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Generalized Deterministic Automated Design of
Metasurface Antennas With

3-D Feeding Structures
Lucia Teodorani , Member, IEEE, Marcello Zucchi , Member, IEEE,

and Giuseppe Vecchi , Life Fellow, IEEE

Abstract— In this work we present an automatic, deterministic
procedure to fully design an isotropic metasurface antenna,
self-consistently including the metallic feeding structure. The
impedance pattern has full spatial variability in two dimensions,
to allow designs otherwise difficult. The design is based on
the integral-equation formulation with a current-only approach,
in which the surface impedance profile is derived only after the
optimal current is found; this allows to avoid the solution of the
forward problem at all steps of the algorithm, with a drastic
reduction of computational resources; it does not require any
assumption on the impedance profile. We also show how a 3-D
feed can be accounted for in a hybrid scheme partially employ-
ing commercial 3-D simulation software. Application examples
address center-fed circular metasurface antennas, in which the
feed is not connected to the metasurface, and rectangular “strip-
like” leaky wave antennas (LWAs) where the metasurface is
electrically connected to the feeding surface. In all cases, the
design is carried out up to the final layout, and the full antenna
is simulated to verify the design.

Index Terms— Impedance boundary conditions (IBCs), inte-
gral equations, metasurface antennas, method of moments,
optimization.

I. INTRODUCTION

METASURFACES, i.e., metamaterial-inspired surfaces
composed of sub-wavelength elements, have emerged

as a transformative paradigm in antenna design. They possess
the ability to manipulate electromagnetic waves with unprece-
dented flexibility, offering many opportunities to tailor and
enhance antenna functionalities.

The design of metasurface (MTS) antennas almost always
employs the so-called impedance boundary condition (IBC)
for approximating the local electromagnetic behavior of the
surface through a single parameter, the surface impedance;
the design then entails defining the spatial distribution of this
parameter. Following this, the impedance is locally imple-
mented by means of properly shaped unit cells. This two-step,
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multiscale approach allows to address the design of electrically
large antennas, keeping the overall complexity under control.

Initially, methods for the design of metasurface antennas
were targeted to circular domains and considered only sinu-
soidally modulated profiles [1], [2]. These methods, based on
analytical considerations, demonstrated the practical feasibility
of designing large metasurface antennas, and paved the way
for more general and sophisticated approaches. More recently,
fully numerical schemes have enabled the analysis and design
of shaped MTS antennas on circular domains and other bound-
aries [3], [4], [5], [6], [7], with various degrees of generality
in the impedance profile.

The direct way to numerically address the design issue is an
optimization of the impedance profile; however, IBC synthesis
methods have emerged that seek for the optimization of the
(equivalent) current on the metasurface [7], [8], [9], [10], [11],
[12], [13], [14], [15] as an alternative to those directly seeking
an impedance profile. The former methods will be called
“current-only” here, and the latter impedance-based. Current-
only methods enjoy a significantly lower numerical complexity
than the impedance-based, and are typically deterministic; in
them, the sought-for impedance profile is obtained from the
optimized current at the end of the process.

In particular, the current-only method presented in [7] is
deterministic and can be proven to be of minimal complex-
ity per-iteration. It allows arbitrary spatial variation of the
impedance, without a priori knowledge on the targeted IBC
profile (as opposed to, e.g., methods tailored to sinusoidally
modulated MTS antennas, which require specific parameteri-
zations [5], [6], [16]). The inputs are the geometry of the IBC
surface, the definition of the feed, and the radiation pattern
mask constraints.

The design of the feeding structure is usually carried out
independently of that of the metasurface, with the main
objective of maximizing the power excited in the appropriate
surface wave [1], [17]. Its effect is then included in the
design by means of the incident field, i.e., the field radiated
by the feed in isolation; this procedure does not account
for the feed–metasurface interaction. A very recent contribu-
tion [6] has addressed the full wave feeder modeling in the
impedance-based optimization (as opposed to the present inter-
est in current-based); it employs a physics-based specialized
parametric impedance profile (as opposed to the present search
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for a general impedance profile). As demonstrated there,
a proper, self-consistent modeling of the feeding structure is
important for a correct estimation of the (peak) gain of the
metasurface antenna.

In this work, we generalize the method presented in [7] to
encompass a specified feeding structure in the current-only
inverse design of the metasurface antenna. This results in the
fully self-consistent design of the entire metasurface antenna,
and the ability to find the necessary impedance profile without
a priori guesses. The synthesis algorithm presented in this arti-
cle is restricted to isotropic metasurfaces; an extension to the
design of anisotropic antennas is currently being developed.
We observe that the proposed method is more general than
our present emphasis on feeding structures. In fact, the PEC
regions can have any function, not just feeding; nevertheless,
this constitutes the most relevant case in practical designs.
We not only address center-fed metasurface antennas, but also
edge-fed “strip-like” leaky wave antennas (LWAs), in which
the feed is electrically connected to the IBC part; this last
case is hardly addressable without the present self-consistent
treatment. We will also demonstrate the importance of leaving
full spatial variability in the sought-for impedance pattern
when addressing design instances where a guess of the solution
is not readily available.

To the best of our knowledge, this is the first time that the
feed structure is addressed into a current-only design method,
with full spatial variability of the impedance pattern; also, this
is the first time that a feeding structure electrically connected
to the metasurface is considered.

Preliminary results relative to the present topic have been
submitted as a conference paper [18]; this is the first account
of the method, of its theory and implementation.

This article is organized as follows. In Section II, the
mathematical formulation of the electromagnetic problem is
outlined. Section III presents the details of the proposed self-
consistent current-based design algorithm, with focus on the
types of feed that can be handled. In Section IV, application
examples are provided to validate the approach. In particular,
two classes of antennas will be considered: a circular antenna
excited by a coaxial aperture in the ground plane, and a
rectangular, “strip-like” antenna fed at one edge by a coaxial-
to-microstrip transition. For each case, a comparison of the
performance with and without self-consistent modeling of the
feed is given, in order to highlight its importance in practical
scenarios. Finally, conclusions are drawn in Section V.

II. FORWARD PROBLEM

In the analysis of metasurface antennas, the geometry can
be divided into two distinct regions (Fig. 1): the surface
SPEC which contains all metallic portions (e.g., the feeding
structure), and the surface SIBC on which the IBC applies. This
condition links the tangential electric field to the jump of the
tangential magnetic field through the surface impedance tensor
Z [19]

Etan = Z ·
[
n̂ × (H+

− H−)
]
. (1)

In this work, as in [7], we will consider only a scalar
impedance, i.e., Z = Z I (where I is the identity tensor).

Fig. 1. Examples of two geometries of metasurface antennas. (a) Center-fed
circular antenna. (b) Edge-fed “strip-like” antenna.

