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Abstract: This in vitro study assessed the efficacy of a solution containing 33% trichloroacetic acid
(CCl3COOH; TCA) and hydrogen peroxide (H2O2) in decontaminating machined (MAC) and sand-
blasted acid-etched (SBAE) titanium surfaces. A total of 80 titanium disks were prepared (40 MAC and
40 SBAE). Streptococcus sanguinis and Enterococcus faecalis strains were incubated on 36 samples, while
the remaining 44 were kept as controls. Roughness analysis and scanning electron microscopy were
used to evaluate the surface features before and after TCAH2O2 treatment. The viability of human
adipose-derived mesenchymal stem cells (ASCs) after TCAH2O2 decontamination was assessed
with a chemiluminescent assay along with cell morphology through fluorescent staining. TCAH2O2

preserved the surface topography of MAC and SBAE specimens. It also effectively eradicated bacteria
on both types of specimens without altering the surface roughness (p > 0.05). Also, no significant
differences in protein adsorption between the pristine and TCAH2O2-treated surfaces were found
(p = 0.71 and p = 0.94). While ASC proliferation remained unchanged on MAC surfaces, a decrease
was observed on the decontaminated SBAE specimens at 24 and 48 h (p < 0.05), with no difference
at 72 h (p > 0.05). Cell morphology showed no significant changes after 72 h on both surface types
even after decontamination. This study suggests TCAH2O2 as a promising decontamination agent
for titanium surfaces, with potential implications for peri-implant health and treatment outcomes.

Keywords: decontamination; titanium surfaces; biofilm; adipose-derived mesenchymal stem cells
(ASCs); peri-implant treatment

1. Introduction

Dental implants have become the therapy of choice for rehabilitating edentulous
patients, effectively improving their masticatory function and quality of life [1]. However,
some biological complications may occur and jeopardize the long-term clinical success
and survival of these widely adopted therapeutic tools [2–4]. Indeed, peri-implantitis is a
chronic inflammatory process involving soft and hard tissue around the osseointegrated
implants, leading to the formation of a peri-implant pocket with consequent bone loss [3].
The prevalence of this disease was recently estimated to be between 25% and 40% in
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clinical practice, varying based on the case definition adopted [2,5,6]. Despite being a
multifactorial condition, the primary etiological factor associated with peri-implantitis
onset and progression is the microbial plaque biofilm at the implant surface [7–10]. Other
risk factors/indicators have been consistently identified, with poor plaque control, a history
of periodontitis, smoking and a lack of adherence to peri-implant supportive care being
the most relevant [2,11,12]. Based on its etiopathology, all treatment strategies for peri-
implantitis should first aim at controlling peri-implant infection [7,13].

In order to reduce or theoretically remove biofilms from contaminated titanium
surfaces, different chemical or physical methods have been proposed during the last
few decades, with machined surfaces being more easily cleansable than roughened sur-
faces [14–16]. Nevertheless, chemical cleaning solutions tested so far, both alone or in
combination with mechanical debridement, showed limited efficacy in completely remov-
ing bacterial biofilm [17,18]. Inconsistent results were also presented using lasers [19,20] or
photodynamic therapy [21]. Interestingly, resective approaches involving titanium brushes
and implantoplasty remain a preferred way to remove infected contaminants in clinical
practice [22,23]. However, when the re-osseointegration of contaminated implant surfaces is
intended, the quality of the implant surface after decontamination is deemed an important
predictor of the future outcome [24]. Indeed, some studies have questioned the real benefits
of using more aggressive mechanical methods [25,26]. It is a concern that, during the clean-
ing of the implant, surface contaminants and microparticles of titanium can be dispersed
in the surrounding tissue [27]. It is also contested that altering the titanium oxide surface
layer could compromise the future reosseointegration of the treated implant [28,29]. To
this regard, chemical and air-abrasive treatments appear capable in disrupting the bacterial
biofilm without significantly altering the implant surface [30,31]. However, based on the
available scientific evidence, a gold-standard protocol for implant surface decontamination
during both nonsurgical and surgical procedures cannot be recommended yet [7,14].

