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Abstract
We study the non-equilibrium steady states in a totally asymmetric simple
exclusion process with periodic boundary conditions, also incorporating (i)
an extra (nearest-neighbour) repulsive interaction and (ii) hopping rates char-
acterized by a smooth spatial inhomogeneity. We make use of a generalized
mean-field approach (at the level of nearest-neighbour pair clusters), in com-
bination with kinetic Monte Carlo simulations. It turns out that the so-called
shock phase can exhibit a lot of qualitatively different subphases, including
multiple-shock phases, and a minimal-current shock phase. We argue that the
resulting, considerably rich phase diagram should be relatively insensitive to
minor details of either interaction or spatial inhomogeneity. As a consequence,
we also expect that our results help elucidate the nature of shock subphases
detected in previous studies.

Keywords: TASEP, nonequilibrium steady states, domain walls

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd
1

https://doi.org/10.1088/1751-8121/ad1e19
https://orcid.org/0000-0001-6778-0628
https://orcid.org/0000-0001-7603-4627
mailto:marco.pretti@polito.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ad1e19&domain=pdf&date_stamp=2024-2-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 57 (2024) 065002 B Mina et al

1. Introduction

The totally asymmetric simple exclusion process (TASEP) is an elementary stochastic-
transport model, with a variety of applications to out-of-equilibrium physics, ranging from bio-
logical microsystems to vehicular traffic [1, 2], and intriguing theoretical connections (Kardar–
Parisi–Zhang universality, randommatrix theory) [3, 4]. For such reasons, and since it is simple
enough that it can be treated analytically up to a certain extent, this model has inspired a lot
of fundamental studies about non-equilibrium phenomena. The model is usually defined on a
linear chain, whose nodes can be occupied by at most one particle, and where each particle can
hop to the adjacent node, provided the latter is empty: totally asymmetric means that hopping
can occur in one direction only. Over the years, many variants of the model have been investig-
ated, with the aim of incorporating extra features, which may be relevant in different physical
contexts. For example, a first important issue is the distinction between periodic or open bound-
ary conditions. In the latter case, if the chain is coupled to particle reservoirs that inject and
extract particles at opposite ends, the system exhibits different non-equilibrium steady states
and a number of phase transitions among them, controlled by injection and extraction rates
(boundary-induced phase transitions) [5]. This noticeable case is still exactly solvable, and the
steady-state solution dates back to the 1990s [6–9].

Among other interesting issues, that of spatial inhomogeneity of hopping rates has been fre-
quently considered in the literature [10–19]. In case of periodic boundary conditions, it turns
out that several different types of inhomogeneities (a unique slower rate [10–12], randomly
distributed rates [13, 14], smoothly varying rates [15–17]) give rise to the same kind of phe-
nomena, namely, steady states featuring domain walls (or shocks), which separate regions at
different densities. Similar shocks can also emerge if the system is allowed to adsorb and/or
desorb particles in its bulk (Langmuir kinetics) with proper size scaling [20–25]. Note that,
in such cases, the rates are spatially uniform, but the density profile is not (even in the steady
state), due to violation of the particle-number conservation constraint. A different type of extra
feature, that can be incorporated in the model, is some kind of interaction beyond the basic
exclusion constraint, in the simplest case a nearest-neighbour (NN) interaction [26–36]. Such
interactions can give rise to many different non-equilibrium steady states, and therefore very
complex phase diagrams (in particular, up to 7 phases for strong enough repulsive interaction
and open boundary conditions) [27–33].

Of course, it may also be of interest to investigate models incorporatingmore than one of the
above features, as the latter may likely occur together in physical systems. For instance, [37]
investigates a TASEP-like model with both hopping-rate inhomogeneity and Langmuir kinet-
ics, which the authors argue to be minimal ‘ingredients’ for modeling motor-protein motion
along microtubules in living cells. Still motivated by biological transport phenomena, as well
as by methodological issues, [38] investigates the role of NN interactions in a TASEP with
Langmuir kinetics, though without inhomogeneities. Furthermore, [39, 40] investigate the
interplay between NN interactions and rate inhomogeneities, in the presence of open [39] or
periodic [40] boundary conditions. In particular, the recent work by Pal and Gupta [40] (peri-
odic boundary conditions) points out that a NN repulsive interaction, in combination with a
very simple rate inhomogeneity (represented by a regular function with a single minimum
and a single maximum) gives rise to a seemingly non-trivial phenomenology. The presence of
three different regimes is revealed, as the repulsion strength increases (see figure 1). In case of
weak repulsion (figure 1(a)), the behaviour of the system is qualitatively equivalent to that of
a system without NN interaction [16], with a single phase at intermediate densities, character-
ized by the presence of a shock in the density profile and maximal current (SMC phase), and by
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Figure 1. Three regimes observed in [40], as a function of the (mean) particle dens-
ity: (a) no interaction or weak interaction; (b) mildly strong interaction; (c) very strong
interaction. Phase tags are explained in the text.

two phases, at high and low density, characterized by a spatially-modulated density profile but
without shock, and less-than-maximal current (HD and LD phases). This regime corresponds
to a (local) current-density relation featuring a unique ‘central maximum’, at density 1/2. In
case of stronger repulsion, where it is known that the current-density relation develops a ‘cent-
ral minimum’ at density 1/2 and two ‘side maxima’, the other two regimes emerge. In one of
them, at ‘mildly strong’ interaction (figure 1(b)), the SMC phase is characterized by two shocks,
one of which (the ‘descending’ one) localized at the minimum-rate position. Furthermore, the
separation regions, between this phase and the HD and LD phases, are characterized by a
single shock, somewhat similar to the ‘ordinary’ shock phase (i.e. that of a model without NN
interaction), but with apparently non-maximal current. The nature of these phases (called ‘S
phases’) remains not completely clarified, since in this regime there appear large discrepan-
cies between theory and simulations, and the analysis relies mainly on the latter, which are
unfortunately affected by significant finite-size effects. In the other regime, at ‘very strong’
interaction (figure 1(c)), the presence of yet another S phase is observed at densities close to
1/2, with a minimum of the current between two maximal-current SMC regions.

In this paper we aim at elucidating the phenomenology that emerges from the work
described above, which we find quite interesting, especially since, as previously discussed,
it originates from the interplay of just two simple extra ‘ingredients’ of the model, compared
to ordinary TASEP (rate inhomogeneity and repulsive NN interaction). To do this, we are
going to study a model in principle identical to that of Pal and Gupta, but with a different con-
straint on the rates, which we will call the KLS condition (since it was originally introduced by
Katz, Lebowitz and Spohn [26–28]). The underlying idea is explained below. On the one hand,
we expect that the overall physical behaviour remains qualitatively unaffected by the change
in the rate constraint, specifically because it can be seen that the modified model undergoes the
same kind of ‘transition’ (from unimodal to bimodal) in the current-density relation. On the
other hand, it is known that the steady state of the model with KLS condition, in the simpler
case of homogeneous rates, coincides with the equilibrium state of a one-dimensional lattice
gas with NN interaction (a detailed proof is given by Dierl et al [31]). As a consequence, a
generalizedmean-field theory includingNN pair correlations, whichwe denote as pair approx-
imation (PA), is exact in this case. Thus, for our system, characterized by the assumption of
smoothly-varying rates, we expect that the PA remains very accurate. Indeed, all the numerical
evidences collected in this work suggest that it exactly reproduces the smooth sections of the
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density profiles, so that we can obtain a very detailed analysis of the various phases, practically
without finite-size effects.

The paper is organized as follows. In sections 2 and 3 we introduce the model and the PA
theory, respectively. Section 4 describes, in terms of density profiles, the different regimes
occurring in the non-equilibrium steady states of the model. The results are made more sys-
tematic in section 5, which presents and explains the analytical phase diagrams, and the way
they have been worked out. Section 6 is devoted to numerical simulations, in order to check
the accuracy of the PA. We recap our findings and draw some conclusions in section 7. The
technical details are reported in four appendices.

2. The model

Themodel we consider is defined on a linear chain of L nodes, labelled as i = 0, . . . ,L− 1, with
periodic boundary conditions. Each node can be empty or occupied by a single particle. We
introduce occupation-number variables nti, taking value 0 or 1 if node i at time t is respectively
empty or occupied. Each particle can hop in only one direction (conventionally from node i to
node i+ 1), provided the destination node is empty. The rate of hopping from node i (to i+ 1)
may depend on both the position i and on the i− 1 and i+ 2 node configurations, so that it will
be denoted as wi(ni−1,ni+2). This type of dependence can be regarded as a NN interaction.
Node indices are always understood modulo L, according to periodic boundary conditions.