By introducing the equivalent current density

J = n̂ ×
(
H+

− H−
)

(2)

the electromagnetic problem is formulated as an Electric Field
Integral Equation[

Einc(r)+ LJ(r)
]

tan =

{
Z(r) J(r), r ∈ SIBC

0, r ∈ SPEC

(3)

where Einc is the field radiated by the (independent) sources
in the absence of the metasurface and all metallic (PEC) parts,
and L is the electric field integral operator (EFIO) defined as

LJ(r) =

∫∫
GEJ(r, r ′) · J(r ′) dS(r ′) (4)

where GEJ is the multilayer dyadic Green’s function for the
(grounded or ungrounded) substrate [20]. In the following,
we indicate with J ibc and Jpec the current density J on the
two regions SIBC and SPEC, respectively.

For the numerical discretization, we adopt the usual method
of moments approach with Galerkin testing: we consider a
mesh given by a triangular tessellation of the whole antenna
surface and we approximate the sought current J(r) as a linear
combination of Rao–Wilton–Glisson (RWG) basis functions
3n [21] defined on the N internal mesh edges

J(r) =

N∑
n=1

In 3n(r). (5)

In the following, we will denote by N the total number of
RWG functions (i.e., on both IBC and PEC regions), and by
Nibc and Npec the number of functions with support on SIBC and
SPEC, respectively. Thus, in its most general form, the forward
(analysis) problem reduces to the linear system

Vinc + LI = ZI (6)
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where the array I collects the RWG basis coefficients In and
the remaining quantities are defined as

(L)mn = ⟨3m ,L3n ⟩ (7)
(Z)mn = ⟨3m , Z3n ⟩ (8)
(Vinc)m = ⟨3m , Einc ⟩ (9)

where ⟨ a , b ⟩ =
∫

a · b dS is a symmetric bilinear form.
It follows from (3) that, for test functions that lie on SPEC,
Z = 0 and the corresponding matrix entries (8) are equal to
zero. The interaction between the IBC and PEC currents is
better highlighted by recasting (6) as[

Vinc
ibc

Vinc
pec

]
+

[
Libc LT

cpl
Lcpl Lpec

][
Iibc
Ipec

]
=

[
Zibc 0
0 0

][
Iibc
Ipec

]
(10)

where:
1) Iibc and Ipec collect the RWG coefficients of J ibc and

Jpec, respectively;
2) Vinc

ibc and Vinc
pec gather the coefficients of the projected

incident field on the two regions;
3) the two square matrices Libc (Nibc×Nibc) and Lpec (Npec×

Npec) represent the self-interaction of the two regions;
and

4) the rectangular matrix Lcpl (Npec × Nibc) identifies the
coupling between the IBC and PEC regions.

The far-field can be computed from the current via the
radiation operator R

RJ(r̂) =
k0

2π j

∫∫
Gff(r̂, r ′) · J(r ′) dS(r ′) (11)

where Gff(r̂, r ′) is the multilayer far-field tensor [22] and
the unit vector r̂(θ, ϕ) identifies the direction of radiation in
spherical coordinates.

III. SELF-CONSISTENT CURRENT-ONLY INVERSE
DESIGN WITH SPECIFIED FEED

A. Requirements

The inputs to the design process are the specification of
the substrate, the definition of the surface geometry, and of
the source, i.e., the specification of the incident field. The
definition of the geometry also involves the specification of
the PEC structures, that may be planar or 3-D (see Fig. 1).

The goal of the design process is an impedance profile that,
for the given incident field:

1) radiates a field pattern obeying the specifications (pattern
masks); and

2) is physically realizable.
To obtain a physically realizable impedance, we must enforce
that the metasurface be locally passive and lossless, and that
the synthesizable reactance values fall within the technologi-
cally feasible range.

Far-field specifications are of the mask type, i.e., defined
via inequalities for each considered far-field direction. These
constraints must typically be expressed in terms of directivity
or gain.

B. Self-Consistency

The current-based design method presented in [7] formu-
lates the problem in such a way that it involves only the
equivalent current on the IBC—not the impedance. This avoids
the solution of the forward problem (6) at each step; instead,
only the computation of the on-surface and radiated fields is
required, with complexity O(N log N ).

The self-consistent inclusion of the PEC structure (e.g., the
feed) implies that the design algorithm must look for a pair
of currents (J ibc, Jpec) such that:

1) together they satisfy radiated field specifications,
2) on the IBC region, J ibc satisfies IBC constraints (pas-

sivity, absence of losses, and feasibility range),
3) on the PEC region, Jpec satisfies the PEC boundary

condition.
Note that the two parts of the current self-consistently interact
with one another through the IBC-PEC coupling term Lcpl
in (10).

C. Current-Only Optimization Framework for
Metasurface Antenna Design

Here, we highlight only the most relevant features of the
current-only design method in [7], as necessary to understand
the proposed generalized design approach.

The total cost function that the algorithm aims to minimize
can be expressed as

f = frad + fibc + fpec (12)

where each term is a functional, i.e., a scalar nonnegative
function, of the surface current only.

Here, frad accounts for the radiated field requirements, and
fibc encompasses the realizability constraints to be enforced on
the IBC region (passivity, losslessness, and feasibility range).
The term fpec is added in order to enforce the PEC condition
on the related surface. The radiated field and impedance terms
are briefly discussed in Appendix A and B, respectively, while
the term associated with the PEC condition will be introduced
in detail in Section III-F. The considered minimization prob-
lem is intrinsically nonconvex (due to the passivity constraint);
to limit the difficulties of nonconvexity, all functionals are
expressed as fourth-degree multivariate polynomials in the
current coefficients [11].

For the minimization of the cost function, a nonlinear
conjugate gradient algorithm [23, p. 121] is employed. Given
the large size of the problem, the numerical cost of computing
the functional and its gradient at each iteration is an issue
of paramount importance; hence, all operations are cast in
such a way to be amenable to the use of fast factorizations,
with O(N ) memory requirements and O(N log N ) complex-
ity per iteration. Therefore, the entire design process has
a complexity of O(N cur

iter N log N ), where N cur
iter is the total

number of iterations needed by the current-only algorithm
to obtain the result. On the contrary, a classical impedance-
based design requires, at each iteration, the solution of the
linear system representing the electromagnetic problem for a
given impedance distribution. In the most favorable scenario
where fast iterative algorithms are used, this step has a
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Fig. 2. Example of far-field specifications: main lobe co-pol upper mask
Mco

U and lower mask Mco
L , cross-pol mask Mcx and side lobes mask M tot.

