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Abstract: We consider several Hamiltonian systems perturbed by external agents that preserve
their Hamiltonian structure. We investigate the corrections to the canonical statistics resulting from
coupling such systems with possibly large but finite reservoirs and from the onset of processes
breaking the time-reversal symmetry. We analyze exactly solvable oscillator systems and perform
simulations of relatively more complex ones. This indicates that the standard statistical mechanical
formalism needs to be adjusted in the ever more investigated nano-scale science and technology. In
particular, the hypothesis that heat reservoirs be considered infinite and be described by the classical
ensembles is found to be critical when exponential quantities are considered since the large size limit
may not coincide with the infinite size canonical result. Furthermore, process-dependent emergent
irreversibility affects ensemble averages, effectively frustrating, on a statistical level, the time reversal
invariance of Hamiltonian dynamics that are used to obtain numerous results.

Keywords: Jarzynski equality; nonequilibrium processes; fluctuation relations; finite size effects

1. Introduction

The validity of the canonical ensemble is universally accepted to compute macroscopic
quantities of systems in equilibrium at a given temperature T as averages of phase space
functions. The corresponding formalism assumes that heat reservoirs are infinitely large
and that measurement times are exceedingly longer than the characteristic times of the
microscopic events. Such mathematical idealizations yield a highly successful theory de-
scribing a vast range of macroscopic phenomena. The separation between microscopic and
macroscopic scales is indeed sufficiently wide for calculations of quantities of thermody-
namic interest. Nevertheless, there are various reasons for investigating the applicability
of the canonical framework to non-standard observables. For instance, exponentials of
microscopically expressed variables appear in Bennett’s formulae for the free energy [1], in
Widom’s relation [2], Zwanzig’s relation [3], and in the more recent Jarzynski [4] and Crooks
relations [5]. Furthermore, current science and technology deal with small systems and
fast processes, as well as with quantities not immediately interpretable in thermodynamic
terms, as in the case of anomalous energy transport [6–8]. Therefore, finite size effects
and lack of ergodicity may turn important. Indeed, standard thermodynamic properties
of macroscopic objects only require a proper characterization of the bulk of the relevant
probability distributions, not of their tails. On the other hand, an accurate characterization
of the tails of the relevant probability distributions becomes necessary when dealing with
observables that obtain a substantial contribution from such tails. Then, the fact that ther-
mal baths are necessarily finite and that experiments may last very short times may require
particular attention.
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In this work, we take the quantity used in the Jarzynski Equality (JE) as a paradigmatic
example of topical non-standard observables. It is worth recalling that the time-reversal
symmetry of the microscopic dynamics [9–16] is essential for the derivation of the JE, which
belongs to a class of results, known as Fluctuation Relations, strongly relying on the time re-
versibility of the microscopic dynamics, see, e.g., [17–20]. More generally, the time-reversal
symmetry turns out to be a standard ingredient of a large variety of statistical mechani-
cal results, including the Onsager Reciprocal Relations [21–24], Fluctuation-Dissipation
Theorem and the Green–Kubo relations [25–31], and applications to magnetic systems [32].
In works such as Ref. [33] it was found that certain nanoscopic Hamiltonian systems vio-
late the JE, although formally amenable to analysis within the canonical framework, that
yields the JE as an exact relation [4]. In the case of Ref. [33], the failure was caused by the
emergence of irreversibility due to a process-dependent nonequilibrium effect and not to
the large degree of freedom. At the same time, highly nonequilibrium processes do not
prevent the validity of the JE in, e.g., 1-dimensional systems described by an overdamped
Langevin equation [34]. That this may be the case is clear in the words of, e.g., Fermi [35] or
Callen [36], who state, in practice, that the ensembles work if the observation times suffice
for the observables of interest to have thoroughly explored their range. Khinchin then adds
that this is easy to obtain, for the observables of interest typically have a small range [37].
In all instances, the state of the system is required to be stationary or very slowly evolving
with respect to the observation times.

The above considerations are topical, given the rapid development of bio- and nano-
technologies, which deal with small systems. Apart from being small, such systems are
often briskly driven by external agents so that thermal baths (even if effectively infinite)
only express limited energy, and the deterministic thermodynamic laws must often be
replaced by statistical laws. Certainly, some experiments of bio- and nano-technological
interest intentionally take a very short time so that only a small part of a thermal bath is
effectively involved. This poses the question, when computing ensemble averages, about
proper approaches to the finiteness of the bath or, in other terms, to the restriction to finite
subsets of phase space.

In this paper, we thus analyze the finite size effects on the statistics concerning simple
Hamiltonian systems subjected to various external drivings. We start by briefly reviewing the
derivation of the JE in Section 2. In Section 3, three simple mechanical models are introduced
to illustrate the onset of finite size effects that lead to violations of the JE, highlighting some of
the limitations of the canonical statistic. In particular, it is shown that the speed of the protocol
or the frequency of periodic drivings resonating with the system’s proper frequency may
wildly enhance the protocol dependence, violating up to 110% the JE. We also highlight the
fact that analogous results are obtained for infinite baths at small temperatures.

In Section 4, we consider a model mimicking the adiabatic expansion of an ideal gas and
also describe the validity of the JE in the presence of a protocol-dependent device concluding
that the occurrence of an irreversible phenomenon (such as the free expansion of a gas) can
invalidate the statistical description of a particle system through the canonical formalism.

Conclusions are drawn in Section 5, where we also anticipate future developments.
The Appendices give the details of some analytical calculations reported in the main text.

2. Derivation of the Jarzynski Equality

A well-known example involving both the canonical ensemble and exponential vari-
ables is the Jarzynski Equality (JE), which offers a useful playground to highlight the role of
finite size effects on the statistics of thermodynamics quantities in the canonical framework.
The JE has been derived for both stochastic and deterministic systems. We focus on the
second, which concerns a system S made of N particles, initially in equilibrium with a
bath B at temperature T. The system may interact with an environment, E, also initially
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in equilibrium with B. The Hamiltonian of system and environment, denoted by S + E, is
assumed to take the following form:

H(x, v; λ) = HS(xS, vS; λ) + HE(xE, vE) + hI(x, v) (1)

where λ is a parameter controlled by an external agent, (x, v) = (xS, vS, xE, vE) are the
position and velocities of S and E, as indicated by the subscripts, HS, HE, and hI are,
respectively, the energy of S, the energy of E and the energy of their interaction. The initial
distributions of coordinates and momenta of S + E, which is in equilibrium at temperature,
T is given by the canonical ensemble:

P0(Γ) =
1

Z0
e−βH(Γ;A) , β =

1
kB T

(2)

where kB is the Boltzmann’s constant, Γ = (x, v) is one configuration of S + E, and Z0 is the
initial canonical partition function.

