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Abstract: It is well known how sequencing technologies propelled cellular biology research in recent
years, providing incredible insight into the basic mechanisms of cells. Single-cell RNA sequencing is
at the front in this field, with single-cell ATAC sequencing supporting it and becoming more popular.
In this regard, multi-modal technologies play a crucial role, allowing the possibility to simultaneously
perform the mentioned sequencing modalities on the same cells. Yet, there still needs to be a clear
and dedicated way to analyze these multi-modal data. One of the current methods is to calculate the
Gene Activity Matrix (GAM), which summarizes the accessibility of the genes at the genomic level,
to have a more direct link with the transcriptomic data. However, this concept is not well defined,
and it is unclear how various accessible regions impact the expression of the genes. Moreover, the
transcription process is highly regulated by the transcription factors that bind to the different DNA
regions. Therefore, this work presents a continuation of the meta-analysis of Genomic-Annotated
Gene Activity Matrix (GAGAM) contributions, aiming to investigate the correlation between the
TF expression and motif information in the different functional genomic regions to understand the
different Transcription Factors (TFs) dynamics involved in different cell types.

Keywords: epigenomic; transcription factors; single-cell data; gene activity matrix; bioinformatics

1. Introduction

Next Generation Sequencing (NGS) technologies serve as the backbone for cutting-
edge cellular biology research, offering a powerful tool to investigate fundamental cell
mechanisms. These technologies, especially single-cell RNA sequencing (scRNA-seq) and
single-cell assays for transposase-accessible chromatin sequencing (scATAC-seq), signif-
icantly contribute to studying cellular states with high resolution, a critical aspect for
understanding cellular heterogeneity.

Widely utilized for profiling thousands of single-cell transcriptional profiles, scRNA-
seq enables the investigation of cellular heterogeneity based on gene expression [1–3].
Simultaneously, the emerging popularity of scATAC-seq proves invaluable. This tech-
nology, by probing the entire genome and assessing accessible chromatin regions, offers
complementary insights into gene regulation processes [4] and expression [5]. While the
integration of scRNA-seq and scATAC-seq through multi-modal technologies is becoming
crucial for understanding cell-related phenomena, the inherent differences in data types
between the two technologies pose challenges to joint analysis [6–8]. Correlating the acces-
sibility of a genomic region with gene expression is not straightforward due to the intricate
machinery involved in transcriptional regulation. scRNA-seq datasets prioritize genes
as prominent features, while scATAC-seq datasets consider genomic regions as features,
making their integration challenging.

To bridge this gap, the gene activity (GA) concept is introduced, summarizing genomic
accessibility information in a form where features are genes, allowing direct comparison
with scRNA-seq matrices [9]. However, defining the relationship between accessible regions
and genes remains unclear.
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The Genomic-Annotated Gene Activity Matrix (GAGAM) approach [10,11] proposes
a promising solution, relying on a genomic model based on annotations to associate
genomic regions with accessible genes. This approach constructs a Gene Activity Matrix
(GAM) with contributions from different functional genomic regions (promoters, exons, and
enhancers). Although GAGAM better models the gene regulatory landscape, it lacks the
representation of the complex gene regulation mechanisms [12], especially the involvement
of Transcription Factors (TFs).

This work aims to address this gap by the preliminary analyzing the correlation be-
tween TF expression and the accessibility of their motifs. Specifically, it explores differences
in motif accessibility in promoter and enhancer regions, aiming to tailor TF information with
GAGAM contributions in a nuanced manner. This work is an extension of the previously
published work documented in [13].

2. Background

To comprehend the proposed analysis, it is essential to introduce the fundamental
technologies underpinning this work.

2.1. Single-Cell Sequencing Technologies

A short overview of the scATAC-seq data organization aids in understanding the
derived concept of Gene Activity (GA). scATAC-seq is a technology offering insights into
the epigenomic state of cells by probing the entire genome. It utilizes the Tn5-transposase
to identify regions where chromatin is open, and DNA sequences are accessible [14]. This
technology enables the investigation not only of genes, as in scRNA-seq, but also of various
functional elements such as enhancers and promoters scattered throughout the genome,
crucial for gene regulation [15,16].

While scRNA-seq data use genes as primary features, scATAC-seq data utilize peaks,
i.e., short genomic regions described by their coordinates on chromosomes. This difference
poses a significant challenge when correlating the two biological levels. One approach to
overcome this hurdle is transforming peaks into gene-like data and comparing the two
technologies. As the introduction mentions, GA serves as one such method [6].

However, current models for defining GA often oversimplify the relationship between a
gene and the accessibility of its genomic region. Certain approaches, such as GeneScoring [17]
and Signac [18], indiscriminately consider peak signals overlapping gene body regions without
distinguishing between coding and non-coding regulatory elements. In contrast, Cicero [6]
adopts a more structured approach, considering various regulatory regions but collapsing the
gene region to a single base. These methods retain minimal biological information from raw
scATAC-seq data, primarily related to gene-coding regions, despite only representing a small
percentage of the entire signal [19].

Beyond these simplistic models, other approaches aim to encompass more accessible
genomic regions and their impact on the overall GA. This work specifically employs
GAGAM, utilizing curated genomic annotations to functionally label peaks and compute
distinct contributions [10].

2.2. GAGAM

GAGAM uses information on various DNA regions, particularly exons and non-
coding regions with regulatory roles, to improve the analysis of biological information
from scATAC-seq data. This model-driven approach aims to support the study of cellular
heterogeneity better. GAGAM lays the groundwork for a detailed investigation into the
relationship between accessibility and expression in single-cell data. Its modular structure
allows the independent computation of contributions, facilitating specific and separate
investigations, which is especially crucial when considering the role of regulatory regions
with challenging relationships to gene expression. Table 1 briefly overviews the three
contributions constituting GAGAM, to provide the necessary background.
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Table 1. Description of GAGAM contribution variables.

