced AES
present in the literature is out of our scope: here we limit ourselves to make few con-
siderations. Many of the key-recovery attacks present in the literature are set up by
extending the secret-key distinguishers just mentioned. Focusing on AES-128, con-
crete examples include the integral attacks on 6-round AES-128 [7, 6] and impossible
differential attacks on 7-round AES-128 [2, 5]. Another powerful attack against AES
is based on the Meet-in-the-Middle approach: it can cover up to 7-round AES-128
[8, 9], and combined with the bicycle technique [3] it covers all 10-round AES-128
with a computational cost a bit smaller than that required for brute force.

1 In a secret-key distinguisher, the attacker is given access to both the cipher with a
uniformly randomly chosen key and to a function that has been chosen uniformly at
random from all invertible mappings from the plaintext space to the ciphertext space.
The goal of the attacker is then to determine which of the two is the cipher and which
is the random function.
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Our Contribution

While in the last recent years cryptanalysis has mainly focused on maximizing the
number of rounds that can be broken without exhausting the full codebook and
key space, we considered a different point of view. Instead of focusing/improving
already existing attacks, we have tried to propose new methods of cryptanalysis.
Even if such new methods are not always more competitive than the ones already
present in the literature, such new directions in cryptanalysis can be interesting
from a research point of view in order to better understand the ciphers that are in
used. Moreover, it is not possible to exclude a priori that, when such methods will
reach their full potential, they can beat the existing attacks.

Multiple-of-8 Property and Truncated Differential for 5-round AES.
Since the development of cryptanalysis of AES and AES-like constructions in the
late 1990s, the set of inputs (or a subset of it) which differ only in one diagonal
has special importance. It appeared in various (truncated) differential, integral, and
impossible differential attacks (among others) for up to 4-round AES. For the first
time in the literature, we proposed a precise theoretical analysis of the probability
distribution of such set after 5-round AES.

In more details, given a diagonal set of 232 plaintexts which differ only in one
diagonal, we studied the probabilistic distribution of the number of different pairs
of ciphertexts that are equal in one fixed anti-diagonal (or equivalently, that lie in
certain subspaces) after 5 rounds of AES – denoted as “number of collisions” in the
following. For the first time, we are able to show that independently of the secret
key:

– the number of collisions is always a multiple of 8;
– the number of collisions is on average (a little) bigger compared to the case in

which the ciphertexts are generated by a random permutation;
– besides the mean, also the variance of such a distribution is (much) higher than

for a random permutation.

To show and prove these, we developed new theoretical approaches. Practical im-
plementations and verification confirm our analysis.

Similar results can be exploited to set up new secret-key distinguishers, including
the “multiple-of-n” distinguisher [14] and the first truncated differential distinguisher
based on the variance [12], besides new key-recovery attacks. We remark that these
are the first secret-key distinguishers on 5-round AES which are independent of the
secret key, improving over a 20 year old result on 4 rounds.
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Mixture Differential Cryptanalysis. At first it was not clear whether the
“multiple-of-8” property/distinguisher could at all lead to attacks on AES which are
competitive with respect to previously known results. In [10] appeared at FSE/-
ToSC’19, we partially solved this question, by developing a new type of attacks and
distinguishers – called “mixture differential cryptanalysis” – on round-reduced AES-
like ciphers, a way to translate the (complex) “multiple-of-8” 5-round distinguisher
into a simpler and more convenient one (though, on a smaller number of rounds).
Given a pair of chosen plaintexts, the idea is to construct new pairs of plaintexts by
mixing the generating variables of the original pair of plaintexts. In [10] we theoreti-
cally proved that for 4-round AES the corresponding ciphertexts of the original pair
of plaintexts are equal in certain anti-diagonals (or equivalently, lie in a particular
subspace) if and only if the corresponding pairs of ciphertexts of the new pairs of
plaintexts have the same property. Such distinguisher has been recently revisited in
[4], where its authors show that the above property is an immediate consequence of
an equivalence relation on the input pairs, under which the difference at the output
of the round function is invariant.

This secret-key distinguisher can be extended into a new key-recovery attack on
5-round AES-128 (and 6-round AES-128 [11]), which has been later on improved
in [1], becoming the current attack with the lowest computational cost among the
attacks currently present in the literature (that do not use adaptive chosen plain-
texts/ciphertexts). By extending this technique to larger versions of AES, authors
also obtained new attacks on AES-192 and AES-256 which have the best time
complexity among all the attacks on 7-round AES which have practical data and
memory complexities.
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Introduction

Symmetric encryption is usually reputed to be the workhorse of cryptography. In-
deed, the design of complex cryptographic protocols often relies upon the use of
symmetric ciphers as secure building blocks to provide confidentiality. For this rea-
son, in the last decades a large body of research has focused on the development
of stream and block ciphers that are both secure and efficient. The concept of shift
invariance plays a significant role in this respect. Loosely speaking, a transforma-
tion over a binary vector space is shift invariant if a translation of the input state
results in the output state being translated by the same amount. This property
yields several advantages when designing symmetric cryptographic primitives such
as Boolean functions and S-boxes: as noted by Daemen et al. [4], shift invariant
binary transformations can be realized by an array of interconnected processors, all
of which implement the same Boolean function. This feature allows for very effi-
cient implementations both in hardware and in software, and moreover the security
analysis of the resulting primitive is often simplified.

The aim of this extended abstract is to give a brief overview on the main con-
tributions in the literature concerning the use of shift invariant transformations to
design symmetric cryptographic primitives. We start by introducing in Section 6
the related concept of cellular automata, the model of discrete dynamical systems
embodying shift invariance. We then review the main results regarding the use of
cellular automata in stream and block ciphers in Section 6.

Shift Invariant Transformations and Cellular Automata

In what follows, we adopt the usual notation for Boolean functions used in cryp-
tography and coding theory; we refer the reader to [2] for more details.
Let F2 “ t0, 1u be the finite field with two elements, and for n P N let pF2qn

be the n-dimensional vector space over F2, or equivalently the set of all n-bit
strings. Given x “ px0, ¨ ¨ ¨xn´1q P pF2qn, the shift operator over x is defined as
σpxq “ px1, ¨ ¨ ¨ , xn´1, x0q; in other words, σ rotates all coordinates of x one place
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to the left. A vectorial Boolean function F : pF2qn Ñ pF2qn is called shift invariant
if it commutes with σ, i.e. σpF pxqq “ F pσpxqq, for all x P Fn

2 .
Cellular Automata (CA) are a computational model closely related to shift in-

variant transformations, in which the global output is given by evaluating in par-
allel a single local update rule over all components (or cells) arranged over an
array. More formally, a one-dimensional CA of length n, diameter d, and local rule
f : pF2qd Ñ F2 is defined by a vectorial function F : pF2qn Ñ pF2qn where for all
x P pF2qn and 0 ď i ď n ´ 1 the i-th component of the output F pxq is defined
as F pxqi “ fpxi, xi`1, ¨ ¨ ¨ , xi`d´1q. The reason why the cells are numbered from
0 to n ´ 1 is that all indices are taken modulo n. Hence, a CA is composed of a
circular binary vector where each cell, or coordinate, updates its state in parallel by
applying the local rule f on the neighborhood formed by itself and the d ´ 1 cells
on its right, with periodic boundary conditions.

CA are actually an equivalent formulation of shift invariant transformations. In
fact, one can show that if F : pF2qn Ñ pF2qn is shift invariant then each of its
coordinates is described by the same local update rule of diameter d “ n. This is a
consequence of the so-called Curtis-Hedlund-Lyndon theorem, for which the reader
may find more details in [7].

CA-based design of Stream and Block Ciphers

Most of the literature related to CA focuses on their long-term behavior, by con-
sidering them as a particular kind of discrete dynamical systems. This approach
was followed also in the earlier research effort on CA-based cryptography, such as
Wolfram’s pseudorandom number generator [12]. In Wolfram’s idea, a CA equipped
with a local rule of d “ 3 variables was iterated several times starting from a random
initial condition. In particular, Wolfram selected rule 30, defined as

fpx0, x1, x2q “ x0 XOR px1 OR x2q .

Due to the chaotic patterns emerging from the global behavior of rule 30, Wolfram
proposed to use the sequence of states taken by the CA central cell as a keystream
for a stream cipher. However, later research [10, 9] showed that rule 30 suffered
from some cryptographic weaknesses and the resulting CA was thus unsuitable as
a keystream generator. A more recent work [8] considered the search of rules of
higher diameters and better cryptographic properties, but this research thread has
somewhat faded over the last years.

Another perspective in CA-based cryptography, which proved to be more fruit-
ful, is to focus only on the short-term behavior of a CA, i.e. to consider the vectorial
Boolean function from a single CA iteration as an S-box to be used in the confusion
layer of a block cipher. This research line was pioneered in the mid 90s by Daemen
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et al. [4]. There, the authors showed that the CA local rule χ of d “ 3 variables, de-
fined as χpx0, x1, x2q “ x0 XORpx1 AND pNOTpx2qqq, resulted in an invertible shift
invariant transformation F : pF2qn Ñ pF2qn for any odd length n of the state array,
a crucial property to enable decryption. Rule χ also turned out to have a simple
description in terms of correlation and propagation characteristics, which made it
interesting for cryptographic purposes. Indeed, this CA appeared in the confusion
layer of several ciphers and hash functions, such as Panama [5]. Moreover, the CA
rule χ is the only nonlinear component used in Keccak [1], the primitive based
on the sponge construction that has been adopted as the SHA-3 standard for cryp-
tographic hash functions. In this case, rule χ is applied on a CA of length n “ 5,
and the resulting S-box yields nonlinearity and differential uniformity values close
to the optimal ones.

A more recent research thread considers the search of S-boxes arising from cellu-
lar automata both from the standpoint of their cryptographic properties and their
implementation cost. Along this line, Picek et al. [11] used a metaheuristic optimiza-
tion algorithm, namely Genetic Programming (GP), to search for CA-based S-boxes
with sizes between 5 ˆ 5 and 8 ˆ 8. With this technique, the authors managed to
find optimal S-boxes concerning the nonlinearity and differential uniformity proper-
ties up to size 7 ˆ 7, and having hardware implementation costs similar to those of
other state-of-the-art S-boxes. Mariot et al. [3] performed a systematic theoretical
investigation of the cryptographic properties of CA-based S-boxes and developed
a reverse-engineering approach based on GP to find what is the shortest CA rule
resulting in a specific S-box.

Finally, more recently Gao et al. [6] proposed an S-box construction based on
the iteration of CA with quadratic rules, i.e. those rules whose algebraic normal
form has degree 2. In particular, the authors exploited the shift-invariance property
of such CA to obtain a threshold implementation of the resulting S-boxes, thus
providing a further countermeasure towards side-channel attacks.
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Introduction

The Integer Factorization Problem (IFP) consists in finding the factorization of a
given integer. This problem underlies many public-key cryptographic protocols such
as RSA [6] or Rabin’s cryptosystem [5]. In this context, we will consider semiprimes,
i. e., N “ p ¨ q, where p and q are primes and p ă q. The most powerful classical
factorization algorithm is the General Number Field Sieve (GNFS) [1] [4], [3] (see
also [9]), which exploits the structure of the subring Zrθs of the ring of integers O
of the number field Qpθq, where θ is linked to N . In particular, the main objects
employed in GNFS are the first-degree prime ideals (FDPIs) of Zrθs, namely the
prime ideals p such that N ppq “ p, where p is a prime and N denotes the norm of an
ideal, defined as the number of elements in the quotient Zrθs{p (see [10] for further
details). These ideals can be identified with pairs of integers using the following:

Theorem 1 [1, p. 52] Let f P Zrxs be a monic irreducible polynomial and θ one of
its roots. Then, for every positive prime p there exists a bijection between

tpr, pq | r P Zp and fprq ” 0 mod pu

and

tp | p P SpecpZrθsq and N ppq “ pu .

Remember also that given two ideals a, b Ď O, then a|b if and only if b Ď a ([10]).

In my Ph. D. thesis ([7]) I have studied several ways to attack IFP. In this abstract
I will present two of them. The first one is a method developed by noting a pattern
in the sequence of successive remainders (of a given integer). The second one is
a procedure to speed up the search for FDPIs of a biquadratic extension, by con-
sidering the FDPIs of the rings of integers (of the underlying quadratic fields).
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Recursion in successive moduli

Let m P N` be such that
Y
b

N
2

]

ď m ď
X
?
N
\

and suppose that

$

’

&

’

%

N ” a0 mod m

N ” a1 mod pm` 1q

N ” a2 mod pm` 2q,

where a0, a1, a2 P N`are monotonic.

Then, define k :“ a1 ´ a0 and w the smallest positive integer such that w :”
a2 ´ 2a1 ` a0 mod pm` 2q. It can be proved, just using the properties of the floor
and the ceiling functions (see e. g., [2, chapter 3]), that the remainder w assumes
only fixed values:

Theorem 2 In the above setting, if N ě 50, then w P t2, 4, 6u. Moreover, if there

exists a suitable value of m such that
Y
b

N
2 ` 1

]

ď m ď
X
?
N
\

´ 1, then w “ 4.

Therefore, since w is a fixed value, it is possible to obtain a formula for the successive
remainders of N :

Theorem 3 If N ě 50, then for every i P N,

N ”

ˆ

a0 ` ik ` w
ipi´ 1q

2

˙

mod pm` iq.

Moreover if m is such that
Y
b

N
2 ` 1

]

ď m ď
X
?
N
\

´ 1, then, for every i P N,

N ”
`

a0 ` ik ` 2i2 ´ 2i
˘

mod pm` iq.

The same result may be achieved considering the interpolating polynomial f of
degree 2 such that fp0q “ a0, fp1q “ a1, fp2q “ a2. In fact it is possible to prove
that in this case N ” fpiq mod pm` iq. However, as shown in [7], this formula does
not give an immediate solution of the IFP. In fact, the following proposition holds.

Theorem 4 Producing a factorization for N is equivalent to finding an integer
i P N` for which N ”

`

a0 ` ik ` 2i2 ´ 2i
˘

” 0 mod m` i.

First-degree prime ideals in biquadratic fields

The results presented in this section are published in [8]. Consider two irreducible
polynomials fapxq “ x2 ´ a and fbpxq “ x2 ´ b in Zrxs with α2 “ a and β2 “ b.
Then, the biquadratic extension of degree 4 that contains both Qpαq and Qpβq is
Qpθq “ Qpα`βq and the minimal polynomial of θ is fcpxq “ x4´2pa`bqx2`pa´bq2,
([11]). In this situation, it is possible to define a link between the FDPIs in Zrθs

and those in Zrαs and Zrβs.
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Theorem 5 Let pr, pq be a FDPI of Zrαs and ps, pq a FDPI of Zrβs, then pr` s, pq

is a FDPI of Zrθs. Vice-versa if pt, pq is a FDPI in Zrθs and either p “ 2 or t ‰ 0,
then there exists a unique pair r, s P Zp, such that t ” r ` s mod p and pr, pq and
ps, pq are FDPI in Zrαs and Zrβs, respectively.

The notion of ideal divisibility may also be studied in terms of the FDPI in the
quadratic extensions, due to the following:

Theorem 6 Let n,m P Z be such that pm,nq “ 1 and m ‰ 0 and I “ xa` bθy, an
ideal in Zrθs. Then I X Zrαs is a principal ideal and

I X Zrαs “
@

n2 ´ bm2 ` am2 ` 2nmα
D

.

