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The main goal of Fault Detection and Diagnosis (FDD) processes is to identify faults,
determine their sources, and recognize solutions before the system is further harmed or
service is lost. Therefore, fully understanding an FDD process requires knowledge of the
definition of “fault”. Melgaard et al. [1] and Chen et al. [2] indicated that “a fault is an
unpermitted deviation of at least one characteristic property (feature) of the system from
the acceptable, usual, standard condition”. Moreover, according to Chen et al. [2], the
additional definitions of “malfunction” and “failure” have to be clarified and taken into
account; a “failure” is defined as “a permanent interruption of a system’s ability to perform
a required function under specified operating conditions”, whereas a “malfunction” is
defined as “an intermittent irregularity in the fulfillment of a system’s desired function”.
One system may malfunction due to a fault, which may ultimately result in the failure of
that system.

Typically, FDD is characterized by three key processes: fault isolation, fault identifi-
cation, and fault detection [1]. Fault diagnosis is the term used to describe fault isolation
and fault identification. Without identifying the root cause of the defect, fault detection
seeks to identify improper operation in a system (by merely indicating that something is
not operating as intended). Contrarily, fault diagnostics seek to pinpoint the type of defect
that occurred in a system, as well as its location, severity, and timing. Melgaard et al. [1]
suggested that fault evaluation might come after fault detection and diagnosis, with the
fault impact on a system that can be evaluated in terms of energy consumption, expenses,
indoor comfort, equipment lifetime, etc. After evaluating the fault, a choice is made on
whether or not to take actions in response to the fault occurrence. Detection, isolation,
identification, and evaluation are the four phases that make up the procedure known as
Automated Fault Detection and Diagnosis (AFDD).

This editorial provides an overview on the current research trends in the field of FDD,
with specific reference to applications in heating, ventilation and air-conditioning (HVAC)
systems. Key findings of several recent studies collected from scientific papers published
in the journal Energies in the last 4 years are discussed. In particular, three main topics are
analyzed: (i) FDD classification and taxonomy, (ii) approaches to data-driven FDD in HVAC
systems, (iii) deployment of FDD strategies in buildings and related impact assessment.

According to Chen et al. [2], different FDD programs generally adopt inconsistent
fault naming rules, with arbitrary fault names being used by multiple FDD tool vendors
or even between different iterations of the same software tool. This issue makes the
data more difficult to be analyzed and generates a clear mismatch across various FDD
reports or software (with the risk that fault messages can only be interpreted by FDD
tool developers). In order to combine the data from various sources into a coherent and
shared knowledge framework, system and software outputs that present inconsistent
naming conventions, hierarchical physical granularity of reporting, and descriptions of
efficiency possibilities must be synthesized. To create data models and improve data
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representability and interoperability, two semantic techniques can be used: one type uses
a taxonomy to define data terminology; the other uses an ontological frame to explain
data structure and relations. Despite the fact that different methodologies were used
to create a fault taxonomy in the HVAC industry, Chen et al. [2] highlighted that these
methodologies rarely took the faults reported by FDD software into account; as a result,
the developed taxonomy was insufficient to describe data obtained from different FDD
tool reports. This is primarily because (i) the physical configuration elements of an HVAC
system were not fully addressed by the majority of FDD tools, and (ii) the existing taxonomy
does not effectively depict relationships between different types of defects. Because of
this, Chen et al. [2] introduced a consistent taxonomy for HVAC system defects to permit
effective comprehension and mining of the data from different FDD software reports. They
created a taxonomy including a design schema made up of four components: (1) equipment
physical configuration hierarchy, (2) controlled vocabularies for fault nature descriptions,
(3) unified fault identification codes and fault library, and (4) fault relation models for
locating condition-based faults and related behavior-based faults. The proposed taxonomy
includes a library of 293 defects and covers three main types of HVAC systems (RoofTop
Units (RTUs), Air-Handling Units (AHUs), and Air Terminal Units (ATUs)).