Label Contribution Description

prom Dprom
|Pp |×|C|

Contribution from promoter peaks Pp, i.e., peaks
overlapping promoter signatures from ENCODE cCREs
annotation. They are linked to the genes by proximity to
the nearest TSS of a protein-coding gene.

exon Dexon
|Pi |×|C|

Contribution from exon peaks Pi, i.e., peaks overlapping
exon regions from the NCBI RefSeq Genes annotation.
They are linked to the genes they are in.

enhD Denhd
|Pe |×|C|

Contribution from enhancer peaks Pe, i.e., peaks
overlapping enhancer signatures from ENCODE cCREs
annotation. They are linked to the genes by
co-accessibility scores with promoter peaks.

GAGAM operates solely on preprocessed scATAC-seq data organized in the form of a
matrix D|P|×|C|, where P is the set of peaks in the dataset, and C is the set of available cells.
As described in Table 1 GAGAM utilizes the UCSC Genome Browser [20] to obtain genomic
annotations, labeling all peaks p ∈ P overlapping with regions of interest, assigning labels
prom, exon, enhD to peaks, linking accessible peaks to their biological functions. The original
dataset D|P|×|C| is then split into three subsets based on the three sets of labeled peaks:
Dprom

|Pp |×|C|, Denhd
|Pe |×|C|, Dexon

|Pi |×|C|. These three matrices are further processed to obtain the
final gene activity matrix. For a further and more in-depth explanation of the GAGAM
computation, interested readers may refer to [10,11] for a detailed description.

The current GAGAM model, while implementing cis-regulatory elements to calculate
activity scores, solely considers their accessibility. Although it is a good indicator for
assessing involvement in transcription, it overlooks the interaction with TFs. scATAC-
seq data, however, offer ways to investigate TF interactions. Identifying DNA sequences
where TFs can bind, known as Transcription Factor Binding Motifs (TFBMs), is feasible.
However, these motifs, i.e., short sequences of a maximum of a dozen base pairs (bp),
present limitations compared to the hundreds of bp in peaks [5]. Additionally, a motif does
not guarantee TF binding, as the specific TF must be expressed and transcribed by cells
to be actively involved in regulation. When a TF is bound to DNA, the region becomes
inaccessible to the Tn5 Transposase used in scATAC-seq experiments, leaving a detectable
footprint in the signal [14]. However, due to the sparsity of single-cell data, TF footprints
are not measurable for each region with a specific TFBM but require studying the average
signal from all motif instances.

Various types of information are available to study TFs in single-cell experiments, but
looking at only one aspect has limitations. This work proposes a preliminary assessment of
the correlation between the TFBM enrichment, TF footprint signal, and actual TF expression.
Understanding the intricate dynamics of the TF contribution is crucial for proper modeling in
GAGAM. The analysis examines motifs in promoter and enhancer regions independently, as this
separation is central to GAGAM, and different TF interactions occur in these functional regions.

3. Materials and Methods
3.1. Dataset

This work requires a multi-omic dataset to allow a direct comparison between the
epigenetic information (from scATAC-seq) and the gene expression (from scRNA-seq). The
dataset of choice is an open access dataset from the 10X Genomics platform, consisting
of 10,691 cells from adult murine peripheral blood mononuclear cell (PBMC) [21]. The
scATAC-seq part of the dataset has a total of 115,179 peaks as features, while the scRNA-seq
part has 36,601 genes. The tools employed to process and elaborate the data are GAGAM
(the focus of this paper, accessible from [10]) and Seurat (v 5.0.1) [1]. The latter is one of the
most well-known and highly utilized single-cell pipelines. This allows the processing of the
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datasets, which is beneficial since it supports a data structure tailored to contain the results
of different epigenetic analyses. Moreover, Seurat provides a dataset integration approach
to label the cells with known cell-type labels by employing an external reference dataset.
In this way, the cells are divided into cell-type clusters representing the ground truth of
the following analyses. The dataset underwent a quality control check and preprocessing
following standard thresholds. In detail, for gene expression, the process filters out cells
with over 2500 or less than 200 unique gene counts and cells with more than 5% mitochon-
drial reads. For chromatin accessibility, it filters out cells with over 30,000 and less than
3000 fragments reads and then we also checked for nucleosome signal and TSS enrich-
ment. Then, normalization, scaling, principal component analysis (PCA), uniform manifold
approximation and projection (UMAP), and clustering for gene expression have been im-
plemented, while the chromatin accessibility underwent normalization, latent semantic
indexing (LSI), UMAP, and clustering.

3.2. Aggregated Cells

Before starting with the actual meta-analysis, it is worth noting that scRNA-seq and
scATAC-seq only detect a tiny fraction of the actual signal from each cell (around 10–45% for
scRNA-seq and only 1–10% for scATAC-seq [19]). This translates into considerable sparsity
for the data. For each cell, the dataset contains several zero entries that could be false
negatives [22]. This characteristic introduces noise when trying to correlate accessibility
and expression. For this reason, this work explores the idea of performing the analysis
based on the concept of aggregated cell behavior. Specifically, it aggregates cells from the
same cell types obtained from the Seurat integration, representing the average over groups
of cells instead of single cells (Figure 1d). In this way, this work computes the correlation
not on the single cells c ∈ C (where C is the set of cells of the dataset) but on the aggregated
cells ct ∈ CT (where CT is the set of cell-types) representing the average behavior over the
cell types.