All masks are defined relative to the reference level L0, as indicated by the
arrows.

complexity of at least O(Nsol N log N ) per iteration (where
Nsol is the number of iterations needed by the iterative solver),
resulting in a global complexity O(N imp

iter Nsol N log N ) for the
full design. In the latter case, the number of iterations N imp

iter is
typically dependent on the global search algorithm employed
for the optimization, and grows roughly exponentially with
the number of parameters used to represent the impedance
profile. This means that, for the optimization to be practically
feasible, the number of parameters should be small (typically
less than 10), forcing the designer to choose a priori the shape
of the impedance profile (e.g., spiral modulation) based on the
knowledge of the required radiation pattern. This is not always
possible, as in the case of complicated shaped-beam patterns,
limiting the generality of the impedance-based design process.
Overall, a current-only approach offers more generality and a
better scaling of the numerical complexity with an increasing
number of degrees of freedom (and a larger antenna size, as a
consequence).

D. Enforcement of Radiation Constraints

The radiated field is required to comply with upper and
lower bounds for both the co- and cross-polarization compo-
nents in the main beam

Mco
L ≤ Fco

≤ Mco
U (13)

Fcx
≤ Mcx (14)

and for the total amplitude in the sidelobe region

F tot
≤ M tot (15)

where F is the squared amplitude of the electric field com-
ponent radiated in the far-field in a given direction. The
masks are defined with respect to the reference level L0,
which can be fixed or given in terms of the radiation pattern
(e.g., the amplitude in the direction of maximum radiation).
The radiation requirements are summarized graphically in
Fig. 2. By choosing a suitable value of L0 which corresponds
to the desired gain, the algorithm maximizes the radiated
power for a given (input) power of the incident field.

Indicating with Pinc the power associated with the (given)
incident field Einc, the radiation pattern can be expressed in

terms of the realized gain [24]

Gr(r̂) =

∣∣E(r̂)
∣∣2
/η0

Pinc/4π
(16)

where η0 is the free-space impedance, and E(r̂) is the far-field
radiated in a given direction. By invoking Poynting’s theorem,
and neglecting losses in the conductors and the substrate, one
arrives at the following power balance equation:

Prad + Prefl + Prim = Pinc (17)

where Pinc is the incident power (associated with the incident
field), Prad is the power radiated in far-field, Prefl is the power
reflected toward the source, and Prim is the residual surface
wave power that is diffracted by the outer rim of the antenna
(not modeled when considering an infinite dielectric). There-
fore, maximizing the radiated power for a constant incident
power [right-hand side of (17)] intrinsically minimizes the
input reflection coefficient and the spurious contribution from
the rim diffraction.

With these considerations, it is evident that the ability to
include a real model of the feeding structure is crucial for the
robustness of the optimization process.

E. Enforcement of IBC Constraints

The requirements for passivity and losslessness, the bounds
on the synthesizable reactance values, and the scalarity con-
dition can all be expressed in terms of fields as follows [7]:

Re
(
Etan · J∗

)
= 0, (18)

XL|J |
2

≤ Im
(
Etan · J∗

)
≤ XU|J |

2, (19)∣∣Etan × J∗
∣∣ = 0. (20)

All the above conditions must hold locally for all r ∈ SIBC; in
accordance with our cell-based spatial discretization scheme,
we will enforce these conditions in the average sense over each
mesh cell. The formulation of these functionals, including their
explicit expression in terms of matrix operations, are reported
in Appendix B.

Once the optimal current has been obtained through the
optimization process, the impedance profile can be derived
via (6) by expressing the unknown impedance profile as a
linear combination of (scalar) basis functions, and solving the
resulting linear system for the unknown impedance coeffi-
cients.

In the present work, we have employed basis functions
which result in a piecewise constant impedance profile over
the triangles of the mesh. This particular case, detailed in
Appendix C, admits a closed-form solution for the impedance
Z i over the i th cell:

Z i =

∫∫
Si

Etan · J∗ dS∫∫
Si

|J |
2 dS

. (21)

F. Enforcement of PEC Condition

We now discuss how to enforce the PEC condition coher-
ently with the design algorithm presented in Section III-C. The
condition of Perfect Electric Conductor

Etan(r) = 0 (22)
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needs to be enforced everywhere on PEC surfaces, and this
has to be done by a functional, i.e., a mapping from the N
complex current coefficients into a single real nonnegative
number. Opposed to this, we observe that Galerkin’s testing
of (22), corresponding to the PEC part of (3), leads to a vector
of Npec complex numbers.

The construction of the necessary functional can be done
in two different ways, as detailed below. This functional will
be denoted by ρpec(I); it is related to the term fpec in (12)
through a weighting factor, fpec = wpecρpec(I). One must
assign a specific value to this weighting factor (like those
related to other functionals) in the intrinsically multiobjective
optimization.

1) Cell-Wise Enforcement of PEC Condition: The first way
to enforce the PEC condition (22) is through its average over
individual cells. In passing from these multiple conditions to a
real scalar, nonnegative number to be minimized, we face the
same issue that arises when enforcing the local passivity con-
dition (see [7], [11]): to avoid cancellations between positive
and negative contributions, we must enforce the minimization
of the sum of the squares of fields on individual cells. This
results in expressing the functional as

ρpec
=

∑
i∈Ipec

ρ
pec
i (23)

with

ρ
pec
i =

1
Ai

∫∫
Si

|Etan|
2 dS. (24)

Here, Ai is the surface area of Si , and Ipec = {i ∈ N |Si ⊂

SPEC} collects the indices of mesh cells belonging to the PEC
region.

We observe that this approach is totally coherent with the
overall design approach in [7], summarized for convenience
in Appendix B, which is based on local averages of the
squared magnitude of fields and currents. We will refer to
this formulation as “cell-wise” enforcement.

2) Edge-Wise Enforcement of PEC Condition: Another
option is to consider explicitly the PEC condition (22) as in
the standard EFIE [PEC part of (3)], recast here for ease of
reference

Etan(r) =
[
Einc(r)+ LJ(r)

]
tan = 0. (25)

Upon discretization on the PEC region, (25) becomes

ϵpec = Vinc
pec + LcplIibc + LpecIpec = 0. (26)

In the above, the Npec × 1 vector ϵpec is the EFIE error, and
its norm—the EFIE residue—is the term that is minimized in
any iterative solution of the associated problem.

In view of the above, we can thus define the PEC functional
as the square of the PEC-restricted EFIE residue

ρpec
=

∥∥ϵpec
∥∥2
. (27)

We will refer to this formulation as “edge-wise” enforcement,
as it derives directly from the EFIE discretized by RWG
functions, which are edge-based. The main advantage of using
the edge-wise enforcement approach (27) is that it can be in

Fig. 3. Three-dimensional model of a coaxial feed through the ground plane;
the specific geometry was inspired by [1]. The source is represented by the
equivalent magnetic current M on the aperture.

principle extended to model other kinds of boundaries, such
as those that appear in the case of finite dielectric substrates.

Both formulations will be tested in Section IV in two
self-consistent antenna designs that include a realistic feeding
structure.

G. Computation

As for the method in [7], the present method allows to use
fast algorithms for the field computations in the functional
and the gradient computation alike. The PEC-related contri-
butions to the functional all require only field evaluations,
in turn expressible in terms of matrix-vector products; these
can be computed with O(N log N ) complexity using fast
factorizations.