In recent years, a mixture of trichloroacetic acid (TCA; CCl3COOH) 33% and hydrogen
peroxide (TCAH2O2), initially introduced for dermatologic applications [32,33], has also
demonstrated a favorable impact for the care of oral lesions [34]. This chemical peel may
trigger the growth of new epithelium and connective tissue to replace scarred or aged
tissue by promoting collagen formation and the activation of growth factor synthesis,
as well as increase angiogenesis [35,36]. Indeed, TCAH2O2 improved the healing of
oral soft tissue wounds in a canine model through upregulating the cell growth and the
viability of gingival fibroblasts, suggesting its suitability to be used in periodontal and
peri-implant defects [37]. This effect may result from the combined effect of TCA as a
healing catalyzer and H2O2 as an antiseptic. Indeed, locally administered H2O2 for the
chemical disinfection of infected dental implants has demonstrated promising outcomes, as
evidenced in both in vitro studies [38] and in vivo investigations [39]. H2O2 solutions offer
several advantages over alternative chemical agents, including their broad spectrum of
activity against various pathogens without altering the metallurgical properties of titanium
or the soft tissue [40]. The bactericidal action of H2O2 is attributed to its ability to oxidize
various cellular components by virtue of its intrinsic oxidative potential and the subsequent
generation of free radicals [41].

In virtue of its combined chemical properties and due to the lack of previous data, there
is the rationale to test TCAH2O2 as a method to improve the infective/inflammatory condi-
tions around dental implants. However, this potential needs to be preliminarily confirmed
using in vitro studies. First and foremost, TCAH2O2 should demonstrate the ability to de-
contaminate the implant surface without the side effect of altering it. Therefore, the aim of
this research was to assess the efficacy of the TCAH2O2 protocol in the disinfection of both
smooth and roughened dental implant surfaces previously contaminated with Streptococcus
sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis) strains. These species were selected
based on their robustness and prevalence in the peri-implant submucosal environment, repre-
senting a robustly utilized model to study the effect of decontaminating agents on titanium
surfaces [42–44]. The viability and morphology of adipose-derived mesenchymal stem cells
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(ASCs) after TCAH2O2 decontamination were assessed as an accepted proxy of biological
performance, whereas complementary tests included a protein adsorption test, field emission
scanning electron microscope (FESEM) and roughness analyses.

2. Materials and Methods
2.1. Ti Disk Preparation and Study Design

For the experiments, two types of implant surfaces were prepared on titanium disks
(Titanmed Srl, Lecco, Italy): the prototypical smooth control known as machined (MAC)
and the widely diffused roughened sand-blasted acid-etched (SBAE). SBAE were obtained
through (a) blast with alumina particles (size range 250–400 µm) and (b) immersion in
hydrofluoric acid and hydrochloric/sulfuric acid mixtures. Afterward, the specimens
were cleaned with sequential passages in an acetone ultrasonic bath (10 min), isopropanol
(10 min), deionized water (10 min) and dried in nitrogen gas. A total of 80 disks (40 MAC
and 40 SBAE) were used after the sterilization procedure, which consists of washing the
samples in PBS to remove any residues and then immersing them in 96% ethanol for 20 min.
After the ethanol phase, the samples were taken under a biological hood, withdrawn from
the ethanol and washed once more in sterile PBS before being dried in a sterile environment
inside a Petri dish. Twenty-two MAC disks and 22 SBAE disks were left uncontaminated
(untreated), while two bacterial strains were grown on the remaining 36 samples, which
were decontaminated through TCAH2O2 treatment (Fyox, FYOX Srl, Trieste, Italy) for 30 s
to remove bacteria from the surface, and afterward thoroughly washed in a physiological
saline solution, following the manufacturer’s instruction. TCAH2O2 is a chemical peeling
treatment containing a mixture of TCA at 33% and H2O2 at 3% supplied in a fluid form. Both
contaminated and pristine specimens underwent roughness measurement (12 samples),
protein adsorption (12 samples) and cell culturing assays (48 samples). SEM analysis was
performed on the pristine and TCA-treated samples (8 samples). The flowchart of the
experiment is depicted in Figure 1.
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emission scanning electron microscopy.

