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ABSTRACT
Quantile regression predictions are considered for generalized order
statistics which extend results previously established for record val-
ues and order statistics. In order to derive the results, some (uni-
variate and bivariate) distortion representations of generalized order
statistics are established. In particular, prediction of the sth general-
ized order statistic X∗(s) based on F given a single (generalized) order
statistic X∗(r) with r< s will be addressed. The presentation includes
results for both known and unknown baseline distributions. In the
latter case, we consider exponential distributions with unknown
mean as well as the proportional hazards model. Using unimodal-
ity properties of the marginal density functions (pdf) of generalized
order statistics, we find a simple representation of the maximum
likelihood prediction of X∗(s) given X∗(r).
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1. Introduction

The prediction of future failure times has been widely discussed in the literature assuming
various scenarios for the data model. In particular, order statistics have been extensively
used when the first r failure times X∗(1), . . . ,X

∗
(r) are available in order to predict the value

of a larger order statistic. Some basic ideas and concepts as well as references can be
found in the monograph by David and Nagaraja [1, Section 8.7] (see also Arnold et al. [2,
Section 7.6] and, for prediction intervals, Hahn et al. [3]). Various prediction concepts (like
(best) linear prediction, (best) unbiased prediction, likelihood prediction and Bayesian
prediction) have been used in this area. A brief review on point predictionmethods applied
under progressive censoring can be found in Balakrishnan and Cramer [4, Chapter 16]
which also includes references to related results in terms of generalized order statistics.
Further references dealing with this problem can be found in, e.g. Navarro [5], Navarro
and Buono [6], Volovskiy [7], and Volovskiy and Kamps [8].

In this paper, we consider quantile regression predictions which have been discussed in
Navarro [5] for record values and inNavarro andBuono [6] for order statistics, respectively.
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We extend this approach to generalized order statistics which covers progressive censoring
as a particular case. In order to establish the corresponding representations, we provide
the necessary extensions to generalized order statistics in Section 2 (for details on gen-
eralized order statistics and related results, see Kamps [9], Cramer and Kamps [10]). In
Section 3, we establish some (bivariate) distortion representation of generalized order
statistics which will be utilized in Section 4 to obtain quantile regression predictions. We
consider prediction of the sth (generalized) order statisticX∗(s) based on F and some param-
eters γ1, γ2, . . . given a single (generalized) order statistic X∗(r) (r< s). First, we study the
case of a known baseline distribution. Then, we consider the case of exponential distribu-
tions with unknown mean. Using unimodality properties of the density functions (pdf)
of generalized order statistics, we find a simple representation of the maximum likelihood
prediction (according to Kaminsky and Rhodin [11]) of X∗(s) given X∗(r). In particular, we
show that the point predictor can be written as

X̂∗(s) = X∗(r) +mγr+1,...,γs/ϑ̂MLE

where mγr+1,...,γs is the mode of a function related to the density function of the (s−
r)th generalized order statistic based on a uniform distribution and parameters γr+1 +
1, . . . , γs + 1 (see Equation (7)) and ϑ̂MLE denotes the MLE based on the single observa-
tion X∗(r). Furthermore, we consider the particular cases of order statistics, �-generalized
order statistics, and record values and discuss the value ofmγr+1,...,γs in thesemodels. Using
the representation of the MLE based on a single generalized order statistic, we conclude
from the above representation that the maximum likelihood predictor can be written in
the form

X̂∗(s) = c(r,s)X∗(r),

where c(r,s) depends only on the model parameters of the generalized order statistics (see
Sections 4.2.1 and 4.2.2).

An extension to proportional hazard rate models is also presented. Finally, the results
are illustrated by a couple of examples and simulations in Section 5.

Throughout, we use the following parametric representations for the pdf of

(i) an exponential distribution with parameter ϑ > 0 (for short Exp(ϑ)-distribution):
f (t) = e−t/ϑ/ϑ , t ≥ 0,

(ii) a gamma distribution with parameters β > 0,ϑ > 0 (for short Gamma(β ,ϑ)-
distribution): f (t) = 1

�(β)ϑβ tβ−1 e−t/ϑ , t ≥ 0,
(iii) a beta distribution with parameters α,β > 0 (for short beta(α,β)-distribution):

f (t) = �(α)�(β)
�(α+β) t

α−1(1− t)β−1, t ∈ (0, 1),

where �(·) denotes the gamma function.

2. Preliminaries

For U1, . . . ,Um
iid∼ U(0, 1), let U∗(k) = 1−∏k

j=1 U
1/γj
j , 1 ≤ k ≤ m. According to Cramer

and Kamps [10] generalized order statisticsX∗(1), . . . ,X
∗
(m) based on a cdf F and parameters



920 F. BUONO ET AL.

γ1, . . . , γm > 0, can be defined by the stochastic representation

X∗(k) = F←(U∗(k)) = F←
⎛⎝1−

k∏
j=1

U1/γj
j

⎞⎠ = F←
⎛⎝ k∏

j=1
U1/γj
j

⎞⎠ , k = 1, . . . ,m, (1)

where F← defines the quantile function of F, that is,

F←(y) = inf{x : F(x) ≥ y}, y ∈ (0, 1),

and F←(·) = F←(1− ·) denotes the (pseudo) inverse function of the reliability function
F = 1− F. On the other hand, such representations like (1) hold for order statistics, record
values, and progressively Type-II censored order statistics as well as sequential order statis-
tics by choosing appropriate values for the parameters γj (see Cramer and Kamps [12],
Balakrishnan and Cramer [4]). For order statistics, this result has also been derived by
Malmquist [13]. Clearly, simulation of U∗(k) (and X∗(k)) is easily possible using the product
representation in (1).

In the following, we denote byGd(·; η1, . . . , ηd) the cdf of a product∏d
j=1 U

1/ηj
j as in (1)

with parameters η1, . . . , ηd > 0. Notice that Gd(·; η1, . . . , ηd) is continuous and strictly
increasing on (0, 1). Then, for 1 ≤ r < s ≤ m, we get

W(r,s:m) =
F(X∗(s))
F(X∗(r))

=
∏s

j=1 U
1/γj
j∏r

j=1 U
1/γj
j

=
s∏

j=r+1
U1/γj
j , (2)

so that we have

Pr(W(r,s:m) ≤ t) = Gs−r(t; γr+1, . . . , γs), t ∈ R.

It should be noted that the above considerations show that the identity

X∗(s) = F←
(
W(r,s:m)F(X∗(r))

)
(3)

holds where W(r,s:m) and X∗(r) are independent random variables. This illustrates the
Markovian property and shows thatX∗(s) can be seen as a somewhat (randomly) scaled ver-
sion ofX∗(r). The connection given in (3) is a key point for the results obtained in the present
paper. A graphical illustration of the iterative construction can be found in Cramer [14].

