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Aromatic monomers are key building blocks for many polymer
resins for coatings applications. The rigid structure results in
improved thermal and mechanical properties of the coatings,
such as high hardness or scratch-resistance to name but a
few. However, most of the available aromatic building blocks
are very inexpensive monomers obtained from petrochemical
resources. To enhance the sustainability of coatings materials,
bio-based alternatives are of high interest for both industry and
academia. This short review aims to highlight very recent work
on biobased aromatics for coatings applications.
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Introduction

Polymers resins for coatings applications are traditionally
derived from renewable building blocks, such as vege-
table oils, shellac or rosin for wood varnishes and printing
inks. However, with the development of synthetic poly-
mers, new resins with improved properties were devel-
oped that resulted in countless applications of this type
of materials in our daily modern life. From the petro-
chemical monomers used for these new coatings, aro-
matic building blocks gained particular significance, as
they allow for good mechanical and thermal properties of
the final coatings. For instance, the use of phenol was not

only important for the invention of thermosetting plas-
tics, but also for condensation resins that are still used in
large quantities for example in wood fiber boards [1].
Bisphenol-A or novolac epoxy resins, on the other hand
are responsible for the mechanical performance of many
epoxy resins [2]. But also other less prominent examples,
such as alkyd resins, (unsaturated) polyester resins, and
high performance polyurethanes are highly dependent on
building blocks such as phthalic acid, isophthalic acid,
styrene or toluene-2,4-diisocyanate to name but a few
[3]. In the endeavor to develop novel bio-based polymer
resins that can compete with these commercial products,
replacements for the aromatic building blocks are of
utmost importance. In this respect, several aromatic
building blocks from renewable resources have drawn
attention over the last years, such as furan-based building
blocks, vanillin, cardanol, lignin and monomers derived
thereof (Figure 1). This review aims to highlight the
most recent advances in the last two years in the field of
bio-based aromatic building for coatings applications and
discuss the potential of the individual building blocks
derived from renewable resources.

Furan-based building blocks

The use of furan-based building blocks as thermosetting
coatings is by no means new. First reports on the poly-
merization of furfuryl alcohol date back to the 1970s [4].
However, due to its relevance as biobased building
block, the chemistry of furfuryl alcohol and its applica-
tions as thermoset and composite matrix has been
recently reviewed [5,6]. Furthermore, a general over-
views over furan-based resins and polymers were lately
reported [7,8]. The aldehyde group in both furfural and
HMF makes these aromatic molecules also interesting
as formaldehyde alternative in polycondensation resins.
In this respect, Moualhi et al. reported the synthesis of
range of thermosets by a reaction of resorcinol with
furfural and methylfurfural and other bio-based alde-
hydes achieving tensile strengths up to 74 MPa [9]. As
another recent example Hithesh et al. studied the use of
phenol-furfural composite with functionalized graphene
oxide as anti-corrosion coating for mild steel [10]. As far
as FDCA is concerned, immense research efforts were
dedicated to its applications as replacement of tereph-
thalic acid in thermoplastic polyesters. On the other
hand, only little research was dedicated towards the
implementation of FDCA in the coatings field.
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Aromatic building blocks used in the synthesis of polymer resins.

Papadopoulos et al. recently compared the performance
of polyurethane dispersions derived from polyols with
either isophthalic acid or FDCA [11]. They could show
that the incorporation of FDCA leads to higher hardness
and Tgs compared to the isophthalic acid counterparts.
As far as UV-curing coatings are concerned, Pezzana
et al. utilized the diallyl ether of furan dimethanol
together with different thiols in UV-induced thiol—ene
reactions [12]. The resulting coatings showed superior
Tgs compared to similar materials derived from other
bio-based building blocks. The same group examined
the mono- and diglycidyl furfuryl alcohols in cationic
UV-curing coatings (Figure 2A) [13]. Furthermore, the
group of the Dean Webster recently reported the syn-
thesis of a set of furanic di(meth)acrylates (Figure 2B)
and tested their application as reactive diluents with a
UV-curing urethane acrylate oligomer. The bio-based
monomers showed that their implementation
improved the hardness and the T of the cured materials
[14]. Later, they also tested these monomers as diluents
for UV-curing additive manufacturing [15]. Diglycidyl
furfuryl alcohol or 2,5-bis[oxiran-2-ylmethoxy)methyl]
furan was also used as bisphenol A alternative in epoxy
resins with maleic acid as hardener with properties
competitive with commercial materials [16].

As far as the availability of furan-based building blocks is
concerned, furfural and furfuryl alcohol are produced for
decades in industrial quantities at very competitive
prices. For FDCA on the other hand the prices are still
very high (around 500 €/kg), despite industrial interest
and confirmed technical feasibility by academic, as well
as industrial research projects. Therefore, industrial
applications are still very limited. However, a break-
through is expected in near future due to large scale
plants (5 kKT/y) are being built [17], which is predicted
to bring down the costs of FDCA to acceptable levels, at
least for premium markets where higher prices for
coatings are accepted by costumers and end-users.