At time t = 0, this system is isolated from the bath and driven by an external agent
that modifies the parameter λ. This is done many times, repeating the same protocol
λ : [0, τ] → R over a given finite time τ, changing the parameter from its initial value
λ(0) = A, to its final value λ(τ) = B. Each time, a different initial condition is taken at
random, according to the canonical distribution (2), and the following quantity, called work,
is computed [4]:

WJ(Γ0) =
∫ τ

0

∂H
∂λ

λ̇ dt = H(Γτ(Γ0); B)−H(Γ0; A) (3)

where Γτ(Γ0) is the phase reached in the time τ starting from the initial condition Γ0.
Because the protocol λ(t) is fixed, the dynamics are deterministic, and the value of the work
depends only on the initial condition. However, the initial conditions change randomly,
yielding a different value of WJ for each realization of the process and effectively making it
a random variable. In this setting, the following relation, known as Jarzynski equality, was
obtained [4]: 〈

e−βWJ
〉

0
= e−β∆F (4)

where 〈·〉0 is the canonical ensemble average obtained from P0, and ∆F = FB − FA is the
equilibrium free energy difference between the equilibrium canonical state with parameter
λ = B and the one with parameter λ = A, both at temperature T. One of the most striking
aspects of the JE, which is a direct effect of the canonical ensemble, is that it does not
depend on the protocol. This sounds at odds with the fact that physical theories have a
range of applicability limited by space and time constraints, outside of which a different
description must be adopted. On the other hand, it depends on the validity of the canonical
ensemble whose applicability boundaries are not known, in general, especially if involving
non-standard quantities. Understanding the role of the canonical ensemble is important
in general, not just in relation to the JE. We will see that the quantity on the right-hand
side of Equation (4) depends on the protocol if the ensemble does not extend to infinity.
Note that the form of the probability distribution properly describing the effect of finite
environments is not known in general, but the finite size effects can be evidenced in any
distribution. In the concluding remarks, we address this issue.

3. Models and Methods

Below, we investigate possible finite size effects for several different systems. In particular,
we analyze three simple harmonic oscillator models perturbed from their equilibrium states.
The perturbation is applied by harmonic springs, whose center of force moves according to
deterministic rules λ(t). The first model consists of a single oscillator, playing the role of
S, with λ(t) = `t, t ∈ [0, τ], where ` and τ are constants that can be varied, in such a way
that the initial and final values of λ do not change: λ(0) = A and λ(τ) = B. In the second
model, the protocol is changed to λ(t) = sin(γt). Being periodic in time, this protocol yields
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different phenomena when the frequency γ is changed, such as resonances that affect WJ and,
consequently, the JE. Both the first and the second cases do not have any environment E or,
equivalently, the interaction energy vanishes: hI = 0. The third model we consider has two
oscillators, one of which is taken to be the system S and the other the environment E. As the
theory requires, only S is subjected to a time-dependent perturbation.

3.1. Single Oscillator under Linear Protocol

Take a 1D system made of a single harmonic oscillator with rest position in x = 0
that is driven by a moving harmonic trap, centered in λ(t) = `t, where ` is a positive
constant, and t ∈ [0, τ]. The initial value of λ is given by A = λ(0) = 0, and let its final
value be denoted by B = λ(τ) = `τ, with B fixed. To explore the effect of modifying the
speed of the protocol, we vary ` and τ so that B is fixed. Let the oscillator mass be m, and
its momentum p = mv, where v is the velocity. Then, the motion is determined by the
following time-dependent Hamiltonian:

H(x, v; t) =
p2

2m
+

kp

2
x2 +

kD
2
(λ− x)2 =

p2

2m
+

k
2

x2 +
kD`

2

(
`t2 − 2xt

)
, (5)

where kp is the elastic constant of the spring with rest position in x = 0, kD the elastic
constant of the moving trap, and k = kD + kp. The equation of motion consequently takes
the form:

ẍ = −ω2x +
kD
m

`t , with x(0) = x0 , v(0) = v0 (6)

where we introduced the natural frequency of the oscillator ω =
√

k/m. In this case, the
work WJ is expressed by:

WJ =
∫ τ

0
kD(`t− x)`dt =

kD`
2τ2

2
− kD`

∫ τ

0
x(t; x0, v0)dt

= kDB
[

B
2
− 1

τ

∫ τ

0
x(t; x0, v0)dt

]
(7)

where the oscillator position is expressed by:

x(t; x0, v0) = x0 cos ωt +
v0 − `kD/k

ω
sin ωt +

`kD
k

t (8)

Then, performing the integration in expression (7), one obtains:

WJ(`; x0, v0) = kDB
[

B
2

(
1− kD

k

)
− x0`

Bω
sin ω

B
`
+

(
p0`

Bk
− `2kD

Bkω2

)(
cos ω

B
`
− 1
)]

, (9)

where B is fixed, while the protocol speed ` can be varied. Although exp(−βWJ) de-
pends on `, its average with respect to the initial canonical ensemble, P0, does not. Given
` ∈ (0, ∞), one has:

〈
e−βWJ,`

〉
0
= exp

{
−β

kDkpB2

2k

}
, (10)

which does not depend on the speed of the protocol, as the Jarzynski theory predicts.
Explicit calculations are reported in Appendix A.