Remark 2.1: In case of order statistics, the gammas are given by γj = n− j+ 1, 1 ≤ j ≤ n.
Then,W(r,s:m) has a beta(n− s+ 1, s− r)-distribution which can be seen from a result of
Rao [15] since U1/γj

j ∼ beta(n− j+ 1, 1) (see also Cramer [16], Bdair and Raqab [17]).
For record values, that is, γj = 1 for all j, one has that W(r,s:m) =∏s

j=r+1 Uj. Hence, the
distribution ofW(r,s:m) equals that of a product of s−r independent standard uniform ran-
dom variables. In particular, − lnW(r,s:m) ∼ Gamma(s− r, 1) has a gamma distribution
(see Navarro [5]).

Remark 2.2: For illustration, we provide an expression for Gs−r when s− r ∈ {1, 2}.
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(i) The case s = r+ 1 is trivial and we have

G1 (u; γ1) = Pr(U1/γ1
1 ≤ u) = uγ1

for u ∈ [0, 1] (i.e., it is a power (or beta) distribution).
(ii) In the case s = r+ 2, we can also get explicit expressions. If γ1 �= γ2, then a

straightforward calculation leads to

G2 (u; γ1, γ2) = γ1

γ1 − γ2
uγ2 − γ2

γ1 − γ2
uγ1

for u ∈ [0, 1] (i.e., it is a negative mixture of two power distributions). If γ1 = γ2,
then

G2 (u; γ1, γ2) = uγ1 − uγ1 ln
(
uγ1

)
for u ∈ [0, 1] (i.e., it is a distorted distribution of a power distribution with the dual
distortion function of a minimal repair process or an upper record).

Generally, the distribution of W(r,s:m) =∏s
j=r+1 U

1/γj
j can be obtained easily from a

log-transformation, that is,

− lnW(r,s:m) =
s∑

j=r+1

1
γj

(− lnUj) =
s∑

j=r+1

Zj
γj
,

where Z1, . . . ,Zm
iid∼ Exp(1). Hence, the distribution of − lnW(r,s:m) equals the distri-

bution of a generalized order statistic based on parameters γr+1, . . . , γs and a standard
exponential distribution (or the sum of independent but possibly not identically expo-
nentially distributed random variables). Explicit representations for the pdf and cdf can
be found in Kamps and Cramer [18] and Cramer and Kamps [10] (see also Springer and
Thompson [19], Springer [20], Botta et al. [21],Mathai [22], Akkouchi [23], and Levy [24]).
They are particularly simple in case that

(i) γ ’s are all equal to γ which means that− lnW(r,s:m) ∼ Gamma(s− r, 1/γ );
(ii) γ ’s are all different. In this case, the cdf of− lnW(r,s:m) is given by

F(γr+1,...,γs)∗,r,s (t) = 1− (−1)s−r−1
⎛⎝ s∏

j=r+1
γj

⎞⎠ s∑
j=r+1

γ−1j

⎛⎜⎜⎝ s∏
k=r+1
v �=j

(γj − γk)
−1

⎞⎟⎟⎠ e−γjt ,

t ≥ 0. (4)

In general, the cdf can also be presented in terms of divided differences as has been
pointed out in Cramer [25] and Levy [24].
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Remark 2.3: Notice that, for parameters γr+1, . . . , γs, the pdf of the log-transformed
random variable− lnW(r,s:m)

d=∑s−r
i=1 Zi/γr+i is given by

κγr+1,...,γs(z) = e−zgs−r(e−z; γr+1, . . . , γs), z ≥ 0, (5)

and is log-concave and, thus, unimodal (see Cramer [26] as well as Cramer et al. [27]).
Moreover, as pointed out in Cramer [26],W(r,s:m) is multiplicative strongly unimodal (see
Cuculescu and Theodorescu [28]) which also implies unimodality.

From Cramer et al. [27], the limits

lim
z→∞ κγr+1,...,γs(z) = 0, lim

z→0
κγr+1,...,γs(z) = κγr+1,...,γs(0) =

{
γr+1, r + 1 = s
0, r + 1 < s

(6)

can be obtained which show that, for s> r+ 1, the maximum of κγr+1,...,γs is attained at
an inner point of the interval [0,∞). For r+ 1 = s, the maximum is attained at zero. The
latter identity in (6) can be obtained using expressions for pdfs of uniform generalized
order statistics in terms of Meijer’s G-functions (see Cramer et al. [27], Lemma 2.1 (iv)),
that is,

κγr+1,...,γs(z) = e−zgs−r(e−z; γr+1, . . . , γs) = gs−r(e−z; γr+1 + 1, . . . , γs + 1), (7)

as well as the limits for gs−r in Lemma 2.2 (v) of Cramer et al. [27]. This property will be
used when considering predictions with unknown baseline distribution.

Log-concavity of the pdf of W(r,s:m) holds when, e.g., the ordered parameters γ(r+1) ≤
· · · ≤ γ(s) satisfy 1 ≤ γ(r+1) and the difference of successive γ(i)’s is at least 1. The latter one
is true, for instance, for order statistics and progressively Type-II censored order statistics
but not for record values. Furthermore, the moments of W(r,s:m) can be easily obtained
from (2). In particular, for � > 0,

E(W�
(r,s:m)) =

s∏
j=r+1

E(U�/γj
j ) =

s∏
j=r+1

γj

�+ γj
, (8)

which yields directly E(W(r,s:m)) =∏s
j=r+1

γj
1+γj

.

3. Distortion representations

The key result for the predictions could be presented as follows. It will be used to establish
the conditional predictive likelihood function (PLF) of X∗(s) given X∗(r). An expression of
the respective pdf can be found in, e.g., Cramer [16, Theorem 3.3.2] (see also (10)).

Theorem3.1: Let F be a continuous cdf.With the notation introduced above, the conditional
reliability function of (X∗(s) | X∗(r) = x) is

Fs|r:m(y | x) = Gs−r
(
F(y)
F(x)

; γr+1, . . . , γs
)

(9)

for 1 ≤ r < s ≤ m and x and y such that F(x) > 0 and y ≥ x.
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Proof: The result follows directly from the structure of generalized order statistics (see
Cramer [29]). First we note that, from (2) and (3), we get

F(X∗(s)) =
s∏

j=1
U1/γj
j =W(r,s:m)F(X∗(r)),

whereW(r,s:m) =∏s
j=r+1 U

1/γj
j and F(X∗(r)) =

∏r
j=1 U

1/γj
j are independent. Therefore, for

F(x) > 0 and y ≥ x,

Fs|r:m(y | x) = Pr
(
X∗(s) > y | X∗(r) = x

)
= Pr

(
F(X∗(s)) ≤ F(y) | X∗(r) = x

)
= Pr

(
F(X∗(s))
F(X∗(r))

≤ F(y)
F(x)
| X∗(r) = x

)

= Pr
(
W(r,s:m) ≤ F(y)

F(x)
| X∗(r) = x

)
= Pr

(
W(r,s:m) ≤ F(y)

F(x)

)
= Gs−r

(
F(y)
F(x)

; γr+1, . . . , γs
)
.