The same holds also for the PEC-related contributions to
the gradient. In particular, if the PEC condition is enforced
cell-wise via (23), the complex gradient [25] of the functional
can be expressed as

∇̃ρpec
= LH G−1

∑
i∈Ipec

0i V (28)

with V = G−1
(Vinc + LI). Conversely, if edge-wise enforce-

ment (27) is applied, one has

∇̃ρpec
=

[
Lcpl Lpec

]H
ϵpec. (29)

In both cases, the matrix-vector products involving LH (or sub-
blocks of it) are required only once per gradient evaluation.

H. Handling of the Feed

The enforcement of the PEC condition is now applied to
self-consistently include the PEC feeding structure into the
automated design. In this work, two different types of feedings
are considered.

1) Feeding from a waveguide (often a coaxial one) through
the ground plane of the antenna, including both the ver-
tical structure (most notably, a pin) and horizontal metal
parts; this is depicted in Figs. 1(a) and 3 with reference
to the cases analyzed in Sections IV-B and IV-C.

2) Feeding from the edge of the (planar) antenna,
as depicted in Figs. 1(b) and 4; this case is described in
Section IV-D.

The two classes differ mainly for the handling of the
incident (forcing) field. We recall that this incident field is
the one radiated by external sources in the structure without
metallizations (other than the ground plane) and IBC.
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Fig. 4. Three-dimensional model of the coaxial feed used as source for the
edge-fed antenna.

The effect of all metal parts (e.g., pin and matching rings)
is self-consistently accounted for by the equivalent currents
Jpec on the surface SPEC of these parts. These currents are
determined entirely by the design process.

It is indeed to be remarked that the optimization algorithm
evolves the equivalent current over the IBC and PEC regions
in such a way that, on completion, this current corresponds to
a realizable surface impedance, generates a compliant radiated
field and satisfies the PEC condition on the metal parts.

In the following, we will describe how the two considered
types of feeding are handled in the design process.

1) Three-dimensional Feeding Through the Ground Plane:
In this case, the source term is the equivalent magnetic current
in the coaxial aperture at the level of the ground plane [26],
[27], as seen in Fig. 3. In order to accelerate convergence,
inside the iterative optimization instance the current Jpec
on the PEC structures (vertical pin and matching rings) is
initialized to the values, it would have in the absence of the
IBC.

2) Three-dimensional Edge-Feeding: In case of edge-
feeding, the real-life source is typically a coaxial connector
placed horizontally on the top of the grounded dielectric
substrate, with its outer conductor connected to the ground
plane (see Fig. 4). Modeling of the 3-D coaxial feed in this
case would be awkward and not exact in the underlying
integral equation with infinite dielectric kernel. Hence, the
modeling is done in two phases.

First, the coaxial connector is fully modeled inside a
commercial electromagnetic solver, on a grounded dielectric
substrate of infinite size, and without any top-layer metalliza-
tion. The structure is simulated (full-wave) for a prescribed
input port excitation and the radiated electric field is then
extracted; this will constitute the incident field (this step
corresponds to finding the incident field radiated by the
modal current in the case of feeding through the ground in
Section III-H1). This incident field is then used on the overall
antenna, IBC and PEC parts.

Finally, we observe that, for this class of antennas,
the design process without the feed is hardly meaningful,
as opposed to the case of the center-fed circular (or similar)
antennas. We will address a simplified, nonself-consistent
version of the above in the example section (Section IV) and
show its shortcomings.

IV. APPLICATION EXAMPLES

We address here the design of a standard circular metasur-
face antenna fed at its center, and of an elongated rectangular
antenna (“strip-like”) fed at one end (edge). These test cases
are represented in Fig. 1(a) and (b), respectively. In the circular
type [Fig. 1(a)], a vertical pin is placed at the center of
the antenna, and an annular ring provides matching to the
surrounding surface; in this case, the source is represented by
the equivalent magnetic currents located at the insertion of
the input coaxial cable into the ground plane, while a PEC
constraint is imposed on both the pin and the annular ring.
In the second case [Fig. 1(b)], the source of the incident field
is on-surface, and the PEC region is introduced to represent
the tapered section used to connect the feed to the radiating
metasurface.

For the center-fed circular antenna, it is expected that the
feeding structure may be well decoupled from the metasurface
design [2], [28]; conversely, the edge-fed strip-like antenna has
direct continuity of the PEC feeding structure and the radiating
IBC; hence, the coupling is expected to be significant.

In both cases, two steps are required for the correct model-
ing of the feed in the optimization instance: the optimization
of the geometry of the launching structure, and the extraction
of the incident field Einc to be given as input to the automated
design method.

The results shown in this section are obtained as follows:
from the optimum current, the impedance profile Z(r) is
retrieved, as indicated in Section III-E, keeping only its
imaginary part. In the specific examples presented in this
article, having established a priori the periodicity of the unit
cells that will be used to physically implement the synthesized
impedance, the triangular meshing of the antenna geometries
is done in such a way that an exact number of triangular
mesh cells fits inside a square unit cell of this “higher level”
tessellation. Since the impedance that is synthesized by the
automated design method is reconstructed on every triangu-
lar cell, this “conformal” meshing allows to compute the
impedance corresponding to a square unit cell unequivocally as
the average of the values of the synthesized impedance on the
triangular mesh cells inside that square. The final impedance
profile is therefore constant over square cells. Next, the actual
solution is computed by solving the forward problem (6) for
this impedance profile, the PEC parts, and the specified source
field; the corresponding radiation pattern is then calculated.
This means that the results take into account a possible effi-
ciency reduction due to the impedance reconstruction process
(from the optimized current). These final results are identified
as “outputs of the design method.”

After this consistency verification, the actual antenna is
realized and simulated. The (scalar) impedance distribution is
realized with patches; here, we use square patches through-
out. The final test is the full-wave solution of the actual
antenna, which is carried out using either the commer-
cial solver CST Studio Suite [29] or an in-house MoM
solver.

The design instances are carried out on a Desktop PC with
Intel Core i9 processor and 64 GB RAM.
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Fig. 5. Modeling of the realistic feed for the design of the edge-fed antenna
(Section IV-D). (a) Coaxial connector and optimized tapered microstrip
section. (b) Top view of the coaxial connector placed on the grounded
dielectric substrate in absence of metallizations on the top layer. Dashed lines
enclose the areas over which the incident field is evaluated and extracted to
be given as input to the automated design method.

A. Feed Design

For both the feed geometries considered in this article,
the definition of the layout and dimensions of the launching
structures must be finalized ahead of the IBC design process.

For the circular antenna layout, the central pin height and
the annular ring radius and width (see Fig. 3) are optimized
using CST in order to minimize the reflection coefficient and
maximize the radial power flow inside the dielectric substrate.
Both objectives are important, since the mere minimization of
S11 does not guarantee that the field is conveyed through the
dielectric to the metasurface, rather than radiated in free space
by the vertical pin.