In the case in which the environment is bounded and the bath can only express finite
energy, the corresponding probability density is truncated at a given distance L from the
rest position of the oscillator and at a maximum momentum M. For the sake of argument,
we assume that the form of the finite support distribution is the canonical one, truncated
and normalized and that the two bounds L and M do not depend on each other. After
all, the classical ensembles constitute a most successful postulate of statistical mechanics
that, however, only seldom can be derived from the particles’ dynamics. Moreover, the
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resulting distributions are truncated Gaussians, hence mitigating the effects of truncation.
Then, suppose we have:

P0(x, p) =
1

Z0(L, M)

 e−β(kx2+p2/m)/2 if |x| ≤ L and |p| ≤ M

0 if |x| > L or |p| > M
(11)

with Z0(L, M) a normalizing factor. In this case, one obtains:〈
e−βWJ,`

〉
0;L,M

= Iexp · Ix · Ip (12)

where Iexp represents the infinite size result that does not depend on `, while the finite size
correction factors Ix and Ip do depend on `, hence on the protocol. The explicit expressions
of Iexp, Ix, Ip, along with the detailed calculations leading to Equation (12), are deferred
to Appendix A. This result shows that for fixed ` and m, sufficiently large L and M exist
such that the infinite size result is recovered; indeed Ix and Ip both tend to 1, if L, M
grow at fixed `. However, for fixed L and M, sufficiently large `, i.e., a sufficiently fast
protocol, together with a large enough value of the product ωB, or sufficiently large m, yield
Ix, Ip < 1, i.e., exp(−βWJ)〉0;L,M < 〈exp(−βWJ)〉0. The term Ip is particularly sensitive to
variations of m because the argument of the error function on the right of its numerator
may even turn negative if m is sufficiently large. In any event, the left-hand side of the
JE is protocol dependent if the ensemble is finitely supported. Although at odds with the
infinite bath result, this is in accord with the fact that too fast protocols (e.g., comparable
with microscopic rates) require a specifically developed approach.

3.2. Single Oscillator with Periodic Forcing
Let now the single oscillator be driven by a moving harmonic trap centered in

λ(t) = sin γt, where γ = 2π/T, and T is the period of the center of force of the trap.
Take t ∈ [0, τ], A = λ(0) = 0, and B = λ(τ) = sin γτ. If the final value of λ is fixed, as in
the previous subsection, different γ correspond to faster or slower protocols that last a time
τ = arcsin(B)/γ. The time-dependent Hamiltonian now takes the form

H(x, v; t) =
p2

2m
+

kp

2
x2 +

kD
2
(λ− x)2 (13)

=
p2

2m
+

kp

2
x2 +

kD
2
(sin γt− x)2 =

p2

2m
+

k
2

x2 +
kD
2

(
sin2 γt− 2x sin γt

)
, (14)

where k = kD + kp. In this case, the Jarzynski work WJ is given by:

WJ =
∫ τ

0

∂H
∂λ

λ̇ dt= (15)

=
kD
4
(1− cos 2γτ)− kDγ

∫ τ

0
x(t; x0, v0) cos(γt)dt (16)

Given the Hamiltonian (14), the equation of motion for this system is:

ẍ = −ω2x +
kD
m

sin γt , with i.c. x(0) = x0 , v(0) = v0 (17)

where ω =
√

k/m. For γ 6= ω, one obtains:

x(t; x0, v0) =
kD/m

ω2 − γ2 sin γt +
1
ω

(
v0 −

γkD/m
ω2 − γ2

)
sin ωt + x0 cos ωt (18)
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and the work takes the form:

WJ(γ; x0, v0) =
kD
4
(1− cos 2γτ)− kDγ

∫ τ

0
cos(γt)× (19)[

kD/m
ω2 − γ2 sin γt +

1
ω

(
v0 −

γkD/m
ω2 − γ2

)
sin ωt + x0 cos ωt

]
dt (20)

Solving the integral on the right, we finally obtain:

WJ(γ; x0, v0) =
kD
4

(
1− kD/m

ω2 − γ2

)
(1− cos 2γτ)+ (21)

− kDγ

ω2 − γ2

(
v0 −

kDγ/m
ω2 − γ2

)(
1− γ

ω
sin γτ sin ωτ − cos γτ cos ωτ

)
+ (22)

+ x0
kDγω

ω2 − γ2

( γ

ω
sin γτ cos ωτ − cos γτ sin ωτ

)
(23)

This quantity can now be multiplied by −β, exponentiated, and averaged over all the
initial conditions (x0, v0). In the case of the full canonical ensemble, one obtains a result
that does not depend on γ when A, τ, and consequently B are fixed. If, on the other hand,
the probability density is expressed by Equation (11), one finds:〈

e−βWJ
〉

0;L,M
= Iexp · Ix · Ip , (24)

where the explicit expressions of Iexp, Ix, Ip are given in the Appendix B. The resonance,
corresponding to γ = ω, must be treated separately since the solution of the equation of
motion (17) takes the form:

x(t; x0, v0) = x0 cos ωt +
v0

ω
sin ωt +

kD/m
2ω2 (sin ωt−ωt cos ωt) (25)

The Jarzynski work is now expressed by:

WJ(τ; x0, v0) =
k2

D/m
8

τ2 +
k2

D/m
8ω

τ sin 2ωτ +
kD
4

(
1− 3

4
kD/m

ω2

)
[1− cos 2ωτ]

−x0
kD
2

[
ωτ +

1
2

sin 2ωτ

]
− v0

kD
4ω

[1− cos 2ωτ] (26)

and its finite energy ensemble average can again be written as:〈
e−βWJ

〉(res)

0;L,M
= I(res)

exp · I
(res)
x · I(res)

p (27)

where:

I(res)
exp = exp

{
βkD

2

(
kD
k
− 1
)

sin2 ωτ

}
(28)

I(res)
x =

1

2 erf
(√

βk
2 L
)
erf

 βkL− βkD
2

(
ωτ + 1

2 sin 2ωτ
)

√
2βk

+

erf

 βkL + βkD
2

(
ωτ + 1

2 sin 2ωτ
)

√
2βk

 (29)
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I(res)
p =

1

2 erf
(√

β
2m M

)[erf

(
β
m M− βkD/m

4ω (1− cos 2ωτ)√
2β/m

)
+

erf

(
β
m M + βkD/m

4ω (1− cos 2ωτ)√
2β/m

)]
(30)

Because ω can be considered an intrinsic property of the system coupled to the driving
mechanism, we take it as fixed. Then, Equation (27), together with (28)–(30), shows that
the average of the exponential of the Jarzynski work for a bounded ensemble of initial
states depends on the protocol time τ. Indeed, for a sinusoidal protocol, there is an infinite
set of values of τ that yields the same final value λ(τ) = B. In particular, Equation (29),
shows that I(res)

x may even approach 0 or 2, however large L is taken, for sufficiently large
τ. Indeed, the first error function in Equation (29) tends to −1, while the other tends to
1, as τ grows, all the other parameters being fixed. On the other hand, small τ implies a
sum of two equal quantities, which approaches 2 for large L. Tuning the values of τ, one
observes quite a sensitive protocol dependence for the average (27). This is illustrated in
Figures 1 and 2. The cause of this behavior, in the presence of a resonance, is the fact that
the amplitude of the oscillator position grows linearly in time, yielding the ωτ term in the
arguments of the error functions of I(res)

x .