This proves the representation in (9). �

The representation in (9) can be written as a distortion representation for the spacing
(X∗(s) − x | X∗(r) = x) whose reliability function can be written as

Pr(X∗(s) − x > t | X∗(r) = x) = Gs−r
(
F(x+ t)
F(x)

; γr+1, . . . , γs
)
= q(Fx(t))

for t ≥ 0, where q(·) = Gs−r(·; γr+1, . . . , γs) is a distortion function (i.e., a continuous
distribution function with support included in (0, 1)) and Fx(t) = F(t+x)

F(x) , x, t ≥ 0, is the
reliability function of the residual lifetime at age x. So all the results for distortions can be
directly applied to it (see, e.g., Navarro [30]).

We can also obtain a bivariate distortion representation for the distribution of the bivari-
ate randomvector (X∗(r),X

∗
(s)), 1 ≤ r < s ≤ m. For the definition and properties of bivariate

distortions see [31].

Theorem 3.2: Let F be continuous. With the notation introduced above, the joint reliability
function of (X∗(r),X

∗
(s)) is given by

Fr,s:m(x, y) = D
(
F(x), F(y)

)
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for 1 ≤ r < s ≤ m, where D is a bivariate distortion function which depends on
r, s, γ1, . . . , γs. Moreover,

D(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gr(v; γ1, . . . , γr)

+
∫ u

v
Gs−r

( v
w
; γr+1, . . . , γs

)
gr(w; γ1, . . . , γr) dw

for 0 ≤ v ≤ u ≤ 1
Gr(u; γ1, . . . , γr) for 0 ≤ u < v ≤ 1

= Gr(u ∧ v; γ1, . . . , γr)

+ 1(0,u)(v)
∫ u

v
Gs−r

( v
w
; γr+1, . . . , γs

)
gr(w; γ1, . . . , γr) dw,

where u ∧ v = min(u, v) and gr is the pdf of Gr. In particular, we get the corresponding pdf

d(u, v) = 1
u
gs−r

( v
u
; γr+1, . . . , γs

)
gr(u; γ1, . . . , γr), 0 ≤ v ≤ u ≤ 1,

and zero elsewhere.

Proof: Let D be the joint distribution function of U = F(X∗(r)) and V = F(X∗(s)). As its
support is (0, 1)2 it is a bivariate distortion function (see Navarro et al. [31]). Therefore,

Fr,s:m(x, y) = Pr
(
X∗(r) > x,X∗(s) > y

)
= Pr

(
F(X∗(r)) ≤ F(x), F(X∗(s)) ≤ F(y)

)
= D

(
F(x), F(y)

)
.

Moreover, for 0 ≤ v ≤ u ≤ 1, we have for U =∏r
j=1 U

1/γj
j and V =∏s

j=1 U
1/γj
j = U ·∏s

j=r+1 U
1/γj
j

D(u, v) = Pr (U ≤ u,V ≤ v)

=
∫ u

0
Pr (V ≤ v | U = w) gr(w; γ1, . . . , γr) dw

=
∫ u

0
Pr

( s∏
r+1

U1/γj
j ≤ v

w
| U = w

)
gr(w; γ1, . . . , γr) dw

=
∫ u

0
Pr

( s∏
r+1

U1/γj
j ≤ v

w

)
gr(w; γ1, . . . , γr) dw

=
∫ v

0
gr(w; γ1, . . . , γr)dw+

∫ u

v
Gs−r

( v
w
; γr+1, . . . , γs

)
gr(w; γ1, . . . , γr) dw

= Gr(v; γ1, . . . , γr)+
∫ u

v
Gs−r

( v
w
; γr+1, . . . , γs

)
gr(w; γ1, . . . , γr) dw.
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For 0 ≤ u < v ≤ 1, we get

D(u, v) = Pr (U ≤ u,V ≤ v) = Pr (U ≤ u) = Gr(u; γ1, . . . , γr)

sinceV <U. The expression for the pdf d is directly obtained from the presented represen-
tation of the cdf D by, e.g., differentiating D with respect to u and v. �

Remark 3.3: If we are able to get an explicit expression forD (which is not easy in general),
then we can apply all the results included in Navarro et al. [31]. In particular, we could pre-
dict X∗(r) from X∗(s) = x for 1 ≤ r < s ≤ m. This kind of predictions is not as common as
that considered in Theorem 3.1 since, if we work with lifetimes, we usually have informa-
tion about early failures X∗(r) and we want to predict future failures X∗(s) for s> r. In this
case, we have information about a current failure X∗(s) at time x and we want to predict a
past failure X∗(r).

4. Quantile regression predictions

4.1. Predictions when F is supposed known

Theorem 3.1 allows us to predict X∗(s) from X∗(r) = x by using the median regression curve
m which is obtained by solving the equation (in y)

Gs−r
(
F(y)
F(x)

; γr+1, . . . , γs
)
= 0.5.

Denoting by q0.5 the unique median of this cdf, the median regression curve is given by

m(x) = F←
(
q0.5F(x)

)
.

which for order statistics leads to the result given in Navarro and Buono [6].
This prediction can be reinforced with the following prediction bands. If we want to get

Pr(X∗(s) ∈ Iα,β(x) | X∗(r) = x) = β − α

for some 0 ≤ α < β ≤ 1, then

Iα,β(x) = [
F←(qβF(x)), F←(qαF(x))

]
,

where qα and qβ are the unique α and β quantiles of Gs−r(·; γr+1, . . . , γs). For example,
the 90% centred prediction band is obtained as

I0.05,0.95(x) =
[
F←(q0.95F(x)), F←(q0.05F(x))

]
.

In other cases, we could prefer bottom prediction bands obtained as

I0.1,1(x) =
[
x, F←(q0.1F(x))

]
.

Numerical methods can be used to determine these quantiles. Here we could also plot the
level curves

Gs−r
(
F̄(y)
F̄(x)

; γr+1, . . . , γs
)
= p

for, e.g., p = 0.05, 0.25, 0.5, 0.75, 0.95.
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Another option is to consider the mode, that is, the maximum likelihood predictor
(MLP). The conditional pdf can be obtained from Theorem 3.1 as

fr,s:m(y | x) = f (y)
F(x)

gs−r
(
F(y)
F(x)

; γr+1, . . . , γs
)
, y ≥ x, (10)

where f and gs−r are the pdf of F andGs−r. To get theMLP wemust look for the maximum
of this function for fixed values of x and the gamma parameters.

Another reasonable option could be to consider the unique mode mo of Gs−r which
leads to the predictor

mmode(x) = F←(moF(x)).