2.2. Surface Roughness Analysis

A noncontact 3D surface profiler (Talysurf CCI 3000; Taylor Hobson Limited, Leicester, UK)
was used to measure the surface roughness of the MAC and SBAE samples. Five measurements
were conducted for each disk according to three amplitude parameters: Sa, Ssk and Sku. As
reported in a previous study, “Sa is the arithmetic mean of the absolute values of the surface
point departures from the mean plane within the sampling area. Ssk represents the deviation
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from the average baseline, where positive Ssk indicates a majority of peaks on the surface and
negative Ssk indicates a majority of valleys. Sku describes the probability density sharpness
of the profile. For surfaces endowed with low peaks and low valleys, Sku is <3; instead, it
becomes >3 for surfaces with high peaks and low valleys” [45]. A Gaussian filter (cutoff value
= 0.8 mm) was used to filter the surface profiles to calculate the roughness values.

2.3. Protein Adsorption

To quantify the protein adsorbed on the MAC and SBAE surfaces, the samples were
incubated in the presence of fetal bovine serum (FBS) (2% in phosphate buffered saline
(PBS)) at 37 ◦C for 30 min, and then they were washed twice with PBS. As described
elsewhere [46], the total protein amount was first eluted from the samples with Tris Triton
buffer (10 mM Tris (pH 7.4), 100 mM NaCl, 1 mM EDTA, 1 mM EG-TA, 1% Triton X-100,
10% glycerol and 0.1% SDS) for 10 min, then quantified using a Pierce™ BCA Protein Assay
Kit (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions
using the spectrophotometer “Jenway 6300” (Jenway, London, UK).

2.4. Bacterial Biofilm Evaluation

Bacteria were grown overnight in 10 mL of Mueller Hinton (MH) broth (Sigma-Aldrich,
Milan, Italy) at 37 ◦C. The day after, bacteria were subcultured until a spectrophotometric den-
sity of 0.6 at 600 nm was reached, corresponding to 1 × 108 colony-forming units (CFU)/mL,
approximately. Titanium samples were then colonized using S. sanguinis and E. faecalis. In
particular, each disk was incubated with 1 mL of bacterial suspension in a 24-well plate using
a shaking rotator (80 rpm) at 37 ◦C for 24 h. Then, the samples were treated or not with
TCAH2O2. Then, to remove nonadherent bacteria, each disk was rinsed in sterile saline and
vortexed for 10 s, six times. Disks were then transferred into a sterile plastic container with 1
mL saline solution and sonicated 3 times at 80 kHz with a power output of 150 W for 30 s [47].
Afterward, 10-fold dilutions of each supernatant were incubated in a Mueller–Hinton agar
plate (Thermo Fisher Scientific™, Waltham, MA, USA) for colonies counting [48].

2.5. FESEM Analysis

The surface morphology of both SBAE and MAC disks, pristine and treated with
TCAH2O2, was investigated using field emission scanning electron microscopy (FESEM)
using a TESCAN S9000G (TESCAN GROUP, Brno, Czech Republic) to achieve a thorough
visual assessment. For each disk, eight photos in In-Beam SE configuration, at a potential
of 5 keV in high vacuum (0.10 Pa) and at a fixed magnification (100 k×), were taken to
describe the surface morphology of the disks in order to compare the pristine surfaces with
the treated ones.