We conclude with the following theorem.

Theorem 7 Let n and m be coprime integers and I “ xn ` mθy be a principal
ideal of Zrθs. Suppose that pr, pq and ps, pq are FDPIs of Zrαs and Zrβs respectively
such that pr, pq|I XZrαs and ps, pq|I XZrβs. Then pr` s, pq Ď Zrθs divides I unless
simultaneously p ‰ 2, n ” 0 mod p and r ı ´s mod p. Vice-versa, if pt, pq is
a FDPI of Zrθs that divides I and t ‰ 0 if p ‰ 2, then there exist two unique
FDPIs pr, pq Ď Zrαs and ps, pq Ď Zrβs such that pr, pq|I X Zrαs, ps, pq|I X Zrβs and
t ” r ` s mod p.
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Electronic information availability is increasingly essential to our communities’
functioning, and, in numerous circumstances, parties without complete mutual trust
need to share data. This sharing naturally raises commensurate privacy concerns
for the disclosure, and long-term safety, of sensitive contents. The research commu-
nity has begun to develop a few cryptographic techniques for controlled (privacy-
preserving) information sharing to address related security and privacy issues.

Privacy-preserving computation has originated in the 1980s with the seminal
works by Yao for the two-party case [13], and by Goldreich, Micali, and Wigderson
for the multiparty case [8]. Informally, n parties, each holding a value (say, i-th
party holds the value xi), want to compute a function of all the inputs cooperatively
(i.e., fpx1, x2, . . . , xnq) while keeping, at the same time, all values secret. To this
aim, parties run cryptographic protocols and exchange messages that convey in a
concealed way the secret values. At the end of the protocol, each party, from the
exchanged messages and their secret value, can compute fpx1, x2, . . . , xnq.

Privacy-preserving Information Sharing was analyzed under different security
models. The adversary can follow a corruption strategy that can be either static or
adaptive. In a static scenario, the adversary corrupts and controls a fixed number of
parties before the protocol starts. Corrupted parties remain corrupted throughout,
and uncorrupted (i.e., honest) parties remain uncorrupted. In an adaptive scenario,
the adversary chooses which parties to attack while the protocol is running. The
security model also has to consider the allowed adversarial behavior correspond-
ing to the actions the adversary, through corrupted parties, can take during the
protocol’s execution to infringe the protocol’s privacy. A semi-honest adversary
(a.k.a., honest but curious or passive) does not deviate from the protocol but will
attempt to learn all possible information from legitimately received messages. A
malicious adversary (a.k.a., active) can arbitrarily deviate from the protocol spec-
ification changing the input and output or aborting. Finally, the security model
also considers the computational complexity of the adversary. If the adversary is
computationally unbounded, then there are no limits to their computational power.
On the other hand, a (probabilistic) polynomial-time adversary is allowed to run
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in polynomial time (i.e., the adversary may only perform a polynomial amount of
operations including, in case they are probabilistic, at most a polynomial number of
coin-flips). The model also has to deal with the number of protocol instances that
are run simultaneously. In the stand-alone scenario, only a single protocol execu-
tion takes place; while, in the universal composability scenario, many secure (and
insecure) protocols are concurrently run and arbitrarily composed.

In the following, to simplify the formal definition of Privacy-preserving Informa-
tion Sharing, we will consider two-party protocols secure against a static semi-honest
polynomial-time adversary run within the stand-alone scenario. Interested readers
can find a thorough and comprehensive study of efficient protocols and techniques
for secure two-party computation in [9]; while the reader can refer to [5] for a com-
prehensive discussion of multiparty computation secure against computationally
unbounded adversaries.

In the two-party setting, parties are usually referred to as Client (i.e., C) and
Server (i.e., S). The function they want to compute can be represented as

f : t0, 1u˚ ˆ t0, 1u˚ Ñ t0, 1u˚ ˆ t0, 1u˚ ,

where f “ pfC , fSq. The pair pfC , fSq represents the output computed by C and S, in
other word, the Client, holding the value x interacting with the Server holding the
value y, would like to compute the value fCpx, yq while the Server gets fSpx, yq. The
two-party protocol for computing f is denoted by π, while, for a party P P tC,Su,
viewπ

Ppx, yq represents P’s view during the execution of π on px, yq.
The view contains the party’s input (x or y depending on P), all the messages
received by P, and all the random values used by P during the protocol execu-
tion. Party P’s output at the end of the execution of π on px, yq is denoted by
outputπPpx, yq. Party P’s output can be computed from P’s view.

If we assume that the function f is deterministic, then, following [9], a two-party
protocol π computes f in a privacy-preserving manner if it is correct, that is

outputπCpx, yq “ fCpx, yq and outputπSpx, yq “ fSpx, yq

and secure, that is there exist two probabilistic polynomial time algorithms SC and
SS (referred to as simulators) such that

tSCpx, fCpx, yqqux,yPt0,1u˚

c
” tviewπ

Cpx, yqux,yPt0,1u˚

tSSpy, fSpx, yqqux,yPt0,1u˚

c
” tviewπ

Spx, yqux,yPt0,1u˚

The symbol c
” indicates that the probability distributions induced on the sets on

its left and right sides are computationally indistinguishable, that is, there is no
efficient algorithm that can tell them apart. If there exists a simulator that can gen-
erate a party’s view in the execution, then whatever can be computed by a party
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participating in the protocol can be computed based on their input and output only.
Hence, the adversary does not learn anything from the protocol execution beyond
what they can derive from the input of the party they control and the protocol’s
output.

As a specific application of two-party privacy-preserving information sharing,
we can consider the privacy-preserving computation of set intersection [1] (PSI). In
this case, both C and S inputs are a set of elements, say C holds the set C and S
holds the set S and fCpC, Sq “ pC X S, |S|q, while, fSpC, Sq “ |C|. Other variants
exist, for instance:

– private set intersection cardinality (PSI-CA) [1, 7] where the client learns the
size of the intersection, but not the elements in C X S;

– [4, 6] where parties’ sets are certified in the sense that a trusted party ensures
the inputs are valid and binds them to each participant;

– Authorized PSI and PSI-CA Policy-Enhanced PSI [12] that allows parties to
privately compute set intersection while enforcing rich privacy policies semantics
previously not possible with traditional PSI and Authorized PSI.

We refer the reader to [11] for a comprehensive comparison among PSI major pro-
tocol paradigms.

Despite its simple formulation PSI and PSI-CA protocols have several practical
uses. They can be employed as building blocks in many privacy-preserving com-
pelling applications. To cite just a few: in proximity testing [10], C and S can test if
they are close to each other without either party revealing any additional informa-
tion about their location; in testing human genomes [2], one can securely implement
in silico some operations, such as Paternity Tests, Personalized Medicine, and
Genetic Compatibility Tests, that are currently performed via in vitro methods
(experiments demonstrate that the proposed techniques are feasible and practical);
in estimating the Jaccard similarity index of two sets [3], private set intersection
cardinality is used to add a privacy layer to many applications, including document
similarity, biometric authentication, genetic tests, multimedia file similarity.
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Introduction

Takamaka [1, 7, 9] is a last generation Blockchain platform designed to bring to every
business the opportunity to easily create and experiment with Blockchain solutions.
Blockchain technology holds the potential to streamline business processes, enable
new business models, enhance security, increase revenues and reshape industries.
Takamaka is created to eliminate the barriers that are preventing enterprises from
easily unlocking the potentials of blockchain technologies.

Takamaka is a new proof-of-stake blockchain (Proof of Stake is an emerging
alternative to the more traditional Proof of Work [5]) developed using Java [8]. Two
key concepts to the Takamaka blockchain are “epochs” and “slots”. Every epoch is
comprised of 24000 slots and each slot is the time alloted to a given active miner,
alternatively called node, to generate a block and forward it to the rest of the
network, allowing it to propagate and become part of the chain. Ideally, the network
would have between 200 and 400 active miners. Slots are assigned to the miners using
a heuristic algorithm based on the amount of stake they possess.

Another important concept is that of stake. Our blockchain has two tokens: red
tokens, to which we will refer to as TKR, and green tokens, to which we will refer
to as TKG. While both tokens can be equally used to pay for operations performed
on the blockchain, only TKG enable mining, through transactions of "STAKE".
Holders of TKG, also referred to as “stakeholders”, decide which potential miner to
trust with the generation of blocks by voting with the amount of TKG they posses.

In this document we present a time-based PoS protocol with the following aims:

– fixed transaction costs
– decentralisation of the network
– a tolerance of network interaction related problems higher than 33%, Byzantine

generals problem
– eliminating competition based on computational power that is typical of PoW

solutions by setting minimal requirements for mining nodes, effectively limiting
the transaction throughput of the blockchain
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Prerequisites

These are the prerequisites deemed necessary (at the time of the writing) to promote
blockchain adoption in enterprise environments.

– Global time accuracy between 1 and 5 seconds
– More than 50% of the stake controlled by honest miners that follow the protocol
– Accessibility to the network by the mining nodes for at least 50% of the duration

of an epoch (4 days over an 8-day period)

Paper structure

After this introduction, Section Notation and workflow of the Takamaka blockchain
describes the blockchain details, including: the actors of the PoS protocol, the net-
work configuration, the scanning time and its Consent algorithm, as well as the slot
allocation and the block weights.
The document concludes by identifying the conditions needed to reach finality.

Notation and workflow of the Takamaka blockchain

Actors of proof

– Mining Nodes. The main role of these servers is the creation of the blockchain
itself. Each one of them has the right to: vote on smart contracts, select, validate
and include transactions in blocks, assign rewards, assemble blocks.

– Replica Nodes. These servers propagate transactions/blocks while maintaining
a complete copy of the network, but they cannot create new blocks.

– Holder. Holders are the owners of the tokens needed to operate on the chain.
– Stake Holder. Address holders of the tokens needed to select a replication node

to a mining node. Green Token (TKG) are the tokens used to control the
blockchain, similar to Cardano’s ADA [3], and allow:

‚ Gas transactions payment.
‚ Staking on network nodes, therefore determining the miners.

TKGs constitute the most important tokens for the blockchain since they are
necessary for its proper functioning. Half of them are created at launch and the
other half is created over time via mining in each block.
A double-coin system is becoming widespread in blockchain technology (see e.g.
Quadrans, [2]). In Takamaka, the main purpose of Red Tokens (TKR) is to
pay for the execution of transactions and their inclusion in the blockchain. If
the caller’s address has a balance of TKG and TKR, then the first tokens
used for payment are TKR. Only if they are depleted then the remaining costs
are covered with TKG. All the TKR are declared in the 0 block of the chain
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using a reserved transaction used exclusively in this block. The possession of
these tokens does not allow staking and does not confer any control over the
blockchain. The introduction of this token as an alternative method of paying
to operate on the blockchain solves a problem unique to PoS. In a PoS with a
single token, to operate one needs to pay fees using the very token that gives
them control over it, thus losing control over the network the more they use it,
which would incentivise NOT operating in the network to retain its control.

Network configuration

The node addresses taking part in the construction of the blockchain are categorized
as:

M Main: Addresses that do not belong to any physical server. They work similarly
to the DNS system and are needed as reference for the stakeholders.

O Overflow: Addresses that belong to physical servers, the nodes that form the
network and generate the blocks.

Stakeholders delegate their voting power to an M address using a specific type of
transaction, called “STAKE”. Stakes are valid until the stakeholder performs a spe-
cial type of transaction called “STAKE UNDO”. All stakes done by the stakeholder
up to this point in time are “deleted” and can be reassigned. An M is a valid ob-
jective for the staking only when it has been assigned at least one node of Os. An
M can have an unlimited number of O, though in effect the blockchain is designed
to have at most 400 active mining nodes. An O can be assigned only to one M per
epoch.

Scanning time and Consent algorithm

To better understand the concepts expressed in this paragraph, the default values
used to configure the blockchain Takamaka will be illustrated.

– Slot. Is the smallest time unit, it corresponds to a time period of 30 seconds.
For any slot the Consent algorithm chooses only one miner. This miner is the
only one entitled to generate an assigned block on that time frame. If for any
reason the block is not created or it is rejected by the network, then the slot
will be marked as ”skipped” and not replaced.

– Epoch. Slot aggregation, in the default configuration 24000 slots correspond to
one epoch.

Slot allocation

Every epoch, the blockchain executes a heuristic algorithm to distribute the slots for
the next epoch among the nodes proportionally to their assigned stake. This process
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has different phases and is executed once 2
3 of the current epoch is completed. All

the following steps must be strictly deterministic1:

Fig. 1. Slot assignment Example - H: Hash function

– Identification of the block with the highest index number in the first third of
an epoch: Dbi P Blocks | i “ max

”

0,
TSpE

3

¯

.

– The seed2 of the block, concatenated with the seeds of an arbitrary number of
previous blocks, is passed to a hash function that creates a ticket (sequence of
bits).

– A series of intervals, proportional to the stake, is generated and assigned sequen-
tially to the O set of each M. The resulting interval will be r0, totalStake ´ 1s.

– To determine the assignment of the i-th slot for the next epoch we proceed by
first obtaining the result of the i-th iteration of the hash function. This value is
transformed into its numeric counterpart and then we calculate its module base
TSpE . The result from this last operation is a number in the interval r0, TSpEq.
The i-th slot will be assigned to the O owner of this interval. (Figure 1)

1 in this short introduction we do not detail the algorithms used for orders and decisions
2 random sequence of bytes, unique to every block
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Evaluation of the weight of a sequence of blocks

Takamaka adopts a strategy similar to that of Bitcoin [6], where the number of
concatenated blocks is weighed on the complexity of the hash to determine which
chain to extend. Takamaka nodes decide which sequence of blocks to extend by
evaluating the weight of the preceding blocks. The weight of a block is determined by
the total accepted stake divided by TSpE . For example, if TSpE “ 24000 and the total
accepted stake is 99000000, a single slot/block weight is 99000000{24000 “ 4125.
The nodes used for mining will always extend the heaviest chain available.

Finality

The proposed algorithm is somehow based on the sliding windows concept used
in TCP/IP, where the block evaluation time window dynamically adapts to the
network conditions.

Since slots are assigned by a heuristic algorithm, the resulting distribution does
not match exactly the stake distribution and so it is necessary to correct the weight.
Considering two overflow nodes O1 and O2 with the same amount of stake (e.g.
60000 TKG), we would expect the distribution function to assign them both the
exact same number of slots. Unfortunately, when considering a small number of
slots, like 60, heuristics can generate different results such as3 O1

Slots “ 5000 and
O2

Slots “ 10000. For this reason we introduced the concept of the ”Expected the-
oretical slot weight” for a given i-th slot, assigned to the j-th overflow Wi

Oj . This
is a normalization of the slot weight. If we divide the stake assigned to the j-th
overflow Oj

Stake by the total accepted stake for the epoch TStake and we multiply
the resulting number by the total number of slots per epoch TSpE , then we get the
theoretical number of slots that ought to be assigned to a node. Dividing this by
Oj

Slots, the actual number of slots assigned, we get the ratio by which the node’s
blocks will be multiplied to determine their weight. This is defined as Wi

Oj (e.g. 1).