In this regard, knowledge about the shapes of the density functions could be helpful.
These shapes have been completely characterized by Bieniek [32] for uniform general-
ized order statistics, that is, for arbitrary (positive) γ ’s. For progressively Type-II censored
order statistics, the possible shapes reduce significantly (see Balakrishnan and Cramer [4,
Theorem 2.7.5]). These results are helpful in finding the mode. However, the maxi-
mum of the density function has to be computed numerically by standard methods like
Newton–Raphson, Nelder–Mead procedures etc.

The third option is to consider the mean ofW(r,s:m) (see (8)) so that the corresponding
predictor is given by

mmean(x) = F←
⎛⎝F(x)

s∏
j=r+1

γj

1+ γj

⎞⎠ . (11)

This method is equivalent to consider the regression curve of F(X(s)) given by

E
(
F(X(s)) | X(r) = x

) = E
(
W(r,s:m)F(X(r)) | X(r) = x

)
= F(x)E

(
W(r,s:m) | X(r) = x

)
= F(x)

s∏
j=r+1

γj

1+ γj
.

Of course, in general,mmean is different from the real regression curve E(X(s) | X(r) = x).

4.2. Inferential approaches when F contains unknown parameters

If (Fθ )θ∈� forms a parametric family of absolutely continuous distributions with unknown
parameters θ ∈ � ⊆ R

p, the likelihood function of the first r generalized order statistics
X∗(1), . . . ,X

∗
(r) and data x1, . . . , xr is given by

L(θ) =
⎛⎝ r∏

j=1
γj

⎞⎠ fθ (xr)F
γr−1
θ (xr)

r−1∏
j=1

fθ (xj)F
γj−γj+1−1
θ (xj).
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Assuming a proportional hazard rate (PHR) model with known baseline cdf F0 and
parameter ϑ > 0, that is, Fϑ = Fϑ

0 ,

L(ϑ) =
⎛⎝ r∏

j=1
γj

⎞⎠ϑ rf0(xr)F
γrϑ−1
0 (xr)

r−1∏
j=1

f0(xj)F
(γj−γj+1)ϑ−1
0 (xj).

Here all the results on inference (estimation, prediction) for exponential generalized order
statistics can be applied. This yields explicit results as given on pp. 7–8 in Navarro and
Buono [6] for order statistics. In particular, the MLE of ϑ is given by

ϑ̂ = 1
r
TTTr, (12)

where TTTr =∑r
i=1 γi(ln F0(X∗(i−1))− ln F0(X∗(i))) with X∗(0) ≡ 0. In case of exponential

distributions, TTTr equals the total time on test. Related results can be found in Cramer
and Kamps [33].

Kaminsky and Rhodin [11] initiated the discussion of maximum likelihood prediction.
A comprehensive treatment of maximum likelihood prediction of future generalized order
statistics from exponential distributions has been presented by Volovskiy [7] in a general
framework. The results are based on representations of the joint density functions of gen-
eralized order statistics in terms of so-called Meijer’s G-functions (see, e.g., Mathai [22]).
However, using the density function gs−r of W(r,s:m) in (10), we get the predictive likeli-
hood function (PLF) of X∗(s) and ϑ given X∗(r) from Theorem 3.1 or Theorem 3.3.2 in [16].
It is given by

PLF(xs,ϑ | xr)

= ϑ
f0(xr)f0(xs)F̄ϑ−1

0 (xs)
F̄0(xr)

gs−r

(
F̄ϑ
0 (xs)

F̄ϑ
0 (xr)

; γr+1, . . . , γs

)
gr(F̄ϑ

0 (xr); γ1, . . . , γr),

xs > xr.

In case of exponential distributions, the PLF is given by

PLF(xs,ϑ | xr) = ϑ e−ϑxsgs−r
(
e−ϑ(xs−xr); γr+1, . . . , γs

)
gr(e−ϑxr ; γ1, . . . , γr)

= κγr+1,...,γs (ϑ(xs − xr)) ϑκγ1,...,γr (ϑxr) , xs > xr,

with κγr+1,...,γs and κγ1,...,γr as in (5). Now, we find a universal upper bound for the first
factor which is attained for any given ϑ > 0 by choosing xs appropriately. In fact, we get

xs = xr +mγr+1,...,γs/ϑ

where mγr+1,...,γs denotes the mode of the function κγr+1,...,γs . Note that, according to
Remark 2.3, mγr+1 = γr+1 when r+ 1 = s and mγr+1,...,γs is an inner point of the interval
[0,∞) when r+ 1< s.

Then, we obtain an upper bound for the PLF as

PLF(xs,ϑ | xr) ≤ κγr+1,...,γs
(
mγr+1,...,γs

) · ϑ κγ1,...,γr (ϑxr) (13)

with equality iff xs = xr +mγr+1,...,γs/ϑ for any given ϑ > 0. Therefore, we get an upper
bound w.r.t. xs which is independent of ϑ but it can be attained for any given value of ϑ by
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defining xs = xs(ϑ) as above. The maximum has usually to be obtained numerically but,
for selected cases, an explicit representation ofmγr+1,...,γs is available (see Section 4.2.1).

The remaining part of the upper bound depending on ϑ corresponds to the likelihood
function given a single observation X∗(r), that is,

L(ϑ | xr) = ϑκγ1,...,γr (ϑxr) = ϑ e−ϑxr gr(e−ϑxr ; γ1, . . . , γr). (14)

In this case, the MLE ϑ̂MLE of ϑ uniquely exists (see Hermanns et al. [34]) so that the
maximum likelihood predictor is given by

X̂∗(s) = X∗(r) +mγr+1,...,γs/ϑ̂MLE. (15)

Computational methods to compute the MLE (like the EM-algorithm) can be found in
Hermanns et al. [34] (see also Glen [35]).

For some submodels of generalized order statistics like order statistics and record values,
the weightmγr+1,...,γs and the MLE of ϑ can be obtained as closed form expressions.

Remark 4.1: Both maximization problems, i.e., maximizing the function κγr+1,...,γs w.r.t.
xs in (13) and the likelihood w.r.t. ϑ in (14), are related to equations of the type α(x) = −1
where α is the elasticity function of κγr+1,...,γs and gr, respectively. The elasticity function
of a function h is defined as α(u) = uh′(u)/h(u).

4.2.1. Order statistics
For order statistics X∗(r) and X∗(s) in a sample of size n, we have γj = n− j+ 1, 1 ≤ j ≤ n.
Then, we find from (7) that gs−r( · ; n− r + 1, . . . , n− s+ 2) is the pdf of a beta(n−
s+ 2, s− r)-distribution (see Remark 2.1). Thus, its maximum is attained at the mode of
the beta(n− s+ 1, s− r)-distribution which is given by xmode = n−s+1

n−r (see, e.g., Mar-
shall and Olkin [36, p. 480]). Then, solving the equation e−mn−r,...,n−s+1 = xmode yields the
expression

mn−r,...,n−s+1 = ln
(

n− r
n− s+ 1

)
= ln

(
γr+1
γs

)
.