CELLS

PE
AK

S

Promoter Peaks

CELLS

TF

scRNA-seq Data

CELLS

PE
AK

S

Enhancer Peaks

CELLS

PE
AK

S
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CELLS
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Motif Enrichment

CELLS
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Contribution

Aggregated 
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Figure 1. Workflow: (a) The scATAC-seq data serve as the input. (b) The data are partitioned into
GAGAM contributions, resulting in promoter and enhancer matrices. (c) For each contribution,
utilizing the JASPAR database, both motif enrichment and TF footprint scores are determined for
all TFs expressed in the dataset. (d) Cells are aggregated based on cell-type annotations. (e) The
two matrices obtained for each contribution are then compared to the expression matrix to analyze
their correlation. (f) Results analysis reveals specific correlations and dynamics between TF expression
and its motif information, with plots showing the TF motif (A), the motif enrichment (C), and the
footprint scores (B,D)
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3.3. TF Motifs and Motif Enrichment Analysis

TFBMs are DNA sequences that bind to transcription factors. Known TFBMs are curated
in JASPAR [23], an open access database storing manually curated transcription factors
binding profiles across multiple species of eukaryotes. These TFBMs are not exact sequences of
nucleotides since there is a natural redundancy of sequences recognized by the TFs. Therefore,
the motif information is stored in a Position Frequencies Matrix (PFM), representing the
probability of finding a specific base for each nucleotide in the binding region. Given that the
motifs are short sequences (6–12 bp), it is likely to find redundant and non-relevant matches
when searching for DNA sequences matching the motif. Therefore, instead of searching
for all possible matches inside accessible regions, it is more common to implement a motif
enrichment analysis. In other words, this type of analysis identifies how much a known motif
is over- or under-represented in a cell’s accessible regions [14]. To do so, this work employs
ChromVAR [24], an R tool for analyzing sparse chromatin accessibility data, providing reliable
motif enrichment functions. The function requires the motif from JASPAR and calculates
the enrichment scores for each of the m ∈ M motif inside each cell, obtaining a final matrix
of ME|M|×|C|. The set of M motifs in this work does not comprehend the total 632 human
motifs provided by JASPAR. It narrows it to the motifs whose corresponding TFs are also
expressed in the dataset since the focus is the correlation of the motif information with the TFs
expression. However, instead of performing, as commonly done, this analysis on the dataset
as a whole, in this work, we are interested in investigating the differences between promoter
and enhancer regions. Therefore, given the two scATAC-seq sub-matrices Dprom

|Pp|×|C|, Denhd
|Pe|×|C|,

the motif enrichment calculation is performed on them separately (Figure 1c), meaning it will
capture the over- or under-representation of the motif specifically in promoter and enhancer
regions. This calculation results in two matrices MEprom

|M|×|C| and MEenhd
|M|×|C|, subsequently

transformed into their aggregated forms MEprom
|M|×|CT| and MEenhd

|M|×|CT|, that this work analyzes
separately (Figure 1c).

3.4. TF Footprints

TFBMs are good indicators for inferring the interaction between DNA and TFs. How-
ever, they only give information on the possible binding locations but do not capture the
actual binding events. Indeed, of the millions of motifs detected on the DNA, only a small
portion are actual binding regions, and even less will be relevant in a certain cell type.
Fortunately, scATAC-seq data can help investigate these binding events through the TF
footprint analysis. In scATAC-seq sequencing experiments, when a TF is bound to the
DNA, it protects that region from sequencing, while the DNA bases immediately adjacent
to TF binding are accessible, leaving, in this way, a sort of footprint in the signal. This
footprint appears as a low signal from the center of the TFBM and a stronger signal from
its immediate flanking regions. Ideally, the footprint would be detectable for each cell
and location, but it would require a much higher sequencing depth than the technology
provides. Therefore, the signal from all the motif occurrences is aggregated. Specifically,
this work calculates for each motif in each cell the aggregated sequencing signal at the motif
and its surrounding ±250 bp, as shown in Algorithm 1. The result is a list of |M| vectors
FPm = [ f p1, ..., f pn] with n = 500+ length of the ith motif, where each element represents
the average normalized bias-corrected insertion signal for all the base pairs surrounding
all the occurrences of the accessible motif inside a cell. This calculation is lengthy and
computationally heavy for all the motifs. From it, it is possible to define the footprint score
of the motif in the cells as the average signal from the motif flanking regions defined as
±50 bp from the motif.

Again, this work differentiates the signal from the promoter and enhancer regions.
This calculation is performed on the two matrices separately, obtaining TFPprom

|M|×|C| and

TFPenhd
|M|×|C| where the matrices elements are the footprint scores of motif m ∈ M in cell

c ∈ C. Also, in this case, this work aggregates cells based on their cell-type labels, resulting
in the final matrices TFPprom

|M|×|CT|, TFPenhd
|M|×|CT| where CT is the list of cell-types.
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Algorithm 1 Footprint score computation

1: for m in M do ▷ m → is a single motif/TF
2: Compute the footprint signal vector FPm = [ f p1, ..., f pn]
3: end for
4: for c in C do ▷ c → is a single cell
5: for m in M do
6: Compute the footprint score TFPm×c
7: end for
8: end for
9: for ct in CT do ▷ ct → is a single cell type

10: for m in M do
11: Compute TFPm,ct the average footprint score of m ∀c ∈ ct
12: end for
13: end for

3.5. Correlation with Expression

As previously highlighted, this study aims not only to explore TFs through their motif
accessibility but, more significantly, to comprehend their correlation with expression levels.
Before delving into this analysis, a brief overview of the gene expression matrix formalism
is necessary. The considered multi-omic dataset provides a gene expression matrix E|G|×|C|,
encompassing 29,372 genes detected in the experiment. The matrix is then narrowed to
the set M of genes associated with TFss, resulting in a sub-matrix E|M|×|C|. Subsequently,
as discussed in Section 3.2, the expression values are averaged across cell types, yielding
the final E|G|×|CT| matrix (Figure 1e). This matrix serves as the foundation for subsequent
comparisons. The correlation study follows the approach employed in [13], where the
Pearson correlation between the expression and motif information is calculated for each
gene in the aggregated cells. These correlations are then presented through scatter plots to
illustrate the general correlation within each cell type visually. The investigation covers
motif enrichment versus expression and TF footprint scores versus expression, consistently
differentiating between promoter and enhancer contributions (Figure 1f).