2.6. Cell Culture and Viability Assay

Adipose stem cells ASC52telo (ASCs), hTERT immortalized adipose-derived mes-
enchymal stem cells (ATCC® SCRC-4000, Manassas, VA, USA) cultured according to ATCC
protocols, were expanded in a Mesenchymal Stem Cell Basal Medium (ATCC PCS-500-030)
with a Mesenchymal Stem Cell Growth Kit (ATCC PCS-500-040). Immediately after the
decontamination procedures, ASCs were seeded onto the top of the disks. Before cell
seeding, a proper amount of medium was placed in each microplate well containing the
samples. Then, the cell suspension, adjusted to 2.5 × 104 cells/mL, was pipetted in a
meandering pattern above the prepared specimen. The cells were cultured in the ASCs’
medium without antibiotics (to allow concomitant biofilm regrowth) at 37 ◦C in a humidi-
fied atmosphere with 5% CO2 for 24, 48 and 72 h. Cell Titer GLO (Promega, Madison, WI,
USA) was utilized to measure the ATP release, which is associated to the viability of the
cells at 24, 48 and 72 h.
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2.7. Cell Attachment Assay

For the analysis of cell morphology, 1 × 104 ASCs were seeded on the disks and
cultured for 72 h; then the specimens were washed in PBS, before fixing the cells with 4%
paraformaldehyde in PBS for 8 min. After being rinsed with PBS, cells were permeabilized
with TBS 0.1% Triton X-100 (Sigma-Aldrich, Milan, Italy) and stained with Alexa 488-
Phalloidin (Life Technologies, Milan, Italy) to detect the cytoskeleton. Images were acquired
with a Nikon Eclipse Ti-E microscope using a Nikon Plan 10×/0.10 objective (Nikon
Instruments, Amsterdam, the Netherlands).

2.8. Statistical Analysis

Descriptive statistics were presented using mean ± standard deviation (SD) and
median ± interquartile range (IQR). The Gaussian distribution of quantitative data was
verified using the Shapiro–Wilk test, and the one-way ANOVA or Kruskal–Wallis test was
applied for parametric and nonparametric data, respectively. The level of significance was
set at 0.05. Statistical analysis was performed using StataSE 17 software (StataCorp LLC,
Lakeway Drive College Station, TX, USA).

3. Results
3.1. FESEM Analysis

FESEM analysis performed on the titanium disks revealed, for the MAC specimens
(Figure 2A,C), the expected flat surface topography resulting from milling, while the typical
rough pattern generated using subtractive modification techniques was visible in the SBAE
samples (Figure 2B,D). No difference was apparent between the pristine (Figure 2A,B) and
TCAH2O2 treated (Figure 2C,D) disks.
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3.2. Surface Roughness Analysis

As summarized in Table 1, the data demonstrated that there were no significant
alterations in roughness parameters following the application of TCAH2O2. The one-way
ANOVA confirmed that there were no statistically relevant differences between the pristine
and TCAH2O2-treated samples for all three parameters (Sa, Ssk and Sku) in both MAC and
SBAE disks (p > 0.05). Also, the decontaminated group’s roughness values did not differ
from the previous two in a statistically relevant way for all three parameters (Sa, Ssk and
Sku) (p > 0.05).

Table 1. Surface roughness analysis of the pristine and decontaminated titanium disks (all values are
expressed in µm as mean ± standard deviation).

Pristine TCAH2O2-Treated Decontaminated

Sa Ssk Sku Sa Ssk Sku Sa Ssk Sku

MAC 0.45 ± 0.05 −0.24 ± 0.12 2.93 ± 0.15 0.44 ± 0.08 −0.26 ± 0.14 2.80 ± 0.15 0.45 ± 0.11 −0.27 ± 0.14 2.73 ± 0.13
SBAE 1.17 ± 0.07 −0.21 ± 0.53 3.26 ± 0.35 1.17 ± 0.07 −0.22 ± 0.55 3.29 ± 0.37 1.19 ± 0.07 −0.22 ± 0.58 3.17 ± 0.61

3.3. Evaluation of Bacterial Biofilm

S. sanguinis and E. faecalis colonies were quantified before and after the decontami-
nation with TCAH2O2 as reported in Figure 3. No viable bacteria could be detected after
the treatment on both MAC and SBAE specimens. The groups were tested for normality,
and the one-way ANOVA test revealed an immediately apparent statistically significant
difference for both MAC and SBAE between the contaminated and decontaminated disks.
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3.4. Biological Response Evaluation

Protein adsorption at the interface of a given biomaterial is correlated with the cellular
response thereby elicited, which appears mandatory to ensure osseointegration. Hence, a
protein adsorption assay was performed to evaluate any possible effect of TCAH2O2 at the
surface of the titanium disks. As shown in Figure 4, no significant difference was detected
between the pristine and TCAH2O2-treated samples for both MAC and SBAE surfaces.