To begin with, we shall consider the most general case where, for each node i, we have 4
different hopping rates (associated with all possible occupancy states of the 2 nodes i− 1 and
i+ 2), with a fully arbitrary dependence on the position i. The PA theory will be first developed
in such a general case. Subsequently, we shall take some more restrictive hypotheses, along
the lines of [40] and previous literature [29–32, 38, 39]. In particular, we shall assume the
following expressions for the rates, whose meaning is discussed below5:

wi (0,0)
.
= pλ(i/L) , (1a)

wi (0,1)
.
= qλ(i/L) , (1b)

wi (1,0)
.
= rλ(i/L) , (1c)

wi (1,1)
.
= sλ(i/L) . (1d)

The first restrictive assumption contained in (1) is that the spatial dependence of the rates is
fully incorporated in a unique function λ(x), being independent of the occupancy states of the
forward and backward nodes. As a consequence, the ratios between rates associated to differ-
ent forward/backward occupancies are specified only by the position-independent coefficients
p, q, r, s. In the following we will often call λ(x) the rate modulation function. The second
important assumption is the continuity of the rate modulation function, meaning in practice that
the spatial dependence of the rates is ‘smooth’, as it occurs only through the scaled position
variable x

.
= i/L (in order to respect boundary conditions, we can assume that λ(x) is peri-

odic with period 1). Furthermore, as anticipated in the introduction, we shall assume that the
rate modulation function is characterized by a unique minimum and a unique maximum (over
its period). In particular we shall consider a sinusoidal function, taking values in a positive
interval [λmin,λmax], that is

λ(x)
.
=
λmax +λmin

2
+
λmax −λmin

2
cos(2π x) . (2)

5 The symbol ‘
.
=’ denotes ‘equality by definition’.
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With this particular choice (irrelevant to the qualitative behaviour of the model) the rate mod-
ulation function turns out to be completely specified by the only 2 parameters λmin and λmax.
Throughout our analysis, we shall usually consider one of them (for instance λmin) fixed as a
reference value, varying the ratio λmax/λmin, which we shall call rate modulation ratio.

We shall also introduce some restrictive hypotheses on the p,q,r,s parameters. As in Pal
and Gupta’s work [40], we shall first assume p= s, which turns out to induce a particle-hole
symmetry6. In fact, one of the four parameters can be set equal to 1 without loss of generality,
so the imposed condition will actually be

p= s= 1 , (3)

leaving q and r as free parameters. Actually, we find it more convenient to define

v
.
=

√
q
r
, (4)

and thence to consider v and q as independent parameters, with r fixed by (4). We shall call
v the interaction parameter, as it discriminates the attractive case (q> r, or v> 1) from the
repulsive one (q< r, or v< 1). It can be seen that the situation studied in [40] corresponds to
adding the simple condition

qr= ps , (5)

which, together with the symmetry hypothesis (3) and definition (4), leads to

q= v , (6a)

r= 1/v . (6b)

This assumption is based on a thermodynamic consistency argument, and was previously
proposed by Dierl, Maass and Einax [29], so we shall denote it as the DME condition.
Conversely, as anticipated in the introduction, we will assume the KLS condition, namely

q+ r= p+ s , (7)

which, still in combination with (3) and (4), entails

q=
2v2

1+ v2
, (8a)

r=
2

1+ v2
. (8b)

It is worth noting that, even though all the physical results that we report in the article
have been obtained with the KLS condition, most of the related analytical theory is developed
without it, in particular retaining only the symmetry assumption (3) and keeping both v and q
as free parameters.

6 Throughout the paper, we shall often use the term ‘particle-hole symmetry’ to denote the mirror symmetry of the
current-density relation, although this is just one aspect of the symmetry.
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3. The analytical methods

Let us now present the PA, in the most general case introduced above. It is useful to define first
some notation for marginal distributions and expectation values. Let us denote the marginal
distribution at time t, for a cluster of consecutive nodes starting at i, by

Pti [klm . . . ]
.
= P

{
nti = k ,nti+1 = l ,nti+2 = m , . . .

}
. (9)

Moreover, let us define specific symbols for the local densities and NN correlations,
respectively:

ρti
.
= 〈nti〉 , (10)

ϕti
.
= 〈ntinti+1〉 . (11)

Aswe are dealingwith binary random variables, the latter quantities completely specify 1-node
and 2-node marginals (for NN pairs), and can be used to parameterize them as follows:

Pti [1] = ρti , (12a)

Pti [0] = 1− ρti , (12b)

and

Pti [11] = ϕti , (13a)

Pti [10] = ρti−ϕti , (13b)

Pti [01] = ρti+1 −ϕti , (13c)

Pti [00] = 1− ρti− ρti+1 +ϕti . (13d)

Now, from the master equation one can derive time-evolution equations for ρti and ϕ
t
i,

through a marginalization procedure (a detailed derivation is given in [33]). As far as the local
densities are concerned, we obtain a typical continuity equation, namely

ρ̇ti = J t
i−1 −J t

i , (14)

where J t
i represents the probability current from i to i+ 1 at time t. Such current can be writ-

ten as a sum of 4 contributions, one for each possible combination of backward and forward
occupation states, in formulae

J t
i = J t

i (0,0)+J t
i (0,1)+J t

i (1,0)+J t
i (1,1) , (15)

where

J t
i (k,n) = wi (k,n) P

t
i−1 [k10n] . (16)

Regarding local correlations, we have the following equation

ϕ̇ti = J t
i−1 (0,1)+J t

i−1 (1,1)−J t
i+1 (1,0)−J t

i+1 (1,1) . (17)

In the end we can see that the time-derivatives of ρti and ϕ
t
i can be written in terms of 4-node

marginals, so the resulting time-evolution equations, though exact, are not closed. A possible
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closure scheme is naturally provided by the PA [41], also known as Bethe approximation [42]
or 2-cluster approximation [2]. In the specific case, such approximation reads

Pti [k10n]∼=
Pti [k1] P

t
i+1 [10] P

t
i+2 [0n]

Pti+1 [1] P
t
i+2 [0]

, (18)

where 1-node (site) and 2-node (NN pair) marginals can be expressed in terms of ρti and ϕ
t
i

through equations (12) and (13). An analogous technique has already been applied to the
NN-interacting TASEP, for instance in [38] (for a system with Langmuir kinetics) and [39]
(with site-dependent hopping rates). In these papers, the resulting equations have been used
as an intermediate step to determine a continuum limit, leading to slightly different methods,
respectively denoted as cluster mean-field and correlated cluster mean-field. Conversely, in
this paper we adopt a simpler strategy, as done in [33], that is, we perform a direct time-
integration of the discrete system (at finite L), obtaining the steady state as a long-time limit
of the numerical procedure (more precisely, we define the limit by requiring that the mag-
nitude of all time derivatives stays below a certain threshold). This procedure does not need
a considerable computational power, so we can easily reach quite large sizes (all the results
reported in this section refer to L= 10000), such that the density profiles obtained are (in most
cases) practically indistinguishable from the continuum limit. Apart from this difference, our
approach is equivalent to the cluster mean-field theory of [40], since both are based on the
same pairwise factorization (18). We nonetheless prefer to retain the old-fashioned term PA,
in order to avoid confusion with analogous approximation strategies, that take into account
higher-order clusters [2, 43].

In this work we shall also make use of the current-density relation, in a form derived from
the PA theory. This relation, which by definition refers to the continuum limit, is precisely a
function returning the value of the current given that of the local density. Such a function is
completely specified by the local values of the hopping rates, which play the role of parameters.
Collectively denoting byw an array of 4 possible rates (associated with the different occupancy
states, as described above), we can write the current-density relation as

J = Fw (ρ) . (19)

Since the rates w depend on the position, equation (19) establishes a constraint to the spatial
variations of the density ρ, such as to impose that the value of the current J remains fixed.
Now, let us observe that, if all the hopping rates are multiplied by the same factor, say λ, the
current gets multiplied by the same factor, in formulae

Fλw (ρ) = λFw (ρ) . (20)

In mathematical terms we may say that the function F is homogeneous (of degree 1) with
respect to the parameters. This property follows from a simple physical argument, but it can
also be verified explicitly (see appendix A). In our case it is specially important, since, as
introduced above, the position dependence of the rates is given by a common prefactor, namely
the rate modulation function λ(x). As a consequence, in order to determine the possible density
profiles, we need to invert a single current-density function (i.e. the one characterized by the
position-independent parameters p,q,r,s), according to equation

ρ(x) = F−1
p,q,r,s

(
J
λ(x)

)
. (21)

7
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For the model considered here, the inversion can be done analytically (see appendix D). In the
following, we shall usually call reduced current the (position-dependent) quantity defined as

J(x)
.
=

J
λ(x)

. (22)

As known, the current-density function is not invertible in the narrow sense or, in other words,
its inverse is a multi-valued function. Therefore, equation (21) does not determine a unique
density profile, but a (small) set of possible profiles. The actual profile can be determined by
imposing that the integral average of the function ρ(x) is equal to the actual mean particle
density in the system, say ρ̄, which can thus be regarded as a control parameter. In formulae

ρ̄=

ˆ 1

0
ρ(x) dx . (23)

Since, according to equation (21), the profile ρ(x) depends not only on the parameters but also
on the value of the current J , equation (23) determines the latter as a function of ρ̄. It can
be seen that, in certain ranges of ρ̄ values, there does not exist a single continuous profile,
being solution of (21). In such a case, the actual stationary profile is made up of continuous
sections, each one being solution of (21), separated by discontinuities (shocks). Let us observe
that, even in case of a single shock, equation (23) alone is unable to determine both resulting
unknowns (namely current and shock position) simultaneously. However, it can be seen that in
this situation the system dynamics determines the value of the current according to an extremal
principle (maximum or possibly minimum), analogous to the one stated in [27, 28]. Even with
this extra condition, the shock position may not be completely determined (more so when there
are more than one shocks), and in this case some shock-stability criterion must come into play.
We will also observe that, when a particular relation among the parameters occurs, the shock
positions remain anyway indeterminate, and that this physically corresponds to the onset of
two delocalized (but synchronized) shocks, in analogy to what has been reported by Banerjee
and Basu (in a model with rate modulation function characterized by two equivalent absolute
minima) [16].