Therefore, we get the predictor

X̂∗(s) = X∗(r) + ln
(

n− r
n− s+ 1

)
· 1
ϑ̂MLE

.

This result is given in Navarro and Buono [6]. Note that the factor is zero when s = r+ 1
so that we obtain the prediction X̂∗(r+1) = X∗(r) in this case.

It remains to compute the MLE of ϑ which means to obtain the MLE for the parameter
ϑ based on the single order statistic Xr:n from an exponential distribution. This problem
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has been addressed in Glen [35]. Then, the MLE has the form

ϑ̂MLE = cr,n
X∗(r)

(16)

where cr,n is the unique solution of the equation(
n− 1

z

)
(1− e−z) = r − 1 (17)

in z>0. Note that the function on the left is strictly increasing from −1 (z→ 0) to n
(z→∞). As a result, we can write the maximum likelihood predictor as

X̂∗(s) = X∗(r)
(
1+ 1

cr,n
ln

(
n− r

n− s+ 1

))
.

If r = 1, then c1,n = 1
n so that ϑ̂MLE = 1/(nX∗(1)) (as expected).

4.2.2. �-Generalized order statistics
A similar argument can be applied for �-generalized order statistics with � > −1, that is,
for generalized order statistics with parameters γj = k+ (�+ 1)(n− j), 1 ≤ j ≤ n, with
k>0. As pointed out in Cramer [16, Example 3.1.4],

W(r,s:m) = Y1/(�+1)
r,s

with a random variable Yr,s ∼ beta(n− s+ k/(�+ 1), s− r). Thus,

gs−r(t) = (�+ 1)t�fbeta(n−s+k/(�+1),s−r)(t�+1), t ∈ (0, 1),

which is the pdf of a special beta power distribution (see Zografos and Balakrishnan [37],
Cordeiro and dos Santos Brito [38]). From (5), we get− lnW(r,s:m) = 1

�+1 (− lnYr,s)which
has the pdf

κγr+1,...,γs(z) = e−zgs−r(e−z; n− r + k/(�+ 1), . . . , n− s+ 1+ k/(�+ 1))

= (�+ 1) e−(�+1)zfbeta(n−s+k/(�+1),s−r)(e−(�+1)z)

= (�+ 1)
n− s+ k/(�+ 1)
n− r + k/(�+ 1)

fbeta(n−s+1+k/(�+1),s−r)(e−(�+1)z)

= (�+ 1)
γs

γr
fbeta(n−s+1+k/(�+1),s−r)(e−(�+1)z), z ≥ 0.

Using similar arguments as for order statistics in Section 4.2.1, we find that κγr+1,...,γs attains
its maximum at the value

mγr+1,...,γs =
1

�+ 1
ln

(
γr+1
γs

)
.

Note that the representation is quite similar to the order statistics’ case. As above, we get
the predictor

X̂∗(s) = X∗(r) +
1

�+ 1
ln

(
γr+1
γs

)
· 1
ϑ̂MLE

.

Note that the factor is zero when s = r+ 1 so that we obtain the prediction X̂∗(r+1) = X∗(r)
in this case. In order to compute the MLE ϑ̂MLE, we can proceed as for order statistics. As
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above, we get the likelihood function as

L(ϑ | xr) = ϑκγ1,...,γr(ϑxr) = (�+ 1)
γr

γ1
ϑ fbeta(n−r+1+k/(�+1),r)(e−(�+1)ϑxr), ϑ > 0.

Then,we get the uniquemaximumby choosing cr,γ1,� as the unique solution of the equation
(cf. (17)) (

γ1 − 1
z

)
(1− e−(�+1)z) = (r − 1)(�+ 1), z > 0, (18)

which reduces to (17) when � = 0 (and k = 1). Note that the function on the left is strictly
increasing from −(�+ 1) (z→ 0) to γ1 (z→∞). Thus, as for order statistics, the maxi-
mum likelihood estimator is given by ϑ̂MLE = cr,γ1,�/X∗(r) (see (16)) with cr,γ1,� as unique
solution of the equation (18). Again, as above, the maximum likelihood predictor can be
written in the form

X̂∗(s) = X∗(r)
(
1+ 1

(�+ 1)cr,γ1,�
ln

(
γr+1
γs

))
.

4.2.3. Record values
For record values, κ1,...,1 is the pdf of a gamma distribution with parameters s−r and 1. It
attains its maximum value at the mode (see, e.g. Marshall and Olkin [36, p. 314])

m1,...,1 = s− r − 1.

Then, we arrive at the predictor

X̂∗(s) = X∗(r) +
s− r − 1

ϑ̂MLE
.

By analogy with (�-generalized) order statistics, the best prediction for s = r+ 1 is given
by the rth record, that is, by X̂∗(r+1) = X∗(r). This fact was already mentioned in Volovskiy
and Kamps [8, p. 854].

The MLE ϑ̂MLE is obtained from

L(ϑ | xr) = ϑκ1,...,1(ϑxr) = fGamma(r,ϑ)(xr),

so that ϑ̂MLE = r/X∗(r). Thus, we get

X̂∗(s) = X∗(r) +
s− r − 1

r
X∗(r) =

s− 1
r

X∗(r).

A similar result has been established in Kaminsky and Rhodin [11, Example 5.2] and
Volovskiy [7, Proposition 5.8] assuming that the first r record values have been observed
(see also Remark 4.2); note also that it is important to take into account the counting of
the records values, that is, whether the counting of the records starts with one and zero,
respectively; see also Arnold et al. [39, Section 5.6]).
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4.2.4. PHRmodel
A similar representation holds in the PHR model with baseline cdf F where xi has to be
replaced by− ln F0(xi) so that themaximum likelihood predictor ofX∗(s) givenX

∗
(r) is given

by

X̂∗(s) = F←0
(
e−mγr+1,...,γs/ϑ̂MLEF0(X∗(r))

)
.

Remark 4.2: If the problem is discussed given the right censored sample X∗(1), . . . ,X
∗
(r)

then the likelihood equations can be explicitly solved, that is, the MLE is given by (12).
Thus, the corresponding prediction is given by

X̂∗(s) = X∗(r) +
r mγr+1,...,γs

TTTr
.

The result for record values can be found in Volovskiy and Kamps [8]. For the case of
multiply censored samples from generalized order statistics, we refer to Volovskiy [7].

5. Illustration

In this section, some examples are given to illustrate the results presented in the previ-
ous section. In the first example, assuming a parent exponential distribution, predictions
related to order statistics are analyzed.