The use of TCAH2O2 did not determine any effect on ASC proliferation at any of
the three time points after seeding on MAC surfaces as there was no difference between
the treated and untreated MAC disks. It was instead possible to appreciate a significant
decrease in cell proliferation on the TCA-cleaned SBAE samples compared to the pristine
ones at 24 and 36 h, but not at 72 h (Figure 5).

Finally, to assess if and how TCAH2O2 treatment affects surface/cell interaction,
in terms of cell morphology, ASCs were visualized as recurring to fluorescent staining
via marking their cytoskeleton and nuclei. As shown in Figure 6, after 72 h, no evident
differences between the pristine and cleaned surfaces were observed on both MAC and
SBAE samples.



J. Funct. Biomater. 2024, 15, 21 7 of 13

J. Funct. Biomater. 2024, 15, x FOR PEER REVIEW 7 of 14 
 

 

3.3. Evaluation of Bacterial Biofilm 
S. sanguinis and E. faecalis colonies were quantified before and after the decontamina-

tion with TCAH2O2 as reported in Figure 3. No viable bacteria could be detected after the 
treatment on both MAC and SBAE specimens. The groups were tested for normality, and 
the one-way ANOVA test revealed an immediately apparent statistically significant dif-
ference for both MAC and SBAE between the contaminated and decontaminated disks. 

 
Figure 3. Biofilm quantification of S. sanguinis (A) and E. faecalis (B) strains on titanium samples. 
Data are displayed in a box plot as median ± IQR. Statistical significance was found with the one-
way ANOVA test after the Shapiro–Wilk assessment for normality (α = 0.05) (* in the charts is for p 
< 0.05). 

3.4. Biological Response Evaluation 
Protein adsorption at the interface of a given biomaterial is correlated with the cellu-

lar response thereby elicited, which appears mandatory to ensure osseointegration. 
Hence, a protein adsorption assay was performed to evaluate any possible effect of 
TCAH2O2 at the surface of the titanium disks. As shown in Figure 4, no significant differ-
ence was detected between the pristine and TCAH2O2-treated samples for both MAC and 
SBAE surfaces. 

 
Figure 4. Protein adsorption. Quantification of FBS adsorbed on the pristine and decontaminated 
MAC and SBAE. Data are displayed as mean ± SD and refer to three independent experiments. No 
statistical significance was achieved between the pristine and decontaminated surfaces, while a sta-
tistical relevant difference was found between the MAC and SBAE surfaces for both the pristine and 
decontaminated samples (p < 0.05) (* in the chart is for p < 0.05). 

The use of TCAH2O2 did not determine any effect on ASC proliferation at any of the 
three time points after seeding on MAC surfaces as there was no difference between the 
treated and untreated MAC disks. It was instead possible to appreciate a significant de-
crease in cell proliferation on the TCA-cleaned SBAE samples compared to the pristine 
ones at 24 and 36 h, but not at 72 h (Figure 5). 

Figure 4. Protein adsorption. Quantification of FBS adsorbed on the pristine and decontaminated
MAC and SBAE. Data are displayed as mean ± SD and refer to three independent experiments.
No statistical significance was achieved between the pristine and decontaminated surfaces, while a
statistical relevant difference was found between the MAC and SBAE surfaces for both the pristine
and decontaminated samples (p < 0.05) (* in the chart is for p < 0.05).

J. Funct. Biomater. 2024, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Quantification of cell proliferation assay performed on MAC (A) and SBAE (B). Data are 
displayed as mean ± SD and refer to four independent experiments. Statistical significance found in 
SBAE between the pristine and decontaminated surfaces at 24 h and 48 h (one-way ANOVA, p < 
0.05) (* in the charts is for p < 0.05). 