Lignin-based building blocks

Lignin is by far the most abundant aromatic biopolymer
and is produced on large quantities as side product of the
pulp and paper industry. However, the very heterogenous
structure makes it a very challenging feedstock and
despite immense research efforts from both industry and
academia over the last decades, the material use of lignin
is still quite limited. As far as coatings applications of
lignin are concerned, academic research has been
recently reviewed [18—21]. Latest research activities in
this field focus on the integration of special
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Digylcidyl furfuryl alcohol and furan-based di(meth)acrylates used in UV-curing coatings.

functionalities to the coating by using modified lignin
additives. Henn et al. demonstrated the use of acetylated
lignin nanoparticle (ILNP) for superhydrophilic antifog-
ging coatings [22]. LNP dispersions prepared were
applied on glass, which lowered the contact angle of
water from 29° £+ 6° of uncoated glass compared to
9° + 4° of the coated glass. Another study from Diogenes
et al. describes the use of acetylated kraft lignin to
improve the anticorrosive ability of epoxy coatings for
carbon steel [23]. The preparation of novel lignin-based
micro/nano structure coatings with superhydrophobic
properties was described by Liu et al. [24] They modi-
fied lignin with 1H, 1H, 2H, 2H-perfluorodecyl-
tricthoxysilane (PFDTES) to obtain PFDTES-grafted
lignin. The functionalized lignin powder was mixed with
an epoxy resin and applied on different substrates. The
prepared lignin-based coatings showed excellent repel-
lency to water with a contact angle of 164°. However, it is
noteworthy to mention that the use of perfluorinated
particles is not very sustainable and should be avoided.
Another approach based on dual-size lignin micro-
nanospheres (LMN) was reported by Ma et al. [25]
They produced nano-LMNs (n-LMN) and micro-LLMNs
(m-LMN) via antisolvent precipitation and tested these
nanospheres also as additives in epoxy coatings [26].
Thermoset coatings based on glyoxylic acid lignin and
poly(ethyleneglycol)diglycidylether with antioxidant and
UV-protective effect with high visible transparency were
developed by Boarino et al. [27] They fabricated free
coating films with tunable mechanical properties having a
lignin content of up to 70 wt%. Such coatings films are
attractive for sustainable food packaging. Besides the
mentioned examples of using chemically modified lignin
in functional coatings, there is also ongoing research in
using unmodified lignin as additive for sustainable anti-
viral [28], antifouling [29] and flame retardant [30]
coatings. The application of lignin-based materials in
coatings is still limited despite immense research efforts.
However, some commercial examples start entering the
market, such as lignin-based dispersants and emulsifiers
derived from lignosulfonates for example [31]. This
shows that the use of lignin in coatings applications is
indeed possible and it is expected that further research

will eventually lead to a broader material use of lignin in
the coatings field.

Vanillin-based building blocks

Vanillin is commonly used in food and variety of
cosmetic compounds because it is inexpensive and
available. The presence of aldehyde group and phenolic
hydroxyl group makes this precursor highly versatile for
further functionalization to be exploited in polymeri-
zation reactions [32,33]. Recently, Mahajan et al. syn-
thesized divanillin (DV) which was used as a partial
replacement for polyethylene glycol an industrial diol for
polyurethane (PUR) synthesis [34]. In this work
hydroxyethyl methacrylate was attached to incorporate
unsaturation exploited for UV-curing process. The syn-
thesized resin was dispersed in water and applied on a
wooden panel. The achieved PUR coatings showed an
enhancement of pencil hardness and scratch hardness
by increasing the DV content. The 30% incorporation of
DV allows to obtain the highest pencil hardness (2H)
and scratch hardness (0.90 kg) among all the DV for-
mulations. Several epoxidized vanillin derivatives have
been reported as potential biobased epoxy resins for
high-performance polymers and composites. The func-
tionalized precursor was thermally cured as well as UV-
cured [35,36]. The crosslinked materials showed high
Ty (above 60 °C) and high mechanical performance with
a Young’s modulus of 837 MPa. Hakkarainen reported
the synthesis of vanillin epoxy thermosets characterized
by good thermal and mechanical properties and they
studied the thermal reprocessability and chemical
recyclability under acidic conditions at room tempera-
ture [37]. The achieved thermosets exhibited good
thermo-mechanical properties and are stable in common
organic solvents. Furthermore, the authors showed that
the materials can be thermally reprocessed through
compression molding with good recovery of the me-
chanical properties. Finally, the synthesized thermosets
showed rapid and complete chemical recyclability to
water-soluble aldehydes and amines by imine hydrolysis
at room temperature in 0.1 m HCI solution. Li et al.
reported the synthesis of vanillin-phosphorus based
epoxy coatings showing high thermal stability and flame
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retardancy [38]. This research provides a novel direction
for the preparation of epoxy reactive flame retardant
from bio-based resources as raw materials and a refer-
ence for the application of epoxy resin in the field of
wood flame retardant coating. Industrial applications in
the very price competitive coatings field are still limited,
mainly due to cost limitations compared to similar aro-
matic building blocks derived from petrochemical
sources. However, some building blocks, such as meth-
acrylated or epoxidized vanillin are commercially avail-
able [39]. Despite the higher prices, these monomers
could find application in specialty coatings applications,
where higher prices are tolerated.