Figure 1. Values of
〈

e−βWJ
〉

L,M
for the single harmonic oscillator with λ = sin γt, as a function of

the forcing frequency γ, for different values of Γ0 volumes and different final times τ. Left and right
panels refer to L = M = 1 and L = M = 10, respectively, with τ such that B = sin(2π) for the
first case, and B = sin(200π) for the second. Blue, red, yellow, and purple plots refer to inverse
temperatures β = 1, 10, 100, 1000, respectively. Other parameters are set to m = 1, k = 1, kD = 1.
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Figure 2. Values of
〈

e−βWJ
〉

L,M
for the single harmonic oscillator with λ = sin γt, as a function of

the forcing frequency γ, for different values of Γ0 volumes and different final times τ. Left and right
panels refer to L = M = 1 and L = M = 10, respectively, with τ such that B = sin(2π) for the
first case and B = sin(200π) for the second. Blue, red, yellow, and purple plots refer to stiffnesses
ks = 0.1, 1, 10, 100, respectively. Other parameters are set to m = 1, β = 1, and kD = 1.

3.3. Coupled Oscillators with Periodic Forcing

In this subsection, a single oscillator, S, is harmonically tied to the origin of the real
line and is harmonically driven, as in Section 3.2. In addition, S is harmonically coupled to
a second oscillator, E. We denote by kI the stiffness of the harmonic potential linking S and
E, and we also assume that E is harmonically bound to the origin of the line, with elastic
constant kE. Let the oscillators masses be mE and mS, and let the phase of S + E be denoted
by Γ = (xE, xS, pE, pS) = (x, v), where pE = mEvE and pS = mSvS are the momenta
associated to each oscillator. Then, the Hamiltonian of the total system is given by:

H(x, v; λ) =

[
p2

S
2mS

+
kS
2

x2
S +

kD
2
(λ− xS)

2

]
+

[
p2

E
2mE

+
kE
2

x2
E

]
+

kI
2
(xE − xS)

2 (31)

= HS(xS, pS; λ) + HE(xE, pE) + hI(x) (32)

where the square brackets delimit the different contributions to the full Hamiltonian,
respectively, HS, HE, and hI , as in Equation (1) for the JE theory. As the driving term, we
take the periodic protocol used above: sin γt, and we set again k = kS + kD. The equations
of motion for this system are the following:{

mS ẍS = −kxS + kD sin γt− kI(xS − xE) ,
mE ẍE = −kExE − kI(xE − xS) ,

(33)

with initial conditions (x(0), ẋ(0)) = (x0, v0) = Γ0. Although analytical solutions for
this set of equations are conceptually trivial, they are practically involved if kS 6= kE and
mS 6= mE, especially when integrated to compute the left-hand side of the JE. On the
other hand, they can be quite simply handled in numerical calculations. We have thus
numerically sampled the initial conditions Γ0 from the truncated canonical distribution,
and for each of them, we have computed the initial energy H(Γ0; λ(0)). Then, we have
numerically solved Equation (33) for that Γ0, obtaining the final condition Γτ(Γ0), that has
been introduced in the final HamiltonianH(Γτ(Γ0); λ(τ)), to obtain the work as:

WJ(Γ0) = H(Γτ(Γ0); λ(τ))−H(Γ0; λ(0)) (34)
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as in Equation (3), where λ(0) = A = 0 and λ(τ) = sin γτ = B. Collecting many works,
with τ fixed, we have eventually estimated the quantity〈

e−βWJ
〉

0;L,M
(35)

3.4. Results

Our first observation is that finite size effects make the protocol on dependent the
quantity (35), unlike the case of systems initially in contact with truly infinite reservoirs.
Of course, no real reservoir is infinite, but considering it infinite introduces no errors
when taking equilibrium averages of standard observables, such as power laws. The
situation changes if the exponentials of standard observables are considered. For the single
oscillator driven by a harmonic trap moving with constant velocity, Figure 3 shows the
dependence of (35) on ` and on β, for different values of the harmonic potential stiffness
kp: fast and slow protocols yield different ensemble averages. The cases with L = 1 and
M = 1, represented by solid lines, show an abrupt transition at about ` = 1, for small
kp. For large kp, dominating the coupling with the driving agent, the result gradually
turns independent of the speed of the process. Increasing the reservoir size to L = 5
and M = 5, the quantity (35) does not appear to depend anymore on the speed of the
process λ(t), cf. dashed lines in Figure 3. In reality, the dash-dotted lines for L = M = 2
reveal that the process dependence merely shifts with L and M, becoming evident at larger
`. Therefore, process independence for (35) is only obtained when L = ∞ and M = ∞.
Analogous behavior is observed as a function of the inverse temperature β, with more
evident transitions at higher temperatures.

Figure 3. Values of
〈

e−βWJ
〉

L,M
for the single harmonic oscillator driven by a constant speed moving

harmonic trap, with a final protocol value of λ(τ) = B = 1. The result is shown as a function of `,
for different values of L and M. Solid lines refer to L = M = 1, dash-dotted lines to L = M = 2,
and dashed lines to L = M = 5. In the left panel, blue, red, yellow, and purple plots refer to
kp = 0.1, 1, 10, 100, respectively. In the right panel, blue, red, yellow, and purple plots refer to
β = 1, 4, 7, 10, respectively. Other parameters are set to m = 1 and kD = 1.