Finally, to assess if and how TCAH2O2 treatment affects surface/cell interaction, in 
terms of cell morphology, ASCs were visualized as recurring to fluorescent staining via 
marking their cytoskeleton and nuclei. As shown in Figure 6, after 72 h, no evident differ-
ences between the pristine and cleaned surfaces were observed on both MAC and SBAE 
samples. 

 
Figure 6. Fluorescent stain of ASCs grown, respectively, on pristine MAC (A), pristine SBAE (B), 
cleaned MAC (C) and cleaned SBAE (D). Actin and cell nuclei are marked, respectively, in green 
(Alexa 488-Phalloidin) and blue (DAPI). 

4. Discussion 
The aim of this in vitro study was to evaluate the efficacy of a TCAH2O2 protocol in 

disinfecting both MAC and roughened dental implant surfaces that had been previously 
contaminated with two dental biofilm-associated bacterial strains. This study involved a 
comprehensive analysis of the effects of TCAH2O2 treatment on both the surface topogra-
phy and the biological response of these dental implant materials. Overall, exposure to 
TCAH2O2 proved to be a valid decontamination method without altering topographic ap-
pearance and roughness values and while preserving biological properties. 

Figure 5. Quantification of cell proliferation assay performed on MAC (A) and SBAE (B). Data are
displayed as mean ± SD and refer to four independent experiments. Statistical significance found in
SBAE between the pristine and decontaminated surfaces at 24 h and 48 h (one-way ANOVA, p < 0.05)
(* in the charts is for p < 0.05).

J. Funct. Biomater. 2024, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Quantification of cell proliferation assay performed on MAC (A) and SBAE (B). Data are 
displayed as mean ± SD and refer to four independent experiments. Statistical significance found in 
SBAE between the pristine and decontaminated surfaces at 24 h and 48 h (one-way ANOVA, p < 
0.05) (* in the charts is for p < 0.05). 

Finally, to assess if and how TCAH2O2 treatment affects surface/cell interaction, in 
terms of cell morphology, ASCs were visualized as recurring to fluorescent staining via 
marking their cytoskeleton and nuclei. As shown in Figure 6, after 72 h, no evident differ-
ences between the pristine and cleaned surfaces were observed on both MAC and SBAE 
samples. 

 
Figure 6. Fluorescent stain of ASCs grown, respectively, on pristine MAC (A), pristine SBAE (B), 
cleaned MAC (C) and cleaned SBAE (D). Actin and cell nuclei are marked, respectively, in green 
(Alexa 488-Phalloidin) and blue (DAPI). 

4. Discussion 
The aim of this in vitro study was to evaluate the efficacy of a TCAH2O2 protocol in 

disinfecting both MAC and roughened dental implant surfaces that had been previously 
contaminated with two dental biofilm-associated bacterial strains. This study involved a 
comprehensive analysis of the effects of TCAH2O2 treatment on both the surface topogra-
phy and the biological response of these dental implant materials. Overall, exposure to 
TCAH2O2 proved to be a valid decontamination method without altering topographic ap-
pearance and roughness values and while preserving biological properties. 

Figure 6. Fluorescent stain of ASCs grown, respectively, on pristine MAC (A), pristine SBAE (B),
cleaned MAC (C) and cleaned SBAE (D). Actin and cell nuclei are marked, respectively, in green
(Alexa 488-Phalloidin) and blue (DAPI).



J. Funct. Biomater. 2024, 15, 21 8 of 13

4. Discussion

The aim of this in vitro study was to evaluate the efficacy of a TCAH2O2 protocol in
disinfecting both MAC and roughened dental implant surfaces that had been previously
contaminated with two dental biofilm-associated bacterial strains. This study involved a
comprehensive analysis of the effects of TCAH2O2 treatment on both the surface topog-
raphy and the biological response of these dental implant materials. Overall, exposure
to TCAH2O2 proved to be a valid decontamination method without altering topographic
appearance and roughness values and while preserving biological properties.