Wi
Oj “

TSpE
Oj

Stake

TStake

Oj
Slots

(1)

Looking at the previous example and assuming a total accepted stake value, TStake “

18000, and a number of slots per epoch, TSpE “ 24000, we would get a weight
multiplier of 1.6 for all the slots assigned to O1 in the corresponding epoch (e.g. 2).

Wi
O1 “ 1.6 “

24000 6000
18000

5000
(2)

3 Oj
Slots is the number of assigned slots for the j-th overflow by the heuristic
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Looking at the second node in our example O2, we get a slot weight multiplier
of 0.8. (ex 3)

Wi
O2 “ 0.8 “

24000 6000
18000

10000
(3)

The “i” index identifies the epoch we are referring to. For the sake of simplifica-
tion we will use an absolute index. When identifying the time after a certain event
took place, we would usually say it happened a day and 12 hours after said event
or 36 hours p1 ˚ 24 ` 12q after. Assuming that the event in question is the creation
of the Zero Block (epoch 0, slot 0), we can say that the epoch 10, slot 315 matches
i “ 10 ˚ 24000 ` 315 “ 24031. Therefore, i is the absolute slot since the beginning
of the blockchain. Given i, the reverse calculation is trivial, epoch “ ti{24000u “ 10
and epoch “ i mod 24000 “ 315. We define the minimal temporal window where,
at least theoretically, all nodes have the possibility to ”vote” and create a block.
With a maximum number of nodes set at 400, this window must not be smaller
than 400 slots. Let us assume the ”absolute” slot number to be 48401 (epoch 2, slot
401) and that the previous 48000 blocks were all correctly created and added to
the chain. Starting from the 48000-th block, all miners become unavailable, with
the exception of O1 and O2 and these nodes have the same configuration as in the
previous examples 2 and 3. If we take the slot n “ 48000 as a reference, n is final
if the weight of the blocks in rh “ 48001, k “ 48401s is greater than 50%+1 of the
expected weight assuming all blocks in the interval are created and accepted. We
define WSk

h as the maximum weight for rh, ks,

WSk
h “

TStake

k ´ h
(4)

In our case WS48401
48001 with TStake “ 18000 is:

300 “ WS48401
48001 “

18000

24000
¨ p48401 ´ 48001q (5)

We can assume that in rh, ks both O1 and O2 generated 134 blocks each, while no
other nodes generated any block. We can define WBk

h as the sum of the weight of the
blocks in rh, ks. A block’s weight equals that of its corresponding slot if it becomes
part of the chain, otherwise it is zero. When the interval under consideration overlaps
two epochs, the weight of the blocks generated by the same miner may vary. In that
case the formula used to calculate the weight is given by the following formula (e.g.
6) where N pOq indicates the highest indexed overlow node. With 4 nodes N pOq “ 3,
since the indexes would be {0,1,2,3}.

WBk
h “

h
ÿ

k

¨

˝

N pOq
ÿ

j“0

Wi
Oj

˛

‚ (6)
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Thus, WB48401
48001 “ 321.6. The weight limit for the block n, index of the last block

before the interval under consideration, to be final is defined as W51kh. Given an
interval rh, ks, W51kh indicates 50% ` 1 of the total weight of the interval (e.g. 7).

W51kh “
WSk

h

pk ´ hq

ˆ

k ´ h

2
` 1

˙

(7)

For the considered example: W51kh “ 150.75 “ 300{400 ˚ p200 ` 1q. At this
point we compare the resulting two weights. If the weight obtained by summing the
generated slots is greater than W51kh for the interval rh, ks, then slot n (the slot
preceding the interval) can be considered final. (e.g. 8):

WBk
h ě W51kh (8)

In this situation, the block n is accepted as final.
Concluding with the example:

WB48401
48001 ě W51kh

and
321.6 ě 150.75

As a result of its advanced finality protocol, Takamaka is very fast and can
compete fairly with its current competitors (see e.g. [4]).

References

1. G. Antino and I. Dimmi. Non-interactive time-based proof of stake finality. Technical
report, AiliA SA, 2020.

2. M. Battagliola, A. Flamini, R. Longo, A. Meneghetti, and M. Sala. Quadrans
Blockchain -Yellow Paper v0.2. Technical report, Quadrans Foundation, 2021.

3. Cardano Foundation. Cardano. https://cardano.org/.
4. A. Meneghetti, T. Parise, M. Sala, and D. Taufer. A survey on efficient parallelization

of blockchain-based smart contracts. Annals of Emerging Technologies in Computing,
3:9–16, 2019.

5. A. Meneghetti, M. Sala, and D. Taufer. A Survey on PoW-based Consensus. Annals
of Emerging Technologies in Computing, 4:8–18, 2020.

6. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
7. AiliA SA. Takamaka. https://www.takamaka.io/.
8. F. Spoto. Enforcing determinism of Java smart contracts. In FC 2020 International

Workshops, pages 568–583. Springer, 2020.
9. N. Spoto, G. Antino, F. Pasetto, F. Tagliaferro, M. Carlini, A. Belvedere, F. Tai, and

D. Cordioli. Takamaka White Paper v3.1. Technical report, AiliA SA, 2019.

https://cardano.org/
https://www.takamaka.io/


The Links between Machine Learning and
Blockchain

Andrea Gangemi

Department of Mathematical Sciences G. L. Lagrange, Politecnico of Torino, Italy
andrea.gangemi@polito.it

Starting from the end of the last century, Machine Learning (ML) and, more
recently, blockchains are revolutionizing the world of technology. Machine Learning
is a subset of Artificial Intelligence, and it refers to the study of computer algo-
rithms which improve automatically, learning from the data a user provides. ML
algorithms try to build statistical models based on known data, which are then used
to predict a specific variable on future, unknown data [6].
The first blockchain was described by Satoshi Nakamoto in 2008 [9], in a famous
paper that introduced Bitcoin, a decentralized digital currency. A lot of blockchains
were built after that year and, in particular, Vitalik Buterin in 2013 first described
the Ethereum blockchain [5]. The main applications of Ethereum are the so-called
smart contracts, which are computer programs that automatically execute an action
according to the terms of the contract.

At a high level, a blockchain can be considered as a distributed ledger, which first
solved the problem of double-spending without a central authority. Every block con-
tains a list of transactions, which represent the exchange of value between users. In
the Bitcoin blockchain, a transaction is formed by a list of input/output addresses,
which refer to previous output transactions, and a list of output addresses. Since
there is not a user’s balance, one of the output addresses is usually a change address
and it belongs to the same user who started the transaction. A block is appended
to the chain thanks to the work of miners, who invest their computational power
to try to solve a cryptographic puzzle called Proof-of-Work (PoW).

The privacy of every user is guaranteed by the use of blockchain addresses, which
provide pseudoanonimity [3]. This characteristic attracted people interested in illicit
activities, since payments done through a blockchain cannot be immediately led back
to the real identity of a user. To defend against this risk, researchers started applying
ML algorithms on blockchain addresses, mainly Bitcoin, to classify between honest
and dishonest users. In a nushell, this strategy exploits the information which can
be found off-chain, which we now present in deatils.
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The strategy
Let us start with two examples. An exchange site must publish its address online
to let people know about them, or sometimes an address can be advertised as a
mistake on a forum or social network. Starting from a list of public addresses, and
exploiting the structure of a transaction, it is possible to classify every user with
a tag, representing what they use the blockchain for, such as: exchange, gambling,
ransomware and so on.
Most works on this research area [11] imposed some strict hyphoteses, like having
every user labeled with a single, specific tag and, on the other hand, having the list
of input addresses all belonging to the same user. Based on this metric, clustering
algorithms can be performed to obtain different groups containing addresses (which
all belong to the same user). Starting from an analysis of the transaction outputs,
empowered by the off-chain information, some of these groups can be labeled.
To classify the rest of the clusters, researchers have used ML algorithms: the clusters
already labeled are divided into training set and test set, while several algorithms
has been tried on these data and ranked thanks to the F1-score metric [6]. The best
performing algorithm is probably the Gradient Boosting Classifier (GBC), which
claims to identify correctly around 80% of the blockchain addresses [11].

Prediction of cryptocurrency prices
Machine Learning can also be used to predict future prices of cryptocurrencies,
starting from past prices. To fight against their high volatility, studies consider the
daily price as an average of the daily price fluctuations. Like in address clustering,
past prices are divided into training and test set, and then different ML algorithms
are ranked with the RMSE metric [6]. This time, two different algorithms showed
interesting results: GBC for short-term predictions [2] and neural networks for long-
term predictions [8].
A variant of these methods exploits the properties of Bitcoin transactions [1]. This
novel approach counts day by day the number of transactions with i inputs and j
outputs, and saves this number in a matrix. Then, it uses clustering techniques to
group together these transactions with the cosine similarity metric, which measures
how much two texts or, in this case, transactions, are close to each other. Finally,
price prediction is conducted on a single cluster or on a small subset of them.
The study claims that this analysis (based on chosen subsets) gives better results
for long-term predictions compared to the same analysis performed on the whole
transaction set.
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Other interactions between ML and blockchain
On the other side of the coin, a blockchain is also a tool which can help the growth
of ML techniques. In fact, one of the main problems of Machine Learning is the
centralization of datasets in some authorized servers. These servers act as trading
centers, and they can be contacted by interested companies. Of course, a central
authority represents a single point of failure, something that everyone would like to
avoid. Researchers had the idea to exploit the blockchain properties to save datasets
on their ledgers, in order to provide data all around the world in a decentralized
fashion [10]. The described work uses heavily the smart contracts and for this reason
it may be built on top of the Ethereum blockchain.
However, blockchains alone are not enough because a dataset is too large to be
stored reliably on a block. The proposed solution utilizes also the InterPlanetary
File System (IPFS), a protocol and peer-to-peer network for storing and sharing
data in a distributed file system [7]. The dataset is saved into the IPFS server,
while the hash of the dataset is recorded on the blockchain. The exchange of a
dataset between the seller and an interested buyer occurs through a clever use of
a smart contract, which is written by a mediator according to the requests of the
two parties. This method has some flaws but in the future it could radically change
how data are exchanged between different companies. Finally, Machine Learning
may also be utilized to build a blockchain consensus algorithm. In fact, ML models
are usually hard to solve but easy to verify, which is the key feature for a good
consensus algorithm. The theoretical idea is known as Proof-of-Learning and was
first described in [4]: it takes inspiration from Kaggle competitions, which allow the
development of new performing algorithms in small amounts of time. Obviously,
to utilize this protocol we have to build a new blockchain, suited for this task. On
this blockchain, there would be three kinds of actors: suppliers, who propose new
Machine Learning problems to the network, trainers, which develop their models,
and validators, which test the models and propose the new blocks. Again, to avoid
the space problem, suppliers publish their datasets on the IPFS server, and insert
its digest on the blockchain.
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Asymmetric cryptography in automotive

In the last twenty years, vehicles have become increasingly complex and have ob-
tained increasing connectivity capabilities. This has made a variety of applications
possible, such as the access to the manufacturer’s cloud services, fleet management,
car-to-car and car-to-infrastructure communication, remote software update and re-
mote diagnostics. All these interfaces have however in turn created a variety of new
attack vectors for the connected vehicles: attackers can for example eavesdrop the
communication or inject malware to a vehicle being in the field.

Cyber attacks of this kind can have very serious ramifications, such as the endan-
germent of human lives, compromised privacy and theft of intellectual property. The
widespread use of the connectivity capabilities of modern vehicles therefore means
that the establishment of security measures, with regards to the in-vehicle, onboard
and online network, is of uttermost importance. Cryptography is as expected the
cornerstone of every security solution, as by using well-established cryptographic
schemes, one can achieve confidentiality (through encryption), ensure the integrity
of information (using hash functions and message digests), as well as verify the
authenticity of messages (by using digital signatures).

Digital Signatures using asymmetric cryptography are nowadays indeed an in-
herent part of applications in the embedded systems and the automotive industry.
Applications such as secure over-the-air updates (SOTA) and Car-to-X communi-
cation are only some examples, which highlight the importance of establishing a
secure communication channel and ensuring the messages are issued by a trusted
sender (for example the unit-manufacturer).

Digital certificates are used extensively as a way of binding the identities of
the communicating entities to the corresponding public keys. These are issued by
corresponding authorities, which are parts of a common Public Key Infrastructure
(PKI). Car manufacturers (Original Equipment Manufacturers - OEMs) nowadays
operate individual PKIs, with different entities responsible for multiple use cases
(e.g., diagnostics, testing and production), which might depend on a common or
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distinct Root certification authorities (Root CA(s)). Security in these cases nowa-
days depends upon the security of well-known algorithms, such as RSA, ECDSA
and ECDH for signing and key generation. These in turn depend on hard-to-solve
mathematical problems, namely prime factorization and solving discrete logarithms
on elliptic curves.

The threat of quantum computers

Developments in the field of quantum computing have however shown that there is
an increasing need for revising the algorithms used for digital signatures and key
establishment, while symmetric block algorithms are still considered secure. Grover’s
algorithm (1996) [1] improves brute-force algorithms that check every possible key,
providing a quadratic speed-up. This means that for example a brute-force attack
on AES-128 with a cost of at most 2128 AES-operations on a classical computing
system can be finished with about 264 AES-operations on a quantum computer.

Shor’s algorithm [5], [4] provides a way however to solve integer factorization and
discrete logarithms in polynomial time with a quantum computer, while these pro-
blems have apparently exponential complexity with classical computers. Although
there is still a lot of progress to be made in the development of suitable quantum
computers, the time needed for finding suitable solutions and implementing them
in fields like the automotive industry makes the transition to a quantum-world a
very real and urgent matter. As per the often cited theorem of M. Mosca [3]: if the
time needed for migrating to new solutions added to the time one product needs to
be secure is greater than the time needed to compromise its security, then action
has to be taken.

The cryptographic community has already considered this and there are already
various standardization activities taking place, most notably the NIST Post Quan-
tum Algorithm competition [2]. The quantum-secure algorithms submitted to the
NIST competition fall into five categories:

– Hash-based signature schemes: relying on the security of the chosen hash func-
tion.

– Isogeny based: relying on the difficult mathematical problem of finding isogenies
between special elliptic curves (SIDH/SIKE).

– Lattice based: relying on the shortest vector problem and learning with errors
problem.

– Code based: the security of such systems is based on the hardness of inverting
a random linear code.

– Multivariate-equations based: the security of these systems is based on the fact
that solving multivariate quadratic systems of equations over finite fields is NP-
hard.



Post-quantum cryptography and the automotive industry 53

As part of the NIST competition different algorithms will be chosen for signature
generation, key establishment and public key encryption in the next couple of years.
As recently as July 2020, this competition entered its third round, which includes
seven finalist-algorithms, which will be considered for standardization in the next
two years, and eight alternate algorithms, which may be standardized in the non-
immediate future.

Challenges for the automotive industry

In the process of identifying suitable algorithms for all the relevant use cases in
the automotive industry, there are different problems that have to be taken into
consideration. One of them is related to resource constraints: many of the proposed
schemes produce very large signatures or require very large key pairs and would
therefore be not suited to be used in ECUs (electronic control units) with a limited
amount of secure memory and computation resources. The security level offered by
each algorithm is one more important factor that needs to be analyzed with respect
to the needs of every individual use case.

A variety of issues need however to be considered even after suitable quantum-
secure algorithms are chosen. A smooth transition from current systems to post-
quantum enabled ones is necessary, not only for the ECUs of the future, but also
the ones already in the field. For critical use cases, like online firmware updates,
many ECUs in the field should be able to securely communicate with the backend
systems of the OEM without big interruptions.