This methodology enables exploring the intricate relationship between inferable infor-
mation related to TFs from accessible regions and their expression patterns.

4. Results
4.1. Enhancer Regions Shows More Variability in Motif Information

When examining the motif enrichment matrices MEprom
|M|×|C| and MEenhd

|M|×|C|, it is note-
worthy that the enrichment in enhancer regions exhibits more pronounced variability
compared to the enrichment in promoter regions. This contrast is clearly illustrated in
Figure 2, where the variability in TFBM enrichment is markedly higher in enhancer regions
than in promoters. In studying cellular heterogeneity, this observation underscores the
substantial contribution of enhancer regions in conveying relevant differences in motif
accessibility. Analyzing data with higher variability is crucial for detecting distinctions
between cell populations and emphasizing the significance of enhancer regions in the epige-
netic context. However, the information derived from promoters should not be overlooked.
Notably, from Figure 2, it is interesting to observe that the most variable TFBMs in promoter
regions belong to the FOS and JUN TF families. These families are known to aggregate
and form the complex Activator Protein-1 (AP-1), which binds to promoters, regulating
the nuclear gene expression in T-cells. Further discussion on this TFs is provided in the
subsequent Section 4.2.
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Figure 2. The TFs variability for promoter motif enrichment (left) and enhancer motif enrichment
(right). For the promoter motif enrichment, the top TFs belong to FOS and JUN TF families known to
bind to promoter regions.

These distinctions are illustrated in Figure 3, where each black dot in the violin plots
represents the motif enrichment of a TF for each cell type. Notably, enhancer regions only
exhibit a few TFBMs with the noteworthy enrichment, underscoring their significance in
each cell type. It is well established that only a subset of TFs influences gene regulation
in a given cell type, especially when regulating cell-type-specific gene pathways [25].
Thus, identifying a limited number of highly enriched TFBMs per cell type aligns with
expectations. Consequently, enhancer regions demonstrate a higher sensitivity to cell
type-specific motif accessibility than promoter regions. This observation is consistent with
the findings in [13], emphasizing the substantial contribution of enhancers to the epigenetic
signal in scATAC-seq and their more significant variability in correlation with expression.
Once again, these results underscore the importance of modeling promoter and enhancer
contributions differently, highlighting the limitations of approaches that solely focus on
promoters and overlook valuable information.
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4.2. General Correlation with Expression Is Low

Having explored the distinctions between enhancer and promoter regions, this section
delves into their correlation with the actual expression of TFs. In contrast to the findings in [13],
interpreting the correlation between TFs expression and their accessibility information is less
straightforward. The general Pearson correlation scores are relatively low. Specifically, for the
expression-TFBM enrichment correlation in both promoter and enhancer regions, only around
15% of TFs exhibit a higher correlation than 0.5 (with significant p-values < 0.05). Conversely,
examining the expression-TF footprint correlation, 19% of TFs show a correlation higher than
0.5 (with significant p-values < 0.05) in enhancer regions, which increases to 42% in promoter
regions. This overall low correlation is expected, considering that, as discussed earlier, only a
subset of TFs will be relevant in a particular cell type, resulting in coherent and correlated motif
information for only some of them.

This observation becomes more evident when referring to Figure 4. Each point on
these plots represents a single TF for each cell type. Notably, many TFs are clustered in
the bottom left corner of the motif enrichment plots, indicating low expression and motif
enrichment. The interesting aspect lies in the TFs characterizing each cell type, identifiable
in the top-right section of the plots. Here, TFs that are relevant from both expression and
motif perspectives are found. Notably, these TFs tend to be cell type-specific, emphasizing
that, for each cell type, a distinct subset of TFs is captured in this quadrant, aligning with
the previous comments on the relevance of specific TFs for different cell types.

Furthermore, these cell-type-specific TFs show consistency between the two motif
levels. Examples include BACH1, CEBPB, and CEBPD, which are characteristic for CD14+
Monocytes in both motif enrichment and footprint score. This consistent dual information is
crucial for identifying and studying cell-type-specific TF mechanisms and regulation, which
is not apparent when solely considering expression levels. CTCF, for instance, appears
to have a strong signal in all cell types despite its low expression. This characteristic is
only discernible when examining enhancers, highlighting a specific correlation between the
CTCF and enhancer regions. This aligns with its known role in DNA bending, facilitating
interaction between promoters and enhancer regions [26].

Lastly, beyond these general observations, investigating the differences between differ-
entiated cell types, such as naive and memory CD4+ T-cells, could unveil specific TF motif
patterns involved in the differentiation or proliferation processes. This aspect is explored
in the following section, examining various types of correlation for selected TFs.

4.3. Motif Information Highlights Differences in AP-1 Subunits

The AP-1 TF is a dimeric transcription factor composed of two subunits, typically
belonging to the Fos and Jun TF families. It is a key regulator in processes such as cell
proliferation, differentiation, and apoptosis [27,28]. Numerous studies highlight its impact
on T-cell activation, the initial step driving the differentiation and proliferation of Naive
T-cells into various specialized T-cell subsets [29,30]. As evident from the scatter plots
(Figure 4), both FOS and JUNB consistently occupy the top region for all cell types. This
trend is further elucidated in Figure 5 and Supplementary Figure S1, which present various
details for FOS and JUNB, respectively. The violin plots depict the expression (B, top) and
motif enrichment (B, bottom) of the TF in each cell type. While the gene expression appears
relatively consistent across cell types, there is a distinct separation in motif enrichment.