The treatment goal when dealing with peri-implant diseases is to halt the inflammatory
process and possibly favor reosseointegration, with the aim of providing long-term stable
results [7]. Since peri-implantitis has a bacterial etiology, a thorough biofilm removal
from the contaminated surface is pivotal to achieve this goal [3,49]. Different physical and
chemical agents in diverse experimental models have been tested so far, each one presenting
advantages and limitations [15,50]. In our study, to assess the effectiveness of the TCAH2O2
treatment in eliminating bacteria, representative strains of S. sanguinis and E. faecalis were
incubated on the different samples. Although not mimicking all the characteristics of a
mature peri-implant biofilm, the combination of these two strains was chosen because
they have been consistently linked to persistent infections of human implantable devices
and also to peri-implantitis lesions [44,51,52]. Notably, despite S. sanguinis not being a
proper causative agent of peri-implant diseases, it is recognized as a key early colonizer
of artificial biomaterials leading to the aggregation of more pathogenic species [43,44].
The quantification of bacterial colonies before and after TCAH2O2 treatment showed that
no viable bacteria could be detected on either MAC or SBAE specimens after treatment,
resembling the pristine surfaces. This highlights the robust disinfection capabilities of the
TCAH2O2 protocol against the tested bacterial strains. In recent years, the antimicrobial
properties of various agents, including citric acid, chlorhexidine and H2O2, have been
extensively investigated. Citric acid has demonstrated effectiveness against single- and
multispecies biofilms on titanium surfaces [53]. However, it has not been previously
evaluated against mature biofilms and often does not surpass the efficacy of saline rinses.
Chlorhexidine has exhibited bactericidal effects against both early and mature biofilms but
lacks inherent cleaning properties [39,54]. Moreover, its effect as a decontaminant has been
questioned by clinical studies not demonstrating any adjunctive values to its use [14,16].
H2O2 demonstrated a moderate-to-good bactericidal effect but did not exhibit obvious
cleaning properties when used alone [39,55]. In our protocol, the combined solution of TCA
and H2O2 was hypothesized to overcome these limitations. Notably, when other studies
assessed the effectiveness of other chemical decontaminants, a complete elimination of
the biofilm could not be achieved after a single application in the majority of cases, and
repeated administration was needed [56,57]. Even though it was not possible to weigh the
relative contribution of the two components, the biofilm was thoroughly removed after one
single application of TCAH2O2 in our protocol, yielding a high interest for its transability
to the clinical setting.

When reosseointegration is the goal of peri-implantitis treatment, pristine implant sur-
face characteristics should be preserved using the physical/chemical decontaminant agent
proposed [28]. In our investigation, roughness parameters remained largely unchanged
after the TCAH2O2 treatment (even in the absence of previous bacterial contamination),
suggesting that TCAH2O2 treatment did not significantly alter the surface characteristics
of the dental implant materials. When other chemical decontaminants were applied in
similar protocols, citric acid or N-acetyl-L-cysteine gave comparable results in terms of
biofilm removal, although they also displayed a marked cytotoxicity on human cells [58].
We tested a novel formulation of TCA, which is widely used for dermatologic applications
and has now been proposed in the dental field in virtue of its exfoliating and rejuvenating
properties [59]. In our formulation, TCA was mixed with H2O2, recognized as a highly
effective decontamination technique owing to its potent oxidation capabilities [60]. During
this decomposition reaction, a release of highly reactive oxygen species (ROS) takes place,
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enabling the elimination of a wide range of organic and inorganic substances. Interestingly,
when H2O2 was used alone at a relatively high concentration, tribocorrosion of titanium
surfaces was observed [61,62]. Interestingly, we observed that TCAH2O2 action could
maintain its decontamination properties without side effects.