For the edge-fed antenna, a proper tapered microstrip
section must be designed to connect the coaxial feed to the
actual metasurface. In particular, the tapered input section
is optimized using CST in order to match the coaxial feed
to the input impedance of a microstrip as wide as the
metasurface “strip” transverse width. This choice for the
optimization of the tapered section ensures a potential good
matching between feed and metasurface, optimally launching
the forward traveling wave. In fact, one has to keep in mind
that our proposed automated design method will intrinsically
try to minimize the reflection coefficient (as explained in
Section III-D).

Once the dimensions of the tapered matching section have
been finalized, Einc is retrieved by performing a full-wave
simulation of the coaxial connector placed on the grounded
dielectric substrate, in absence of any metallization, and
extracting the field impinging over the entire structure layout
(initial transition region plus IBC region), as explained in
Section III-H2. This is exemplified in Fig. 5, that shows the
optimized launching structure and the simulation setup for the
extraction of the incident field for the dielectric substrate and
working frequency of the design presented in Section IV-D.

B. Circular Metasurface With Broadside Pencil Beam

The design of a circular metasurface radiating a circularly
polarized pencil beam is considered. A RO3003 dielectric
substrate with εr = 3 and thickness 1.27 mm is chosen.
The antenna has a radius of 6λ0 at the working frequency
of 23 GHz, for a diameter of 156 mm. The reference geometry
is shown in Fig. 1(a). The employed feed structure is shown
in Fig. 3, and has been inspired by [1] and [2].

After the optimization of the launching structure and
the determination of the incident field as described in
Section IV-A, the bounds on the synthesizable impedance
and the far-field mask-type constraints must be imposed. The
desired far-field masks are shown in all figures reporting
radiation patterns. For this design, we consider a capaci-
tive reactance in the range [−2000,−200 ] �, which can
be implemented using square patch-type unit cells with a
periodicity of 1.625 mm (≈λ0/8). The mapping between sheet
reactance values and square patch dimensions is retrieved
by performing normal-incidence scattering simulations of the
constitutive unit cells, as done in [30]. An initial constant
current with linear polarization is chosen on the IBC region,
while for convergence purposes the initial Jpec is set equal to
the one that would flow on the feeding structure in absence
the metasurface, as explained in Section III-H.

This design task is performed twice, using either the
cell-wise or the edge-wise enforcement of PEC constraint,
in order to test the effectiveness of both formulations. Finally,
an alternative design case in which the launching structure is
replaced by an ideal incident field is reported, to highlight
the advantages of the proposed self-consistent inclusion of the
realistic model of the feed in the overall performance of the
designed antennas.

The number of RWG basis functions for the full geometry,
including the launching structure, is N = 44 244 (N =

41 776 in the case of ideal incident field). The optimization of
the full circular antennas (including the launching structure)
took 1500 iterations, each requiring 7 s to complete, for a total
running time of about 3 h for each case. The test design case
with the ideal incident field required 500 iterations of 4 s each,
for a total time of ≈33 min.

Due to the large size of the antenna and the considerable
amount of mesh cells needed to obtain accurate results, the
simulation of circular metasurfaces with a commercial solver
is not possible with the hardware available to the authors;
therefore, the actual antennas (with unit cells) are simulated
using a MoM-based in-house solver.

1) Design With Cell-Wise Enforcement of PEC Constraint:
The incident field, the optimum current, and impedance pattern
returned by the automated design method applying the cell-
wise PEC constraint formulation are shown in Fig. 6, while
the resulting radiation pattern and its comparison to the one
obtained simulating the complete actual antenna are pictured in
Fig. 7. Only the far-field cut at ϕ = 0◦ is reported as example,
but the mask constraints were set on the whole 3-D upper
hemisphere. A perspective view of the complete antenna, with
square patches and central feeding structure, that has been
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Fig. 6. Circular metasurface with pencil beam, design input/outputs using
cell-wise enforcement of PEC constraint. (a) Incident electric field. (b) Opti-
mum current density returned by the automated method. (c) Synthesized
impedance pattern. (d) Implementation via square patches of the synthesized
impedance.

Fig. 7. Circular metasurface with pencil beam, full self-consistent design with
cell-wise enforcement of PEC constraint: comparison between the far-field
pattern due to the reconstructed equivalent currents (Design) and the one
obtained with full-wave simulation of the complete antenna shown in Fig. 8
(Simulated).

simulated with the in-house MoM solver to verify the results
of the design method is pictured in Fig. 8.

From Fig. 7, we can see that there is good agreement around
the main beam between the expected and simulated radiation
patterns, both in the co- and cross- polarization components.

Fig. 8. Perspective view of the actual circular antenna, with square patches
and central feeding structure, that has been simulated with the in-house MoM
solver to verify the results of the design method in Section IV-B1.

Fig. 9. Circular metasurface with pencil beam, full self-consistent design
using edge-wise enforcement of PEC constraint. (a) Synthesized impedance
pattern, and (b) its implementation via square patches.

However, the side lobes appear higher in the simulated pattern,
although still quite low and following the shape of the design
ones.

The simulated antenna exhibits a total efficiency of 81% and
an aperture efficiency of 18%; these quantities are evaluated
according to the definitions given in [24].

2) Design With Edge-Wise Enforcement of PEC Constraint:
The same design is now carried out enforcing the PEC
condition edge-wise. The synthesized impedance pattern and
its implementation using square patches are shown in Fig. 9,
while the comparison between the far-field predicted by the
design method and the one obtained with full-wave simulation
of the complete antenna is pictured in Fig. 10. The impedance
pattern is very similar to the one obtained with cell-wise
enforcement of the PEC constraint [see Fig. 6(c)]; the main
discrepancy can be found near the central launching structure.
On the other hand, there is excellent agreement between the
expected and simulated radiation patterns also in the sidelobe
region, while the achieved realized gain at broadside is the
same as in the previous design. These results suggest that,
for the circular geometry with central pin and annular ring,
the edge-wise formulation may be slightly more effective in
enforcing the PEC condition and the self-consistent evolution
of the current density in these regions at every step of the
optimization process. The total and the aperture efficiencies
of the simulated antenna are 85% and 18%, respectively.

3) Design With Ideal Cylindrical Surface Wave: In order to
demonstrate the advantage of including a realistic modeling of
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Fig. 10. Circular metasurface with pencil beam, full self-consistent design
with edge-wise enforcement of PEC constraint: comparison between the
far-field pattern due to the reconstructed equivalent currents (Design) and the
one obtained with full-wave simulation of the complete antenna (Simulated).