On the other hand, flexibility on the choice of algorithms (cryptographic agility)
is necessary, as the security levels offered by different algorithms vary and as ad-
vances in computing and cryptographic research may soon make some standardized
post-quantum algorithms obsolete. The integrity of algorithm selection needs to be
in turn ensured (protection against downgrade attacks), while in-field updates of
the used algorithms and parameters, e.g. the key lengths of the symmetric keys
used, should also be possible.

At the same time, performance restrictions must be addressed by careful resource
planning and by taking advantage of or extending hardware acceleration solutions.
The communication protocols in use should be adjusted to handle post-quantum
signatures and key exchange, while the available key and certificate management
solutions must take the different requirements of the post-quantum algorithms into
consideration.

Last but not least, new post-quantum enabled PKIs have to be put in place,
which are compatible with the available PKIs and be able to handle classical cer-
tificates for older ECUs, while they are still valid. To this end those PKIs can be
designed according to the parallel or the hybrid approach. The OEMs would then
need to operate one classical and one post-quantum PKI in parallel, or use hybrid
certificates, signed by two different public keys, one classical and one post-quantum.



54 E. Katsigianni

Hybrid certificates have been widely studied in the last years, since they allow com-
patibility with targets that do not yet support post-quantum schemes.

Conclusion

In conclusion, the technological transformation originating from the eve of quantum
computers poses a variety of challenges and risks for the automotive industry.
Tackling these challenges requires a lot of preparation and careful ECU-design de-
cisions by the OEMs. How the transition of ECUs in the field towards the post-
quantum world can be achieved is a question that will soon need to be answered.

As part of the research project FLOQI, which is funded by the German Fed-
eral Ministry of Education and Research, all these challenges for the automotive
industry are being considered and the project partners engage in the development
of a quantum computer-resistant PKI. The goals of the FLOQI project include the
specification of a PKI supporting both classical and quantum-computer-resistant
algorithms and the choice of signature and key agreement algorithms suitable for
use-cases in the automotive industry, the financial sector, e-governance and, ob-
viously, the entire Industry 4.0.
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Digital tools for the authentication of persons, processes, and legal entities are
part of our critical infrastructure, enabling secure access, in presence or remotely,
to essential public and private services.

NIST Digital Identity Guidelines [3] provide a robust baseline on the subject,
establishing the notion of digital identity as a set of context-specific attributes;
separating lifecycle stages, from proofing and enrollment to authentication and the
management of authenticators; and introducing the notions of identity providers
and relying parties in a federated context, where an identity asserted by one entity
is relied upon by another, and the provider discloses information only after the
establishment of a relationship of trust.

Two of the most important trends in digital identity are (a) the ubiquitous
availability of strong cryptography for individuals, backed by hardware and used in
secure protocols, and (b) a shift towards more open systems - interoperability, decen-
tralization, and distribution. Federation is popular in an enterprise context, where
a single trusted authority is relied upon to manage identities. It is also perceived as
useful to individuals by reducing the number of passwords they need to store. How-
ever, passwords have been repeatedly shown to be a vulnerability in practice, and
dramatic improvements in passwordless authentication flows have been made. Addi-
tionally, federated protocols have drawbacks when expressing long-term credentials
about subjects, as they are generally managed by private enterprise, while losing
access to a private enterprise account for any reason would make those credentials
unverifiable.

Personal keys: ubiquity and interoperability. The Fast IDentity Online (FIDO)
Alliance is developing an open ecosystem for standards-based and interoperable
strong authentication solutions, designed to minimize password use and phishing
threats. This requires both the provision of secure hardware authenticators capable
of generating and storing asymmetric key pairs, such as YubiKeys1, and the develop-
ment of secure authentication protocols with which the hardware security modules
can operate. Key enabling recent developments are the Client to Authenticator
Protocol (CTAP2), which specifies how hardware authenticators communicate with
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the client, together with the W3C Web Authentication specification (WebAuthn3),
which defines a standard web API for online services.

Hardware security modules are increasingly available in, and compatible with,
mobile phones. The ubiquitous availability of phones as HSM readers and biometric
sensors, coupled with highly user-friendly clients, has actually made cryptography in
particular, and multi-factor authentication in general, extremely widespread. More-
over, as hardware readers they are now capable of bridging the gap with more tradi-
tional devices such as smart cards. For example, the Italian Electronic Identity Card
(CIE) 3.0 [5] is NFC enabled and supports a PIN-based authentication protocol.
This can be leveraged to derive other identities with mobile-based authentication
flows, such as the PosteID4 SPID5 scheme.

Identity as a public service and infrastructure: eIDAS. The eIDAS regu-
lation [4] and its implementing technical framework [2] are explicitly designed to
enable the cross-border interoperability and legal validity of individual national
electronic identity (eID) schemes, allowing EU citizens to access public services in
other member states, and enabling an ecosystem of private services to be built upon
this public infrastructure.

A list of notified eIDAS schemes, including CIE 3.0 and SPID, is maintained
by the eID User Community6. Concretely, eIDAS allows Relying Parties (RP) to
receive assertions on a core attribute set [1] from the eIDAS attribute profile of eID
bearers.

Decentralization and public registries. There exists an infrastructure allow-
ing legal entities to be registered, resolved, authenticated, and have legally binding
statements verified, instantly and remotely. This infrastructure relies on a combi-
nation of public registries and commercial trust service providers. Decentralized
identity proposals lay foundations for a similar infrastructure for natural persons,
independently of identities provided by private enterprises and tied, e.g. to a com-
pany account.

Website addresses are resolved through the Domain Name System (DNS), which
translates human-readable URLs into machine-readable IPs. DNS is operated by 12
organizations7 providing a public service for name resolution.

A resolved domain can be authenticated through X.509 certificates. These can be
issued for Domain Validation (DV) to assert control over a domain, or as Extended
Validation to associate a legal entity to the domain. Browsers and operating systems
3 https://www.w3.org/TR/webauthn-2/
4 https://posteid.poste.it/
5 https://www.spid.gov.it/
6 https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+
pre-notified+and+notified+eID+schemes+under+eIDAS

7 https://root-servers.org/
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ship with trusted root certificates. EV checks rely on official online registries of
company incorporation or registration. PSD2-compliant QCs may only be issued by
Qualified Trust Service Providers, a registry of which is maintained by Open Ban-
king Europe. For private persons, the most common equivalent is a phone number
or email address, each of which has several available authentication protocols, from
SMS and push messages to single-sign-on and one-time links. Holders of an eID do
carry an official X.509 certificate asserting their identity, issued by their national
identity provider, but there is no resolution service for public keys or identifiers
associated to the public identity of national citizens, partly due to privacy concerns.
Decentralized Identifiers have been proposed as a public resolution and registry
service for personal identities. This would offer individuals a portable identity that
is not tied to a single commercial service provider, and might enable services provi-
ding online signature and verification of identities and contracts. Decentralization
extends to the entities that can issue signed assertions about DIDs in the Verifiable
Credentials recommendation, which does not require federation. The eIDAS Bridge
project developed for the European Blockchain Services Infrastructure enables VCs
about DID subjects signed with eIDAS certificates to be verified.
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Nowadays, most of real-world applications use passwords or passphrases to pro-
tect users’ data or to provide privileged access to specific resources. Unfortunately,
user-chosen passwords are often short, lack of enough entropy, and must be securely
stored in a database. If attackers are able to collect this data they might have
access to detailed information on million of users. Looking at information on the
internet — e.g. online articles, press reports, government news releases, and so on
— it is not difficult to find examples of company data breaches (see Table 1). These
data breaches usually are due to poor security, incorrect configuration of informa-
tion systems, cyber attacks, insiders stealing or leaking data from their employers,
and so on. A non-regulatory agency, such as the National Institute of Standards

Year Organization Records stolen Source
2020 Instagram 200M [17]
2020 Marriott International Inc. 5,2M [1]
2020 Tetrad 120M [14]
2019 Adobe Inc. 7,5M [2]
2019 Microsoft 250M [3]
2019 Bharti Airtel Limited 320M [10]
2019 Capital One Financial Corp. 106M [9]
2019 EasyJet 9M [15]
2019 Just Dial Limited 100M [6]
. . . . . . . . . . . .

Table 1. A (non-exhaustive) list of data breaches

and Technology (NIST), develops and provides information security standards and
guidelines for how public and private sector organizations in the United States
assess and improve their ability to prevent, detect, and respond to cyber attacks.
An example of this guidelines is NIST SP 800-63-B [7], in which NIST’s researchers
describe general requirements for authenticator types: memorized secret authenti-
cators (password, PIN), look-up secret authenticators (physical/electronic records
that store a set of secrets), single-factor/multi-factor OTP authenticators, . . . .
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Particular attention is paid to memorized secret authenticators, for which they
suggest to implement controls to protect secrets against online guessing attacks.
These controls suggest to avoid context-specific passwords, passwords derived from
the previous ones, dictionary words, repetitive/sequential characters, and so on.
In addition, NIST’s researchers suggest to store memorized secret authenticators
resistant to offline attacks, using a key derivation function (KDF) which inputs
an hash function and a salt, among others. Doing so, they are suggesting that (a)
symmetric encryption algorithms have to be avoided because users’ secrets cannot be
decrypted neither by users nor any system administrators; (b) identical, or similar,
secrets must have different and unrelated digests stored into our database; (c) digests
stored have not to provide information about the lengths of users’ secrets.

The growing use of GPUs, FPGAs, and ASICs for brute-forcing users’ secrets
has made the selection of cryptographic algorithms a critical point, indeed, a good
algorithm have to enforce a certain amount of computational cost on these devices.
For this reason, we use key derivation functions to store secrets on our machines.
The aim of key derivation functions is to slow attackers down as much as possible,
introducing instructions that do nothing apart wasting CPU time and memory space
to compute intermediate data. Even in very recent postquantum applications KDFs
are necessary to guarantee security proofs ([11, 13]).

One of the most widely used key derivation functions is PBKDF2[12]. In order
to secure passwords, PBKDF2 has been involved in many real-world implementa-
tions and, among many, we can mention Android full disk encryption, LastPass,
WPA/WPA2, GRUB2, LUKS, 1Password, EncFS, FileVault Mac OS X, Winrar,
. . . Notice that PBKDF2 is not the only one. In the literature, we can also find scrypt
and a number of participants to the password hashing competition: Argon2 ([16],
the winner), Catena, Lyra2, yescrypt and Makwa (recommended algorithms).

In order to explain the behavior of a KDF, in this extended abstract, we will
focus on PBKDF2. This KDF can derive secrets of arbitrary length, generating as
many blocks Ti as we need (see equation 2). Each block Ti is computed iterating
a pseudo-random function (PRF), for example HMAC. Therefore, hLen — i.e. the
length of each block Ti — is bounded by HMAC that, in turn, depends on the hash
function adopted. PBKDF2 inputs a random salt s, a secret p, a key length dkLen.
Iterating the HMAC function c times, it outputs a derived key DK (see eq. 1).

DK “ PBKDF2pp, s, c, dkLenq (1)

where DK is the concatenation of rdkLen{hLens-blocks:

DK “ T1||T2|| . . . ||TrdkLen{hLens (2)

In order to slow down the attackers, we have to set the iteration count as large
as possible, and in real-world applications this counter can vary considerably — i.e.,
2,000 for WPA/WPA2 [8] and 2,500,000 for LUKS [4, 5].
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Isogenies, what are they? Like the character in Alessandro Manzoni’s novel,
cryptographers encountering an isogeny in a textbook would have been justified,
ten years ago, asking themselves “chi era costui? ”1 Elliptic curves, that, we know.
But isogenies? The name sounds familiar, it must be one of those math things
starting in iso-; but chi diavolo era costui? 2

That is no longer true. Any self-respecting cryptographer nowadays must have
at least a vague idea of what isogenies are and how they are used in cryptography.
This survey is your guide to the supersingular isogeny galaxy [22].

Aufstieg und Fall der Elliptische Kurven Kryptografie

Elliptic curves are today a fact of life. I sometimes wonder what Euler would have
thought of it. Not a single day goes without billions of elliptic curve operations being
performed by servers, laptops, smartphones and even refrigerators throughout the
world. I suppose Euler would have loved the fridge.

Why are elliptic curves so important in cryptography? One reason is that they
are the closest thing we know to a generic group. What cryptographers ask from a
group is: to be abelian, to be finite, to have efficient algorithms for testing mem-
bership, equality, and for evaluating the group operation. Any group well mannered
enough to do exactly what is asked from it, and nothing more, is called generic.

The most important operation for a cryptographic group is exponentiation:

expg : Z Ñ G,

x ÞÑ gx.

That expgpnq can be evaluated using Oplogpnqq generic group operations is obvious.
What makes a group precious is the inverse map gx ÞÑ x, the discrete logarithm,
being “difficult” to compute. Then expg is what most cryptographers call a one-way
function.

De Cifris Koine – DE CIFRIS SEMINARS –https://doi.org/10.69091/koine/vol-2-R01
1 “Who was he?”, inquires Don Abbondio upon reading the name of Carneades in a ha-

giography of St Charles Borromeo.
2 There would be much to say about how Manzoni’s faux savant characters, from Don

Abbondio to Don Ferrante, speak of our time. But this is an article about isogenies.

https://doi.org/10.69091/koine/vol-2-R01
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The other reason they are loved, and I claim it is the most important one, is
that no knowledge of elliptic curves is required in order to make cryptography out of
them. Cryptography is like humanity in Plato’s cave: it only sees the tame generic
group shadow of a wild real world elliptic curve. Do not get me wrong: this is great!
We wouldn’t have as powerful cryptographic tools, if creating them required a deep
knowledge in number theory. We do not have such a luxury with isogenies.

What can you do with a generic group? A lot of things. I am sure the reader
is familiar with the Diffie–Hellman key exchange [29], but I would like to highlight
a different application. A commitment scheme is the cryptographic equivalent of a
sealed envelope: in the first phase a party commits to a message m (e.g., a monetary
offering) by publishing the commitment Cpm; rq, where r represents an arbitrary
auxiliary input (typically, some random bits); in the second phase, the party opens
the commitment by revealing m and r; anyone can check that m is the message
originally committed to by recomputing Cpm; rq. A cryptographic commitment must
satisfy two properties: it must be binding, i.e., after having committed to Cpm; rq

it must be difficult for the party to find

pm1, r1q, m ‰ m1 such that Cpm1; r1q “ Cpm; rq .

It must also be hiding, i.e., given only Cpm; rq it must be difficult to deduct m.
Given a generic group G with some fixed generator g, it is easy to imagine

a simple commitment scheme defined by Cpmq “ gm. This scheme is obviously
binding if 0 ă m ă #G, and is hiding thanks to the one-wayness of the expg
function. However, while the binding property is perfect (it’s impossible for the
party to cheat), the hiding property only holds against computationally bounded
adversaries, rather than in an information-theoretic sense. This may be a problem
if, for example, the messages m are likely to be taken from a small subset.

Pedersen [56] is credited with a very simple and elegant idea to obtain a per-
fectly hiding commitment scheme from generic groups. Let g and h be two random
generators of G, he defined Cpm; rq “ gmhr, where r is a random integer in r1,#Gs.
It is easy to see that Pedersen’s commitment is perfectly hiding, thanks to hr being
uniformly distributed in G. For the binding property, it is capital that the discrete
logarithm relation between g and h is unknown to the committer; indeed, given
x “ loggphq the commitment simply becomes gm`xr, and breaking binding simply
amounts to solving the equation m` xr “ m1 ` xr1 modulo #G.