Crucially, CD4 Memory and CD8 Effector T-cells exhibit significantly higher enrich-
ment than their respective naive T-cells, aligning with the discussed activation mechanism.
This pattern is reinforced by the TF footprints, as illustrated in Figure 5C, representing the
expression-TF footprint of FOS for each cell type. Once again, naive T-cells exhibit noticeably
lower footprint scores than their counterparts. This distinction becomes more apparent in the
plots in Figure 5D, showing the average signal around the motifs. For clarity, only CD4 naive
and memory cells are depicted, demonstrating the stronger footprint signal for memory T-cells.
Importantly, this variation is only evident for enhancers and not promoters, underscoring the
notable differences between the signals from functional genomic regions.
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Figure 4. Scatter plots for the expression-motif enrichment and expression-TF footprint correlation.
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FO
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Promoter footprint

FOS
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(D)(B)

Figure 5. Transcription actor FOS. (A) PFM visualization for FOS’s motif MA0476.1. (B) Violin plot
of expression (top) and motif enrichment (bottom), for all cell types. (C) Scatter plot of footprint
score-expression of FOS for all cell types. (D) Tn5 insertion plots for Memory and Naive CD4 T−cells.

A similar pattern is observed for the gene BATF. As depicted in Supplementary Figure S2,
the expression is uniformly low across all cell types. However, both motif enrichment and
footprint scores exhibit variations between naive and memory cells, which are especially
noticeable between CD8 naive and CD8 effector T-cells. BATF is recognized for its involvement
in the functional development of CD8 T-cells [31,32], once again emphasizing how the dynamic
of the TFs expression alone may not suffice to discern specific changes between cell types.

In conclusion, the FOS and JUNB TF, subunits of AP-1, exhibit a significant correla-
tion with certain cell types in their motif information despite minimal variability at the
transcriptional level. This result, coupled with observations on BATF, underscores that TFs
expression alone may not be adequate to identify crucial differences in specific cellular
processes; it must be complemented by an examination at the epigenetic level for a more
comprehensive understanding.

4.4. Specific TFs Shows Differences Only at the Expression Levels

FOS and JUNB TFs are not the only ones with differences in expression and motif
information behavior. Indeed, the TF BACH2 has a similar interesting behavior. BACH2 is
a known regulator in the B-cells development [33], by orchestrating the early specification
and commitment of B-cell progenitors [34]. However, Figure 6 shows a peculiar behavior
in its motif information. Looking at Figure 6B, it is evident that there is a gene expression
differentiation between cell types, particularly between B-cell progenitors and pre-B-cells,
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that becomes overexpressed in the latter. However, the motif enrichment in these two cell
types is pretty much identical, implying that only the TF expression drives this differentia-
tion, an opposite behavior to FOS and JUNB. Furthermore, the footprint plots in Figure 6D
show no difference between the two cell types.

FO

Enhacer footprint

Promoter footprint

BACH2

(A) (C)

(D)(B)

Figure 6. Transcription factor BACH2. (A) PFM visualization for BACH2’s motif MA1101.2. (B) Violin
plot of the expression (top) and motif enrichment (bottom) for all cell types. (C) Scatter plot of footprint
score−expression of BACH2 for all cell types. (D) Tn5 insertion plots for B−cell progenitors and
pre−B−cells.

Furthermore, the motif enrichment in the other cell types seems to have an inverse
trend to the expression. Indeed, cell types with the highest expression (such as naive
T-cells and pre-B-cells) display the lowest enrichment. This inverse correlation is even
more evident from Figure 6C, showing how cell types with a lower expression have higher
footprint scores and vice versa. This peculiar behavior seems counterintuitive since one
would expect not to see a higher expression if the motif is that much accessible. However,
from the literature, BACH2 is highly characterized as a repressor TF [35], which regulates
B-cells by suppressing specific genes related to the myeloid program. Hence, the observed
inverse correlation for this gene may indicate a distinctive repressive dynamic. In cells
where BACH2 is active, the motif of this gene becomes generally less accessible but more
specific, fine-tuning its repression mechanism and subsequently leading to an increase
in its expression. BACH2 exhibits a unique connection between its expression and motif
information, serving as an intriguing indicator to discern repressive dynamics from the
more common enhancing dynamics. This observation is of the utmost importance, as an
effective transcriptional regulation model should accurately represent these two markedly
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different dynamics. Currently, there remains a need for consensus or comprehensive
information to distinguish the intricacies of silencing processes.

4.5. TFs Characterize Cell Types at Both Expression and Motif Information Levels

In this concluding section, it is pertinent to showcase genes that exhibit coherent
and cell-type-specific correlations between their expression and motif information. For
instance, the transcription factor CEBPD, depicted in Figure 7, is recognized for its role
in the inflammatory response of monocytes [36–38]. This functional role is reflected in
its expression and motif information, as illustrated in Figure 7B. CEBPD is selectively
expressed in monocytes and dendritic cells while significantly over-enriched in these cell
types. This observation is reinforced by the footprint score, where the scatter plot indicates
that these subtypes are situated in the top-right corner, signifying that CEBPD plays a
regulatory role in these cells at both the transcriptomic and epigenomic levels.

FO

Enhacer footprint

Promoter footprint

CEBPD

(A) (C)

(D)(B)

Figure 7. Transcription factor CEBPD. (A) PFM visualization for CEBPD’s motif MA0836.2.
(B) Violin plot of expression (top) and motif enrichment (bottom), for all cell types. (C) Scatter
plot of footprint score−expression of CEBPD for all cell types. (D) Tn5 insertion plots for CD14+ and
CD16+ monocytes and dendritic cells.

Similarly, Figure 8 presents the findings for the TF POU2F2. This TF holds considerable
significance in B-cells, particularly in motif enrichment, as it exhibits the highest motif
enrichment signal among those investigated. This observation aligns with the footprint
in Figure 8D, showcasing a prominent signal at the flanking regions for both subtypes.
Once again, the scatter plot illustrates that B-cells consistently reside in the top-right corner,
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indicating high expression and footprint scores, while other subtypes occupy the opposite
bottom-left corner.