In the past, FDD approaches have been categorized in a number of ways in the liter-
ature. According to Rafati et al. [3], there are two primary categories of FDD techniques
used in buildings: knowledge-based and data-driven-based approaches. Knowledge-based
approaches rely on the use of past information to construct rules or models for defect de-
tection and diagnosis; expert engineers must put in a lot of effort to use knowledge-based
approaches since they are very sophisticated, and the related models are difficult to be
adapted to new systems and settings because they are tailored to specific ones [3]. On
the other hand, data-driven approaches, which typically do not use physics-based laws,
can automatically extract patterns for FDD based on the similarity of metrics. The main
drawback of such methods is the requirement for separate datasets of both faulty and fault-
free operations; as a result, training with unidentified faulty data can produce inaccurate
FDD results, and may reduce the ability to detect and diagnose faults. Therefore, these
FDD techniques cannot be used for newly installed systems or new operational situations
due to the lack of data [3]. In recent decades, the majority of research on FDD has focused
on data-driven methods as reported by Rafati et al. [3]. In particular, non-intrusive load
monitoring has been developed to determine the power consumption of home appliances
and equipment using an aggregated power measurement at power entry. Melgaard et al. [1]
also made an effort to organize the classifications found in the literature they surveyed;
they proposed a classification of FDD methods as either model-based or data-based in
order to indicate whether or not historical measurements are required to develop the FDD
process. In the case where model-based methodologies are adopted, professionals can
develop the FDD tools by using only the building or system’s metadata, while data-based
methods require calibrated measurement training data. The FDD approaches mentioned
above have been further classified into “qualitative” and “quantitative” methods [1]. While
model-based quantitative methods focus more on using a reference model to be compared
with measurements from the system, data-based quantitative methods use statistics or
data-mining (data clustering, pattern recognition, and classification) to extract the knowl-
edge from the data. Both model- and data-driven-based qualitative methods focus on
rules and relationships between the parameters. Melgaard et al. [1] acknowledged that a
number of the FDD approaches reported in the literature combine algorithms from both
data-driven-and model-based methods. The most sophisticated FDD algorithms, according
to Melgaard et al. [1], use machine learning (ML) techniques, including supervised or unsu-
pervised learning. The adaptability of these algorithms in identifying patterns and trends
from the gathered data offers significant potential for complex and practical applications.
Despite this, these algorithms rely on system-specific data and this leads to customized
models, which extends engineering time and costs.
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Bezyan et al. [4] proposed a novel data-driven methodology for the detection and
diagnosis of faults in the AHUs of HVAC systems. In particular, the authors developed
a process for the detection and diagnosis of multiple dependent faults pertaining to the
temperature sensors installed in an AHU (i.e., the mixed air temperature (Tma) sensor
and the air temperature sensor after the heating coil (Thac)). The process unfolds over
different steps to address the detection and diagnosis task. Firstly, real data collected
through a building automation system (BAS) are pre-processed to ensure the quality of
the dataset, they are then segmented in training and testing datasets. At this stage a
compound model, using two different but related models, is developed to obtain time step
by time step the estimated values of Tma and Thac that represent the normal operation of
the system. The following phase is aimed to perform a residual analysis, considering the
bias between actual and predicted values through ML models. Eventually, in the case of
the residual analysis suggests the occurrence of a fault symptom (i.e., the bias exceeds a
defined threshold), the fault diagnosis module is triggered. Specifically, two groups of
expert-based IF-THEN rules are used for conducting fault diagnosis based on whether a
fault symptom is identified for Tma or Thac. This study demonstrated the effectiveness of
the combination between ML-based detection models with rule-based diagnosis strategies
for the implementation of FDD processes in AHUs. This kind of hybridization is essential to
optimize the implementation time of data-driven FDD strategies (given the reduced need of
pre-labelled data for the development of diagnosis models), increasing the robustness and
generalizability of the approach. Another innovative aspect is related to the exploitation
of information concerning the relationship and operation flow between sensors for the
correct detection and diagnosis of dependent faults, often leading to misdetection and
misdiagnosis issues.