Pedersen commitments can do much more than just emulate digital envelopes,
and in fact a great variety of cryptographic protocols is based on them and similar
ideas. Most of the advanced cryptographic protocols used nowadays, such as the Sig-
nal protocol used by WhatsApp, or those used in privacy-preserving cryptocurren-
cies, use some advanced features of generic groups such as Pedersen commitments;
and their generic group of choice is, inevitably, elliptic curves.

But the reader knows the story by now: our world is coming to an end, Shor’s
bane is free [66], soon hordes of quantum computers will roam the earth, mercilessly
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hunting down discrete logarithms and composite integers, our mobile data plans will
evaporate in just days to accommodate for post-quantum cryptography.

Isogeny graphs

I will assume some familiarity with elliptic curves and abstract algebra. At this
point, we’re obliged to chose a camp in a controversy as ancient as “Emacs vs vi”:
unlike cryptographers, algebraists like to write abelian groups additively. We will
side with the algebraists and rewrite exponentiation as

rnsP ” expP pnq,

with the side-effect of loosing track of the original meaning of “discrete logarithm”.
The multiplication map rns is an example of a morphism from an elliptic curve

to itself. Isogenies are generalizations of these morphisms, when we view elliptic
curves both as groups and as algebraic varieties.

Definition 1. Let φ : E Ñ E1 be a map between two elliptic curves defined over
an algebraically closed field, the following are equivalent:

1. φ is a surjective group morphism,
2. φ is a group morphism with finite kernel,
3. φ is a non-constant algebraic map of projective varieties sending the point at

infinity of E onto the point at infinity of E1.

In any of these cases, φ is called an isogeny; or an endomorphism when E “ E1.

In cryptography, however, we typically deal with non-algebraically closed fields.
In this case we need to take rationality into account. Let k be a field with algebraic
closure k̄. By E{k we mean a curve defined over k, i.e., whose equation has coef-
ficients in k. We can extend scalars to k̄, and see E as a curve over k̄; when it is
necessary to distinguish between them, we will write Epk̄q for the group of points in
the algebraic closure, and Epkq for the group of k-rational points. Then the Galois
group of k̄{k acts on Epk̄q by permuting its elements.

Definition 2. Let E, E1 be elliptic curves defined over k. Let φ : E Ñ E1 be
an isogeny. We say that φ is defined over k, or k-rational if any of the following
equivalent conditions holds.

1. σpkerφq “ kerφ for any σ P Galpk̄{kq,
2. σ ˝ φ “ φ ˝ σ for any σ P Galpk̄{kq,
3. φ is expressed by rational fractions with coefficients in k.
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Note that if φ is k-rational, the points in kerφ are not necessarily defined over k.
To give a complete introduction to isogenies we would need to define separability vs
inseparability, degree, and more. However to keep this presentation light we will skip
these, and direct the curious reader to [67], [54], [23]. Here, unless stated otherwise,
by ℓ-isogeny we mean a separable isogeny of degree ℓ “ #kerφ. The important
property to keep in mind is that the degree is multiplicative:

degpψ ˝ ϕq “ degpψqdegpϕq.

Theorem 1 (Dual isogeny theorem). Let φ : E Ñ E1 be an isogeny of degree
m. There is a unique isogeny φ̂ : E1 Ñ E of degree m, called the dual isogeny, such
that

φ̂ ˝ φ “ rmsE , φ ˝ φ̂ “ rmsE1 .

Example. The map φ from the elliptic curve y2 “ x3 ` x to y2 “ x3 ´ 4x defined
by

φpx, yq “

ˆ

x2 ` 1

x
, y
x2 ´ 1

x2

˙

, φp0, 0q “ φpOq “ O

is a separable isogeny between curves defined over Q. It has degree 2, and its kernel
is generated by the point p0, 0q. Its dual is defined by

φ̂px, yq “

ˆ

x2 ´ 4

4x
, y
x2 ` 4

8x2

˙

, φ̂p0, 0q “ φpOq “ O.

Isogenies have been used in cryptography since the early days of Elliptic Curve
Cryptography, most notably within the Schoof–Elkies–Atkin point counting algo-
rithm [65]. But there is a general agreement that Isogeny Based Cryptography starts
from the moment one stops focusing on a single elliptic curve with its isogenies, and
zooms out to encompass all elliptic curves with isogenies between them.

An isogeny graph is a multi-graph whose vertices represent elliptic curves, and
whose edges represent isogenies. By putting different kinds of restrictions on the
curves and the isogenies, we obtain distinct isogeny graphs with interesting proper-
ties.

In general, it is easier to think of the vertices as isomorphism3 classes of elliptic
curves. Conveniently, the j-invariant classifies elliptic curves up to isomorphism
(over the algebraic closure), thus we typically attach a single j-invariant to each
vertex. Sometimes, a finer notion of isomorphism will have to be considered (e.g.,
isomorphism over the base field k), and a different invariant corresponding to this
isomorphism type will be used instead (e.g., a Montgomery A-invariant as used in
CSIDH).

3 An isomorphism is an isogeny of degree 1, i.e., a bijective isogeny.
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For the edges, we will usually restrict to isogenies of a given degree, or possibly
of degree taken in some small list. Hence, isogeny graphs will tend to be undirected
(representing an isogeny and its dual by the same undirected edge), and regular
(e.g., for any prime ℓ different from the characteristic, any curve has exactly ℓ ` 1
isogenies of degree ℓ in the algebraic closure).

Figures 1 and 2 show two important examples of isogeny graphs. On the right,
the graph of all supersingular curves defined over F89, up to F89-rational isomor-
phisms. These are the curves of j-invariant 0, 66, 52, 13, 7 or 6; each j-invariant
being repeated twice, because each curve has a non-F89-isomorphic copy called the
quadratic twist. The edges are the union of three distinct edge sets (represented by
different colors), corresponding to the F89-rational isogenies of degree 3, 5 and 7,
respectively.

Fig. 1. The supersingular isogeny graphs
of degree 2 (blue, continuous) and 3 (red,
dashed) on F972 .

Fig. 2. The supersingular isogeny graphs
of degree 3 (blue), 5 (red) and 7 (green),
restricted to F89-rational isomorphism
classes.
Also the connected component of j “ 77 in
the ordinary isogeny graph of F233 (same
isogeny degrees).

This graph also occurs as a connected component of infinitely many ordinary
graphs, for example the component containing the j-invariants 20, 28, 40, 77, 86, 87,
118, 136, 138, 142, 184 and 194 over F233 —in the ordinary case, the quadratic twists
form a distinct, graph-isomorphic component—. The edges represent F233-rational
isogenies of the same degrees as before.
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This graph is in fact none else than the Cayley graph of the additive group
Z{12Z, generated by 1, 3 and 4. The reason why it is such a common isogeny graph
will become clear in the next section.

The graph on the left is different. Its vertices are all supersingular j-invariants
in the algebraic closure of F97. A classical theorem shows that all supersingular
invariants in characteristic p are defined in Fp2 , and thus there is a finite number
of supersingular isomorphism classes. The same theorem also shows that all super-
singular isogenies are defined over Fp2 . The figure presents two graphs (in different
colors): a 3-regular graph whose edges are all isogenies of degree 2, and a 4-regular
one whose edges are all isogenies of degree 3. The central symmetry visible to the
naked eye is due to the Frobenius involution of Fp2{Fp.

These graphs are essentially unique: they do not occur as isogeny graphs of any
other elliptic curves on any other field. They are usually called full supersingular
isogeny graphs, although the “full” and the “isogeny” are often dropped. Here is an
interesting empirical study [2], and a database of the smallest ones [32].

Endomorphism rings

Everything about isogeny graphs can be understood via endomorphism rings. En-
domorphisms of elliptic curves form a ring, under addition and composition.4 Their
structure is well understood: they are free Z-modules of dimension 1, 2 or 4. There is
more: if we exclude the subring Z Ă EndpEq, any endomorphism is a quadratic inte-
ger, i.e., it is annihilated by a monic quadratic polynomial with integer coefficients.
These constraints leave only a handful of possible choices.

Theorem 2. Let E be an elliptic curve over a field of characteristic p, its endo-
morphism ring is isomorphic to one of the following:

1. the ring of integers, only if p “ 0,
2. an order in a quadratic imaginary number field,
3. only if p ‰ 0, a maximal order in the quaternion algebra ramified at p and

infinity.

In positive characteristic, the second case is called ordinary and the third supersin-
gular.

If ϕ : E Ñ E1 is an isogeny, ϕ̂ : E1 Ñ E its dual, and ω : E Ñ E an endo-
morphism of E, then ϕωϕ̂ is an endomorphism of E1. It stands to reason that the

4 A common source of confusion is that an extra null endomorphism must be added to
the set in order to make it a ring, although, by definition, a constant map does not
qualify as an isogeny.
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endomorphism rings of E and E1 must be somehow related. Indeed, to any separable
isogeny ϕ we can associate its kernel ideal Iϕ Ă EndpEq, defined by

Iϕ “
␣

ω P EndpEq
ˇ

ˇ ωpkerϕq “ tOu
(

,

and it turns out we can extend5 this correspondence to a bijection between isogenies
and ideals.

Then, for any ideal Iϕ Ă EndpEq with associated isogeny ϕ : E Ñ E1, we
define the operation ‹ by Iϕ ‹E ” E1. We say that two ideals I, J are equivalent if
I ‹E “ J ‹E, or equivalently if nI “ J ¨ pωq for some integer n and some principal
ideal pωq. We call ideal class a set of equivalent ideals. In general these classes do
not have a simple algebraic structure, however, if we restrict them in an appropriate
manner, ‹ becomes a group action by an ideal class group. The simplest such case
is the object of the fundamental theorem of complex multiplication.

Theorem 3 (Complex multiplication). Let Fq be a finite field, let O Ă Qp
?

´Dq

be a quadratic imaginary order, denote by EllqpOq the set of elliptic curves over Fq

with endomorphism ring isomorphic to O and assume it is non-empty. The opera-
tion ‹ defines an action of the group of invertible fractional ideals of O on EllqpOq,
and the action factors through the subgroup of principal ideals. Said otherwise, the
class group ClpOq acts regularly on EllqpOq.

Similar statements hold when E is supersingular and O Ă EndpEq is a quadratic
order. An easy case is when E is defined over a prime field Fp: then the sub-
ring EndFp

pEq Ă EndpEq of Fp-rational endomorphisms is isomorphic to one of
O “ Zr

?
´ps or O “ Zrp1 `

?
´pq{2s, and if we define EllppOq as the set of all su-

persingular curves over Fp such that EndFp
pEq » O, the group ClpOq acts regularly

on EllppOq like in the complex multiplication case [28].
These facts explain why the graph in Figure 2 is isomorphic to a Cayley graph of

Z{12Z. To construct the examples, we chose O » Zr
?

´89s, which has class group
isomorphic to Z{12Z and is generated by an ideal of norm 3 (more formally, an
ideal class representing 3), corresponding to isogenies of degree 3 (the blue edges).
Thus Ell89pOq is the set of all F89-rational supersingular curves, but also, for any p
such that ´89 is a square modulo p, there exists a power q of p such that EllqpOq is
non-empty. In any of these cases, ClpOq acts faithfully and transitively on EllqpOq,
and the action of a basis of elements of ClpOq can be visualized as a Cayley graph.

While Theorem 3 describes almost completely isogeny graphs of ordinary curves,
the picture for supersingular graphs is still blurry. Mestre [53], then Pizer [59, 60],
then Kohel [48] showed that full supersingular graphs are connected, regular, and
satisfy the Ramanujan property, i.e., they are optimal expanders [41].

5 The correspondence for inseparable isogenies is slightly more technical, and we are forced
to omit the details.
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CSIDH. . .

And we are back to isogeny based cryptography 101: key exchange.
Couveignes [21] was the first to propose a key exchange scheme based on the

group action of complex multiplication, however his work stayed mostly unknown.
His ideas were independently rediscovered ten years later by Rostovtsev and Stol-
bunov [63], who were the first to suggest isogenies may be good candidates for
constructing quantum-resistant schemes.

Replicating the Diffie–Hellman key exchange with a cryptographic group action
is almost immediate. Given a finite abelian group G acting regularly on a set X,
given a starting element x0 P X, let secret keys be random elements a, b P G, and
define public keys as xa “ a‹x0 and xb “ b‹x0. Then, the shared secret is obtained
as

a ‹ xb “ pabq ‹ x0 “ b ‹ xa.

This key exchange is secure if the analogue of the Diffie–Hellman assumption holds
for the group action pG,X, ‹q.

However the case of the complex multiplication group action pClpOq,EllqpOq, ‹q

is more complicated for a number of reasons:

1. It is usually not possible to test equality in ClpOq, nor to sample uniformly from
it;

2. Evaluating a ‹ x cannot be done in polynomial time for a majority of inputs a,
even though every element a P ClpOq does have a representation that supports
fast evaluation of the group action.

These two limitations follow from two fundamental algorithmic obstacles:

1. The order, and thus also the group structure of ClpOq is generally unknown.
Indeed, the best classical algorithm to compute the group structure of ClpOq is a
type of index calculus, with subexponential complexity L#Op1{2q. The current
record is the computation for the class group of discriminant 4 ¨ 587 ¨

ś73
i“1 ℓi,

where ℓi are the first 73 odd primes [6], which took about 52 core years on
an inhomogeneous cluster. Unfortunately discriminants used in isogeny-based
cryptography may be larger. The good news is that computing the structure of
ClpOq is precisely as difficult as breaking RSA for a quantum computer, thus
we only have to wait!

2. The cost of evaluating the action of an ideal Iϕ Ă EndpEq is polynomial in the
norm of the ideal, i.e., in the degree of the associated isogeny ϕ. This severely
limits the kind of ideals for which it is feasible to evaluate the action ‹.

Before giving the solution to this conundrum, let’s take a step back and see how
classical discrete logarithms are related to Cayley graphs. Given a group G of prime
order p, exponentiation defines a regular action of pZ{pZqˆ on Gzt1u by

a ‹ g ” ga.
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From a subset S Ă pZ{pZqˆ, we may construct the Cayley graph rpZ{pZqˆ, Ss.
For example, the graph in Figure 2 can be equally seen as the Cayley graph of
pZ{13Zqˆ generated by S “ t2, 8, 3u. The same graph can be equally interpreted
as the graph whose vertices are non-identity elements of G, and where two vertices
g, h are connected whenever h “ ga for some a P S. This graph is sometimes called
the Schreier graph p‹, Sq.

Given two elements g, h P G, finding a path between them in the Schreier graph
is equivalent to computing their discrete logarithm. There is only one gotcha: the
path must be short, e.g., of polynomial length in logp#Gq, otherwise the solution is
practically useless. Intuitively, the larger S, the smaller the diameter of the graph,
and indeed it is well known that Cayley graphs tend to make good expanders.