In the framework of the PA theory, the current-density relation for the model considered
here has already been obtained, in explicit analytical form, in various previous works [32, 33,
40] (note that most of such papers actually deal with homogeneous rates, but this fact turns out
to be irrelevant, due to the ‘smoothness’ assumption). Here however we report (in appendix A)
a slightly more general derivation, which holds even in the absence of the symmetry assump-
tion (3) (albeit we do not analyse this case further). As mentioned in the introduction, the
physically relevant fact is that the current-vs-density diagram undergoes a transition from a
unimodal shape, for attractive or weakly repulsive interactions, to a bimodal one, for stronger
repulsive interactions. Taking v and q as free parameters, the transition line between the two
regimes, shown in figure 2, is defined by the following equation

q=
1− v
3+ v

. (24)

Also the latter equation has already appeared in the literature7, but for the sake of completeness
we report a derivation of it in appendix B. In the same figure 2 we report lines representing the

7 Equation (26) in [40] precisely corresponds to our equation (24), whereas equation (17) in [32] (seemingly quite
different) actually includes some extra nonphysical solutions.

8



J. Phys. A: Math. Theor. 57 (2024) 065002 B Mina et al

Figure 2. Parameter plane (q vs v): the shaded region is the one characterized by a
bimodal current-density relation. The thin dashed and solid lines respectively denote
the DME and KLS conditions (see the text).

Figure 3. Reduced current-density relation, evaluated with the symmetry assump-
tion (3) and with the KLS condition (8), for v= 0.15.

DME and KLS conditions, respectively expressed by equations (6a) and (8a). By comparing
the latter equation with (24) and eliminating qwe obtain the transition value for the interaction
parameter, namely v= 1/3. As anticipated in the introduction, both aforementioned lines turn
out to cross the transition line, and one can also observe that they are tangent to each other at
point q= v= 1 (i.e. for vanishing NN interaction). From now on we will always assume that
equations (8) hold, and that accordingly the steady-state dynamics of the system are specified
only by the interaction parameter v, obviously besides the rate modulation ratio λmax/λmin.

In figure 3 we plot the (reduced) current-density relation J= Fp,q,r,s(ρ), evaluated in the
hypotheses described above, namely (3) and (8), for a given value of the interaction parameter
v in the bimodality region. An explicit expression, parameterized by v only:

Fv (ρ) =
1

1+ v2

[
1− 2

1− 2ρ(1− ρ)

1+
√
1− 4ρ(1− ρ)(1− v2)

]
, (25)

9
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can be obtained by plugging (A.10), (A.16) and (A.20) into (D.1), of course along with the
KLS condition (8a). As previouslymentioned, we can see that such relation is symmetric under
the ρ 7→ 1− ρ transformation (mirror symmetry), as a consequence of (3), and is characterized
by a convex region around a ‘central minimum’ at density ρ◦ = 1/2 and two ‘side maxima’ at
densities ρ±∗ = 1/2±∆. An explicit expression for ∆ as a function of v is

∆=
1
2

√
3− 2

√
2

1− v2
, (26)

which can be obtained by equation (B.11) in combinationwith (B.10), (B.9) and (A.16a), along
with the KLS condition (8a). The function values corresponding to the (local) minimum and
the (absolute) maxima, which we respectively denote by J◦ and J∗, are derived in appendix C.
Plugging the KLS condition (8a) into (C.3) and (C.5), we respectively get

J◦ =
v

(1+ v2)(1+ v)
, (27)

J∗ =

(√
2−

√
1− v2

)2
(1+ v2)(1+ v)(1− v)

. (28)

We will see that the knowledge of these values allows one to determine, analytically, the trans-
ition between the two different regimes emerging in the strong interaction region. Figure 3 also
illustrates the meaning of equation (21), which, given the reduced current J(x), allows one to
determine the possible density profiles, by inverting the current-density function (details in
appendix D). It can be seen that, apart from degenerate cases, there can be either 2 or 4 pos-
sible density solutions, respectively for 0< J(x)< J◦ or J◦ < J(x)< J∗. Due to the mirror
symmetry, they turn out to be pairwise complementary, that is, according to the notation in
figure 3,

ρ+1 (x) = 1− ρ−1 (x) , (29a)

ρ+2 (x) = 1− ρ−2 (x) . (29b)

4. Density profiles

In this section we first describe the results that we have obtained at finite size, by the numer-
ical PA method, introduced in the previous one. As mentioned above, at the size considered
(L= 10000) the smooth sections of the density profiles turn out to be practically indistin-
guishable from the analytical solutions, obtained in the continuum limit. We consider two
different combinations for the relevant model parameters, representative of the two differ-
ent regimes that we have observed. In particular, keeping the rate modulation ratio fixed at
λmax/λmin = 1.5, we take two different values of the interaction parameter, namely v= 0.15
and v= 0.10 (recall that smaller v means stronger repulsion). We respectively denote the two
regimes as multi-shock (MS) and small-shock (SS), for reasons that will be immediately clear
from the description.

The MS regime is illustrated in figure 4. For low enough values of the mean density ρ̄,
the system exhibits a smooth profile, with a density maximum at position xmin = 1/2, cor-
responding to the minimum of the rate modulation function (2). We denote this phase as
the LD (low-density) phase. Let us now imagine to increase ρ̄. At a certain value (roughly
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Figure 4. MS regime: λmax/λmin = 1.5, v= 0.15. Different line types denote density
profiles, computed by the PA method at finite but large size (L= 10000), for different
values of the mean density ρ̄ (see the legends). Thin dotted lines denote the analytical
solutions (21) at maximal current Jmax = λminJ∗.

ρ̄≈ 0.20), the steady-state profile begins to develop a shock, initially placed at xmin, with van-
ishing amplitude, and progressively moving backward (i.e. towards smaller x values, opposite
to the particle flux), with increasing amplitude. We denote the latter phase, characterized by 1
shock, as S1L (where L stands for low density). Such a displacement of the shock position for
increasing ρ̄ goes on until it reaches a peculiar position, say x◦. After that, a further increase
of ρ̄ no longer affects this first shock, but it induces the onset of a second shock, initially
placed at x◦ (with vanishing amplitude) and progressively moving forward (with increasing
amplitude). The transition to this new phase, characterized by 2 shocks (and denoted as S2L),
occurs roughly at ρ̄≈ 0.27. Once again, the displacement of the second shock goes on until it
reaches another peculiar position, in this case coinciding with xmin. Upon further increasing ρ̄,
even this shock remains ‘locked’, while a third shock sets on, initially placed at xmin (with van-
ishing amplitude) and subsequently moving backward (with increasing amplitude). The trans-
ition to the latter 3-shock phase (denoted as S3L) occurs roughly at ρ̄≈ 0.34. Furthermore,
around ρ̄≈ 0.41, the third shock joins the first one at x◦, giving rise to a single shock (with
double amplitude), which still moves backward for increasing ρ̄. Note that the shock placed
at xmin is still there, so that we have another 2-shock phase (denoted as S2), which extends
over a range of average densities including the half-filling value ρ̄= 0.5. Needless to remark
that all observed shocks are properties of the steady state, so what we call ‘displacements’ do
not happen over time but are actually changes in the steady state of the system, in response
to changes in its mean density ρ̄. For ρ̄ > 0.5 the behaviour of the system can be argued from
the particle-hole symmetry. In particular we can see that transforming the average density as
ρ̄ 7→ 1− ρ̄ entails the following transformation for the density profiles

ρ(x) 7−→ 1− ρ(1− x) . (30)

11
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As a consequence, it is possible to identify the high-density (HD) counterparts of the various
shock phases S1L, S2L, S3L, which we respectively denote as S1H, S2H, S3H. Of course, also
a smooth HD phase exists, which we denote as HD. As far as the current is concerned, it can
be observed that it keeps a constant maximum value in all the shock phases, and that the value
computed at finite size is practically indistinguishable from the continuum-limit value

Jmax = λminJ∗ , (31)

where we recall that J∗ denotes the maximum of the reduced current-density relation (figure 3).
Looking at figure 3, one can also argue that the x◦ position, introduced above, is the one where
the intermediate-density solutions become degenerate, namely ρ±2 (x◦) = ρ◦ = 1/2, and the
reduced current takes value J(x◦) = J◦ (with a slight abuse of language, we will call this the
critical point). As a consequence, from equations (22) and (31), with J = Jmax, we can write
the equation for x◦ as

λ(x◦)
λmin

=
J∗
J◦
, (32)

where we recall that J◦ and J∗ are known analytically from (27) and (28) (see also appendix C).
Taking into account the specific form (2) of the rate modulation function λ(x), we obtain

x◦ =
1
2π

arccos

(
1− 2

λmax/λmin − J∗/J◦
λmax/λmin − 1

)
. (33)

Let us note, in figure 4, that the shock we claim to be placed at x◦, in the S2L and S3L phases,
is in fact slightly displaced to the left, and the same goes for the S3L/S2 transition, where the
two-shock merging appears to occur at x slightly lower than x◦. Even though we do not display
the results, we have a quite clear evidence that both such discrepancies are finite-size effects,
since they tend to vanish upon increasing the number of nodes L. In fact, it is not surprising
that finite size effects are especially relevant in the neighbourhood of the critical point, where
the derivative of ρ(x) diverges.