FO

Enhacer footprint

Promoter footprint

POU2F2

(A) (C)

(D)(B)

Figure 8. Transcription factor POU2F2. (A) PFM visualization for POU2F2’s motif MA0507.1.
(B) Violin plot of expression (top) and motif enrichment (bottom), for all cell types. (C) Scatter
plot of footprint score−expression of POU2F2 for all cell types. (D) Tn5 insertion plots for B−cell
progenitors and pre−B−cells.

Similar observations apply to the TFs TCF7 and LEF1 (see Supplementary Figures S3 and S4).
Both are characteristic of T-cells and demonstrate coherence between expression and motif
information. Notably, there is a discernible difference in CD8 effector cells, which exhibit a weaker
correlation than other T-cell subtypes. This discrepancy may highlight a specific dynamic of these
TFs in those subtypes, which could be crucial in distinct biological processes.

In conclusion, what ties these genes together is their specific relevance in distinct
subtypes at both the expression and motif information levels. Therefore, modeling their im-
pact on transcriptional regulation is essential, as they likely serve as specialized regulators
characterizing various biological processes.

5. Conclusions

This work presents a comprehensive analysis of the correlation between the motif
information obtainable from scATAC-seq data and the expression of the TFs themselves.
This analysis is crucial for understanding transcriptional regulation, which the TFs are
a crucial part of. The increasing power of multi-omic sequencing technologies assists in
this, simultaneously allowing the investigation of the expression and DNA accessibility of
relevant regions related to transcriptional regulation. Specifically, this work investigates
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the motif presence in accessible enhancer and promoter regions distinctively. Two types
of information are considered: the motif enrichment, representing how much a motif is
over-represented in determined regions, and the TF footprint scores, representing the
signal of a TF binding event. This analysis brought some interesting results. First, there
is a remarkable difference between the signal from enhancers and promoters, with the
first showing a more significant variability between cell types and highlighting different
types of TFs. These differences show the importance of a distinct analysis of the two types
of functional regions, which need to be studied separately to properly understand the
intricacies of transcriptional regulation.

However, the correlation between the motif information and the expression is low,
whatever contribution one considers. This result is partially expected since only a small
subset of the TFs is cell-type specific and, consequentially, is coherent between the omic
levels. However, the reported results highlight the differential behaviors of specific TFs
between certain cell types. The exciting part is that the results highlighted different correla-
tion patterns in the motif information, indicating the necessity of modeling their impact on
transcription in specific manners.

Like all approaches, this work also has disadvantages. The primary constraint of
this method arises from the inherent high sparsity of scATAC-seq data. The limited
signal for each cell renders it impractical to explore motif information at a single-cell
resolution. Instead, one must rely on the aggregated behavior of a cell type or a group of
cells. Furthermore, this study delves into the self-dynamics of transcription factors (TFs)
without yet investigating their impact on the genes they regulate.

This work focused on the TFs by themselves, looking at the different information
inferred by the multi-omic data. However, this is only the first step in modeling the
transcriptional regulation. Future work will aim to understand the correlation between the
TFs and their putative target genes, trying to understand how the motif information from
scATAC-seq data can influence gene expression. Moreover, it will be relevant to practically
model this correlation in an extension of the gene activity concept, specifically GAGAM,
which will not only investigate the general DNA accessibility but will consider a higher level
of information to model the transcriptional regulation correctly. Recognizing the intricate
connection between the expression of TFs and the accessibility of their binding regions will
be essential in defining a transcriptional regulation model that can accurately capture their
impact on gene expression. Additionally, the diverse behaviors we have highlighted may
serve as key indicators of undiscovered dynamics within the TFs themselves. This will be
valuable for both understanding cell-type-specific processes and in cellular heterogeneity
studies and capture fundamental mechanisms in specific pathologies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15030268/s1, Figure S1: Transcription Factor JUNB; Figure S2:
Transcription Factor BATF; Figure S3: Transcription Factor TCF7; Figure S4: Transcription Factor LEF1.

Author Contributions: Conceptualization, L.M.; methodology, L.M.; software, L.M.; validation, L.M.;
formal analysis, L.M. and R.B.; investigation, L.M. and R.B.; resources, L.M.; data curation, L.M.;
writing—original draft preparation, L.M., R.B. and S.D.C.; writing—review and editing, L.M., R.B.,
A.S. and S.D.C.; visualization, L.M., R.B., A.S. and S.D.C.; supervision, A.S. and S.D.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in NCBI
GENE Expression Omnibus (GEO) with accession number GSE96769, and from the freely available
10XGenomic platform at https://github.com/smilies-polito/GAGAM, accessed on 29 December
2022. All the code employed for this work is available at https://github.com/smilies-polito/MAGA

https://www.mdpi.com/article/10.3390/genes15030268/s1
https://www.mdpi.com/article/10.3390/genes15030268/s1
https://github.com/smilies-polito/GAGAM
https://github.com/smilies-polito/MAGA


Genes 2024, 15, 268 15 of 16

(accessed on 16 December 2023), including all the Supplementary Materials and figures, accessible in
Zenodo with the DOI https://doi.org/10.5281/zenodo.10517230.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, G.; Ning, B.; Shi, T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front. Genet. 2019, 10, 317.