If we take S large enough, then we even have an effective way to sample random
elements in G nearly uniformly: it is sufficient to start from an arbitrary generator
of G, and perform a random walk of polynomial length in logp#Gq. This fact can be
used to construct a key exchange similar to Diffie–Hellman: fix a starting generator
g, sample random walks pa1, . . . , anq, pb1, . . . , bnq P S˚, define as public keys

ga “ g
ś

ai , gb “ g
ś

bi ,

then the shared secret gab is obtained by replaying the same random walks from gb

and ga respectively.
Coming back to the complex multiplication group action, Jao et al. [44] proved,

assuming the generalized Riemann hypothesis, that Cayley graphs rClpOq, Ss form
an expander family as soon as #S P O

`

logp#ClpOqq2
˘

. Following the previous
sketch, we immediately obtain a key exchange scheme based on complex multipli-
cation.

Setup. Choose a quadratic imaginary order O and an elliptic curve E0 P EllpOq.
Fix a set ts1, . . . , snu Ă ClpOq of ideal representatives of small norm.

Public key generation. Sample a random integer vector pe1, . . . , enq

and construct the ideal

I “

n
ź

i“1

seii ;

output the public key I ‹ E0.
Shared secret computation. Given a public key E, and a secret ideal I Ă O,

output the shared secret I ‹ E.

This is precisely the key exchange scheme of Couveignes, Rostovtsev and Stol-
bunov, although we have left some details unspecified: how to choose O, how to
find E0, how to compute the group action, . . . For a long time, the only known way
to instantiate the scheme produced a system too slow to be useful in practice, a
fact reported as recently as 2018 [25]. A breakthrough came the same year, though,
with the invention of CSIDH6 [12], an instantiation based on the action of Clp´pq

6 Pronounced like “sea side”.
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on the set of supersingular curves defined over Fp. Parameters in CSIDH are chosen
as follows:

– p is a prime such that p` 1 “ 4
ś

ℓi, where ℓi is a set of small odd primes. For
a target classical security of λ bits, log2ppq needs to be approximately 4λ.

– The quadratic order is O “ Zr
?

´ps. The set of ideal representatives of small
norm is taken to be si “ pℓi, 1 ´

?
´pq, for each of the ℓi in the factorization of

p` 1.
– Thanks to the constraints on p, the elliptic curve of equation y2 “ x3 ` x is

supersingular, has Fp-rational endomorphism ring isomorphic to O, and is thus
taken as E0.

– The secret vectors peiq are sampled from an integer box r´B,Bsn, such that
p2B ` 1qn «

?
p.

These choices make for a surprisingly simple algorithm to evaluate the group
action ‹. Indeed, after identifying

?
´p to the Frobenius endomorphism of any

curve E P EllpOq, the isogeny kernel associated to si “ pℓi, 1 ´
?

´pq is simply the
set

Erℓis X EpFpq

of Fp-rational points of order ℓi. Given this kernel, Vélu’s formulas [70, 55, 62] effi-
ciently compute the associated isogeny and the image curve si ‹E using Opℓiq finite
field operations.7 Furthermore, it is not difficult to see that the inverse ideal class
s´1
i is represented by pℓi, 1`

?
´pq, and the associated kernel is the set of points of

order ℓi that have abscissa in Fp and ordinate in Fp2 . Thus, the action of any ideal
s˘e
i can be evaluated by e applications of Vélu’s formulas, and the action of the

product ideal
ś

seii is simply the composition of each individual action. The total
cost of evaluating the CSIDH group action is thus „ B

ř

ℓi finite field operations,
ignoring some not-so-negligible computations such as finding the generators of the
various isogeny kernels.

It is worth pointing out that Jao et al.’s theorem does not apply to the CSIDH
graph, because its degree of regularity is in Oplog2ppqq rather than in Oplog2ppq2q;
nevertheless, reasonable heuristics let us still argue that the graph has good expan-
sion properties, and thus that the distribution of public keys is practically indistin-
guishable from uniform.

7 In a recent development [4], the upper bound on the complexity of computing the isogeny
action has been improved to Õp

?
ℓiq.
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. . . and SIDH

For all its elegance and simplicity, CSIDH has a serious drawback when it comes to
quantum security, as we shall see next. Its evil twin SIDH8 [42, 30] was designed to
overcome this limitation.

The goal of SIDH is to be able to perform a key exchange based on random walks
in the full supersingular graph. Since no group acts on the full graph, constructing
commuting isogeny walks is not obvious; however the absence of a group action is
also what makes attacking SIDH more difficult.

But let’s start from the kind of isogeny walks we perform in SIDH. As we know,
in CSIDH an isogeny walk is defined by a list pe1, . . . , enq of integers. Each integer
corresponds to a different isogeny degree ℓi, the magnitude |ei| indicates the number
of steps to travel along the ℓi-isogeny cycle (each cycle is represented by a different
color in Figure 2), and the sign of ei means “go forward” or “go backward” (the
meaning to the orientation was given by the Frobenius endomorphism). The order
in which the different primes ℓi are processed is irrelevant, as we know that isogenies
correspond to an abelian group action.

It is absolutely necessary that CSIDH uses a fairly large collection of primes ℓi.
Indeed, if the vectors peiq are selected from a box r´B,Bsn, then the number of
distinct end points for these isogeny walks is at most p2B ` 1qn, but the cost of
computing one walk is proportional to Bn. Said otherwise, the only parameter in
which the key space size grows exponentially (compared to the cost of executing
the key exchange) is the number of distinct primes ℓi.

Moving to the full supersingular graph the outlook changes. There are approx-
imately p{12 supersingular isomorphism classes in the algebraic closure of Fp, and
they are all defined over Fp2 . Over Fp2 , every supersingular curve has exactly ℓ` 1
distinct isogenies for any prime ℓ, i.e., the ℓ-isogeny graph is pℓ`1q-regular.9 Hence,
unlike in the complex multiplication case, starting from any supersingular curve
E there are exactly pℓ` 1qℓn distinct non-backtracking10 ℓ-isogeny walks of length
n`1, instead of just 2. Furthermore, the Ramanujan property proved by A. K. Pizer
[59, 60] indicates that the induced distribution on the vertices quickly approaches
the uniform distribution as soon as n « cℓ logppq for some constant cℓ.

These facts were already exploited by Charles et al. [14] to construct a collision
resistant hash function based on pseudo-random walks in supersingular 2-isogeny

8 Prounounced by spelling out the acronym “ess-eye-dee-aitch”.
9 A small exception must be granted to the curves of j-invariant 0 or 1728, which have

out-degree ℓ ` 1, but lower in-degree.
10 Most theorems for random walks in graphs are stated for ordinary walks, where one

undirected edge can be immediately followed by the same edge in the opposite direction.
However, in our context, following an isogeny step by its dual is not interesting: it
produces a scalar multiplication rℓs which is easily factored out of the walk, and does
not contribute to the security of the cryptosystem.
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graphs, and their work was indeed an inspiration for SIDH. In principle, we would
like to find a way for two parties to perform walks in the ℓ-isogeny graph in such
a way that the walks commute. However there is an obvious tension here: if the
proverbial Alice and Bob each perform an isogeny walk of length n, call them A
and B, and if the order of A and B does not count, i.e., A ˝ B “ B ˝ A, then
why would the order of the steps within A or B count, in general? Indeed we know
no way to construct commuting walks in a supersingular graph in a way that is
compatible with the security of a key exchange scheme.

The trick used by SIDH is to have Alice and Bob do walks in two different
supersingular graphs on the same vertex set (see Figure 1). Fix two primes, say 2
and 3. Alice performs a random walk A in the 2-isogeny graph, while Bob performs
a random walk B in the 3-isogeny graph. By coordinating their efforts carefully,
they can ensure that A ˝B “ B ˝A, and still get a secure key exchange protocol.

The way this works is astonishingly simple. A 2-isogeny walk of length n is
nothing else than a composition of isogenies of degree 2, i.e., an isogeny of degree
2n. Call ϕA this isogeny, and call RA a point of order 2n generating kerϕA. Similarly,
let ϕB be a 3m-isogeny and let RB be a generator of its kernel.

Then RA `RB is a point of order 2n3m, and to it is associated a unique isogeny
ϕAB of the same degree. Then, there exist isogenies ϕ1

A and ϕ1
B such that the

following diagram commutes

E0 EA

EB EAB

ϕA

ϕB

ϕAB
ϕ1
B

ϕ1
A

(1)

From the diagram, it is clear that kerϕ1
A “ xϕBpRAqy and kerϕ1

B “ xϕApRBqy.
But we seem to have reached a dead end: ϕB is a secret of Bob’s, and RA is a

secret of Alice; how can Bob safely make Alice aware of the value ϕBpRAq? The trick
is to define public bases Er2ns “ xPA, QAy and Er3ms “ xPB , QBy, and to write RA

(resp., RB) as a secret linear combination of PA, QA (resp., PB , QB). Then, Bob
transmits to Alice the values ϕBpPAq, ϕBpQAq, from which Alice can compute RA

without giving away her secret integers.
There is one trick left to make SIDH work. For the torsion bases and the iso-

genies to have compact and efficient representations, it is necessary to choose the
curves very carefully, similarly to what we did for CSIDH. Ideally, we would like
the torsion groups Er2ns and Er3ms to be defined over the base field Fp2 , so that
PA, QA, PB , QB are represented by a pair of elements of Fp2 each.11 Over Fp2 , there
11 One can do even better and represent PA, QA by a triplet of elements of Fp2 [18].
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are two isogeny classes of supersingular curves: one with curves of order pp`1q2, and
one of order pp´ 1q2, and their ℓ-isogeny graphs are isomorphic. It is customary to
pick the first and choose p so that p` 1 “ 2n3m, thus fulfilling our requirements.12

To summarize, SIDH can be instantiated as follows; we only give the operations
for Alice: for Bob, just switch the roles of A and B.

Setup Choose a prime p of the form p` 1 “ 2n3m. The starting curve is

E0 : y2 “ x3 ` x.

Select arbitrary bases Er2ns “ xPA, QAy and Er3ms “ xPB , QBy.
Public key generation Choose a random integer ra, set RA “ PA`rrasQa. Com-

pute the isogeny ϕA : E0 Ñ EA of kernel RA. Send EA, ϕApPBq, ϕApQBq to Bob.
Shared secret computation Upon receiving EB , ϕBpPAq, ϕBpQAq, compute

R1
A “ ϕBpPAq ` rrasϕBpQAq.

Compute the isogeny ϕ1
A : EB Ñ EAB , output jpEABq.

This particular instantiation closely matches the parameters chosen for the
NIST candidate SIKE [3],13 where the pair pn,mq is one of p216, 137q, p250, 159q,
p305, 192q, p372, 239q, depending on the security level.

Breaking isogenies

What does it take to break an isogeny based cryptosystem? At the base of the
pyramid, lies the fundamental problem of isogeny based cryptography.

Definition 3 (Isogeny walk problem). Let E0, E1 two elliptic curves drawn at
random from some isogeny class over some finite field k, find a k-rational isogeny
ϕ : E0 Ñ E1 of smooth degree.

The “smooth degree” condition means that ϕ can be represented as a walk in
some k-rational isogeny graph, which is an effective representation as long as the
length of the walk is subexponential. It is clear that a solution to this problem
breaks CSIDH, as it produces an ideal in the same ideal class as the secret key. It is
less evident that it also breaks SIDH, but Galbraith et al. showed that this is indeed
the case, assuming credible heuristics [38]. Galbraith et al., as well as Castryck et
al. [13], also showed that, for supersingular curves, the isogeny walk problem is
heuristically equivalent to the following one.
12 Costello [17] has recently explored variants of SIDH where the two torsion groups are

spread over the two classes of order pp ` 1q
2 and pp ´ 1q

2.
13 SIKE is the encryption scheme derived from SIDH, the difference is purely semantical,

technical steps stay unchanged.



Isogenies Demystified 75

Definition 4 (Endomorphism ring problem). Given a random supersingular
curve E{Fp2 , compute a basis of its endomorphism ring.

These two problems are the mainstays of isogeny based cryptography: break
them, and all the field evaporates. However, no cryptosystem is actually based on
them: in every case, some stronger assumption is needed to prove their security.
For CSIDH, for example, the curve E0 is usually fixed, and its endomorphism ring
known. This is not a major problem if the curve E1 is uniformly random: indeed,
an algorithm solving this specialized variant of the problem can be applied twice
to solve the general instance. However, in CSIDH the curve E1 is not provably
uniformly distributed, but rather assumed to be computationally indistinguishable
from random. Admittedly, this is a minor departure from the original problem, and
there is a consensus that the security of CSIDH is not far from that of the isogeny
walk problem.

The situation of SIDH is more delicate:

– The curve E0 is also fixed and of known endomorphism ring;
– The curve E1 is very far from being uniformly random, as it is at distance

« logℓppq{2 from E0, considerably shorter than the diameter of the graph;
– On top of E1, the SIDH protocol also publishes the evaluation points ϕpPBq and
ϕpQBq, from whose knowledge one can compute the action of ϕ on any point of
E0r3ms (change B to A and 3 to 2 for Bob’s isogeny).

The SIDH assumptions essentially state that it is fine to give out this additional
information, however they are widely believed to be considerably stronger than the
isogeny walk assumption, as indicated by the existence of torsion point attacks on
overstretched variants of SIDH [58, 51].

Finally, some may object that the prime p used in SIDH or CSIDH has a very
special form, and this should be taken into account when evaluating the strength
of the related assumptions. However using special primes for efficiency has been a
common practice in elliptic curve cryptography for decades, and it is widely believed
that such specialization has negligible impact on security.

It thus appears that from an assumption “quality” perspective CSIDH is better
positioned than SIDH. Unfortunately the order is reversed when we look at actual
attacks. Indeed the isogeny walk assumption is not a single one, but rather a family
of assumptions: one for each isogeny class considered. The isogeny class of SIDH
comprises all supersingular curves over Fp2 , and for that class no algorithm better
than exponential is known to solve the isogeny walk problem. For the isogeny classes
considered in CSIDH or in the earlier Couveignes–Rostovtsev–Stolbunov protocols,
instead, a powerful quantum algorithm due to Kuperberg solves the problem in
subexponential time [61, 49, 50, 16].

Kuperberg’s is a generic algorithm for the abelian hidden shift problem, also
known as the dihedral hidden subgroup problem: given a regular abelian group ac-
tion pG,X, ‹q and a pair x0, x1 P X, given quantum access to an oracle evaluating
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g ‹ x0 for arbitrary g, it finds the unique ḡ such that x1 “ ḡ ‹ x0. Its asymptotic
complexity is roughly exp

`
a

logp#Gq
˘

, and thus CSIDH parameters must scale
quadratically with the security level. However the exact quantum security of con-
crete CSIDH parameters is the subject of a heated debate, and a consensus has yet
to be reached [7, 43, 5, 9, 57, 15].

On the classical front, things are simpler. The best classical attack on CSIDH
has been known for 20 years: it is a simple meet-in-the-middle algorithm on the
graph, running two pseudo-random walks in parallel until they meet [34, 37, 35, 28].
The CSIDH graph contains Opp1{2q vertices, and thus the meet-in-the-middle attack
finds a solution in Opp1{4q steps on average, using a negligible amount of memory if a
Pollard-rho style technique is used for collision detection. This justifies the 128-bits
of classical security claim for the 511 bits prime CSIDH-512.

The same collision finding algorithm works equally well on the full supersingular
graph; since the graph has « p{12 vertices, the algorithm runs in Op

?
pq time.