Let us now observe that, if the rate modulation ratio is not large enough, specifically

λmax

λmin
<
J∗
J◦
, (34)

then equation (32) has no more solutions, meaning that no critical point can exist. Keeping
the left-hand side fixed, the above condition can also occur if the right-hand side becomes
exceedingly large, as a consequence of a stronger repulsive interaction. In both cases, a very
different transition scenario takes place (SS regime), which we illustrate in figure 5. For low
values of the mean density ρ̄, the system still exhibits a smooth profile (LD phase), which
undergoes a transition to the 1-shock phase (S1L) upon increasing ρ̄ (the transition occurs
roughly at ρ̄≈ 0.19). As in the MS regime, the shock is initially placed at xmin = 1/2, with
vanishing amplitude, and, upon further increasing ρ̄, it progressively moves backward with
increasing amplitude. Here begins the difference with respect to the MS regime. Due to the
lack of a critical point, the shock is allowed to go through the entire system, so that in figure 5
we see it exiting our ‘observation window’ at x= 0 and reentering at x= 1. At this point,
corresponding to the maximum of the rate modulation function (2), the shock takes maximum
amplitude, and subsequently proceeds backward, with decreasing amplitude. For ρ̄≈ 0.40,
it finally comes back to xmin and disappears, giving rise to another phase featuring a smooth
profile, whichwe denote as LD ′. In the whole S1L phase the current takes the constant maximal
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Figure 5. SS regime: λmax/λmin = 1.5, v= 0.10. Thin dotted lines denote the analyt-
ical solutions (21) at maximal current Jmax = λminJ∗ (top panels) or minimal current
Jmin = λmaxJ◦ (bottom panels). Other lines as in figure 4.

value (31) (apart from the usual vanishing discrepancy, due to finite size), whereas in the LD ′

phase the current turns out to decrease upon increasing ρ̄. Note that the latter is a typical
feature of a HD phase, even though in this case it takes place in a LD range, i.e. ρ̄ < 0.5. This
is clearly related to the presence of side maxima (specifically the one at lower density) in the
current-density relation. Upon further increasing the mean density, roughly above ρ̄≈ 0.46,
we can observe the onset of another shock, which in this case originates at x= 0, that is, at the
maximum of the rate modulation function. The shock moves forward on increasing ρ̄, it goes
trough the whole system, with maximum amplitude at xmin, and finally disappears at its initial
position (x= 1 in our view). We denote this last 1-shock phase as S′

1, in order to distinguish it
from the ‘normal’ 1-shock phase (S1), occurring when the current-density relation is unimodal
(that is, in case of weak [40] or lacking [16] NN interaction). A first peculiar feature of the
S′
1 phase is the descending shock (i.e. going from higher to lower density), which does not

appear in any other 1-shock phase (including S1L and S1H). Another one is that the current is
constant (i.e. independent of ρ̄) but minimal, specifically taking value

Jmin = λmaxJ◦ , (35)

where we recall that J◦ denotes the minimum of the reduced current-density relation (figure 3).
In fact, the onset of a minimal-current phase is related to the presence of the central minimum
in the current-density relation, as recognized for instance in [27, 28], and it has actually been
observed in several similar models. For ρ̄ > 0.5 the behaviour of the system is still constrained
by the particle-hole symmetry, so that, as done in the MS regime, it is possible to identify the
HD counterparts of the phases encountered at ρ̄ < 0.5, which we respectively denote as HD,
S1H, HD ′ (the S′

1 phase extends roughly up to ρ̄≈ 0.54). The symmetry also entails that in
the HD ′ phase the current increases upon increasing ρ̄, which is actually a typical feature of a
LD phase.

13
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We conclude this section by discussing the fact that, as already mentioned in section 3, in
principle it is possible to completely determine the density profiles in the continuum limit,
even without making use of the numerical PA method, but using only the analytical solutions
of equation (21). Figures 4 and 5 clearly confirm that, in the shock phases, the smooth sections
of the density profiles always match with the analytical profiles evaluated at maximal or min-
imal current. In all the observed phases, including the MS regime, there is always only one
shock whose position, say xs, depends on the mean density of the system, while any other
shock is ‘locked’. To determine xs, we need to solve equation (23) (the integral must be done
numerically), for a suitable profile ρ(x), being the union of known continuous-profile sections,
with a discontinuity at xs. We refer to section 6 for more details about the specific equations
for the various phases. Here we just discuss the fact that such equations generally have two
possible solutions, and how the unphysical one can be detected. In our case, the matter is spe-
cially simple, since the smooth profiles are characterized by a mirror symmetry with respect to
xmin = 1/2 (following from the same property of the ratemodulation function), which is broken
by shock profiles. As a consequence, if ρ(x) is a solution of equation (23), the ‘mirrored’ pro-
file ρ(1− x) is also a solution, and therefore a shock placed in xs in the former profile, is
shifted to 1− xs in the latter. Furthermore, if the shock is ‘ascending’ in the former profile,
it becomes ‘descending’ in the latter (and vice versa), and consequently one is stable and the
other unstable, so that ultimately only one of the two profiles can be the stationary one. Let us
recall that the stability of a shock depends on the propagation velocity of small perturbations
of the density profile, i.e. on the derivative of the current-density relation (the so-called col-
lective velocity) [27, 28, 44]. In particular, stability occurs if the propagations on the two sides
of the shock are opposite and directed towards the shock itself (see in particular equation (9)
in [28]). By comparing figures 4 and 5 with the current-density relation in figure 3, it can be
verified that the profiles obtained by the numerical PA method always satisfy the stability cri-
terion. The aforementioned ‘locked shocks’, observed in 2- and 3-shock phases, are partly an
exception, and can be considered marginally stable, as they involve at least one point of the
current-density function with zero derivative. In any case, it can be seen that the numerical PA
method is convenient also in this respect, since, by following the dynamical evolution of the
system, it ‘automatically’ determines the stable stationary state.

5. Phase diagrams

In this section we summarize some results which have already been outlined in the previous
one, but which can be described more precisely and exhaustively in terms of phase diagrams.

First, we have seen that the interesting behaviours (i.e. the two regimes tagged MS and SS)
occur when the current-density relation is bimodal, for a sufficiently strong repulsive inter-
action (i.e. for small enough values of the interaction parameter: v< 1/3). For v> 1/3 the
phenomenology is qualitatively equivalent to that of a system without NN interaction, where
a single shock phase (S1) occurs [16]. We call this the large-shock regime, since the (unique)
shock, occurring between a LD and a HD phase, can assume greater amplitudes than those
observed in the MS and SS regimes. The transition between the latter two regimes is also con-
trolled by another parameter, namely the rate-modulation ratio λmax/λmin. The transition line
is determined by (34) taken as an equality, where the right-hand side depends on v according
to (27) and (28) (see also appendix C), thence

λmax

λmin
=

(√
2−

√
1− v2

)2
v (1− v)

. (36)
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Figure 6. Reciprocal rate-modulation ratio (λmin/λmax) vs interaction parameter (v)
phase diagram. Tags denote different regimes, described in the text. The transition
line between the MS and SS regimes (dashed line) is defined by equation (36). The
shaded region is the one characterized by a bimodal current-density relation. Cross
symbols mark the particular cases analysed in the previous section (λmin/λmax = 2/3,
v= 0.10,0.15).

The resulting phase diagram is shown in figure 6, where for clarity we have also marked the
specific points analysed in the previous section.

By varying the mean density ρ̄, in the previous section we pointed out two different
sequences of phase transitions (characterizing the MS and SS regimes) and we approximately
identified the ρ̄ values at which the transitions take place. Taking into account the analytical
profiles obtained from the continuumPA theory (section 3), it is possible to precisely determine
these threshold values, and also their evolution, in response to arbitrary variations of the control
parameters. Let us first consider the MS regime and in particular the density profiles occurring
at the 4 transitions, observed in the previous section. We can see that, limited to the (x◦,xmin)
interval, such profiles correspond respectively to the 4 possible analytical solutions, which we
have denoted as ρ−1 (x), ρ

−
2 (x), ρ

+
2 (x), ρ

+
1 (x) (in increasing order of density). Moreover, in

the remaining intervals [0,x◦) and (xmin,1) (which, taking into account the periodicity of the
system, are effectively equivalent to a single interval (xmin − 1,x◦)), all the transition profiles
match with the lowest-density solution ρ−1 (x). Thus, generically denoting with ρ̄A/B the mean
density at which the transition between phases A and B takes place, we can write8

ρ̄LD/S1L =

ˆ x◦

xmin−1
ρ−1 (x)

∣∣
Jmax

dx+
ˆ xmin

x◦

ρ−1 (x)
∣∣
Jmax

dx , (37a)

ρ̄S1L/S2L =

ˆ x◦

xmin−1
ρ−1 (x)

∣∣
Jmax

dx+
ˆ xmin

x◦

ρ−2 (x)
∣∣
Jmax

dx , (37b)

ρ̄S2L/S3L =

ˆ x◦

xmin−1
ρ−1 (x)

∣∣
Jmax

dx+
ˆ xmin

x◦

ρ+2 (x)
∣∣
Jmax

dx , (37c)

ρ̄S3L/S2 =

ˆ x◦

xmin−1
ρ−1 (x)