Boahen et al. [5] developed an FDD methodology for detecting and diagnosing re-
frigerant charge faults on a water-to-water heat pump. Refrigerant charge faults have an
adverse effect on the performance of heat pumps and their early identification is of great
importance. In particular, authors performed a number of experiments under different
boundary conditions (refrigerant undercharge/overcharge) to characterize the operational
performance of a real water-to-water heat pump in both the heating and cooling modes.
Experimental data have been then used to fit 2nd-and 3rd-order polynomial equations to
estimate the refrigerant charge ratio (RCR) in the cooling and heating modes, respectively.
Specifically, compressor discharge temperature, evaporating temperature, condensing
temperature and degree of subcooling have been considered as input variables in the
RCR estimation models. The estimated RCR is compared with the optimum refrigerant
charge amount corresponding to the maximum coefficient of performance (COP) of the heat
pump unit (the optimal RCR was identified during the experimental tests). At this stage
a refrigerant fault is detected when the absolute difference between the predicted RCR
and the optimum charge ratio exceeds a predetermined threshold error. After detecting
a refrigerant fault, the diagnosis module is triggered. Additionally, in this case, the fault
diagnosis is rule-based and exploits qualitative fault-symptom tables obtained through the
experimental tests to diagnose the detected fault. The proposed FDD algorithm was able to
detect refrigerant charge faults in the water-to-water heat pump within an error threshold
of 4.5% and 1.1% in the cooling and heating modes, respectively, outperforming the results
obtained in other studies especially concerning the fault sensitivity in the cooling mode.

Kim I. and Kim W. [6] presented a data-driven FDD approach that uses ML classifica-
tion methods to detect and diagnose faults in a 90 ton (approximately 316 kW) centrifugal
chiller system. Faulty and normal chiller operational data refer to the ASHRAE Project
1043-RP that collects experimental datasets about chiller faults with different severities.
Six typical faults with four severity levels were investigated in this study, i.e., refrigerant
overcharge (RO), refrigerant leakage (RL), reduced evaporator water flow (EWF), reduced
condenser water flow (CWF), non-condensable in refrigerant (NC), and condenser fouling
(CF). The proposed FDD process in this case is completely based on the use of ML tech-
niques. Specifically, the detection and diagnosis tasks are simultaneously addressed by
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formulating the FDD process as a classification problem, where different ML and statistical
models are used to classify the chiller operation as “normal” or affected by one of the six
faults under analysis (i.e., RO, RL, EWF, CWF, NC and CF). The following classification
models are employed in this study: logistic regression (LR), support vector machine (SVM),
random forest (RF), and extreme gradient boosting (EGB). Eventually, when testing the
robustness of the approach, different training scenarios for the classification models are
considered by defining situations where the training data are sufficient and other situations
affected by data-scarcity. The obtained results demonstrated that the RF and EGB methods
achieved high-FDD accuracy for all the investigated scenarios, also in the case of insufficient
training dataset. This is an important aspect for the implementation of fully ML-based
FDD strategies in the real world in terms of both generalizability and robustness of the
data-driven approach.

Building analytical tools, including fault detection and diagnostic tools, have emerged
as key instruments in enhancing building energy performance during operation by support-
ing building operators to translate knowledge extracted from measured data into actionable
energy-saving strategies. To promote the penetration of data analytics-based FDD tools and
support technology innovation, building owners and technology developers need reliable
evidence-based guidance on deployment practices. As a reference, Trothe et al. [7] reported
that, in the United States, incorrect HVAC on/off modes are responsible for an over-cost of
approximately $920 million per year, while inappropriate operational set-points contribute
another $492 million per year.