In practice, Delfs and Galbraith [28] recommend working in two steps:

1. Find paths from E0 Ñ E1
0 and E1 Ñ E1

1 to curves E1
0, E

1
1 defined over Fp;

2. Use collision finding over the CSIDH graph to connect the paths.

While the asymptotic complexity is the same, this algorithm produces shorter walks
and is easier to parallelize; its quantum version using Grover search runs in Opp1{4q

operations [8].
However neither algorithm is appropriate for SIDH. Indeed, as we mentioned,

the secret isogeny in SIDH has unusually small degree « 2n « 3m «
?
p. Let’s

assume for concreteness that the degree is 2n, then we may compute two sets: the
set T0 of all curves at distance rn{2s from E0, and T1 of those at distance tn{2u from
E1. We expect T0 and T1 to intersect in a single point, which is sometimes called a
claw of T0 and T1. Using a Op1q access time structure such as a hash table to store,
say, T0, this algorithm requires Opp1{4q time and storage. Considerably better than
the generic one.

It is however unrealistic to assume constant time access to such a huge amount
of memory. Van Oorschot and Wiener’s parallel collision search [69] provides a much
more realistic solution to the claw finding problem, performing well in practice on
parallel architectures with a limited amount of memory; with a constant amount of
memory, it runs in asymptotic time Opp3{8q. The application to SIDH was analyzed
in detail by Adj et al. [1], then by Costello et al. [19], and their conclusions were
used to set parameters for the NIST candidate SIKE.

We note that no known attack is capable of exploiting the knowledge of the ac-
tion of the secret isogeny on the torsion bases. So called torsion point attacks [58, 51]
seem so far to only give an advantage against “overstretched” versions of SIDH where
the degrees of the isogenies are exponentially larger than ?

p. It is an open question
to determine whether the torsion point information in SIDH can be exploited in an
attack.
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Finally, quantum attacks. A generic claw finding algorithm by Tani [68] is
claimed to break SIDH using Opp1{6q time and memory. However a more in-depth
analysis of the claims reveals that Tani’s algorithm has no advantage over a simpler
Grover search, and has thus a cost of Opp1{4q at best, providing no speed-up over
classical algorithms [45]. Quantum accelerations of van Oorschot and Wiener’s col-
lision search have recently been analyzed and shown not to invalidate the security
claims of SIKE either [46].

CSIDH and SIDH are not the only existing isogeny based schemes. A larger
variety of assumptions exists to support post-quantum signatures, identification
protocols, oblivious transfer, and many more. Nevertheless, the best available at-
tacks always come down to claw finding or Kuperberg’s algorithm, depending on
the target.

What now?

Let us come full circle and have a look back at Pedersen’s commitments. There,
we needed g and h, two random generators of a group G, and we formed the com-
mitment gmhr for message m and randomness r. Trying to port Pedersen’s idea to
isogenies, we may be tempted to interpret g and h as two distinct starting points
in an isogeny graph, m and r as isogeny walks, gm and hr as their endpoints, or as
m ‹ g and r ‹ h for those who prefer ideal action notation. However we are faced
with two difficulties:

– What meaning to give to the product gm ¨ hr? In a group, this is a natural
operation with homomorphic properties. But elliptic curve invariants of m ‹ h
and r ‹h do not support a natural homomorphic operation, and thus the hiding
properties of Pedersen’s commitment are lost.

– Recall that the discrete logarithm loggphq must be unknown to the committer
for the commitment to be binding. How does one ensure that? In principle there
could be a trusted authority who is in charge of generating g and h honestly, so
that loggphq is unknown to anyone.
In practice, trusted authorities are a burden, but there is a much simpler
option available for many discrete logarithm groups G. A surjective function
H : Z Ñ G is called a hash into G if given px, y,Hpxq, Hpyqq it is hard to
compute logHpxqpHpyqq. A non-example of hash is the map x ÞÑ gx for some
fixed generator g. An example of hash into the multiplicative group Fˆ

p of a
finite field is the map x ÞÑ px mod pp ´ 1qq ` 1. A hash into G can be used to
generate Pedersen’s base elements by setting g “ Hpr1q and h “ Hpr2q from
some verifiable (pseudo)-random integers r1, r2 (e.g., some parts of the digits of
π).
In the realm of isogenies there is no efficient hash into interesting isogeny classes:
we do not know how to generate random supersingular curves over Fp, or over
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Fp2 , other than by starting from a well known supersingular elliptic curve (e.g.,
y2 “ x3 `x) and performing a long enough random walk in some isogeny graph.
This generation process is clearly the isogeny graph equivalent of the non-hash
x ÞÑ gx. In fact, defining an efficient hash into the supersingular set is one of
the major open questions in isogeny based cryptography [36], and the most
“obvious” ideas have already been ruled out [13, 52].

There is no evidence that hashing in the supersingular set should be hard, and
solving this problem would pave the way to many applications, such as making the
SIDH assumptions weaker by using a verifiably random starting curve E0, removing
trusted setups from some protocols [27, 10], constructing efficient oblivious pseudo-
random functions from CSIDH [47], and certainly many more.

The lack of a homomorphic operation on SIDH or CSIDH public keys, though, is
an even greater problem. Not only it breaks the idea behind Pedersen commitments,
but it is also the main obstacle to translating to the isogeny setting efficient discrete
logarithm signature schemes such as Schnorr’s [64] or ECDSA, and many more basic
protocols known from discrete logarithms.

Which naturally brings us to the topic of signatures: as the reader may know, no
isogeny based signatures were submitted to the NIST competition. Indeed, isogeny-
based signatures tend to be extremely large and inefficient. The reason is that
they are all obtained by applying the Fiat-Shamir transform [31] to hundreds of
parallel executions of an interactive identification protocol, thus an SIDH or CSIDH
based signature typically costs hundreds of times more than the corresponding key
exchange scheme.

There is not much to SIDH signatures: they consist in proving knowledge of a
secret isogeny by committing to the curves of a commutative square like in Eq. (1),
and then revealing some but not all of the involved isogenies [30]. In practice they
make for signatures in the hundreds of kilobytes, taking seconds to generate and
verify [71].

CSIDH signatures offer more variety. They are somehow similar to discrete log-
arithm signatures: to prove knowledge of a secret ideal S such that Ep “ S ‹ E0,
they commit to a random curve Er “ R ‹ E0, then reveal RS´b, in response to a
binary challenge b P t0, 1u. Compare this to Schnorr signatures where knowledge of
the secret exponent in gs is proven by committing to gr and then revealing r ´ cs
for some challenge c P Z{pZ. With such a large challenge space, the Schnorr pro-
tocol needs to be executed only once in order to produce an unforgeable signature.
In contrast CSIDH can support a larger space only at the cost of an exponential
increase in public key size: this produces decently short signatures, at the cost of
several minutes for signing [24]. Signing times can be considerably reduced, though,
if the structure of the class group is pre-computed, an extremely expensive task
that we already discussed previously. This is the idea behind CSI-FiSh [6], the only
practically usable isogeny-based signature until recently.
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A third family of isogeny signatures is based on different assumptions than
CSIDH or SIDH. At the hearth of these signatures, there is an interactive protocol
to prove knowledge of the endomorphism ring of a supersingular curve; we already
saw that this is heuristically equivalent to knowing an isogeny walk between a
special starting curve such as y2 “ x3 ` x, and a random curve Ep. The idea is
similar to CSIDH based signatures: first commit to a random curve Er “ R ‹ Ep,
then respond to a challenge by revealing some ideal related to the secret. The first
such protocol [39, 40] only accepted binary challenges and was notoriously difficult
to implement, it has thus always been viewed as a purely theoretical effort. In a
recent breakthrough SQISign, a similar signature scheme with exponentially large
challenge space, has been introduced [26].

SQISign is not easy to implement, nor to analyze, however it boasts the shortest
signature and public key combined size among all post-quantum candidates, by a
fair margin. Signing time is not exactly fast, in the order of seconds, but verification
is comparable in speed to SIDH or CSIDH.

Conclusions

To summarize, despite the similarities between CSIDH/SIDH and classic Diffie–
Hellman, several challenges materialize when trying to rebuild on them most cryp-
tographic protocols that we used to take for granted. Highly advanced techniques
are needed even for the relatively basic task of signing, and for most other protocols
we do not even have an isogeny based solution yet. Fortunately, there is a vast space
of cryptographic possibilities as of yet unexplored.

At present, research on isogeny based cryptography mainly focuses on three
areas: efficient implementations, both in software and hardware; cryptanalysis, both
mathematical and physical; and achieving new primitives. I am happy to remark
that there is more work in each of these areas than I could possibly cite in this short
survey.

Turning to more prospective research, isogeny graphs of higher dimensional
abelian varieties are still an insufficiently researched area. While some preliminary
results indicate that they might not be the best candidates for basic schemes such
as key exchange [33, 11, 20], there is still hope that the additional structure may be
used to construct advanced functionalities. Another promising source of advanced
protocols comes from the interplay between isogenies and pairings. Although it
clearly cannot lead to post-quantum schemes, it has been recently used to realize
some unique time-release primitives [27, 10].

My feeling is that we are only scratching the surface of isogeny-based crypto-
graphy, and that much more is to come. I hope this short and incomplete summary
will motivate many of you to look more in depth into these topics!
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Introduction

In a letter to Pierre de Carcavi, August 14th 1659, Pierre de Fermat reported
several propositions; in particular, he stated the following theorem: Every prime p
of the form 4k ` 1 is uniquely expressible as the sum of two squares, i.e.

p “ X2 ` Y 2 ô p ” 1 mod 4,

whose first known proof was given by Euler using Fermat’s infinite descent method.
Many other proofs have been given, some constructive, others non-constructive;
in particular, among the latter, Zagier’s one-sentence proof deserves to be men-
tioned for its conciseness [17]. Among the numerous constructive proofs, two dif-
ferent proofs by Gauss stand out. The first is direct, and gives x “

p2kq!
2pk!q2 mod p

and y “
pp2kq!q2

2pk!q2 mod p; the partially incomplete proof was completed, a century
later, by Jacobsthal. The second proof is based on quadratic forms of discriminant
´4, and considers two equivalent principal quadratic forms with discriminant ´4:
pX2 ` 2b1XY `

b21`1
p Y 2 and x2 ` y2, where b1 is a root of z2 ` 1 modulo p. The

first form represents p trivially with X “ 1 and Y “ 0, thus Gauss’ reduction [6]
produces the unique reduced form in the class [11], and meanwhile yields x and y.
Jacobsthal’s constructive solution (1906) is based on counting the number of points
on the elliptic curve y2 “ npn2´aq in Zp. He considers the sum of Legendre symbols

Spaq “

p´1
ÿ

n“1

ˆ

npn2 ´ aq

p

˙

ñ x “
1

2
SpqRq , y “

1

2
SpqN q

where qR, qN P Zp are any quadratic residue and non-residue, respectively, [8].
Legendre’s proof is reported on pages 59-60 of [10]. It is constructive, since it yields
X and Y from the complete remainder of the continued fraction expansion of ?

p.
It is well explained in his own words
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... Donc tous le fois que l’équation x2 ´Ay2 “ ´1 est résoluble (ce qui
ha lieu entre autre cas lorsque A est un nombre premier 4n` 1) le nombre
A peut toujours être decomposé en deux quarrés; et cette décomposition est
donnée immédiatement par lo quotient-complet

?
A`I
D qui répond au second

des quotients moyens compris dans la première période du développement
de

?
A; le nombres I et D étant ainsi connu, on aura A “ D2 ` I2. Cette

conclusion renferme un des plus beaux théorèmes de la science des nombres,
savoir, que tout nombre premier 4n` 1 est la somme de deux quarrés; elle
donne en même temps le moyen de faire cette décomposition d’une manière
directe et sans aucun tâtonnement.

Thus, Legendre’s proof gives the representation of any composite N such that the
period of the continued fraction for

?
N is odd, or equivalently, x2 ´ Ny2 “ ´1 is

solvable in integers [5, 10, 15].
As a counterpart to Legendre’s finding, when the period of the continued fraction
expansion of

?
N is even, we directly obtain, under mild conditions, a factor of

a composite N . In particular, this is certainly the case when both prime factors
of N “ pq are congruent 3 modulo 4 [5]. Legendre’s solution of Fermat’s theorem
tacitly introduces a connection between continued fractions and the ramified primes
of quadratic number fields, obviously without using this notion more than a century
before Dedekind’s invention.

Preliminaries

A regular continued fraction is an expression of the form

a0 `
1

a1 ` 1
a2` 1

a3`¨¨¨

, (1)

where a0, a1, a2, . . . , ai, . . . is a sequence, possibly infinite, of positive integers. A
convergent of a continued fraction is the sequence of fractions Am

Bm
, each of which is

obtained by truncating the continued fraction at the pm` 1q-th term. The fraction
Am

Bm
is called the m-th convergent [4, 7]. A continued fraction is said to be defini-

tively periodic, with period τ , if, starting from a finite position no, a fixed pattern
a1
1, a1

2, . . . , a
1
τ repeats indefinitely. Lagrange showed that any definitively periodic

continued fraction, of period length τ , represents a positive number of the form
a ` b

?
N , a, b P Q, i.e. an element of Qp

?
Nq, and conversely any such positive

number is represented by a definitively periodic continued fraction [4, 15]. The pe-
riod of the continued fraction expansion of

?
N begins immediately after the first

term a0, and is written as
?
N “

“

a0, a1, a2, . . . , a2, a1, 2a0
‰

, where the over-lined
part is the period, which includes a palindromic part formed by the τ ´ 1 terms
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a1, a2, . . . , a2, a1. In Carr’s book [2, p.70-71] we find a good collection of properties
of the continued fraction expansion of

?
N , which are summarized in the following,

along with some properties taken from [4, 15].

1. Let cn and rn be the elements of two sequences of positive integers defined by
the relation ?

N ` cn
rn

“ an`1 `
rn`1

?
N ` cn`1

with c0 “
X
?
N
\

, and r0 “ N´a20; the elements of the sequence a1, a2, . . . , an . . .
are thus obtained as the integer parts of the left-side fraction, which is known
as the complete quotient.

2. Let a0 “ t
?
N u be initially computed, and set c0 “ a0, r0 “ N ´ a20, then

sequences tcnuně0 and trnuně0 are produced by the recursions

am`1 “

Z

a0 ` cm
rm

^

, cm`1 “ am`1rm ´ cm , rm`1 “
N ´ c2m`1

rm
. (2)

These recursions allow us to compute the sequence tamumě1 using only rational
arithmetical operations, and the iterations may be stopped when am “ 2a0,
having completed a period.

3. If the period length τ is odd, set ℓ “ τ´1
2 ; Legendre discovered and proved that

the complete quotient
?
N`cℓ
rℓ

gives a representation of N “ c2ℓ ` r2ℓ as the sum
of two squares.

4. Numerator An and denominator Bn of the n-th convergent to
?
N can be re-

cursively computed as An “ anAn´1 `An´2 and Bn “ anBn´1 `Bn´2, n ě1,
respectively, with initial conditions A´1 “ 1, B´1 “ 0, A0 “ a0, and B0 “ 1.
The numerator Am and the denominator Bm of any convergent are shown to
be relatively prime by the relation AmBm´1 ´Am´1Bm “ p´1qm´1 [4, p.85].