∣∣
Jmax

dx+
ˆ xmin

x◦

ρ+1 (x)
∣∣
Jmax

dx , (37d)

8 In the first equation, splitting into two integrals is unnecessary, but it better highlights the analogy with subsequent
ones.
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Figure 7. Phase diagram at constant rate-modulation ratio (λmax/λmin = 1.5): mean
density ρ̄ vs interaction parameter v. Solid lines denote continuous transitions. A dashed
line denotes the crossover regime between MS and SS (see the text). Phase tags are also
explained in the text. Thin dotted lines mark the particular cases analysed in the previous
section (v= 0.10,0.15).

where an appropriate subscript reminds us that the profiles are always calculated at maximum
current. As far as the SS regime is concerned, it can be seen that the profiles occuring at the
three observed transitions correspond entirely to single analytical solutions, which however
can be at either maximum or minimum current. In particular, with the same notation used
above, we have

ρ̄LD/S1L =

ˆ 1

0
ρ−1 (x)

∣∣
Jmax

dx , (38a)

ρ̄S1L/LD ′ =

ˆ 1

0
ρ−2 (x)

∣∣
Jmax

dx , (38b)

ρ̄LD ′/S′
1
=

ˆ 1

0
ρ−2 (x)

∣∣
Jmin

dx , (38c)

where we note that, still due to periodicity, (38a) is equivalent to (37a). All the above integrals
can be solved numerically with negligible computational effort, just because the integrand
functions are all known analytically. Keeping the rate-modulation ratio fixed and varying the
interaction parameter, we obtain the phase diagram shown in figure 7, where again we have
marked (thin dotted lines) the two cases studied in the previous section. Note that the diagram
has been completed by symmetry, adding the complementary phases that can be observed in
the high density range (ρ̄ > 1/2). On the other hand, keeping the interaction parameter fixed
and varying the rate-modulation ratio, we obtain the phase diagram shown in figure 8. Let us
finally observe that, in both figures 7 and 8, almost all transitions (namely, all those denoted by
solid lines) are continuous. In fact they are characterized by the appearance or disappearance
of a shock, whose amplitude does not exhibit any discontinuity, as a function of the control
parameters. The only exception is the transition denoted by the dashed line, which occurs
simultaneously with the crossover between theMS and SS regimes.We refer to the next section
for a closer discussion of this ‘crossover regime’. By now we only mention the fact that, in
this peculiar situation, the critical point x◦ becomes degenerate with its complementary 1− x◦

16



J. Phys. A: Math. Theor. 57 (2024) 065002 B Mina et al

Figure 8. Phase diagram at constant interaction parameter (v= 0.15): reciprocal rate-
modulation ratio λmin/λmax vs mean density ρ̄. Lines and tags as in figure 7.

(we shall denote such phenomenon as coalescence), which entails that the shock occurring
at that point in the S2L and S3L phases (and similarly in S2H and S3H) is no longer locked.
As a result, the mean-density constraint equation (23) is no longer sufficient to determine the
locations of all shocks. It is reasonable to expect that physically this corresponds to the onset
of so-called delocalized and synchronized domain walls [16], i.e. two shocks whose positions
are indeed stochastic processes (random walks), yet ‘rigidly’ bound to each other because of
equation (23).

6. Numerical simulations

The main purpose of this section is to provide quite robust evidence that, under the KLS con-
dition, the PA theory in the continuum limit describes the behaviour of the system in a very
accurate (plausibly exact) manner, thus also confirming the accuracy (or even the exactness)
of the phase diagrams shown in the previous section. To do this we are going to compare the
density profiles obtained from kinetic Monte Carlo (KMC) simulations (with increasing sizes:
L= 2000,5000,10000) with those obtained from the analytical theory (in the L→∞ limit).
We focus on the shock phases, since in the smooth phases an even better matching is obtained,
at relatively small sizes, of the order of L= 500,1000. The simulations are carried out using
the well-established Gillespie algorithm. As usual, each simulation is first run for a ‘settling
time’ tset, to ensure that the system relaxes to steady state, after which averages are computed
over an ‘averaging time’ tave. These characteristic times have been empirically adjusted, lead-
ing us to choose (at the largest system size considered) tset = 2× 105 and tave = 106 (the time
unit is fixed by λmin = 1).

As far as the analytical profiles are concerned, we recall that just one shock position varies
with the mean density, and that such position must be determined according to the scheme
outlined at the end of section 4, i.e. taking into account both the density equation (23) and the
stability criterion. As previously mentioned, the results of the numerical PA method help us to
select one of two possible profile shapes, on which the only constraint equation (23) is left to be
imposed. The equations can be conveniently written, making use of themean-density transition
values (37) and (38), and evaluating the corrections that occur at a given mean density ρ̄ as a
function of the shock position. In particular, for the different phases observed in theMS regime
we have
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Figure 9. MS regime (λmax/λmin = 1.5, v= 0.15), for different values of the mean
density: ρ̄= 0.24 (S1L phase), 0.31 (S2L phase), 0.38 (S3L phase), 0.45 (S2 phase).
Thin solid lines denote density profiles, obtained by the continuum PA theory. Dotted
lines denote all possible solutions of (21) at maximal current Jmax = λminJ∗. Thicker
lines denote corresponding KMC simulation results for L= 2000 (dashed lines), 5000
(dash-dotted lines), 10000 (solid lines).

ˆ xmin

xS1L

[
ρ−2 (x)− ρ−1 (x)

]
Jmax

dx= ρ̄− ρ̄LD/S1L , (39a)

ˆ xmin

xS2L

[
ρ−2 (x)− ρ+2 (x)

]
Jmax

dx= ρ̄− ρ̄S2L/S3L , (39b)

ˆ xmin

xS3L

[
ρ+1 (x)− ρ+2 (x)

]
Jmax

dx= ρ̄− ρ̄S2L/S3L , (39c)

ˆ xmin

xS2

[
ρ+1 (x)− ρ−1 (x)

]
Jmax

dx= ρ̄− ρ̄LD/S1L , (39d)

where we see that the generic unknown xA, denoting the shock position in a given phase A,
appears solely as lower bound of the integration interval. Regarding the SS regime, in the S1L
phase the equation is equivalent to (39a), whereas in the S′

1 phase we have

ˆ xS′1

0

[
ρ+2 (x)− ρ−2 (x)

]
Jmin

dx= ρ̄− ρ̄LD ′/S′
1
. (40)

The results, relating to the MS and SS regimes, are shown respectively in figures 9 and 10.
First of all, one observes that, as previously mentioned, the smooth sections of the simulated
profiles match perfectly with the analytical solutions. Also, in the shock phases, two consid-
erably different situations are observed, depending on whether only one shock or more than
one are there. In the former case, i.e. in phases S1L and S′

1 (figures 9 and 10), there is a clear
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Figure 10. SS regime: (λmax/λmin = 1.5, v= 0.10), for different values of the mean
density: ρ̄= 0.22 (S1L phase), 0.48 (S′

1 phase). Dotted lines denote all possible solutions
of (21) at maximal currentJmax = λminJ∗ (left panel) or minimal currentJmin = λmaxJ◦
(right panel). Other lines as in figure 9.

Figure 11. Current as a function of the mean density (fundamental diagram) at
λmax = 1.5, λmin = 1, and v= 0.15 (solid line, square symbols) or v= 0.10 (dashed
line, circle symbols). Lines and symbols respectively denote the continuum PA theory
and KMC simulations (L= 2000,5000,10000). Tags are explained in the text.

convergence of the simulation results towards the analytical ones, as the system size increases.
Conversely, in the latter case, i.e. in phases S2L, S3L and S2 (figure 9), although the expected
trend is still quite evident, extremely relevant finite-size effects occur, such that, even at the
maximum size considered, some shocks are still quite far from the theoretical prediction. As
already noticed in section 4 about the numerical PA results, the critical point seems to play
a key role in these effects. Indeed, especially in phases S2L and S3L, the largest discrepancy
between theory and simulation is observed for the shock lying in the vicinity of this point,
whereas the similar discrepancy for the nearby (rightward) shock can be interpreted just as a
side effect of the former, mediated by the mean-density constraint (23). Needless to recall that,
due to symmetry, all the above remarks could be analogously repeated for the respective HD
phases.

Further plausible evidence of exactness for the PA theory is obtained by analysing the so-
called fundamental diagram [2], i.e. the current J as a function of the mean density ρ̄. In the
framework of the theory, it is convenient to compute the latter as a function of the former,
by integrating the appropriate analytical density profiles, evaluated at a given current J . In
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figure 11 we report the results, for the previously considered values of the parameters (repres-
enting theMS and SS regimes), and again wemake a comparison with the corresponding simu-
lations (due to the mirror symmetry, we only consider one half of the diagram, for ρ̄ ∈ [0,1/2]).
We note that the increasing part of the theoretical curves corresponds to the LD phase, while
the decreasing part corresponds to the LD ′ phase. The former occurs in both regimes, for
J ∈ [0,Jmax], whereas the latter occurs only in the SS regime, for J ∈ [Jmin,Jmax]. In the
two cases, the mean density as a function of the current is respectively obtained as

ρ̄LD (J ) =

ˆ 1

0
ρ−1 (x)

∣∣
J dx , (41a)

ρ̄LD ′ (J ) =

ˆ 1

0
ρ−2 (x)

∣∣
J dx . (41b)

Conversely, the plateau regions, where the current is independent of the mean density, cor-
respond to the various shock phases (at maximal or minimal current). By the way we note that,
evaluating (41) at Jmax or possibly Jmin, we recover the mean-density values at the transitions
with the shock phases, previously calculated by (38), i.e.