From this perspective, Lin et al. [8] presented savings, costs, and the state of practice
resulting from the implementation of FDD tools in analyzing data from the U.S. Department
of Energy’s Smart Energy Analytics Campaign from 2016–2020. In particular, it was found
that organizations using FDD tools achieved 9% median energy savings considering a me-
dian base cost and annual recurring software cost for FDD equal to 0.65 $/m2 and 0.22 $/m2,
respectively. The study also reported a two-year simple payback period associated with the
implementation of FDD tools primarily aimed at improving HVAC scheduling, optimizing
economizer operations, avoiding simultaneous heating and cooling, resetting setpoints,
and adopting dozens of additional measures. Despite data analytics-based FDD tools
demonstrated their high competitiveness as a profitable investment option in the building
sector, their full penetration in the market has been thwarted by deployment issues.

The first main deployment issue is related to the integration phase of analytical FDD
tools. In fact, an accurate and effective collection and integration of data coming from differ-
ent, heterogeneous sources is typically challenging and requires long configuration times.
Operational variables measured in energy systems and typical faulty conditions often have
inconsistent names, causing a complex interpretation of the data content, type, location,
unit, and relationships to other equipment. With the aim of providing a contribution in this
field, Chen et al. [2] proposed a unified taxonomy for HVAC system faults. The defined
taxonomy allows the classification of HVAC faults according to their main features and
causal relationships. The taxonomy includes fault categorization, physical hierarchy, a fault
library, relation models, and a structured vocabulary library to increase data interpretability.
The developed taxonomy can be used for FDD tool standardization, de facto increasing the
degree of generalizability and reducing the need for extensive expertise and labor-intensive
effort for their configuration.

Another topic area requiring further research to enhance FDD deployment pertains to
the optimization of the information–intervention loop triggered by an FDD system. FDD
tools are classified as decision support systems that include a human-in-the-loop paradigm
to transform extracted knowledge in actionable energy conservation measures. However,
building staff and technicians often do not have enough time to review the analytical tool
reports and findings, and take actions to restore the normal operation of the system and
obtain the consequent energy saving. In this perspective, automating the process of fixing
faults could be a key solution for reducing costs and increasing savings of data-driven FDD
systems. Lin et al. [9] contributed in this research area developing and implementing an
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automated fault-correction algorithm for HVAC systems in buildings. Starting from the
assumption that it is not possible to automate the correction of mechanical faults, such as
failed actuators, they identified a subset of faults that can be fixed automatically by closing
the loop between diagnostics and control and then overwriting the control signal in the BAS
with a corrected or improved one. The study introduced nine algorithms designed to correct
faults in HVAC systems related to incorrectly programmed schedules, overriding manual
controls, sensors bias, control hunting, rogue zones and setpoints or setpoints setbacks.
The obtained results confirmed the efficacy of a subset of these algorithms, highlighting
the high potential of such correction routines in improving operational and maintenance
processes in buildings.

In conclusion, fault detection and diagnosis in HVAC systems currently represents
one of the main solutions to enhance the energy performance of buildings during their
operation. The literature provides evidence of the added value of a data-driven approach
in this field; however, a research gap still exists between the theoretical FDD strategies
and the real-world applications. Firstly, due to their dependency on training datasets,
data-driven FDD tools are more sensitive to generalizability and transferability issues that
are, conversely, the main strengths of knowledge-based methods. From this perspective,
Rafati et al. [3] stated that the development of data-driven FDD strategies is hampered by
the lack of public datasets, and additional research must be conducted to gather and make
available to the public the real-world HVAC datasets for a variety of building types, includ-
ing residential, industrial, commercial, and public buildings. In addition, Chen et al. [2]
highlighted the need to extend current fault libraries so that they can cover novel faults
when new equipment, physical configurations or additional components are used in HVAC
systems. Eventually, Trothe et al. [7] also pointed out the importance of a well-configured
monitoring infrastructure for effective, efficient and successful fault diagnosis. In this sense,
further investigations are needed to generalize the optimal identification of sensor numbers
and locations in buildings that keep FDD tools economically feasible while increasing
their capabilities in reducing the operational and maintenance costs of HVAC systems
during operation.
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