5. Using the sequences tAmumě0 and tBmumě0, two sequences

∆ “ t∆m “ A2
m ´NB2

mumě0, Ω “ tΩm “ AmAm´1 ´NBmBm´1umě1

are introduced. It can easily be checked that Ω2
m ´ ∆m∆m´1 “ N, @m ě 1.

The elements of ∆ and Ω satisfy a system of linear recurrences
"

∆m`1 “ a2m`1∆m ` 2am`1Ωm `∆m´1

Ωm`1 “ Ωm ` am`1∆m
m ě 1 (3)

with initial conditions

∆0 “ a20 ´N, ∆1 “ p1 ` a0a1q2 ´Na21, Ω1 “ p1 ` a0a1qa0 ´Na1.

By (3), it is immediate to see that cm`1 “ |Ωm| and rm`1 “ |∆m|.
6. The period of ∆ and Ω is τ or 2τ , depending on whether τ is even or odd.
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7. The sequence of ratios An

Bn
assumes the limit value

?
N as n goes to infinity,

due to the inequality
ˇ

ˇ

ˇ

An

Bn
´

?
N
ˇ

ˇ

ˇ
ď 1

BnBn`1
, since An and Bn go to infinity

along with n. Since An

Bn
ă

?
N , if n is even, and An

Bn
ą

?
N , if n is odd [7],

any convergent of even index is smaller than any convergent of odd index. This
property implies that the terms of the sequence ∆ have alternating signs, with
∆1 ą 0.

8. The value c0 “ a0 is the greatest value that cn may assume. No an or rn can
be greater than 2a0.
If rn “ 1 then an`1 “ a0. For all n greater than 0, we have

a0 ´ cn ă rn ď 2a0.

The first complete quotient that is repeated is
?
N`c0
r0

, and a1, r0, and c0 com-
mence each cycle of repeated terms.

9. Through the first period, we have the equalities aτ´j “ aj , rτ´j´2 “ rj , and
cτ´j´1 “ cj .

10. The period τ has the tight upper bound 0.72
?
N lnN , N ą 7, as was shown

by Kraitchik [16, p.95]. However, the period length has irregular behavior as a
function of N , because it may assume any value from 1, when N “ M2 ` 1, to
values close to the order Op

?
N lnNq [15].

11. Define the sequence of quadratic forms fmpx, yq “ ∆mx
2 ` 2Ωmxy ` ∆m´1y

2,
m ě 1, which has the same period as ∆. Every fmpx, yq is a reduced form of
discriminant 4N . Within the first block, all quadratic forms fmpx, yq, 1 ď m ď τ
are distinct, and constitute the principal class Γpfq of reduced forms, with the
ordering of the elements inherited from ∆. The definition of reduced form used
here is slightly different from the classic one: set κ “ mint|∆m|, |∆m´1|u; it is
easily checked that Ωm is the sole integer such that

?
N ´ |Ωm| ă κ ă

?
N ` |Ωm|,

with the sign of Ωm chosen opposite to the sign of ∆m. Since the sign of ∆m´1

is the same as that of Ωm, which is opposite to that of ∆m, in Γpfq the two
triples of signs (signatures) p´,`,`q and p`,´,´q alternate.

The following theorems are taken, without proof, from [5].

Theorem 1. Starting with m “ 1, the sequences ∆ “ t∆mumě0 and Ω “ tΩmumě0

are periodic with the same period τ or 2τ depending on whether τ is even or odd.
The elements of the blocks t∆muτm“0 and tΩmuτm“1 satisfy the symmetry relations
∆m “ p´1qτ∆τ´m´2, @ m ď τ ´ 3 and Ωτ´m´1 “ p´1qτ`1Ωm, @ m ď τ ´ 2,
respectively.

If τ is odd, the ordered set t∆muτm“1 has a central term of index ℓ “ τ´1
2 , with

∆ℓ “ ´∆ℓ´1 since τ ´ ℓ´ 2 “ ℓ´ 1, and the equation Ω2
ℓ ´∆ℓ∆ℓ´1 “ N gives
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a solution of the Diophantine equation x2 ` y2 “ N with x “ ∆ℓ and y “ Ωℓ,
the situation first recognized by Legendre.
If τ is even, the ordered set t∆muτm“1 has no central term; in this case, with ℓ “ τ´2

2
we have Ωℓ`1 “ ´Ωℓ and ∆ℓ`1 “ ∆ℓ, hence fℓ`1px, yq “ fℓpy,´xq.

Theorem 2. Let the period τ of the continued fraction expansion of
?
N be even; we

have Ωτ´1 “ ´a0, ∆τ “ ∆τ´2, and Ωτ “ ´Ωτ´1. Defining the integer γ P OQp
?
Nq

by the product

γ “

τ
ź

m“1

´?
N ` p´1qmΩm

¯

,

let σ denote the Galois automorphism of Qp
?
Nq (i.e. σp

?
Nq “ ´

?
N), then

γ

σpγq
“ Aτ´1 `Bτ´1

?
N

is a positive fundamental unit (or the cube of the fundamental unit) of Qp
?
Nq.

Based on this theorem, we say that the unit cτ´1 “ Aτ´1 ` Bτ´1

?
N in Qp

?
Nq

splits N , if N1 “ gcdtAτ´1 ´ 1, Nu is neither 1 nor N . Then we have the proper
factorization N “ N1N2. Further, using the following involutory matrix, [5], whose
square is p´1qτI2

Mτ´1 “

„

´Aτ´1 NBτ´1

´Bτ´1 Aτ´1

ȷ

,

it is shown that

Aτ´m´2 “ p´1qm´1pAτ´1Am ´NBτ´1Bmq 1 ď m ď τ ´ 2 . (4)

As an immediate consequence of this equation, if the unit cτ´1 splits N , then any
pair pAm, Aτ´m´2q splits N , since taking Aτ´m´2 modulo N we have

Aτ´m´2 “ p´1qm´1AmAτ´1 mod N,

thus Aτ´m´2 is certainly different from Am, because Aτ´1 ‰ ˘1 mod N .

Theorem 3. If the period τ of the continued fraction expansion of
?
N is even,

the element cτ´1 in Qp
?
Nq splits 4N , and a factor of 4N is located at positions

τ´2
2 ` jτ , j “ 0, 1, . . ., in the sequence ∆ “ tcmσpcmqumě1.
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Factorization

Gauss recognized that the factoring problem was to be important, although very
difficult,

. . . Problema, numeros primos a compositis dignoscendi, hosque in factores
suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae per-
tinere, et geometrarum tum veterum tum recentiorum industriam ac sagac-
itatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum
foret. . . . C. F. Gauss [Disquisitiones Arithmeticae Art. 329]

In spite of much effort, various different approaches, and the increased importance
stemming from the large number of cryptographic applications, no satisfactorily
factoring method has yet been found. However, approaches to factoring based on
continued fractions have lead to some of the most efficient factoring algorithms.
In the following, a new variant of Shanks’ infrastructural method [14] is described
which exploits the property of the block ∆1 “ t∆muτm“1, which is made more
precise in the following theorem taken without proof from [5].

Theorem 4. Let N be a positive square-free integer. If the norm of the positive
fundamental unit u P Qp

?
Nq is 1, and some factor of N is a square of a principal

integral ideal in Qp
?
Nq, then u is split for N . A proper factor of N is found in

position τ´2
2 of ∆1.

It should be noted that ∆1 offers several different ways for factoring a composite
number N :

1. If τ is even and 2 is not a quadratic residue modulo N , then in position τ´2
2 of

the sequence ∆1 we find a factor of N .
2. If τ is odd, then by Legendre’s results we find a representation N “ X2 ` Y 2,

which implies that s1 “ X
Y mod N is a square root of ´1. If we are able to

find another square root s2 different from ´X
Y mod N (we have four different

square roots of a quadratic residue modulo N “ pq), then the difference s1 ´ s2
contains a proper factor of N .

3. If some square d2o is found in the sequence ∆1, it implies A2
m ´NB2

m “ d2o, thus
there is a chance that some proper factor of N divides pAm ´ doq or pAm ` doq.
The number of squares in ∆1 is Op

?
τq, and about (12 ) of these squares factor

N . This method was introduced by NTC:Shanks72.
4. If equal terms ∆m “ ∆n, m ‰ n occur in ∆1, with m,n ă τ

2 , then

A2
m ´A2

n “ 0 mod N

allows us to find two factors of N by computing gcdtAm´An, Nu and gcdtAm`

An, Nu. This is an implementation of an old idea of Fermat.



Continued Fractions, Quadratic Fields, and Factoring 91

Computational issues

By Theorem 4 we know that a factor of N is ∆ τ´2
2

, which can be directly computed
from the continued fraction of

?
N in τ´2

2 steps. Unfortunately, this number is
usually prohibitively large. However, if τ is known, using the baby-step/giant-step
artifice, the number of steps can be reduced to the order Oplog2 τq. To this end, we
can move through the principal class Γpfq, of ordered quadratic forms fmpx, yq, by
introducing a notion of distance between pairs of quadratic forms compliant with
Gauss’ quadratic form composition. The distance between two adjacent quadratic
forms fm`1px, yq, fmpx, yq P Γpfq is defined as

dpfm`1, fmq “
1

2
ln

˜?
N ` p´1qmΩm

?
N ´ p´1qmΩm

¸

, (5)

and the distance between two quadratic forms fmpx, yq and fnpx, yq, with m ą n, is
defined as the sum dpfm, fnq “

řm´1
j“n dpfj`1, fjq. The distance of fmpx, yq from the

beginning of Γpfq is defined referring to a properly-chosen quadratic form

f0 “ ∆0x
2 ´ 2

a

N ´∆0xy ` y2

hypotetically located before f1. Thus we have

dpfm, f0q “

m´1
ÿ

j“0

dpfj`1, fjq

if m ď τ. The notion is also extended to index kτ ď m ă pk ` 1qτ by setting
dpfm, f0q “ dpfm mod τ , f0q ` kRF. The distance dpfτ , f0q is exactly equal to R˚ “

ln cτ´1, which is the regulator RF, or three times RF, and the distance dpf τ
2
, f0q is

exactly equal to R˚

2 , see [5] for a straightforward proof. Now, a celebrated formula
of Dirichlet’s gives the product

hFRF “

?
D

2
Lp1, χq “ ´

t
D´1

2 u
ÿ

n“1

ˆ

D

n

˙

ln
´

sin
nπ

D

¯

(6)

where hF is the class field number, Lp1, χq is a Dedekind L-function, D “ N if
N ” 1 mod 4 or D “ 4N otherwise, and character χ is the Jacobi symbol in this
case. If we know hF exactly, we know R˚ exactly and we can proceed to factoriza-
tion, with complexity Opplog2Nq4q [9], conditioned on the computation of Lp1, χq.
The Dirichlet Lp1, χN q function can be efficiently evaluated using the following
expression for the product hFRF as a function of N

hFRF “
1

2

ÿ

xě1

ˆ

D

x

˙

˜?
D

x
erfc

ˆ

x

c

π

D

˙

` E1

ˆ

πx2

D

˙

¸

. (7)
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where both the complementary error function erfcpxq and the exponential integral
function E1pxq can be quickly evaluated. Once we knowR˚, with the NTC:Shanks72’
infrastructural method [14] or some of its improvements [1, 3, 12], we can find
f τ´2

2
px, yq, thus a factor of N . The goal is to obtain f τ´2

2
px, yq with as few steps as

possible. To this end we can perform 1) giant-steps within Γpfq which are realized
by the Gauss composition law of quadratic forms, followed by a reduction of this
form to Γpfq, and 2) baby-steps moving from one quadratic form to the next in
Γpfq. Two operators ρ` and ρ´ are further defined [3, p.259] to allow small (baby)
steps, precisely

– ρ` transforms fmpx, yq into fm`1px, yq in Γpfq, and is defined as

ρ`pra, 2b, csq “ r
b21 ´N

a
, 2b1, as,

where b1 is 2b1 “ r2b mod p2aqs ` 2ka with k chosen in such a way that
´|a| ă b1 ă |a|.

– ρ´ transforms fmpx, yq into fm´1px, yq in Γpfq and is defined as

ρ´pra, 2b, csq “ rc, 2b1,
b21 ´N

c
s,

where b1 is 2b1 “ r´2b mod p2cqs ` 2kc with k chosen in such a way that
´|c| ă b1 ă |c|.

The composed form fm ‚ fn has the distance dpfm ‚ fn, f0q « dpfm, f0q ` dpfn, f0q.

1. By the law ‚, Γpfq resembles a cyclic group, with fτ´1 playing the role of identity.
2. Since in Γpfq the two triples of signs (signatures) p´,`,`q and p`,´,´q alter-

nate, the composed form fmpx, yq ‚ fnpx, yq must have one of these signatures.
3. The composition of a quadratic form with itself is called doubling and denoted

2‚fn, thus s iterated doublings are written as 2s‚fnpx, yq. The distance is nearly
maintained by the composition ‚ (giant-steps). The error affecting this distance
estimation is of order OplnNq as shown by Schoof in [12], and is rigorously
maintained by the one-step moves ρ˘ (baby-steps).

An outline of the procedure is the following, assuming that R˚ is preliminarily
computed:

1. Let ℓ be a small integer. Compute an initial quadratic form fℓ “ r∆ℓ, 2Ωℓ,`∆ℓ´1s

and its distance dℓ “ dpfℓ, f0q from the continued fraction expansion of
?
N

stopped at term ℓ` 1.
2. Compute jt “ rlog2

R˚

dℓ
s.
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3. Starting with rfℓ, dℓs, iteratively compute and store in a vector Fjt the sequence
r2j‚fℓ, 2

jdℓs up to jt. The middle term (i.e. f τ´2
2

) of Γpfq is located between the

terms 2jt´1
‚ fℓ and 2jt‚ fℓ.

4. The middle term of Γpfq can be quickly reached using the elements of Fjt ,
starting by computing fr “ p2jt´1

‚ fℓq ‚ p2jt´2
‚ fℓq and checking whether 2jt´1dℓ `

2jt´2dℓ is greater or smaller than R˚

2 ; in the first case set fs “ fr, otherwise set
fs “ 2jt´1

‚ fℓ. Iterate this composition by computing fr “ fs ‚ p2i‚fℓq and setting
fs “ fr for decreasing i up to 0, and let the final term be rfs, dss.

5. Iterate the operation ρ˘ a convenient number OplnNq of times, until a factor
of 4N is found.

Conclusions

An iterative algorithm has been described which produces a factor of a compos-
ite square-free N with OpplnpNqq4q iterations at most, if hR is exactly known, h
being the class number, and R the regulator of Qp

?
Nq. The bound OpplnpNqq4q

is computed by multiplying the number of giant-steps, which is OplnpNqq, by the
number of steps at each reduction, completing a giant-step, which is upper bounded
by OpplnpNqq3q as shown in [9, 13]. It is remarked that, in this bound computation,
the cost of the arithmetics in Z, i.e. multiplications and additions of big integers,
is not counted [9]. Furthermore, it is not difficult to modify the algorithm to use a
rough approximation of hR; the computations become cumbersome, but asymptoti-
cally the algorithm is polynomial, because a sufficient approximation of hR is easily
obtained by computing the series in equation (7) truncated at a number of terms
OplnpNqq, since the series converges exponentially [3, Proposition 5.6.11, p.262-263].
It remains to ascertain whether this asymptotically-good factoring algorithm is also
practically better than any sub-optimal probabilistic factoring algorithm.
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