Example 5.1: Let us consider a sample of sizem = 20 whose parent distribution is expo-
nential with parameter ϑ = 1. Consider the corresponding generalized order statistics
X∗(1), . . . ,X

∗
(m) based on the parameters γj = m− j+ 1 (order statistics), j = 1, . . . ,m,

which are obtained as

X∗(k) = −
1
ϑ

k∑
j=1

1
γj

log(Uj), k = 1, . . . ,m,

whereU1, . . . ,Um
iid∼ U(0, 1). By randomly generatingm = 20 uniform numbers in (0, 1),

we obtain the simulated generalized order statistics as

0.01871 0.05602 0.11512 0.11541 0.13813 0.44063 0.51664 0.652023 0.65636 0.78268
0.81377 0.85989 0.92791 1.00213 1.02606 1.47892 1.69680 1.74417 2.26573 3.20779

We want to give median predictions for this sample. In the case s = r+ 1, we have
G1(u; γr+1) = uγr+1 , from which the median is given by q0.5 = (0.5)1/γr+1 . Hence, the
median regression curve is given by

X̂∗(r+1) = m(X∗(r)) = X∗(r) −
1

ϑγr+1
log(0.5). (19)

By proceeding in this way, we obtain the median prediction for X∗(2), . . . ,X
∗
(m). Moreover,

we study the mean predictions for this case, which are obtained by

X̃∗(r+1) = mmean(X∗(r)) = X∗(r) −
1
ϑ
log

(
γr+1

1+ γr+1

)
. (20)

By replacing ϑ with ϑ̂ in Equations (19) and (20), where ϑ̂ is given by (12), the predic-
tions with unknown parameter ϑ are obtained. In Figure 1 (left), we plot the difference in
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Figure 1. Absolute value differences between generalized order statistics and predictions with known
parameterϑ basedon themedian (black circles) or themean (red squares) andwith unknownparameter
ϑ based on the median (blue triangles) or the mean (green stars) from the simulated sample in Exam-
ple 5.1 withm = 20, and s−r = 1 (left). Predictions (red) for X∗(s) from X∗(r) form = 20, s−r = 1, for the
exponential distribution in Example 5.1. The black points are the observed values and the blue lines are
the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals (right).

absolute value between exact values and predictions based on the median and the mean
assuming both known and unknown value of the parameter. Note that with unknown ϑ

some predictions based on themedian and on themean are not given in the figure in order
to preserve its readability. We observe that, under the assumption of known ϑ , the predic-
tions based on the median are better than the predictions based on the mean in 10 over 19
cases, while in one case (r = 19) they give the same value. Similarly, with unknown ϑ , the
predictions based on the median are better than the predictions based on the mean in 11
over 19 cases and they are equal for r = 19.

Similarly, by replacing themedian q0.5 with q0.25, q0.75, q0.05 and q0.95 we obtain the 50%
and 90% quantile prediction intervals. The results are plotted in Figure 1 (right). There we
can observe that 2-out-of-19 exact points do not belong to the 90% prediction interval and
8-out-of-19 do not belong to the 50% prediction interval.

Now, we turn on considering the case s = r+ 2. In this case, under the parameter and
the model assumptions, the predictions and the prediction intervals are obtained by the
quantiles of

G2(u; γr+1, γr+2) = γr+1uγr+1−1 − γr+2uγr+2−1.
By analogy, we can obtain point predictions based on the mean by using

X̃∗(r+2) = mmean(X∗(r)) = X∗(r) −
1
ϑ
log

(
γr+1

1+ γr+1

)
− 1

ϑ
log

(
γr+2

1+ γr+2

)
.

By analogy with the case s = r+ 1, predictions with unknown ϑ can be obtained as well.
In Figure 2 (left) we plot the difference in absolute value between exact values and predic-
tions obtained with the median and the mean assuming both known and unknown value
of the parameter, by leaving out the predictions with unknown ϑ for r = 1, 2 and 3 as
they are much bigger compared to the others. In the figure, we can observe that the predic-
tions based on the median are better than the ones based on the mean in 15 over 18 cases
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Figure 2. Absolute value differences between generalized order statistics and predictions with known
parameterϑ basedon themedian (black circles) or themean (red squares) andwith unknownparameter
ϑ based on the median (blue triangles) or the mean (green stars) from the simulated sample in Exam-
ple 5.1 withm = 20, and s−r = 2 (left). Predictions (red) for X∗(s) from X∗(r) form = 20, s−r = 2, for the
exponential distribution in Example 5.1. The black points are the observed values and the blue lines are
the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals (right).

assuming known ϑ , while they are better in 9 over 18 cases and equal for r = 17 assuming
unknown ϑ .

In Figure 2 (right), we plot the predictions for X∗(s) (red line), s = r+ 2 jointly with the
limits of the 90% (dashed blue lines) and 50% (continuous blue line) prediction intervals
in the simulated sample. In this case, we can observe that 2-out-of-18 exact points do not
belong to the 90% prediction interval and 8-out-of-18 do not belong to the 50% prediction
interval.

As the parameters γ1, . . . , γm are all different, it is possible to use (4) to determine the
predictions and the prediction bands for the cases in which s− r ≥ 2. Assuming known
ϑ , the results are presented for some selected choices of r and s in Table 1. Then, in Table 2,
we present the number of exact values which do not belong to the 50% and 90% prediction
intervals.We obtain also the point predictions based on themeanwith knownϑ and on the
median and themeanwith unknownϑ , and the results are given in Tables 3–5, respectively.
From the tables, we can observe that the predictions based on both the median and the
mean assuming unknown ϑ are really bad for small values of r, while they are comparable
with the predictions assuming known ϑ for higher values of r.

In the following example, we study the performance of our predictions for a different
model of generalized order statistics in a sample with parent exponential distribution.

Example 5.2: Now, by analogywith Example 5.1, we consider again a standard exponential
distribution and a sample of sizem = 20, but with parameters γ1, . . . , γm defined by γj =
1+ 3(m− j), that is, we consider 2-generalized order statistics with parameter k = 1 (see
Cramer [16, p. 5]). The simulated generalized order statistics X∗(1), . . . ,X

∗
(m), are given by

0.00645 0.01934 0.03980 0.03990 0.04780 0.15333 0.17993 0.22750 0.22902 0.27385
0.28495 0.30155 0.32629 0.35364 0.36261 0.53678 0.62394 0.64424 0.90502 1.84707
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Table 1. Predicted values basedon themedian X̂∗(s) fromX∗(r) assumingknownϑ in Example 5.1 for some
choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.10948 0.29518 0.52390 0.71184 1.08320 1.99725 3.34785
2 0.27948 0.50814 0.69607 1.06741 1.98148 3.33210
5 0.41177 0.59962 0.97092 1.88498 3.23571
7 0.65108 0.83860 1.20979 2.12384 3.47464
10 1.22134 2.13525 3.48622
12 1.08445 1.99768 3.34884
15 1.71923 3.07052
X∗(s) 0.11512 0.44063 0.65636 0.81377 1.00213 1.74417 3.20779