[CrossRef]
2. Martini, L.; Bardini, R.; Di Carlo, S. Meta-Analysis of cortical inhibitory interneurons markers landscape and their performances

in scRNA-seq studies. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Houston, TX, USA, 9–12 December 2021; pp. 253–258. [CrossRef]

3. Martini, L.; Amprimo, G.; Di Carlo, S.; Olmo, G.; Ferraris, C.; Savino, A.; Bardini, R. Neuronal Spike Shapes (NSS): A
straightforward approach to investigate heterogeneity in neuronal excitability states. Comput. Biol. Med. 2024, 168, 107783.
[CrossRef] [PubMed]

4. Buenrostro, J.D.; Corces, M.R.; Lareau, C.A.; Wu, B.; Schep, A.N.; Aryee, M.J.; Majeti, R.; Chang, H.Y.; Greenleaf, W.J. Integrated
Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell 2018, 173, 1535–
1548.e16. [CrossRef]

5. Baek, S.; Lee, I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Comput. Struct.
Biotechnol. J. 2020, 18, 1429–1439. [CrossRef]

6. Chen S.; Lake, B.B.; Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell.
Nat. Biotechnol. 2019, 37, 1452–1457. [CrossRef] [PubMed]

7. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al.
Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587. [CrossRef] [PubMed]

8. Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics data integration, interpretation, and its application.
Bioinform. Biol. Insights 2020, 14, 1177932219899051. [CrossRef]

9. Pliner, H.A.; Packer, J.S.; McFaline-Figueroa, J.L.; Cusanovich, D.A.; Daza, R.M.; Aghamirzaie, D.; Srivatsan, S.; Qiu, X.; Jackson,
D.; Minkina, A.; et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol. Cell
2018, 71, 858–871. [CrossRef] [PubMed]

10. Martini, L.; Bardini, R.; Savino, A.; Di Carlo, S. GAGAM v1.2: An Improvement on Peak Labeling and Genomic Annotated Gene
Activity Matrix Construction. Genes 2023, 14, 115. [CrossRef]

11. Martini, L.; Bardini, R.; Savino, A.; Di Carlo, S. GAGAM: A Genomic Annotation-Based Enrichment of scATAC-seq Data for
Gene Activity Matrix. In Proceedings of the Bioinformatics and Biomedical Engineering; Rojas, I., Valenzuela, O., Rojas, F., Herrera,
L.J., Ortuño, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 18–32.

12. Martini, L.; Savino, A.; Bardini, R.; Carlo, S.D. GRAIGH: Gene Regulation accessibility integrating GeneHancer database. bioRxiv
2023. [CrossRef]

13. Martini, L.; Bardini, R.; Savino, A.; Di Carlo, S. Meta-analysis of Gene Activity (MAGA) Contributions and Correlation with Gene
Expression, Through GAGAM. In Proceedings of the Bioinformatics and Biomedical Engineering; Springer Nature: Cham, Switzerland,
2023; pp. 193–207.

14. Yan, F.; Powell, D.R.; Curtis, D.J.; Wong, N.C. From reads to insight: A hitchhiker’s guide to ATAC-seq data analysis. Genome Biol.
2020, 21, 22. [CrossRef] [PubMed]

15. Kelsey, G.; Stegle, O.; Reik, W. Single-cell epigenomics: Recording the past and predicting the future. Science 2017, 358, 69–75.
[CrossRef]

16. Danese A.; Richter M.L.; Chaichoompu, K.; Fischer, D.S.; Theis, F.J.; Colomé-Tatché, M. EpiScanpy: Integrated single-cell
epigenomic analysis. Nat. Commun. 2021, 12, 5228. [CrossRef]

17. Lareau C.A.; Duarte F.M.; Chew, J.G.; Kartha, V.K.; Burkett, Z.D.; Kohlway, A.S.; Pokholok, D.; Aryee, M.J.; Steemers, F.J.;
Lebofsky, R.; et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol.
2019, 37, 916–924. [CrossRef]

18. Stuart T.; Srivastava, A.; Madad, S.; Lareau, C.A.; Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 2021, 18,
1333–1341. [CrossRef]

19. Chen, H.; Lareau, C.; Andreani, T.; Vinyard, M.E.; Garcia, S.P.; Clement, K.; Andrade-Navarro, M.A.; Buenrostro, J.D.; Pinello, L.
Assessment of Computational Methods for the Analysis of Single-Cell ATAC-Seq Data. Genome Biol. 2019, 20, 241. [CrossRef]

20. Kent, J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The Human Genome Browser at UCSC.
Genome Res. 2002, 12, 996–1006. [CrossRef]

21. 10XGenomics. 10k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor Single Cell Multiome ATAC + Gene
Expression Dataset by Cell Ranger ARC 2.0.0. Available online: https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-
multiome-v-1-0-chromium-controller-1-standard-2-0-0 (accessed on 9 August 2021).

22. Hwang B.; Lee, J.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 1–14.
[CrossRef] [PubMed]

https://doi.org/10.5281/zenodo.10517230
http://doi.org/10.3389/fgene.2019.00317
http://dx.doi.org/10.1109/BIBM52615.2021.9669888
http://dx.doi.org/10.1016/j.compbiomed.2023.107783
http://www.ncbi.nlm.nih.gov/pubmed/38056213
http://dx.doi.org/10.1016/j.cell.2018.03.074
http://dx.doi.org/10.1016/j.csbj.2020.06.012
http://dx.doi.org/10.1038/s41587-019-0290-0
http://www.ncbi.nlm.nih.gov/pubmed/31611697
http://dx.doi.org/10.1016/j.cell.2021.04.048
http://www.ncbi.nlm.nih.gov/pubmed/34062119
http://dx.doi.org/10.1177/1177932219899051
http://dx.doi.org/10.1016/j.molcel.2018.06.044
http://www.ncbi.nlm.nih.gov/pubmed/30078726
http://dx.doi.org/10.3390/genes14010115
http://dx.doi.org/10.1101/2023.10.24.563720
http://dx.doi.org/10.1186/s13059-020-1929-3
http://www.ncbi.nlm.nih.gov/pubmed/32014034
http://dx.doi.org/10.1126/science.aan6826
http://dx.doi.org/10.1038/s41467-021-25131-3
http://dx.doi.org/10.1038/s41587-019-0147-6
http://dx.doi.org/10.1038/s41592-021-01282-5
http://dx.doi.org/10.1186/s13059-019-1854-5
http://dx.doi.org/10.1101/gr.229102
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
http://dx.doi.org/10.1038/s12276-018-0071-8
http://www.ncbi.nlm.nih.gov/pubmed/30089861