ρ̄LD (Jmax) = ρ̄LD/S1L , (42a)

ρ̄LD ′ (Jmax) = ρ̄S1L/LD ′ , (42b)

ρ̄LD ′ (Jmin) = ρ̄LD ′/S′
1
. (42c)

In figure 11 these values are explicitly tagged. Regarding the simulations, we have studied
just a few values of the mean density in a very accurate way. It can be seen that in the smooth
phases the agreement is excellent already at the smallest size considered (L= 2000), such that
the deviation with respect to the theoretical prediction is not even detectable at the scale of the
figure. In the shock phases there is a small residual discrepancy, which however shows a clear
tendency to reduce for increasing size.

In the remainder of this section, we try to give a somewhat more detailed description of
what happens at the transition between the MS and SS regimes, which we previously called
the crossover regime. From the viewpoint of the continuum limit (in the PA theory), we have
already noticed that in this situation the two so-called critical points x◦ and 1− x◦, occurring
in the MS regime, degenerate into a single ‘coalescence point’ (in the graphs we see this point
split at the left and right edges: x= 0,1). As a result, the shock placed at the coalescence
point in the S2L and S3L phases is no longer locked, which gives rise to an extra degree of
freedom in the shock positions. It can therefore be expected that the S2L and S3L phases
in the crossover regime are characterized by 2 shocks whose positions vary over time with
a random motion (plausibly with slower kinetics than those of particle hopping), but with a
constraint on the relative position imposed by equation (23) (that is—physically speaking—
by particle conservation). As already mentioned above, we speak in this case of delocalized
and synchronized shocks [16]. In order to visualize this phenomenon, we carry out KMC
simulations in which, after waiting the usual settling time, we average over a certain number
of (disjoint) successive time windows of duration tave = 105. Figure 12 shows some results,
corresponding to the usual rate modulation ratio value λmax/λmin = 1.5 (so one can still refer
to the phase diagram in figure 7). The expected phenomenon is clearly visible, that is, by
superimposing density profiles computed on different time windows, shocks are observed in
different positions. In this regard, it should be noted that the choice of time windows shorter
than usual does not only have the role of limiting the required computational effort, but also
that of better highlighting the shock dynamics themselves (too short a window would result in
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Figure 12. Crossover regime for λmax/λmin = 1.5 and different mean-density val-
ues: ρ̄= 0.25 (S1L phase), 0.35 (S1L–S2L crossover), 0.40 (S1L–S3L crossover),
0.45 (S ′

1–S3L crossover). Solid lines denote KMC simulation results for L= 10000
and v= 0.1405, 0.1410, 0.1415, 0.1420 (only for ρ̄= 0.40,0.45), 0.1425 (only for
ρ̄= 0.45), averaging over different time windows (see the text). Dotted lines denote
all solutions of (21) at v≈ 0.1392 (theoretical crossover value) and maximal current
Jmax = λminJ∗.

a noisy profile, whereas a very long window would show a smooth profile, without shocks).
Of course, the synchronization effect cannot be appreciated from the figure, but it can actually
be verified, albeit quite roughly, by examining the different profiles separately.

Let us now describe in detail the four cases displayed in figure 12. At low mean-density
values (specifically at ρ̄= 0.25), it can be seen that the density profile never reaches the coales-
cence point, so the system is completely unaffected by crossover. The profile is characterized
by a single very stable shock, qualitatively equivalent to that of the S1L phase (see figures 9
and 10). Actually, in the phase diagram of figure 7, the point corresponding to this case is
located inside the S1L phase region. At higher mean-density values (specifically at ρ̄= 0.35),
we begin to observe 2 shocks (which for simplicity we will call ‘upper’ and ‘lower’, relating
to density values) and the delocalization phenomenon, that is, shock positions vary, within a
certain range, depending on the time window considered. At one end of the range, the lower
shock is positioned at the coalescence point (x= 0,1) and the upper one at some position
x ∈ (0,1/2). The resulting profile is therefore completely analogous to that of the S2L phase
(see figure 9). However, as previously mentioned, in this crossover situation the lower shock
is no longer locked, i.e. it can move backwards (in the figure we see it reentering from the
opposite side, at x= 1), up to an extreme position x ∈ (1/2,1), which corresponds to the upper
shock getting back to the coalescence point (x= 0), with vanishing amplitude. This opposite
extreme situation is therefore equivalent to the S1L phase. In the phase diagram in figure 7, the
corresponding point is located along the S1L–S2L section of the crossover line. At even higher
mean-density values (ρ̄= 0.40,0.45) one can observe up to 3 shocks (say ‘upper’, ‘intermedi-
ate’, and ‘lower’). For both cases, one of the extremes of the delocalization range corresponds
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to the lower shock positioned at the coalescence point, with an overall profile equivalent to that
of the S3L phase (see figure 9). As already seen above, however, the lower shock can move
backwards, and this induces (due to the usual conservation constraint) a forward displacement
of the upper shock, while, at least initially, the intermediate-shock position remains locked at
x= 1/2. If the displacement of the lower shock goes beyond a certain limit, the upper shock
can come to vanish at the x= 1/2 position, after which the intermediate shock gets ‘unlocked’
and can proceed backwards. In this situation the profile is equivalent to that of the S2L phase.
Now, if the mean density is not too high (e.g. ρ̄= 0.40), the intermediate shock can even reach
the coalescence point (x= 0), with vanishing amplitude, when the lower shock is still in a pos-
ition x ∈ (1/2,1), so that the extremal profile is still that of the S1L phase (in the diagram of
figure 7 we are along the S1L–S3L section of the crossover line). If, on the other hand, the
mean density exceeds a certain limit (e.g. ρ̄= 0.45), it can be seen that the intermediate shock
can never reach the coalescence point, but at most a position x ∈ (0,1/2), with nonzero amp-
litude. This corresponds to the fact that the lower shock proceeds backward until it vanishes at
position x= 1/2, so that the resulting extremal profile is that of the S′

1 phase (see figure 10).
Still with reference to figure 7, in this last case we are indeed along the S ′

1–S3L section of the
crossover line. In general, we can say that the situations illustrated in figure 12 exhaust the
types of delocalized shocks, that can be observed in this model. Another general fact, which
is worth noting, is that the whole crossover phenomenology, described above, is observed in
the simulations over a (narrow) interval of interaction parameter values, not at a single special
value, as predicted by the theory in the continuum limit. Furthermore, the interval does not
even cover the theoretical crossover value (v≈ 0.1392), determined by equation (36). In fact,
the simulations carried out at the theoretical v value still exhibit extremely stable shocks, qual-
itatively indistinguishable from those of the SS regime, shown in figure 10. We have reason to
believe that this discrepancy too, like others observed previously, is a finite-size effect, since
it can be verified that both the amplitude of the aforementioned interval and the distance from
the theoretical value, which are anyway small, also show a clear decreasing tendency, upon
increasing size.

7. Conclusions

In this paper we have studied a TASEP with periodic boundary conditions, hopping rates char-
acterized by a smooth spatial modulation (with a unique global minimum), and a NN repulsive
interaction. The model is in principle analogous to that considered in a previous study [40],
yet with the interaction parameters characterized by a different constraint, denoted as the KLS
condition. Such a constraint makes the model more amenable to analytical treatment, specific-
ally by means of the so-called PA theory (a generalized mean-field theory, based on a NN pair
cluster). Actually, we conjecture that, in combination with the KLS condition, the analytical
theory is asymptotically exact, except in the vicinity of shocks. Although we cannot rigorously
prove this statement, we provide considerable numerical evidences.

Our main contribution is to have elucidated the nature of so-called S phases, namely, certain
non-equilibrium steady states, that the cited previous study [40] had detected as qualitatively
distinct from themore ‘universal’ smooth and shock phases [16]. In particular, we have pointed
out that such phases exhibit different features, depending on whether one considers intermedi-
ate or strong repulsion regimes. In the intermediate regime, it turns out that the S phases can be
regarded as subphases of the maximal-current phase, and can also be distinguished into several
further subphases, with density profiles displaying up to 3 shocks (MS regime). On the other
hand, in the strong regime it turns out that the S phases can be either maximal- or minimal-
current phases, but always displaying just 1 shock (SS regime). Furthermore, we have pointed
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Figure 13. MS regime in the DME assumption (see the text), for λmax/λmin = 1.5,
v= 0.09, and different mean-density values: ρ̄= 0.23 (S1L phase), 0.25 (S2L phase),
0.28 (S3L phase), 0.31 (S2 phase). Thick lines denote KMC simulation results for
L= 2000 (dashed lines), 5000 (dash-dotted lines), 10000 (solid lines). Thin dotted lines
denote all possible solutions of (21) at maximal current Jmax = λminJ∗.

out the existence of a crossover regime, emerging in between the aforementioned regimes and
featuring delocalized and synchronized shocks [16]. The analytical PA theory has allowed us
to work out the whole phase diagram of the model in great detail. As a consequence of the
above conjecture, we claim that such phase diagram may be exact as well, under the KLS
assumption, just qualitatively correct otherwise. In fact, we have argued that the whole, con-
siderably rich phenomenology emerging in this model can be traced back to the onset of a
bimodal current-density relation, so that the choice of the KLS condition is relevant only at a
quantitative level. Thus, we claim that our results can describe in a qualitatively correct way the
physics of a whole class of similar models, differing only by the absence of the KLS condition,
and including in particular the one studied in [40]. In the course of our work we have indeed
collected several evidences of such a claim, that have not been reported. Here, in figure 13,
we report just one significant example, relating to the analogous model with DME condition
(i.e. the one considered in [40]), in the intermediate-repulsion (MS) regime. We can see in
particular that the PA theory quantitatively fails, especially in predicting the location of the
critical points. However, the sequence of density profiles, upon increasing the mean particle
density, turns out to be qualitatively equivalent to that obtained with the KLS condition in the
same regime (figure 9).