The second model analyzed above is even more intriguing, as resonances significantly
affect the work done on the system by external perturbations when finite size effects play a
role. Figures 1 and 2 show that the extension of the phase space volume does not suffice to
tame the resonances produced over sufficiently long times τ. Unlike the case of infinitely
large baths, which yield the same result for all τ, here, a protocol dependence arises. The
reason is that a harmonic oscillator subject to no friction and to periodic forces performs
oscillations whose amplitude grows linearly in time if the forcing frequency equates to the
natural frequency of the system. In our example, this happens for γ = ω. Thus, the work
done on the system grows together with the amplitude, pushing

〈
e−βWJ

〉
L,M

toward 0, at

and near the resonance.
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The inverse temperature β and the global stiffness k of the potential also have no-
ticeable effects on the behavior of (35). In particular, increasing β (reducing the tempera-
ture) flattens the curve about the resonance, widening the interval of γ values that make〈

e−βWJ
〉

0;L,M
equal 0, rather than the infinite size theoretical value 1, cf. Figure 1. A larger

value of k seems instead to stabilize
〈

e−βWJ
〉

0;L,M
and reduce its dependence on γ, as

shown by Figure 2.
The pair of oscillators S and E from Section 3.3, with periodic forcing on S, shows a

similar behavior, at least when the coupled particles have the same mass, mS = mE = 1,
and the interaction stiffness is sufficiently low (like kI = 1). This is illustrated by the first
two panels of Figure 4, where the only parameters varied are β and kS. It is interesting
to note how the temperature of the system needs to decrease (thus β to increase) to make〈

e−βWJ
〉

0;L,M
vanish. This is especially evident in the central panel of Figure 4 where

none of the tested values of kS yields 0 for β = 1. On the contrary, β = 100 obtains〈
e−βWJ

〉
L,M

= 0 for kS = 1 and different values of γ. The reason is that higher β implies a

narrower distribution, hence analogous to a case with smaller L and M.

Figure 4. Behavior of
〈

e−βWJ
〉

L,M
as a function of the forcing frequency γ for the coupled oscillators

model, simulated with τ such that B = sin(2π). Left, center, and right panels report the system
behavior at varying values of the parameters β, kS, and kI , respectively. Markers represent results
from numerical simulations, while dotted lines connecting them are a guide for the eye. Left panel:
dark blue, light blue, light grey, and dark grey lines correspond to β = 0.1, 1, 10, 100, respectively;
other parameters are set to mS = mE = 1, kS = kE = 1, kI = 1 and L = M = 1. Center panel: dark
blue, light blue, light grey, and dark grey lines correspond to kS = 0.1, 1, 10, 100, respectively; other
parameters are set to mS = mE = 1, kE = 1, kI = 1, β = 1 and L = M = 1. Right panel, dark blue,
and light blue lines refer to kI = 10 and kI = 0.1, respectively, with L = M = 1; dark grey and light
grey plots refer to kI = 10 and kI = 0.1, respectively; for L = M = 5, the remaining parameters are
set to mE = 10, mS = 1, kS = kE = 1, β = 1.

Note that this is also relevant for infinite baths. A small temperature causes kinds
of finite size effects due to the smallness of the distribution variance. That, assuming the
infinite space can at least in principle be explored, may be eliminated only at the cost of
collecting enormous statistics, which is often impossible. Therefore, the finite ensemble
result remains only physically relevant.

The right panel of Figure 4 shows the quantity (35) computed on a variation of the
coupled oscillators model, in which the “environment” mass mE is ten times bigger than the
“system” mass mS. To include possible effects due to the efficiency of the energy exchange
between the system and environment, the stiffness of the interaction potential is varied:
first, a value of kI = 0.1 is implemented, then kI = 10 is employed to account for a rapid
exchange of energy between the parts, that result almost rigidly connected. The figures
show that the two configurations generate similar results when the initial ensemble is
restricted to L = M = 1, while noticeably different behavior is observed for a larger system,
where L = M = 5. The rigidly coupled system produces oscillations of

〈
e−βWJ

〉
0;L,M
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around the resonance frequency, with the loosely connected case exhibiting even more
evident down-peaks in the values of

〈
e−βWJ

〉
L,M

about the resonance frequency, as in the

case of the periodically forced single oscillator. Moreover, both L = 5 = M lead to peaks
that exceed 1. Both weakly and strongly coupled oscillators indicate that the presence of a
massive environment drastically magnifies the finite size effects, noticeably deviating from
the equality

〈
e−βWJ

〉
0;L,M

= 1.

4. Irreversible Expansion of an Ideal Gas

Consider a set of N identical point particles in a 2D rectangular box of length 2L. The
particles move in straight lines and collide elastically with the hard boundaries of the box.
The box is subdivided into two equal parts by a wall perpendicular to two sides that can be
removed and placed back according to prescribed protocols. We perform a cycle, starting
from the gas confined by the wall in the left half of the box and in equilibrium at a given
temperature T. At time t = 0, the system is isolated from the bath, and the wall is removed
for a certain amount of time τ. Finally, the wall is placed back. A schematic representation
of the system and its dynamics is given in Figure 5. The main observable here is the fraction
of particles trapped in the right half of the box at the end of the cycle. Because this fraction
depends on the details of the process through which the intermediate wall is removed and
reinserted, the final equilibrium state may differ from the initial one and may depend on
the protocol.

(a) (b)

(c)

Figure 5. Schematic representation of the irreversible expansion of an ideal gas. A 2D box contains
non-interacting particles in equilibrium with a heat bath at temperature T. Panel (a): state of the
system before the central wall is removed; all the particles are confined in the left half of the box and
undergo specular reflections with the container walls. Panel (b): dynamics of the particles once the
central wall is removed. Panel (c): after the wall is reintroduced, a fraction of particles is trapped in
the right half of the box.

For the sake of simplicity and without any loss of significance, because the particles
do not interact, we may replace the 2D container with a straight line segment of length 2L.
We also assume the particles to start with random initial positions, uniformly distributed in
the interval (−L, 0), and with initial velocities normally distributed, with mean µ = 0 and
standard deviation σ =

√
kBT/m, where kB is the Boltzmann constant, T is the temperature

of the bath and m is the mass of the particles. The fraction of particles escaping from the left
half of the box to the right half, in the time interval [0, τ], is obtained by integrating over
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all initial positions x0 and initial velocities v0 the probability for a particle to move from
(−L, 0) to (0, L). In the limit of many particles, the number of those leaving the left half and
reaching the right half is this probability multiplied by their total number N. We denote
by NL the number of particles in the left half of the box and by NR the number of those in
the right half of the box so that N = NL + NR. Now, note that the initial velocities pointing
rightward (i.e., v0 > 0) that make a particle starting at x0 ∈ (−L, 0) end in xτ ∈ (0, L) after
a time τ, fulfill the inequalities:

1
τ
(4nL− x0) < v0 <

1
τ
[(4n + 2)L− x0] , n = 0, 1, 2, . . . (36)

because traveling a distance of (4nL− x0) brings the particle in the interval (0, L), after a
number n of bounces against the left wall of the container. Going beyond [(4n + 2)L− x0]
brings the same particle back to the left half of the box. The same reasoning, applied to
particles initially pointing leftward (hence v0 < 0), shows that a particle is found in the
right half of the box at time τ if its velocity v0 is such that:

− 1
τ
[(4n + 4)L + x0] < v0 < − 1

τ
[(4n + 2)L + x0) , n = 0, 1, 2, . . . (37)

The number of particles residing in the right half of the box at time τ > 0, denoted as
NR(τ), is thus obtained by integrating over all initial positions x0 in the interval (−L, 0)
and overall initial velocities v0 contained in the intervals given in (36) and (37). By doing
this, one implicitly assumes the system is made of infinitely many particles; therefore, the
result applies only for large N. For sufficiently large N, the following:

NR(τ)

N
=

1
Lσ
√

2π

∫ 0

−L
dx0

{
∞

∑
n=0

[∫ 1
τ [(4n+2)L−x0]

1
τ (4nL−x0)

e−v2
0/2σ2

dv0 +
∫ 1

τ [(4n+4)L+x0]

1
τ [(4n+2)L+x0]

e−v2
0/2σ2

dv0

]}
(38)

is thus an accurate prediction for observations. Then, integrating first over the velocity
space, exchanging the integral over positions with the infinite sum (which is made pos-
sible since each term of the infinite sum is a continuous, bounded function), and finally
integrating over initial positions, Equation (38) yields

NR(τ)

N
=

1
2L

∞

∑
n=0

{√
2
π

στ

[
exp

(
− 16L2(n + 1)2

2σ2τ2

)
+ exp

(
− 16L2n2

2σ2τ2

)
− 2 exp

(
− L2(4n + 2)2

2σ2τ2

)]

−2(4n + 2)L erf
[
(4n + 2)L√

2στ

]
+ 4nL erf

[
4nL√
2στ

]
+ (4n + 4)L erf

[
(4n + 4)L√

2στ

]} (39)

A comparison between this analytical result and numerical simulations of the system is
shown in Figure 6. To estimate the relaxation times, in the absence of the intermediate wall,
one cannot count on the mean time between two consecutive collisions with the boundaries
of the box, given by 2L〈1/v〉, because such a mean does not exist in a 1-dimensional space.
However, one may take the distance 2L divided by the mean speed 〈|v|〉

t̂ =
2L
〈|v|〉 =

√
2π

L
σ

(40)

as a characteristic time for the dynamics. This quantity estimates the time scale of the
relaxation to a uniform distribution of particles when their number is sufficiently high that
recurrence times can be considered infinite to all effects. As indicated by the vertical lines
in the left panel of Figure 6, systems with larger β, i.e., smaller temperature, take longer to
reach the uniform distribution of particles in the box, as expected.
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Figure 6. Left panel: behavior of NR/N as a function of the protocol duration τ, for different values
of β, with N = 10, 000, L = 5, m = 1. Blue, orange, and yellow solid lines refer to Equation (39)
for β = 1, 10, 100, respectively, and are obtained by truncating the Formula (39) to n = 1000.
The black dotted lines denote the results of the numerical simulations. Dash-dotted vertical lines
indicate the characteristic times obtained from Equation (40). Right panel: behavior of NR/N vs. τ,
for different values of N, obtained from numerical simulations. Black, blue, and orange solid lines
refer to N = 20, 100, 500, respectively. The other parameters are fixed to L = 5, β = 10, m = 1.

The point here is that an irreversible process is generated by the motion of the moving
wall, which returns to its initial position at the end of a cycle. The result is that variations
of the processing time τ lead to different results for NR, hence of the free energy of the
final equilibrium states. For sufficiently large τ, the process uniquely leads to NL = NR
(although fluctuations occur at any finite N, cf. the right panel of Figure 6), but that is
different from the initial state NL = N, NR = 0. Therefore, even accepting an ideal infinite
thermostat, the variation of free energy between the initial and final state does not vanish
and depends on the processing time τ, at odds with the JE, i.e., with the canonical ensemble
from which the JE is derived. In this case, the canonical distribution of momenta is given
by a Gaussian. Were the range of momenta finite, further corrections to the canonical
prediction would arise.

For the dynamics to be Hamiltonian, as the derivation of the JE requires, the wall
could be modeled by a repulsive potential Φ, placed in the center of the box that diverges
at time 0 and τ, and that vanishes at time τ/2. For instance, the following would do:

Φ(x; λ) =

 0 if x /∈ [1/2− ε, 1/2 + ε]
1
λ
−

4
τ2 if x ∈ [1/2− ε, 1/2 + ε]

with λ(t) = t(τ − t) (41)

with 2ε > 0 representing the thickness of the wall. In this case, the infinitesimal contribution
to WJ , given by the interaction of particle i in position xi with the wall, for a time dt, is
given by

dwi =


0 if xi /∈ [1/2− ε, 1/2 + ε]

2t− τ

t2(τ − t)2 dt if xi ∈ [1/2− ε, 1/2 + ε]
(42)

which has to be integrated over the time intervals within [0, τ] such that xi ∈ [1/2− ε, 1/2 + ε],
and summed over all particles. Now, the standard canonical formalism is not applicable to
this simple example because the phase space corresponding to the initial equilibrium state
is altered when the wall potential is lowered to a finite height. It switches from representing
an equilibrium state in half the volume of the box, to a different equilibrium state, that
occupies the whole box. The instant in which the particles are allowed to move in the whole
box but are still confined in its left half, the initial canonical distribution does not describe
their state anymore and cannot be used to compute the free energy difference between
the equilibrium states before and after the wall is removed. Nevertheless, this difficulty
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can be overcome, without affecting the result, considering, as generally and efficiently
done (see e.g., Section 1.3 of Ref. [38]), that physically relevant space and time scales are
finite, although they can be taken as large as one wants. Then, one realizes that a finite but
high barrier confines a finite number of particles initially in the left half of the box, with
only a negligible fraction ε of them moving to the other half for a given time. A finite but
higher barrier confines the particles with the same tolerance ε for a larger time or for the
same time and a smaller ε. Given the (arbitrarily large) time and the (arbitrarily small)
tolerance considered physically satisfactory, there is a barrier height that produces better
confinement, allowing the initial state to be considered an equilibrium state. Then, the
protocol dependence of the free energy difference described above remains.