Genes 2024, 15, 268 16 of 16

23. Rauluseviciute, I.; Riudavets-Puig, R.; Blanc-Mathieu, R.; Castro-Mondragon, J.A.; Ferenc, K.; Kumar, V.; Lemma, R.B.; Lucas,
J.; Chèneby, J.; Baranasic, D.; et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding
profiles. Nucleic Acids Res. 2023, 52, D174–D182. [CrossRef] [PubMed]

24. Schep, A.N.; Wu, B.; Buenrostro, J.D.; Greenleaf, W.J. chromVAR: Inferring transcription-factor-associated accessibility from
single-cell epigenomic data. Nat. Methods 2017, 14, 975–978. [CrossRef]

25. Lee, B.K.; Bhinge, A.A.; Battenhouse, A.; McDaniell, R.M.; Liu, Z.; Song, L.; Ni, Y.; Birney, E.; Lieb, J.D.; Furey, T.S.; et al. Cell-type
specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human
cells. Genome Res. 2012, 22, 9–24. [CrossRef]

26. Holwerda, S.J.B.; de Laat, W. CTCF: The protein, the binding partners, the binding sites and their chromatin loops. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 2013, 368, 20120369. [CrossRef]

27. Eferl, R.; Wagner, E.F. AP-1: A double-edged sword in tumorigenesis. Nat. Rev. Cancer 2003, 3, 859–868. [CrossRef]
28. Hess, J.; Angel, P.; Schorpp-Kistner, M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965–5973.

[CrossRef]
29. Yukawa, M.; Jagannathan, S.; Vallabh, S.; Kartashov, A.V.; Chen, X.; Weirauch, M.T.; Barski, A. AP-1 activity induced by

co-stimulation is required for chromatin opening during T cell activation. J. Exp. Med. 2020, 217, jem.20182009. [CrossRef]
30. Atsaves, V.; Leventaki, V.; Rassidakis, G.Z.; Claret, F.X. AP-1 transcription factors as regulators of immune responses in cancer.

Cancers 2019, 11, 1037. [CrossRef]
31. Tsao, H.W.; Kaminski, J.; Kurachi, M.; Barnitz, R.A.; DiIorio, M.A.; LaFleur, M.W.; Ise, W.; Kurosaki, T.; Wherry, E.J.; Haining,

W.N.; et al. Batf-mediated epigenetic control of effector CD8+ T cell differentiation. Sci. Immunol. 2022, 7, eabi4919. [CrossRef]
32. Kurachi, M.; Barnitz, R.A.; Yosef, N.; Odorizzi, P.M.; DiIorio, M.A.; Lemieux, M.E.; Yates, K.; Godec, J.; Klatt, M.G.; Regev, A.; et al.

The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol.
2014, 15, 373–383. [CrossRef]

33. Ochiai, K.; Igarashi, K. Exploring novel functions of BACH2 in the acquisition of antigen-specific antibodies. Int. Immunol. 2023,
35, 257–265. [CrossRef]

34. Kaiser, F.M.P.; Janowska, I.; Menafra, R.; de Gier, M.; Korzhenevich, J.; Pico-Knijnenburg, I.; Khatri, I.; Schulz, A.; Kuijpers,
T.W.; Lankester, A.C.; et al. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood 2023,
142, 1113–1130. [CrossRef] [PubMed]

35. Itoh-Nakadai, A.; Hikota, R.; Muto, A.; Kometani, K.; Watanabe-Matsui, M.; Sato, Y.; Kobayashi, M.; Nakamura, A.; Miura, Y.;
Yano, Y.; et al. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program.
Nat. Immunol. 2014, 15, 1171–1180. [CrossRef]

36. Spek, C.A.; Aberson, H.L.; Butler, J.M.; de Vos, A.F.; Duitman, J. CEBPD potentiates the macrophage inflammatory response
but CEBPD knock-out macrophages fail to identify CEBPD-dependent pro-inflammatory transcriptional programs. Cells 2021,
10, 2233. [CrossRef]

37. Ko, C.Y.; Chang, W.C.; Wang, J.M. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J. Biomed.
Sci. 2015, 22, 6. [CrossRef]

38. Liu, J.; Gao, H.; Li, C.; Zhu, F.; Wang, M.; Xu, Y.; Wu, B. Expression and regulatory characteristics of peripheral blood immune
cells in primary Sjögren’s syndrome patients using single-cell transcriptomic. iScience 2022, 25, 105509. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/nar/gkad1059
http://www.ncbi.nlm.nih.gov/pubmed/37962376
http://dx.doi.org/10.1038/nmeth.4401
http://dx.doi.org/10.1101/gr.127597.111
http://dx.doi.org/10.1098/rstb.2012.0369
http://dx.doi.org/10.1038/nrc1209
http://dx.doi.org/10.1242/jcs.01589
http://dx.doi.org/10.1084/jem.20182009
http://dx.doi.org/10.3390/cancers11071037
http://dx.doi.org/10.1126/sciimmunol.abi4919
http://dx.doi.org/10.1038/ni.2834
http://dx.doi.org/10.1093/intimm/dxac065
http://dx.doi.org/10.1182/blood.2023019721
http://www.ncbi.nlm.nih.gov/pubmed/37369082
http://dx.doi.org/10.1038/ni.3024
http://dx.doi.org/10.3390/cells10092233
http://dx.doi.org/10.1186/s12929-014-0110-2
http://dx.doi.org/10.1016/j.isci.2022.105509

	Introduction
	Background
	Single-Cell Sequencing Technologies
	GAGAM

	Materials and Methods
	Dataset
	Aggregated Cells
	TF Motifs and Motif Enrichment Analysis
	TF Footprints
	Correlation with Expression

	Results
	Enhancer Regions Shows More Variability in Motif Information
	General Correlation with Expression Is Low
	Motif Information Highlights Differences in AP-1 Subunits
	Specific TFs Shows Differences Only at the Expression Levels
	TFs Characterize Cell Types at Both Expression and Motif Information Levels

	Conclusions
	References