Let us finally note that the present work naturally opens the way to the investigation of a
number of related models, for which the analytical theory developed here could be applied
without relevant changes. Among such extensions, which are of course beyond the scope of
this paper, we first have in mind the very same model with open boundary conditions ([17]
considers a closely related model, though without NN interaction). We also include the pos-
sibility of relaxing some of the restrictive assumptions about hopping rates, in particular (1)
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and (3). Relaxing (1) means to consider that the interaction itself may feature a spatial mod-
ulation, whereas relaxing (3) amounts to remove the mirror symmetry of the current-density
relation. The former issue is mainly methodological (specifically to test whether the PA theory
is still reliable in such a case), the latter is meant to make the model slightly more realistic as
a model for vehicular traffic [2, 34]. It would also be interesting to carry out a deeper invest-
igation about the random motion of shocks in the crossover regime, possibly developing an
ad-hoc theory based on a Fokker–Planck equation, along the lines of [16, 45]. Furthermore,
one could investigate to what extent the observed phenomena can be affected by any concur-
rent processes, such as Langmuir kinetics [23, 37] or local stochastic resetting [46–49], or
eventually by resource constraints [50–52]. We are considering these types of questions as
possible topics for future work.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Appendix A. PA theory in the continuum limit

In this appendix we describe the continuum (or hydrodynamic) limit of the PA theory, in order
to determine the current-density relation of our system. As we consider the steady state, we
drop the time index in all equations, and set at zero the time derivatives in (14) and (17).
From (14) we obviously obtainJi = J for all i (particles are conserved), so that equations (15)
and (17) respectively become

J = Ji (0,0)+Ji (0,1)+Ji (1,0)+Ji (1,1) , (A.1)

0= Ji−1 (0,1)+Ji−1 (1,1)−Ji+1 (1,0)−Ji+1 (1,1) . (A.2)

In the continuum limit, one assumes that marginal probabilities depend on the node index i,
only through the scaled position variable x≡ i/L, as well as hopping rates do by construction.
In the above equations we neglect the terms that vanish in the L→∞ limit, which amounts to
discarding finite differences in the position index. As a consequence, taking into account (16),
(1) and (22), we obtain

J= qP [0101] + rP [1100] + pP [0100] + sP [1101] , (A.3)

0= qP [0101]− rP [1100] , (A.4)

where all space-dependent quantities are evaluated at the same scaled position x (which for
simplicity we no longer display). Note that the resulting equations are formally equivalent to
those derived for a uniform system, for instance in [32], but here we understand that the prob-
abilities P[k10n] and the reduced current J depend on x.9 Plugging equations (A.4) into (A.3),
the latter simplifies to

J= 2qP [0101] + pP [0100] + sP [1101] . (A.5)

9 In principle we could assume that the parameters p,q, r, s also depend (smoothly) on x, without invalidating the
derivation. However, in the article we do not analyse cases of this type.
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We then introduce the PA (18) (where we still neglect position index differences) into (A.5)
and (A.4), yielding respectively

J=
P [10] P [01]
P [1] P [0]

(
2qP [01] + pP [00] + sP [11]

)
, (A.6)

P [11] P [00] =
q
r
P [01]2 . (A.7)

The probabilities can be parameterized in terms of local densities and NN correlations, as done
in section 3. According to (12), we have of course

P [1] = ρ, P [0] = 1− ρ. (A.8)

On the other hand, following [33], it is convenient to parameterize pair probabilities by means
of a particular correlator variable, defined as

η
.
=

P [10]
P [1] P [0]

. (A.9)

Defining also the quantity

I
.
= ρ (1− ρ) (A.10)

(whichwe shall call standard current, in that it represents the current-density relation of ‘ordin-
ary’ TASEP with unit hopping rate), according to (13) we have

P [10] = P [01] = ηI , (A.11a)

P [00] = 1− ρ− ηI , (A.11b)

P [11] = ρ− ηI . (A.11c)

Now, using equations (A.8)–(A.11), we can rewrite (A.6) and (A.7) respectively as

J= η2I
[
(2q− p− s) ηI+ p− (p− s)ρ

]
, (A.12)

η2I=
η− 1
1− q/r

. (A.13)

Let us further observe that a repeated use of (A.13) allows us to derive a simpler expression for
the current, linear in η. Actually, plugging (A.13) first into (A.12) and then into the resulting
expression, and defining the combinations of rates below

r̃
.
= r

p+ s− 2q
r− q

, (A.14a)

a
.
=

r
r− q

− p
p+ s− 2q

, (A.14b)

b
.
=

p− s
p+ s− 2q

, (A.14c)

we arrive at

J= r̃
[
ηI− (η− 1)(a+ bρ)

]
. (A.15)
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We stress the fact that equation (A.13) establishes a relation between η and I, whereas I directly
depends on ρ through (A.10). As a consequence, the right-hand side of (A.15), in combination
with (A.13) and (A.10), completely specifies the current-density function Fp,q,r,s(ρ), intro-
duced in section 3, where the density and the rates respectively play the roles of independent
variable and parameters. The property of homogeneity with respect to the parameters, stated
by equation (20), can easily be verified.

Let us also note that (A.15) is formally equivalent to equation (34) in [33], which determ-
ines the steady-state current of a similar model, with hopping rates depending on forward and
backward occupation numbers, but (i) independent of position and (ii) satisfying the KLS con-
dition. At odds with the cited paper, here we have different (more general) expressions for the
r̃,a,b coefficients and we understand that all the variables depend on the scaled position x.
Actually, if in equations (A.14) we force the KLS condition (7), then we formally recover the
coefficients reported in [33], equation (35), and in particular r̃= r. Let us also observe that,
as mentioned above, according to equation (A.13) the correlator η depends on the density ρ
only through the standard current I, which is obviously symmetric under the ‘particle-hole’
transformation ρ 7→ (1− ρ). As a consequence, assuming (3), that is b= 0, induces the same
symmetry in the current-density relation. Except the general expressions above, all results
reported in this paper are obtained by taking the symmetry hypothesis (3). Plugging the latter
into (A.14a) and (A.14b), along with the interaction parameter definition (4), we obtain expres-
sions for the remaining coefficients, r̃ and a, as functions of the basic independent parameters
v and q, namely

r̃=
2(1− q)
1− v2

, (A.16a)

a=
1

1− v2
− 1

2(1− q)
. (A.16b)

In the remainder of this section we report some details about the dependence of η on I, stated
by (A.13), which we need to explicitly determine the current-density relation, and which we
shall denote (with a slight abuse of language) as correlator-density relation. We stress the
fact that this relation is unaffected by the symmetry assumption (3). Let us first characterize
the ranges of admissible values for I and η. In fact, only inequality constraints are needed,
in order to ensure that the probabilities (A.8) and (A.11) stay between 0 and 1 (no equality
constraint is required, since the parameterizations intrinsically satisfy normalization and com-
patibility conditions10). As far as (A.8) are concerned (single-node probabilities), we obviously
require 0⩽ ρ⩽ 1, which entails 0⩽ I⩽ 1/4. Moreover, regarding (A.11) (pair probabilities),
the required condition turns out to be

1
η
⩾max{ρ,1− ρ}=

1+
√
1− 4I

2
. (A.17)

The latter equality follows from (A.10), which states that a given (admissible) standard-current
value has two possible corresponding densities, with unit sum, precisely

ρ=
1±

√
1− 4I

2
. (A.18)

10 By compatibility we mean that 1-node distributions are actually marginals of 2-node distributions.
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Figure A1. The admissible region in the plane I vs 1/η is delimited by a thin dash-dotted
line. Thin solid lines represent the correlator-density relation (A.19), for different val-
ues of v (the analytical continuations outside the admissible region are denoted by dot-
ted lines). Thicker lines denote KMC simulation results for v= 0.4, λmax/λmin = 1.5,
ρ̄= 0.5 and L= 2000 (dashed line), 5000 (dash-dotted line), 10000 (solid line).

Now, in terms of the reciprocal variable 1/η, the correlator-density relation (A.13) reads

(
1− v2

)
I=

1
η

(
1− 1

η

)
, (A.19)

clearly analogous to (A.10). Consequently, also this equation has in principle two solutions
for 1/η, with unit sum, but we easily argue that only the larger one

1
η
=

1+
√
1− 4(1− v2) I

2
(A.20)

satisfies (A.17), with equality occurring precisely for v= 0. For more clarity, in figure A1 we
display the admissible region in the plane I vs 1/η, along with some instances of the correlator-
density relation (A.19), obtained for different values of v. We note in particular that, excluding
the borderline case I= 0, η = 1, the regions corresponding to v< 1 or v> 1 are respectively
characterized by η > 1 or η < 1. Remembering the correlator definition (A.9), this physically
means that we have, respectively, a larger or smaller probability to find an empty node, if we
know that one of its neighbours is occupied. These are clearly the fingerprints of a repulsive or
attractive interaction, respectively. Some results from KMC simulations, reported as well in
figure A1, confirm that the PA theory in the continuum limit provides extremely accurate (pos-
sibly exact) results in regions characterized by smooth profiles. On the other hand, a definite
deviation corresponds to a shock region, where as usual the results are highly size-dependent.
By the way, we also note that in the shock region the correlator η can become smaller than 1,
even in case of repulsive interaction, and that the effect is more pronounced for larger system
size.