Fig. 11. Circular metasurface with pencil beam, comparisons between the
self-consistent design with a realistic feed of Section IV-B1 and the one with
a TM0 approximate source. (a) Incident electric field, realistic feed (same of
Fig. 6(a), different scale). (b) Incident TM0 electric field. (c) Metallization
pattern, realistic feed. (d) Metallization pattern, TM0 source.

the feed in the design of circular metasurfaces, an alternative
design case is presented in which the launching structure,
comprising the central pin and the annular ring, is absent
in the optimization instance, and the incident field is simply
approximated with its asymptotic form as a TM0 cylindrical
surface wave, as it is commonly done in the literature [7],
[31]. The TM0 incident field is pictured in Fig. 11(b), while

Fig. 12. Circular metasurface with pencil beam, comparison between the
designs with full feed and approximate TM0 incident field. The patterns are
the simulations of the actual antennas in Fig. 11(c) and (d) that include the
actual feed as in Fig. 8. Solid line: antenna designed considering the actual
feed–cell-wise; dash-dotted line: antenna designed considering the actual
feed–edge-wise; dashed line: antenna designed with a TM0 incident field.

the complete geometry of the antenna designed starting from
such field is shown in Fig. 11(d). The synthesized impedance
pattern is very similar to the one obtained previously by
properly modeling the launching structure [see Fig. 11(c) for
a comparison with the design of Section IV-B1]; however,
there are more empty areas (infinite impedance, no IBC) in
the spiral distribution of patches, most likely due to the fact
that the approximate TM0 incident field decades less rapidly
than the real one [see Fig. 11(a) and (b)] and it is thus still
larger toward the edge of the circular area.

We now compare the performances of the three antennas:
the one designed starting from a TM0 incident field, and the
ones designed with the accurate modeling of the feed (shown
previously in Figs. 7 and 10). Fig. 12 shows the radiation
patterns of the complete antennas depicted in Figs. 6(d), 9(b)
and 11(d). It appears that using the approximate TM0 incident
field for the antenna design leads to a drop in the actual
antenna realized gain of about 2 dB; in fact, the antenna
designed starting from the ideal cylindrical wave shows a
lower total efficiency of 66% and a smaller aperture efficiency
of 15%. This proves the importance of considering the real 3-D
feeding structure in the design of metasurface antennas.

C. Circular Metasurface With Multibeam Radiation

A more challenging design of a circular metasurface radiat-
ing a circularly polarized multibeam is carried out to test the
performance of the proposed automated design method. The
same substrate and launching structure of Section IV-B are
employed to synthesize an antenna that radiates four beams in
the directions given by θ = 45◦, ϕ =

{
45◦, 135◦, 225◦, 315◦

}
.

An initial constant current with linear polarization is chosen,
and the PEC constraint is enforced cell-wise. As in the
previous cases, 1500 iterations of the optimization method
were carried out, for a total running time of about 3 h.

The synthesized impedance pattern and its implementa-
tion using square patches are shown in Fig. 13, while the
comparison between the far-field predicted by the design
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Fig. 13. Circular metasurface with multibeam, design outputs using cell-wise
enforcement of PEC constraint. (a) Synthesized impedance pattern, and
(b) its implementation via square patches.

Fig. 14. Circular metasurface with multibeam, full self-consistent design with
cell-wise enforcement of PEC constraint: comparison between the far-field
pattern due to the reconstructed equivalent currents (Design) and the one
obtained with full-wave simulation of the complete antenna (Simulated) in
the plane ϕ = 45◦. The inset shows the co-polarization pattern in the u-v
plane.

method and the one obtained with full-wave simulation of the
complete antenna is pictured in Fig. 14. Multibeam radiation
is achieved without any a priori imposition on the shape of
the impedance pattern. There is good agreement between the
expected far-field pattern and the simulated one, with a drop
of 3 dB in the peak simulated realized gain; this discrepancy
may be due to inaccuracies in the full-wave simulation, given
the large number of mesh cells required to obtain accurate
results. The total efficiency of the simulated antenna is equal
to 75%.

D. “Strip-Like” Rectangular Metasurface
With Broadside Radiation

Another example of the application of the described numer-
ical method is the design of a quasi-1-D LWA to achieve
broadside radiation with inline feeding from one end. This
is typically hard to obtain with conventional approaches [30],
[32] due to the presence of an open stopband that leads to a

nearly total reflection of the traveling wave [33]; hence, it is
a very good test for the proposed method.

The reference geometry is the rectangular one shown in
Fig. 1(b). A 2.286 mm-thick RO3006 substrate (εr = 6.5) is
considered. The design frequency is 10 GHz. For “strip-like”
metasurface antennas, the far-field mask-type constraints are
set only in the ϕ = 0◦ plane. The impedance constraints are
based on the values that can be obtained using patch-type unit
cells with a periodicity of 2 mm, for a total feasible reactance
range of [−10 000,−150 ] �.

As already noted, the physical layout makes it virtually
compulsory to include the feeding structure (at least the
tapering section) in the design process. The launching structure
has been inspired by [30]; its optimization is carried out as
described in Section IV-A, and its final layout is shown in
Fig. 5(a). The IBC region is a 30 × 240 mm rectangular area.

The current is initialized to an x̂-directed constant current
which radiates broadside with linear polarization (which would
not be physically realizable).

In the following, we examine the relevance of incorporating
a realistic feed in the design of “strip-like” rectangular meta-
surface antennas, and the possible differences in using either
the cell-wise or edge-wise enforcement of the PEC constraint.
The number of degrees of freedom for the full geometry
(IBC region and launching structure) is N = 11 116. The
optimization of the full rectangular antennas (including the
launching structure) presented in Sections IV-D2 and IV-D3
took 20 000 iterations, each requiring 0.85 s to complete, for
a total running time of about 4 h 40 min for each case.

1) Design Without Self-Consistent Modeling of the Launch-
ing Structure: We begin our analysis by considering a
simplified, nonself-consistent description of the launching
structure. For this (approximate) design case, the incident field
is the one generated by the full launching structure, comprising
the 3-D connector and the tapered section; the tapered section
is left open-ended as show in Fig. 15. It is apparent that this
is already a good approximation, since it takes the feeding
mechanism into account and does not use an ideal incident
field. On the other hand, only the IBC rectangular area SIBC

is considered (i.e., optimized) in the design, but not the PEC
launching region SPEC [see Fig. 15(a)]. This means that the
tapered launching metal is nonself-consistently accounted for.
In this case, the number of degrees of freedom is N =

10 665 and the optimization process required 15 000 iterations
of 0.48 s each, for a total running time of about 2 h.

Fig. 15(b) shows the incident electric field extracted from
CST. Since the launching structure may generate (unwanted)
radiation, it is necessary to consider also its contribution to
the far-field as input to the design method [see Fig. 15(c)].

The optimum current synthesized by the automated method,
the corresponding impedance pattern and its implementation
with square patches are shown in Fig. 16. The empty areas in
Fig. 16(b) indicate an open-circuit condition for the IBC, i.e.,
absence of metallization on the dielectric substrate.