5. Concluding Remarks

In this work, we have discussed simple examples concerning finite size effects and
a broken time-reversal symmetry on the calculations of values of observables within the
statistical mechanics formalism. It is indeed ever more important to properly describe
systems that do not lie within the traditional bounds of statistical mechanics, developed for
macroscopic systems at equilibrium or slowly evolving near equilibrium states. Indeed,
contemporary research widely focuses on small and far-from-equilibrium systems. In
the case of equilibrium macroscopic systems, the use of the standard ensembles is fully
justified because the observables of interest are determined by the bulk, not the tails of the
probability distributions. This approach is validated both by theory and experiments. On
the contrary, fluctuations of properties of interest in the case of small or strongly nonequi-
librium systems can compare to average signals and require a proper characterization of
the tails of the distributions, which may also be affected by a spontaneous time-reversal
symmetry breaking, not evident in the equations of motion. Indeed, the interaction with
heat reservoirs is often limited to processes that last very short times, making effective
only small parts of such environments. To illustrate these points, we have investigated
simple driven harmonic oscillator systems, averaging the popular quantity exp(−βWJ)
with canonical and truncated canonical averages. We have shown that:

• A single oscillator pulled by a constant speed harmonic trap yields the infinite bath
result if the process is not too fast. It sensibly and rapidly departs from that when the
speed of the driving agent grows. The effect is more evident (as expected) for small
than for large integration bounds, L and M, for smaller harmonic constants, and for
smaller bath temperatures. In the infinite L, M limits, the standard canonical result is
recovered, but larger and larger L and M are required; the smaller are kp or β.

• For a single periodically driven oscillator, the infinite bath result over a multiple of the
driving period equals 1. Strong deviations from this value, even those that reach 0,
are found for a finite bath in finite intervals about the resonance frequency. Although
the theoretical result is again obtained in the infinite L, M limit, this is harder if the
driving acts for longer times (i.e., for a larger number of periods).

• In the case in which the oscillator S is coupled to an oscillator E, the infinite bath
value 1 is obtained, apart from oscillations, for a sufficiently large driving frequency.
Noticeable deviations from that results are still present about specific values of the
forcing frequency. In this case, we have no analytical expression for the finite bath
result. Therefore this conclusion is based on numerical data for a finite ensemble of
initial conditions, proven robust against variations of ensemble size.

The last example we have considered implies the breaking of the classical time-reversal
symmetry and consists of an ideal gas initially in equilibrium with an infinite thermal bath
at temperature T, which is confined in the left half of its container by a moving barrier.
Initially, the barrier confines all particles to the left half of the container, and that allows
an equilibrium state, represented by a uniform distribution for the positions of particles
in [−L, 0] and a Gaussian distribution for their velocities. As soon as the barrier allows
particles to reach the right half of the container, the phase space changes to one in which
positions cover the [−L, L] interval, and the initial ensemble immediately fails to represent
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an equilibrium state. The observables take instead some time to change. This prevents the
application of the standard statistical mechanical formalism because the phase space of the
equilibrium initial state is not the one of the nonequilibrium evolution, and, for instance,
the Liouville equation fails. A modification in time of the volume of a given system to the
very least requires a suitable time-dependent scaling of the phase space coordinates [39] for
the formalism to apply but that is not possible in our case, because the volume changes
instantaneously. Nevertheless, the experiment can be performed, and a proper formalism
for it has been identified in terms of finite potential barriers and time scales.

Discrepancies between canonical formalism and experimental situations are known
to arise when irreversibility emerges: they are intrinsic and not merely due to insufficient
statistics. All boils down to the conclusion that finite size and irreversibility effects similarly
lead to protocol-dependent averages of exponential quantities such as exp(−βWJ). The
standard statistical mechanics’ formalism should be adapted to treat these cases. This fits
nicely with the standard statistical mechanical justification of ensembles. For instance, in
Ref. [35], Fermi states:

Studying the thermodynamical state of a homogeneous fluid of a given volume at a given
temperature [. . . ], we observe that there is an infinite number of states of molecular
motion that correspond to it. With increasing time, the system exists successively in all
the dynamical states that correspond to the given thermodynamical state. From this point
of view, we may say that a thermodynamical state is the ensemble of all the dynamical
states through which, as a result of the molecular motion, the system is rapidly passing.

and Callen adds

If the transition mechanism among the atomic states is sufficiently effective, the system
passes rapidly through all representative atomic states in the course of a macroscopic
observation [. . . ]. However, under certain unique conditions, the mechanism of atomic
transition may be ineffective, and the system may be trapped in a small subset of atypical
atomic states. Or, even if the system is not completely trapped, the rate of transition
may be so slow that a macroscopic measurement does not yield a proper average over all
possible atomic states.

In reality, less than what is required by Fermi and Callen is needed for ensembles
to work because observables of interest are generally a few and well-behaved [37,40,41].
However, when the standard conditions are severely violated, and the observables call
for an accurate representation of large fluctuations, canonical results must be taken with a
grain of salt.
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Appendix A. Some Explicit Calculations for Section 3.1

Retaining the notation of Section 2, we denote by P0(Γ) the canonical distribution
referring to a specific configuration Γ (system + environment),

P0(Γ) =
1

Z0
e−βH(Γ;A) , β =

1
kB T

, (A1)

with kB the Boltzmann’s constant. One thus readily finds:〈
e−βWJ,`

〉
0
=

1
Z0

∫ ∞

−∞

∫ ∞

−∞
dx0dp0e−βWJ (`;x0 ,v0)e−βH(x0 ,v0 ;0) = (A2)

=
1

Z0
exp

{
−β

kDkpB2

2k
− β

k2
D`

2m
k2 (1− cos ωB/`)

}
×

∫ ∞

−∞

∫ ∞

−∞
dx0dp0 exp β

[
x0kD`

ω
sin ω

B
`
− p0kD`

k

(
cos ω

B
`
− 1
)
−

p2
0

2m
−

kx2
0

2

]
(A3)

where Z0 is the partition function of the initial canonical distribution and it is given by

Z0 =
∫ ∞

−∞
dx e−βkx2/2

∫ ∞

−∞
dpe−βp2/2m =

2π

βω
. (A4)

The double integral in (A3) can be separated and computed in two parts:

∫ ∞

−∞
d x eβx kD`

ω sin ω B
` −

βk
2 x2

=

√
2π

βk
exp

(
βk2

D`
2m

2k2 sin2 ω
B
`

)
(A5)

and

∫ ∞

−∞
d p e

−β

[
p kD `

k (cos ω B
` −1)+ p2

2m

]
=

√
2πm

β
exp

[
βk2

D`
2m

2k2

(
cos2 ω

B
`
− 2 cos ω

B
`
+ 1
)]

, (A6)

from which it follows that:〈
e−βWJ,`

〉
0
=

βω

2π

2π

βω
exp

{
−β

kDkpB2

2k
− β

k2
D`

2

kω
(1− cos ωB/`)

}
×

exp

[
βk2

D`
2

2kω
sin2 ω

B
`
+

βk2
D`

2

2kω

(
cos2 ω

B
`
− 2 cos ω

B
`
+ 1
)]

= exp

{
−β

kDkpB2

2k

}
. (A7)

Let us now turn to consider canonical distributions truncated at a given distance L
from the rest position of the oscillator, and at a maximum momentum M. Referring to the
model of a single oscillator subject to a linear protocol, treated in Section 3.1, we denote:

P0(x, p) =
1

Z0(L, M)

 e−β(kx2+p2/m)/2 if |x| ≤ L and |p| ≤ M

0 if |x| > L or |p| > M
(A8)

where:

Z0(L, M) =
∫ L

−L
dx e−βkx2/2

∫ M

−M
dpe−βp2/2m =

2π

βω
erf

(√
βk
2

L

)
erf

(√
β

2m
M

)
(A9)



Symmetry 2023, 15, 1268 17 of 19

Consequently, the average of exp(−βWJ) for a given ` now reads:

〈
e−βWJ,`

〉
0;L,M

=
1

Z0;L,M
exp

[
−β

kDkpB2

2k
− β

k2
D`

2m
k2 (1− cos ωB/`)

]
× (A10)

∫ L

−L

∫ M

−M
dx0dp0 exp

{
β

[
x0kD`

ω
sin ω

B
`
− p0kD`

k

(
cos ω

B
`
− 1
)
−

p2
0

2m
−

kx2
0

2

]}
(A11)

where we can separately compute:

∫ L

−L
d x eβx kD `

ω sin ω B
` −

βk
2 x2

=

√
π

2βk
e

βk2
D `2m sin2 ω B

`
2k2 (A12)

×
[

erf

(√
βk
2

L +

√
βm
2

kD` sin ω B
`

k

)
+ erf

(√
βk
2

L−
√

βm
2

kD` sin ω B
`

k

)]
(A13)

and

∫ M

−M
d p e

−β

[
p kD `

k (cos ω B
` −1)+ p2

2m

]
=

√
πm
2β

e
βk2

D `2m

2k2 (cos ω B
` −1)

2

(A14)

×
[

erf

(√
β

2m
M−

√
βm
2

kD`

k

(
cos ω

B
`
− 1
))

(A15)

+ erf

(√
β

2m
M +

√
βm
2

kD`

k

(
cos ω

B
`
− 1
))]

(A16)

Therefore, one obtains: 〈
e−βWJ,`

〉
0;L,M

= Iexp · Ix · Ip (A17)

with

Iexp = exp

{
−β

kDkpB2

2k

}
=
〈

e−βWJ,`
〉

0
(A18)

Ix =

erf
(√

βk
2 L +

√
βm
2

kD
k ` sin ω B

`

)
+ erf

(√
βk
2 L−

√
βm
2

kD
k ` sin ω B

`

)
2 erf

(√
βk
2 L
) (A19)

Ip =

erf
(√

β
2m M +

√
βm
2

kD
k `
(
cos ω B

` − 1
))

+ erf
(√

β
2m M−

√
βm
2

kD
k `
(
cos ω B

` − 1
))

2 erf
(√

β
2m M

) (A20)

Appendix B. Some Explicit Calculations for Section 3.2
For the model of a single oscillator subject to a periodic forcing, discussed in Section 3.2,

one has:〈
e−βWJ

〉
0;L,M

=
1

Z0(L, M)
×

exp

{
− βkD

4

(
1− kD/m

ω2 − γ2

)
(1− cos 2γτ)−

βk2
Dγ2/m

(ω2 − γ2)2

(
1− γ

ω
sin γτ sin ωτ − cos γτ cos ωτ

)}
×

∫ L

−L
dx exp

{
− βk

2
x2 +

βkDγω

ω2 − γ2

(
cos γτ sin ωτ − γ

ω
sin γτ cos ωτ

)
x
}
×

∫ M

−M
dp exp

{
− β

2m
p2 +

βkDγ/m
ω2 − γ2

(
1− γ

ω
sin γτ sin ωτ − cos γτ cos ωτ

)
p
}

(A21)
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which thus leads to: 〈
e−βWJ

〉
0;L,M

= Iexp · Ix · Ip (A22)

where

Iexp = exp
{
− βkD

4

(
1− kD/m

ω2 − γ2

)
(1− cos 2γτ) (A23)

−
βk2

Dγ2

(ω2 − γ2)2

[
1
m

(
1− γ

ω
sin γτ sin ωτ − cos γτ cos ωτ

)
(A24)

− 1
2m

(
1− γ

ω
sin γτ sin ωτ − cos γτ cos ωτ

)2
(A25)

−ω2

2k

(
cos γτ sin ωτ − γ

ω
sin γτ cos ωτ

)2
]}

(A26)

Ix =
1

2 erf
(√

βk
2 L
)
erf

 βkL− βkDγω
ω2−γ2

(
cos γτ sin ωτ − γ

ω sin γτ cos ωτ
)√

2βk

+ (A27)

erf

 βkL +
βkDγω
ω2−γ2

(
cos γτ sin ωτ − γ

ω sin γτ cos ωτ
)√

2βk

 (A28)

Ip =
1

2 erf
(√

β
2m M

)
erf

 β
m M− βkDγ/m

ω2−γ2

(
1− γ

ω sin γτ sin ωτ − cos γτ cos ωτ
)√

2β/m

 (A29)

+erf

 β
m M + βkDγ/m

ω2−γ2

(
1− γ

ω sin γτ sin ωτ − cos γτ cos ωτ
)√

2β/m

 . (A30)
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