Cardanol-based building

Cashew nutshell liquid (CNSL) is an abundant by-
product from agricultural wastes, that contains mainly
four components: anacardic acid, cardanol, cardol, and
2-methyl cardol [40]. Furthermore, CNSL is a non-
edible oil which can be recovered at low cost because
of an abundant availability. Therefore, the derivatized
phenol-containing building blocks from CNSL can be
used in various coatings applications, such as epoxies,
alkyds, phenolic and epoxy resins, polyol, benzoxazine,
vinyl ester polymers [41]. Recently, Vijayan et al. syn-
thesized solvent-free sustainable colorless cardanol-
based polyurethane coatings, copolymerizing with
hydroxy-terminated polydimethylsiloxane (HTPDMS)
without using any metal catalysts [42]. The resulting
coating exhibited a high transparency up to 92—96% in
the visible light, high hydrophobicity, with a value of
contact angle with water of 103°, a Ty value of 98 °C
and a high corrosion resistance, showing no sign of
corrosion even after 50 days of immersion in salt water.
Zhang et al. reported the good anti-corrosion perfor-
mance of an epoxy coating prepared in the presence of
epoxy cardanol as reactive diluent [43]. The anticor-
rosion behavior can be attributed to the optimization of
the crosslinkable formulation which allowed to achieve
high epoxy group conversion, good dispersibility of
graphene oxide (GO) and enhanced GO-epoxy resin
interfacial bonding. All these factors helped to obtain
coatings with good anticorrosion properties. The group
of Wadgaonkar also recently reported the preparation of
CNSL-based epoxies [44]. They were able to show that
the glass transition temperature decreased with
increasing CNSL content, while the thermal stability
was not affected. Kalita et al. reported the synthesis of
cardanol ethyl vinyl ether (CEVE) which was poly-
merized exploiting the ability of the cardanol to un-
dergo autoxidation [45]. The polymers were cured
oxidatively at both ambient and elevated temperatures
(120 and 150 °C) resulting in crosslinked materials
characterized by good tensile properties (12.2—
26.6 MPa) and pendulum hardness (15—40 sec.).
Functionalized methacrylated cardanol was studied
both in homopolymerization and copolymerization with

methyl methacrylate in emulsion polymerization. The
same functionalized precursor was exploited for coating
application with UV cross-linking via thiol—ene
chemistry. The cross-linked coating exhibit promising
thermal and mechanical resistance properties [46].
Considering that the global production of CNSL is well
above one million tons per year with a low environ-
mental foot print, cardanol can be considered a bio-
based alternative not only for coatings from both,
economic and environmental point of view [47].

Other aromatics

Despite the structural similarity of eugenol to lignin-
derived monomers, such as coniferyl alcohol, the main
source of eugenol is not lignin, but it is extracted from
clove oil and other natural oils. The group of Sylvain
Caillol recently reviewed the use of eugenol for polymer
applications [48]. Furthermore, the group of Dean
Webster has used this biobased aromatic compound for
the synthesis of poly(vinyl ether)s or epoxy resins
[49,50]. The latter showed similar hardness of the final
coating as a bisphenol A-derived epoxy resin. Further-
more, phenolic acids, such as gallic or ferulic acid are not
directly used as bio-based replacements for petrochem-
ical aromatic building blocks, as the phenolic OH is not
reactive in standard esterification procedures. However
functionalized building blocks have been used in the past
also for coatings applications [51,52]. Recently, these
monomers in combination with chitosan have been
studied as active building blocks for antioxidative food
packaging films and coatings [53]. As another very
interesting group of aromatic compounds, different tan-
nins have been utilized in coatings applications. Tannins
is the term for a number of different polyphenolic com-
pounds that can be extracted from a wide range of tree
barks or leaves are traditionally used in the tanning of
animal skins into leather [54]. The use of this family of
polyphenols in polymeric applications has been reviewed
previously [55,56]. As far as coatings are concerned,
Kumar and coworkers recently reported the use of
different Red sanders bark extract in UV-protective wood
coatings [57]. Furthermore, phosphorylated tannin-
particles have been used as intumescent fire protection
coatings [58].

Conclusions

This short review summarized the most important bio-
based aromatic monomers and the recent scientific
literature on their use as building blocks for coatings
applications. In several cases, the novel coating systems
exhibit promising material properties that have the po-
tential to compete with commercial products based on
petrochemical sources. However, further research efforts
of academia, as well as industry are needed to identify
new potential sources for aromatic building blocks, to
modify the latter so they can be used as monomers in
polymer resins, and to design the polymer resins so they
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exhibit properties suited for coatings applications. In
addition to the mere properties of the final coatings, also
techno-economical and sustainability studies are needed
to ensure that biobased coatings will be able to penetrate
the market, commercially compete with existing market
products, and have indeed an improved environmental
footprint.
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