Table 2. Number of exact values out of the 50% and 90% prediction intervals with fixed r in the sample
of size 20 considered in Example 5.1.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

50% 5 6 6 6 5 4 3 5 3 5 3 1 1 0 1 1 0 0
90% 0 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 0
out-of 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 3. Predicted values based on themean X̃∗(s) from X∗(r) assuming known ϑ in Example 5.1 for some
choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.12407 0.30639 0.52953 0.71186 1.06853 1.91583 3.01444
2 0.29241 0.51555 0.69787 1.05455 1.90185 3.00046
5 0.42581 0.60813 0.96481 1.81211 2.91072
7 0.67079 0.85312 1.20979 2.05709 3.15570
10 1.23466 2.08196 3.18057
12 1.11120 1.95850 3.05711
15 1.71921 2.81782
X∗(s) 0.11512 0.44063 0.65636 0.81377 1.00213 1.74417 3.20779

Table 4. Predicted values based on the median X̂∗(s) from X∗(r) assuming unknown ϑ in Example 5.1 for
some choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.26130 0.75758 1.36886 1.87115 2.86363 5.30647 8.91601
2 0.46867 0.89091 1.23794 1.92367 3.61162 6.10569
5 0.68207 1.51595 1.79355 3.61050 6.29546
7 0.63285 0.79429 1.11440 1.90267 3.06785
10 1.17024 1.97769 3.17129
12 1.08362 1.99348 3.33965
15 1.81067 3.34024
X∗(s) 0.11512 0.44063 0.65636 0.81377 1.00213 1.74417 3.20779

By proceeding as described in Example 5.1, we obtain the median and the mean predic-
tions for X∗(2), . . . , X

∗
(m) both in the case of known and unknown parameter ϑ . In Figure 3

(left) we plot the difference in absolute value between exact values and predictions based
on the median or the mean assuming known and unknown value of ϑ . There we observe
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Table 5. Predicted values based on the mean X̃∗(s) from X∗(r) assuming unknown ϑ in Example 5.1 for
some choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.30029 0.78755 1.38392 1.87118 2.82442 5.08887 8.02497
2 0.49254 0.90460 1.24128 1.89992 3.46456 5.49328
5 0.70998 1.07240 1.78139 3.46564 5.64945
7 0.64958 0.80681 1.11440 1.84510 2.79253
10 1.18201 1.93061 2.90124
12 1.11027 1.95444 3.04900
15 1.81065 3.05419
X∗(s) 0.11512 0.44063 0.65636 0.81377 1.00213 1.74417 3.20779

Figure 3. Absolute value differences between generalized order statistics and predictions with known
parameterϑ basedon themedian (black circles) or themean (red squares) andwith unknownparameter
ϑ based on the median (blue triangles) or the mean (green stars) from the simulated sample in Exam-
ple 5.2 withm = 20, and s−r = 1 (left). Predictions (red) for X∗(s) from X∗(r) form = 20, s−r = 1, for the
exponential distribution in Example 5.2. The black points are the observed values and the blue lines are
the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals (right).

that, assuming known ϑ , the predictions based on the median are better than the predic-
tions based on the mean in 10 over 19 cases, while in one case (r = 19) they give the same
value. Similarly, assuming unknown ϑ , the predictions based on the median are better
than the predictions based on the mean in 12 over 19 cases and they are equal for r = 19.
In this case, the predictions based on the assumption of known ϑ perform much better
than the predictions based on unknown ϑ (as expected). Furthermore, we obtain the 50%
and 90% quantile prediction intervals. The results are plotted in Figure 3 (right). There we
can observe that 2-out-of-19 exact points do not belong to the 90% prediction interval and
8-out-of-19 do not belong to the 50% prediction interval.

In the case s = r+ 2, with the parameters and the model assumptions stated above, the
predictions and the prediction intervals are obtained by the quantiles of

G2(u; γr+1, γr+2) =
(
m− r − 2

3

)
u3m−3r−5 −

(
m− r − 5

3

)
u3m−3r−2.
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Figure 4. Absolute value differences between generalized order statistics and predictions with known
parameterϑ basedon themedian (black circles) or themean (red squares) andwith unknownparameter
ϑ based on the median (blue triangles) or the mean (green stars) from the simulated sample in Exam-
ple 5.2 withm = 20, and s−r = 2 (left). Predictions (red) for X∗(s) from X∗(r) form = 20, s−r = 2, for the
exponential distribution in Example 5.2. The black points are the observed values and the blue lines are
the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals (right).

Analogously, we obtain the predictions based on the mean and the predictions with
unknown ϑ .

In Figure 4 (left) we plot the difference in absolute value between exact values and pre-
dictions based on the median or the mean both assuming known and unknown parameter
ϑ . There, we can observe that, assuming known ϑ , the predictions based on the median
are better than the ones based on the mean in 15 over 18 cases. In the case of unknown
parameter ϑ , the predictions based on the median are better than the ones based on the
mean in 11 over 18 cases. In Figure 4 (right), we plot the predictions for X∗(s) (red line),
s = r+ 2 jointly with the limits of the 90% (dashed blue lines) and 50% (continuous blue
line) prediction intervals in the simulated sample. In this case, we can observe that 2-out-
of-18 exact points do not belong to the 90% prediction interval and 8-out-of-18 do not
belong to the 50% prediction interval.

As the parameters γ1, . . . , γm are all different, it is possible to use (4) to determine the
predictions and the prediction bands for the cases in which s− r ≥ 2. In Table 6 the results
are presented for some selected choices of r and s assuming knownϑ . In Table 7, we present
the number of exact values which do not belong to the 50% and 90% prediction intervals.
We obtain also the point predictions based on the mean with known ϑ and on the median
and the mean with unknown ϑ , and the results are given in Tables 8–10. From the tables,
we can observe that the predictions based on both the median and the mean assuming
unknown ϑ are really bad for small values of r, while they are comparable with the predic-
tions assuming known ϑ for higher values of r, and on average even better in the case of
the predictions based on the mean.