The radiation pattern predicted by the automated design
process is compared to the one obtained via full-wave
simulation of the complete antenna in Fig. 17, together with
the far-field masks imposed as targets in the optimization
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Fig. 15. Strip-like LWA, broadside radiation: design inputs for the case
without self-consistent modeling of the PEC launching structure. (a) Setup
for the simulation of the real antenna feed using CST, where the dashed lines
enclose the area of extraction of the incident electric field (SIBC). (b) Extracted
incident electric field to be used in the design method in SIBC. (c) “Input”
far-field in the u-v plane, due to the radiation of the feed, i.e., associated with
the “incident” field.

instance. There are several discrepancies in the two patterns:
the main beam in the CST simulation is not directed at
broadside, but tilted toward 1.5◦ , and there is a 2 dB loss
in the realized gain, resulting in a total efficiency of 84%
and an aperture efficiency of about 56%. Moreover, the side
lobes toward grazing directions, predicted by the approximate
design method, are significantly higher than those of the actual
antenna.

These differences indicate that failing to self-consistently
model the tapered PEC section inside the design algorithm
forces to neglect the interaction between the launching struc-
ture and the metasurface, leading to significant inaccuracies
in the final results (despite the high accuracy level in the
computation of the incident field achieved by including the
feeding structure).

2) Design With Self-Consistent Modeling of the Launching
Structure and Cell-Wise Enforcement of PEC Con-
straint: We consider now both the PEC and the IBC region
self-consistently in the design process, as proposed in this
article; coherently with this, the incident field Einc is now
extracted from full-wave simulations of the 3-D coaxial feed
only [see Fig. 5(b)]. This field is shown in Fig. 18(a), while the
optimized current density returned by the automated method

Fig. 16. Strip-like LWA, broadside radiation: design outputs for the solution
without the self-consistent modeling of the launching structure. (a) Optimum
IBC current density returned by the design method. (b) Impedance pattern
corresponding to the optimum current in (a). (c) Implementation via square
patches of the synthesized impedance in (b).

Fig. 17. Strip-like LWA, broadside radiation: comparison between the
far-field pattern due to the reconstructed equivalent currents (Design) and the
one obtained by CST simulation (CST), for the design without self-consistent
modeling of the launching structure inside the optimization instance.

and the corresponding impedance pattern are represented in
Fig. 18(b) and (c), respectively. The synthesized impedance
profile is unconventional and different from the typical sinu-
soidal modulation used to design 1-D LWAs [30]. Fig. 18(d)
and (e) shows the physical implementation of the synthesized
impedance pattern and the current density obtained from
full-wave simulation of the full antenna.

The comparison between the simulated far-field pattern and
the one predicted by the automated design method is shown
in Fig. 19, together with the mask-type constraints imposed
on the desired radiation pattern. There is excellent agreement
between the two patterns: broadside radiation is achieved as
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Fig. 18. Strip-like LWA, broadside radiation: design input/outputs with
self-consistent modeling of the launching structure, obtained using cell-wise
enforcement of PEC constraint. (a) Incident electric field, extracted from the
full-wave simulation of the coaxial connector in CST. (b) Optimum current
density returned as output by the design method. (c) Corresponding impedance
pattern. (d) Implementation via square patches of the synthesized impedance.
(e) Current density obtained simulating the actual antenna in CST.

expected with a realized gain of 18.5 dB, thus effectively
overcoming the open stopband problem. Although different
from those of the IBC approximation, the simulated side lobes
satisfy the desired SLL. The discrepancies in the pattern are
mainly due to the fact that the automated design method posits
an infinite dielectric substrate, while in the 3-D simulation
implemented in the commercial solver, the dielectric layer is
finite [see Fig. 18(d)]. A further source of differences may
be traced back to the unit cell design, which is based on a
local-periodicity approximation. The total efficiency shown by
the simulated antenna is 92%, while the aperture efficiency is
equal to 75%.

3) Design With Self-Consistent Modeling of the Launching
Structure and Edge-Wise Enforcement of PEC Constraint:
Finally, we carry out the same design as in Section IV-D2
using the edge-wise enforcement of the PEC constraint defined
in (27). The optimum current density and the corresponding

Fig. 19. Strip-like LWA, broadside radiation: comparison between the
far-field pattern due to the reconstructed equivalent currents (Design) and the
one obtained by full-wave simulation in CST (CST), for the self-consistent
design with cell-wise enforcement of the PEC condition.

Fig. 20. Strip-like LWA, broadside radiation: design outputs for the
self-consistent solution obtained with edge-wise enforcement of the PEC
constraint. (a) Optimum current density returned by the design method.
(b) Corresponding impedance pattern. (c) Implementation via square patches
of the synthesized impedance in CST.

impedance pattern are shown in Fig. 20, together with its
implementation via square patches.

The two synthesized impedance profiles in Figs. 18(c)
and 20(b) show some differences, resulting in slightly different
patterns; the edge-wise enforcement (see Fig. 21) appears to
achieve a higher realized gain of 19.2 dB, at the expenses of
a worse sidelobe profile. However, after the realization and
simulation of the complete antenna with CST, the side lobes
turn out to be better and actually very similar to those of the
other method. The total and aperture efficiencies are 98% and
82%, respectively.
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Fig. 21. Strip-like LWA, broadside radiation: comparison between the
far-field pattern due to the reconstructed equivalent currents (Design) and the
one obtained with full-wave simulation in CST (CST), for the design achieved
by enforcing the PEC condition edge-wise.

Fig. 22. Strip-like LWA, squinted beam: design outputs for the self-consistent
solution obtained with cell-wise enforcement of the PEC constraint (a) syn-
thesized impedance pattern, and (b) its implementation via square patches.

E. “Strip-Like” Rectangular Metasurface
With Squinted Beam

The task of designing a “strip-like” antenna radiating a
squinted beam is also undertaken, to demonstrate the capa-
bilities of the proposed method. The same substrate and
dimensions of the previous examples are considered, and the
optimization process took again about 4 h 40 min.

The target is a −30 ◦ backward beam. The design is carried
out using cell-wise enforcement of the PEC constraint. The
synthesized impedance pattern and its geometrical implemen-
tation using square patches are shown in Fig. 22, while the
far-field pattern returned by the design method and the one
resulting from full-wave simulation of the complete antenna
are pictured in Fig. 23, together with the far-field mask-type
constraints imposed in the optimization instance. The two
patterns are in excellent agreement around the main beam, with
only a small drop (−1.2 dB) in the realized gain. The simulated
total efficiency is 98%. There is some discrepancy in the side
lobes region, that increases going farther from the main beam
and can be ascribed to the finite dielectric substrate used in

Fig. 23. Strip-like LWA, squinted beam: comparison between the far-field
pattern due to the reconstructed equivalent currents (Design) and the one
obtained with full-wave simulation in CST (CST).