The maintenance of the original implant surface characteristics is a prerequisite for
the decontaminant protocol also in terms of post-wound healing cell adherence [14]. To
evaluate the potential impact of TCAH2O2 treatment on the biological response of dental
implant materials, several parameters were analyzed in our analysis. First, the results of
the protein adsorption assay indicated no significant difference between the pristine and
TCAH2O2-treated surfaces for both MAC and SBAE materials. Protein adsorption at the
biomaterial interface is considered crucial for eliciting a cellular response that promotes
osseointegration [63]. This suggests that the TCAH2O2 treatment did not interfere with the
protein adsorption process that is critical for the integration of dental implants. Notably,
TCA has a long-known effect as a protein-precipitating agent; whereas H2O2 can lead
to a higher protein absorption of modified titanium surfaces, yielding higher wettabil-
ity [64]. We speculate that these emergent properties of TCAH2O2 may biologically favor
reosseointegration.

Second, ASCs were selected as mesenchymal precursors of osteoblasts and were
seeded and grown on the titanium disks after decontamination to perform a cell viability
assay (Figure 2). Despite MSCs from the bone marrow being the most well-characterized
cell sources for bone regeneration, some studies indicate that there is no obvious distinction
between the different MSCs harvested from the oral cavity in terms of regenerative poten-
tial [65]. The higher proliferation of ASCs on SLA than on MAC is in accordance with the
literature, where the surface topography is considered a key factor for cell adhesion, and
rough surfaces are preferred to smooth ones [56,66]. TCAH2O2 treatment did not affect ASC
proliferation on MAC surfaces at any of the three time points studied. However, on SBAE
surfaces, a significant decrease in cell proliferation was observed at 24 and 36 h post-seeding
compared to the pristine surfaces. Notably, this effect was not evident at the 72 h time point.
This suggests that TCAH2O2 treatment may have a transient surface-specific effect on cell
proliferation, potentially connected to surface property changes, whose clinical relevance
still needs to be evaluated. At a mere hypothetical level, it is conceivable that SBAE, due to
its roughness, retained very small quantities of TCAH2O2, which were possibly reduced
along time, allowing for the satisfactory proliferation seen at 72 h. It has to be considered
that TCA has long been suggested as a means to remove the cementoclastic fibrovascular
tissue associated with external root resorption lacunae, in virtue of its effect as a cytostatic
agent [67]. Eventually, we aimed at assessing the impact of TCAH2O2 on cell morphology.
Indeed, cell morphology can be used as a proxy for their viability and functionality. The
visualization of ASCs using fluorescent staining to mark their cytoskeleton and nuclei
revealed no significant differences in cell morphology between the pristine and cleaned
surfaces after 72 h for both MAC and SBAE samples.

This is the first study to test in vitro the decontaminating capabilities of TCAH2O2
for dental implant surfaces. TCAH2O2 worked well even after a single application, a limit
that was usually observed for other chemical decontamination products. However, this
study was conducted in vitro, raising cautious interpretation of the clinical implications.
The use of ASCs may not fully replicate in clinical conditions, and the transient effect
on cell proliferation warrants further investigation. Moreover, the artificially produced
biofilm and the aerobic culture conditions may not adequately mimic the clinical situation
in terms of bacterial adherence to the underlying titanium surface. Lastly, roughness values
and viability tests can only be considered as indirect proxies of the cleaning properties
of TCAH2O2. Comparative studies with other disinfection methods, implant surface
properties, biofilm dissolution evaluations [68,69] as well as clinical trials are needed to
validate our results in practical dental implant scenarios.
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5. Conclusions

Within the limitations of the present study, the chemical cleaning of titanium surfaces
with TCAH2O2 was effective in removing bacterial biofilm from nonmodified and modified
titanium surfaces and in restoring cytocompatibility. In particular, these outcomes were
achieved without significantly altering the surface topography or protein adsorption. While
TCAH2O2 treatment may temporarily affect cell proliferation on certain surfaces, this effect
on cell morphology was transitory. These findings support the potential clinical utility
of TCAH2O2 in enhancing the biocompatibility and safety of dental implant materials.
Further research is warranted to investigate the long-term effects of TCAH2O2 treatment
and its applicability in a clinical setting.
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