Appendix B. Transition to bimodality

Making use of the continuum PA theory, in this appendix we determine the transition where, as
described in section 3, the current-density relation becomes bimodal, with the central minimum
at density ρ◦ = 1/2 and the two side maxima at densities ρ∗ = 1/2±∆. We understand that
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this calculation refers to a ‘particle-hole-symmetric’ case, where (3) holds, and the appropriate
expression for the (reduced) current is (A.15) with b= 0, namely

J= r̃
[
ηI− a (η− 1)

]
. (B.1)

According to the correlator-density relation (A.19), we can write

ηI=
1− 1/η
1− v2

. (B.2)

Moreover, taking into account the parameter expressions (A.16), we have

a=
1− 1/r̃
1− v2

. (B.3)

Plugging (B.2) and (B.3) into (B.1), we obtain

J=
r̃ (1− 1/η)− (r̃− 1) (η− 1)

1− v2
, (B.4)

where we see that, apart from parameters, the current is expressed as a function of the only
correlator variable η. We also recall that, as stated by (A.20), η does not depend on ρ explicitly,
but only through the standard current I. As a consequence, the derivative can be evaluated as

dJ
dρ

=
dJ
dη

dη
dI

dI
dρ

. (B.5)

We can now make the following observations.

(i) As discussed in A, the η vs I relation (A.20) turns out to be strictly monotonic (excluding
the trivial case v= 1), so we always have

dη
dI

6= 0 . (B.6)

(ii) From the standard-current definition (A.10), we have

dI
dρ

= 1− 2ρ, (B.7)

which entails that ρ◦ = 1/2 is always a stationary point for the current-density relation.
(iii) From equation (B.4) we immediately get

dJ
dη

=
r̃/η2 − (r̃− 1)

1− v2
, (B.8)

from which we argue that an extra stationary point may appear for η = η∗, where

1
η∗

=

√
1− 1

r̃
. (B.9)

Equation (A.19) allows us to obtain the corresponding standard-current value

I∗ =
1− 1/η∗
(1− v2)η∗

, (B.10)

28



J. Phys. A: Math. Theor. 57 (2024) 065002 B Mina et al

which in turn corresponds to 2 possible densities, determined by (A.18) as

ρ∗ =
1±

√
1− 4I∗

2
. (B.11)

In order for the extra stationary points to be placed in the physically meaningful interval
(0< ρ∗ < 1), also being distinct from the ‘normal’ stationary point (ρ∗ 6= 1/2), the required
condition in terms of standard current is 0< I∗ < 1/4. The latter condition corresponds,
through equation (A.20), to different conditions for the correlator, depending on whether v< 1
or v> 1. Altogether, we can write

1+ v
2

≶ 1
η∗

≶ 1 if v≶ 1 . (B.12)

Furthermore, analysing equation (B.9), one can argue that (B.12) maps to respective conditions
for r̃, namely

r̃≷ 4
(1− v)(3+ v)

if v≶ 1 . (B.13)

Let us observe that the right-hand side of the above inequalities turns out to be either larger than
1 (for v< 1) or negative (for v> 1). As a consequence, in both cases (B.13) inherently satisfies
the realness condition for the correlator expression (B.9), which is of course 1/r̃< 1. Now,
plugging (A.16a) into (B.13), we can rephrase the conditions in terms of the basic parameters
v and q, obtaining

1− q
(1− v)(1+ v)

≷ 2
(1− v)(3+ v)

if v≶ 1 , (B.14)

where we immediately note that the (1− v) term can be simplified. Since this term is respect-
ively positive for v< 1 or negative for v> 1, in the latter case (only) the inequality sign gets
reversed, so that in the end we have a unique inequality, which can be written as

q<
1− v
3+ v

. (B.15)

Following the above derivation, one can also argue that (B.15) with an equality sign corres-
ponds to the borderline case I∗ = 1/4, ρ∗ = 1/2, which represents, in the current-density rela-
tion, a degeneracy of the side maxima into the ‘normal’ central maximum. Such a behaviour
makes reason to regard this phenomenon as a sort of second-order phase transition. Let us
finally remark that in principle we have correctly taken into account both possibilities v< 1 or
v> 1, but in the end we deduce that, for physically meaningful (i.e. positive) q values, (B.15)
can be verified only for v< 1, that is for repulsive interactions. By means of (B.13), we have
previously argued that this case also implies r̃> 1. This last remark will come in handy in the
next section.

Appendix C. Maximal and minimal currents

Still in the framework of the continuum PA theory, in this appendix we consider the stationary
points of the current-density relation (in the particle-hole-symmetric case), and determine the
corresponding values of the reduced current.
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We first consider the normal stationary point, which, as we have seen before, is always
present, and placed at a density value ρ◦ = 1/2. Let us recall that this point may change from
being a maximum to a (local) minimum, when the current-density relation undergoes the trans-
ition to bimodality, as described in section 3. According to (A.10), the corresponding standard
current is of course I◦ = 1/4, and hence from (A.20) the corresponding (reciprocal) correlator
turns out to be

1
η◦

=
1+ v
2

. (C.1)

To evaluate the current, we can at first plug the above expression into (B.4), finding

J◦ =
r̃ (1− 1/η◦)− (r̃− 1) (η◦ − 1)

1− v2
=

1− (1− v) r̃/2

(1+ v)2
. (C.2)

Then, taking into account the expression of r̃ as a function of the basic parameters v and q,
namely (A.16a), we can finally obtain

J◦ =
q+ v

(1+ v)3
. (C.3)

Next we consider the extra stationary points (side maxima) appearing at the transition.
As discussed in appendix B, at such points the correlator takes value η∗, expressed by
equation (B.9) as a function of r̃. To evaluate the corresponding current, we can now plug (B.9)
still into (B.4), obtaining

J∗ =
r̃ (1− 1/η∗)− (r̃− 1) (η∗ − 1)

1− v2
=

(√
r̃−

√
r̃− 1

)2
1− v2

. (C.4)

Note that the algebraic steps to obtain the rightmost expression in (C.4) pose no problem of
sign (nor of realness of the square roots), because we have previously argued (see appendix B)
that the occurrence of extra stationary points entails v< 1 and thence r̃> 1. In the end, again
expressing r̃ as a function of v and q by (A.16a), we can write

J∗ =

(√
2− 2q−

√
1+ v2 − 2q

1− v2

)2

. (C.5)

For completeness let us finally report, as a function of v and q, also an expression for the
corresponding correlator, that is

1
η∗

=

√
1+ v2 − 2q
2− 2q

, (C.6)

obtained of course by plugging (A.16a) into (B.9), and an expression for the ratio

J∗
J◦

=
1+ v
q+ v

(√
2− 2q−

√
1+ v2 − 2q

1− v

)2

, (C.7)

immediately obtained from (C.3) and (C.5). Note that the right-hand side of equation (C.7)
can easily be verified to take value 1 at the bimodality transition (24).
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Appendix D. Inverting the current-density relation

In this last appendix we show how to derive the standard current I as a function of the reduced
current J and of the model parameters, once again in the framework of the continuum PA
theory. The resulting equation, in combination with (22) and (A.18), allows us to determine
density profiles analytically, at given values of the physical current J . The calculation still
refers to a particle-hole-symmetric case, for which the appropriate expression of the current
is (B.1), equivalent to

J= r̃
[
a− η (a− I)

]
. (D.1)

Assuming to fix J, the above equation represents a linear relation between the standard current
I and the reciprocal correlator 1/η, that is

1
η
=

a− I
a− J/r̃

. (D.2)

Another equation relating the above two quantities is provided by (A.19), the so-called
correlator-density relation. Plugging the former into the latter, we immediately obtain a quad-
ratic equation for I, whose coefficients depend on the reduced current J, besides model para-
meters. This equation can be written as

I2 − Iψ (J)+ Jψ (0) = 0 , (D.3)

where we have defined a symbol for the first-order coefficient, explicitly denoting the depend-
ence on J, that is

ψ (J)
.
= a+ J/r̃−

(
1− v2

)
(a− J/r̃)2 . (D.4)

Note that in (D.3) the dependence on the model parameters is fully incorporated into the ψ(J)
function. In particular, the fact that the zeroth-order coefficient can be written as Jψ(0) can
easily be argued from (D.4), taking into account the parameter identity (B.3). For complete-
ness, we can also determine ψ(J) in terms of only the elementary parameters v and q, by
plugging into (D.4) the appropriate expressions for r̃ and a, namely equations (A.16). After
some algebra we obtain

ψ (J) =

(
1− 2q+ v2

)
+ 2
(
2− 3q+ v2

)(
1− v2

)
J−
(
1− v2

)3
J
2

4(1− q)2
. (D.5)
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