Fig. 24. Strip-like LWA, cosecant squared pattern: design outputs for
the self-consistent solution obtained with cell-wise enforcement of the PEC
constraint. (a) Synthesized impedance pattern, and (b) its implementation via
square patches.

the simulation environment; nevertheless, the simulated side
lobes abide to the SLL mask constraint.

F. “Strip-Like” Rectangular Metasurface With Cosecant
Squared Pattern

Finally, we address the design of a rectangular metasurface
that radiates a cosecant squared beam [24], with power pattern
D(θ) defined as [7]

D(θ) =
sin2(θmin)

sin2(θ)
, θmin ≤ θ ≤ θmax. (30)

We consider a case with θmin = 10◦, θmax = 40◦; radiation
constraints are imposed in the principal plane ϕ = 0◦. The
admissible ripple is set at ±2 dB from the target mask. Using
the same antenna geometry of the previous examples, this
optimization instance required about 4 h 40 min to complete.
Cell-wise enforcement of the PEC constraint is employed.

The synthesized impedance pattern and its geometrical
implementation using square patches are shown in Fig. 24,
while the far-field pattern returned by the design method and
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Fig. 25. Strip-like LWA, cosecant squared pattern: comparison between the
far-field pattern due to the reconstructed equivalent currents (Design) and the
one obtained with full-wave simulation in CST (CST).

the one resulting from full-wave simulation of the complete
antenna are pictured in Fig. 25. There is good agreement
between the output of the design method and the simulations
results: the simulated radiation pattern abides to the mask-type
constraints almost everywhere, with the exception of a small
backward sidelobe that was already expected to exceed the
SLL mask from the design stage. The total efficiency is 98%.

V. CONCLUSION

We have presented a method to self-consistently incorporate
a specified PEC feeding structure in the current-only inverse
design of metasurface antennas. We have shown application
examples of center-fed metasurface antennas and edge-fed
“strip-like” LWAs; in the latter, the feed is electrically con-
nected to the IBC part. We have found that including the
feed in the design of center-fed circular antennas is important,
especially to avoid deterioration of the peak gain, in line
with recent literature. Its impact on “strip-like” LWAs is
significantly more pronounced, affecting the accuracy of the
radiation pattern in both the main and sidelobe regions.

APPENDIX A
RADIATED FIELD FUNCTIONAL

The cost function encompassing the radiation requirements
is defined as

frad = wcoρco
+ wcxρcx

+ wtotρ tot (31)

where each individual functional of the weighted sum is given
by the sum of terms over all considered far-field directions

ρx
=

Nff∑
j=1

ρx
j (32)

where “x” should be replaced by the corresponding component
(“co”, “cx” or “tot”), and the index j = 1, . . . , Nff refers to
the far-field direction (θ j , φ j ). Below are the definitions of

each term

ρco
j = r2(Mco

L, j − Fco
j

)
+ r2(Fco

j − Mco
U, j

)
(33)

ρcx
j = r2(Fcx

j − Mcx
j

)
(34)

ρ tot
j = r2(F tot

j − M tot
j

)
(35)

where r(x) = max(x, 0), and

Fco
j =

∣∣Eco
j

∣∣2 (36)

Fcx
j =

∣∣Ecx
j

∣∣2 (37)

F tot
j =

∣∣Eco
j

∣∣2
+

∣∣Ecx
j

∣∣2
. (38)

The co- and cross-polarization components of the electric field
are obtained by applying the discretized radiation operator to
the current coefficients

Eco
= Rco I (39)

Ecx
= Rcx I. (40)

APPENDIX B
IMPEDANCE REALIZABILITY FUNCTIONAL

The total realizability cost function for the IBC includes
the conditions of passivity and losslessness (“act”), scalarity
(“scal”), and upper/lower impedance bounds (“imp”)

fibc = wactρact
+ wscalρscal

+ wimpρ imp. (41)

It is formulated as a weighted sum of functionals. Each of
these functionals in turn is expressed as a sum of functionals
defined over individual cells

ρx
=

∑
i∈Iibc

ρx
i (42)

where “x” should be replaced by the corresponding condition
(“act”, “scal” or “imp”), and Iibc = {i ∈ N |Si ⊂ SIBC}.
Individual terms are defined as follows:

ρact
i = Pi

2 (43)

ρscal
i = Ei Ji −

(
Pi

2
+Qi

2) (44)

ρ
imp
i = r2(XminJi −Qi )+ r2(Qi − XmaxJi ) (45)

where

Pi =
1
Ai

Re
∫∫
Si

Etan · J∗ dS = Re
(
IH0i V

)
(46)

Qi =
1
Ai

Im
∫∫
Si

Etan · J∗ dS = Im
(
IH0i V

)
(47)

Ji =
1
Ai

∫∫
Si

|J |
2 dS = IH0i I (48)

Ei =
1
Ai

∫∫
Si

|Etan|
2 dS = VH0i V (49)

with Ai being the surface area of the i th cell. In the above

V = G−1
(Vinc + LI) (50)

where G ∈ RN×N is the Gram matrix of the RWG basis
functions, defined as

(G)mn =

∫∫
3m(r) · 3n(r) dr (51)
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and 0i ∈ RN×N is the (averaging) local Gram matrix for the
i th cell, defined as

(0i )mn =
1
Ai

∫∫
Si

3m(r) · 3n(r) dr. (52)

APPENDIX C
IMPEDANCE CALCULATION FROM THE CURRENT

Starting from the discretized integral equation (6) restricted
to the IBC region, the impedance is first expanded into a linear
combination of basis functions

Z(r) =

M∑
i=1

zi ψi (r). (53)

From the knowledge of the (optimal) equivalent current, the
coefficients of the impedance expansion are found by mini-
mizing the error in the integral equation, i.e.,

z = arg min
z∈CM

∥Vtot − 9z∥ (54)

where z collects the impedance coefficients, Vtot = Vinc + LI
is the total electric field in terms of the equivalent current, and
the elements of the matrix 9

(9)mi = ⟨3m , ψi J3 ⟩ (55)

with J3 =
∑N

n=1 In3n , represent the linear dependence of
the total field on the coefficients of the impedance. Finding
the impedance through (54) constitutes a convex optimization
problem.

If we express the impedance in terms of piecewise constant
basis functions on each triangle, i.e.,

ψi (r) =

{
1, for r ∈ Si

0, elsewhere
, i = 1, . . . , Nc (56)

the optimum impedance coefficients can be obtained in closed
form as

zi =

∫∫
Si

Etan · J∗ dS∫∫
Si

|J |
2 dS

=
IH0i V
IH0i I

. (57)

A limiting case, often encountered in practice, is when the
denominator of (57) is close to zero, while its numerator
is much larger than zero, which corresponds to an infinite
impedance value. This implies the absence of the IBC over the
considered triangle, a condition that can be easily implemented
in the numerical solution by removing the corresponding
degrees of freedom from the discretization.
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