In the last example, we discuss again the model used in Example 5.2 and analyze the
coverage of the 50% and 90% prediction intervals.
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Table 6. Predicted values basedon themedian X̂∗(s) fromX∗(r) assumingknownϑ in Example 5.2 for some
choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.03784 0.10242 0.18274 0.24962 0.38469 0.74947 1.76574
2 0.09698 0.17730 0.24419 0.37921 0.74401 1.76033
5 0.14382 0.21063 0.34566 0.71052 1.72696
7 0.22727 0.29398 0.42898 0.79377 1.81041
10 0.43295 0.79774 1.81470
12 0.38377 0.74831 1.76561
15 0.64459 1.66292
X∗(s) 0.03980 0.15333 0.22902 0.28495 0.35364 0.64422 1.84707

Table 7. Number of exact values out of the 50% and 90% prediction intervals with fixed r in the sample
of size 20 considered in Example 5.2.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

50% 6 6 7 6 5 4 4 5 3 5 3 1 1 0 1 1 0 0
90% 0 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 0
out-of 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 8. Predicted values based on themean X̃∗(s) from X∗(r) assuming known ϑ in Example 5.2 for some
choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.04352 0.10822 0.18856 0.25540 0.39037 0.75394 1.67024
2 0.10309 0.18344 0.25028 0.38524 0.74882 1.66511
5 0.15114 0.21798 0.35295 0.71652 1.63281
7 0.23559 0.30243 0.43739 0.80097 1.71726
10 0.44391 0.80748 1.72377
12 0.39730 0.76087 1.67716
15 0.66556 1.58185
X∗(s) 0.03980 0.15333 0.22902 0.28495 0.35364 0.64422 1.84707

Table 9. Predicted values based on the median X̂∗(s) from X∗(r) assuming unknown ϑ in Example 5.2 for
some choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.09034 0.26294 0.47758 0.65532 1.01731 1.99221 4.70826
2 0.16271 0.31103 0.43456 0.68389 1.35753 3.23429
5 0.23866 0.37148 0.63988 1.36515 3.38562
7 0.22076 0.27829 0.39471 0.70930 1.58603
10 0.41442 0.73671 1.63520
12 0.38346 0.74667 1.76021
15 0.68179 1.83447
X∗(s) 0.03980 0.15333 0.22902 0.28495 0.35364 0.64422 1.84707

Example 5.3: Consider the model already presented in Example 5.2, i.e., standard expo-
nential distribution and a sample of size m = 20, with parameters γ1, . . . , γm defined
by γj = 1+ 3(m− j). To better analyze the predictions, we simulate N = 100 random
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Table 10. Predicted values based on the mean X̃∗(s) from X∗(r) assuming unknown ϑ in Example 5.2 for
some choices of r and s such that s− r ≥ 2. In the bottom line we provide the exact values.

s

r 3 6 9 11 14 18 20

1 0.10551 0.27842 0.49316 0.67179 1.03250 2.00417 4.45301
2 0.17339 0.32236 0.44579 0.69502 1.36640 3.05845
5 0.25322 0.38608 0.65436 1.37707 3.19847
7 0.22793 0.28557 0.40196 0.71550 1.50570
10 0.42410 0.74532 1.55487
12 0.39695 0.75918 1.67209
15 0.70552 1.74270
X∗(s) 0.03980 0.15333 0.22902 0.28495 0.35364 0.64422 1.84707

Figure 5. Scatterplots of a simulated sample of size N = 100 from (X∗(r), X
∗
(s)) for m = 20, r = 4 and

s = 5 (left) and r = 4, s = 6 (right) for the exponential distribution in Example 5.3 jointly with the
theoretical median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands.

samples of sizem. Then, by fixing the values of r and s, we get the predictions for each sam-
ple.We start with the case s = r+ 1 and in particular with r = 4 and s = 5. The results are
plotted in Figure 5 (left). There, we can observe that 49 values do not belong to the 50%
prediction intervals and 14 values do not belong to the 90% prediction intervals. Now, we
consider the case s = r+ 2, with r = 4 and s = 6. The results are plotted in Figure 5 (right)
where we can observe that 54 and 13 values do not belong to the 50% and 90% prediction
intervals, respectively. In Figure 6, we consider some cases in which the difference s−r is
greater than two.More precisely, in Figure 6 (left) we have r = 4 and s = 10 with 59 and 15
values out of the 50% and 90% prediction intervals, respectively, and in Figure 6 (right) we
have r = 4 and s = 12 with 56 and 15 values out of the 50% and 90% prediction intervals,
respectively.

6. Conclusion and outlook

In this paper, we have provided different tools to predict future data from present and past
data in ordered data sets that can be modelled as generalized order statistics. These results



STATISTICS 939

Figure 6. Scatterplots of a simulated sample of size N = 100 from (X∗(r), X
∗
(s)) for m = 20, r = 4 and

s = 10 (left) and r = 4, s = 12 (right) for the exponential distribution in Example 5.3 jointly with the
theoretical median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands.

extend preceding ones for order statistics and record values (that are included in the gener-
alized order statistics’ model as particular cases). The quantile regression technique allows
us to provide not only point predictions but also confidence regions for those values.

The examples included in Section 5 show how to apply the established theoretical
results to specific situations with different assumptions and tools. In the first example, we
consider ordered data from a sample (of order statistics) with a baseline exponential distri-
bution and we use mean and median predicted values, providing 50% and 90% confidence
prediction bands as well. We do the same in the second example but with data from a 2-
generalized order statistics’ model. The coverage probabilities for the quantile regression
bands obtained with this model are analyzed in the third example. These techniques can
be used to analyze similar examples with ordered data.

There are several tasks for future research projects. As already mentioned above, we
can study different models and/or different baseline distributions (Weibull, Pareto, etc.).
Especially, the case of unknown parameters is of particular interest. So far, the regres-
sion approach is based on a completely known baseline distribution function F. However,
one may consider estimators of the cumulative distribution function F and the quan-
tile function F←. For instance, suppose Fϑ is the cumulative distribution function of an
Exp(ϑ)-distribution with unknown mean ϑ > 0. Given an estimator ϑ̂ of ϑ , one can esti-
mate Fϑ and F←ϑ by the corresponding plug-in estimators. Then, from (11), we get the
predictor

m̂mean(x) = F←̂ϑ

⎛⎝Fϑ̂ (x)
s∏

j=r+1

γj

1+ γj

⎞⎠ = x− 1
ϑ̂
ln

⎛⎝ s∏
j=r+1

γj

1+ γj

⎞⎠ ,

which has the same form as the maximum likelihood predictor given in (15). However,
its computation does not involve any computational method. Hence, we get for a general-
ized order statistics’ model alternative but always explicit predictors to those obtained in
Section 4.2 for an unknown mean. In particular, for order statistics and record values, we
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find the predictors

m̂mean(x) = x− 1
ϑ̂
ln

(
n− s+ 1
n− r + 1

)
, m̂mean(x) = x+ s− r

ϑ̂
ln(2).

Similarly, the other regression methods can be taken into account. Furthermore, if ϑ̂ is
a consistent estimator of the mean ϑ , asymptotic confidence bands can be obtained in
such a situation. It would be interesting to study these predictors and extend the method
to other distributions. Another relevant task is to develop fit tests to determine whether
our techniques can be applied for given data. All these problems are crucial in order to
provide accurate predictions for future data values. Finally, one may consider Type-I or
hybrid censored data (see Balakrishnan et al. [40] for a recent review of these models and
related results) and apply the regression approach to predictions based on this kind of data.
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