
12 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Emergent models in a reinvention activity for learning the slope of a curve / Bos, Rogier; Doorman, Michiel; Piroi,
Margherita. - In: THE JOURNAL OF MATHEMATICAL BEHAVIOR. - ISSN 0732-3123. - 59:(2020), p. 100773.
[10.1016/j.jmathb.2020.100773]

Original

Emergent models in a reinvention activity for learning the slope of a curve

Publisher:

Published
DOI:10.1016/j.jmathb.2020.100773

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974661 since: 2023-01-16T10:10:33Z

ELSEVIER SCIENCE INC



Contents lists available at ScienceDirect

Journal of Mathematical Behavior

journal homepage: www.elsevier.com/locate/jmathb

Emergent models in a reinvention activity for learning the slope of
a curve

Rogier Bos*, Michiel Doorman, Margherita Piroi
Freudenthal Institute, Utrecht University, Utrecht, the Netherlands

A R T I C L E I N F O

Keywords:
Reinvention
Emergent models
Realistic mathematics education
Theory of didactical situations
Slope of a curve

A B S T R A C T

Introducing the slope of a curve as the limit of the slope of secant lines is a well-known challenge
in mathematics education. As an alternative, three other approaches can be recognized, based on
linear approximation, based on multiplicities, or based on transition points. In this study we
investigated which of these approaches fits students most by analyzing students’ inventions
during a lesson scenario revolving around a design problem. The problem is set in a context that
is meaningful to students and invites them to invent methods to construct a tangent line to a
curve: an implementation of the guided reinvention principle from Realistic Mathematics
Education (RME). The teaching scenario is based on the phased lesson structure of the Theory of
Didactical Situations (TDS). The scenario was tested with 44 groups of three students in six grade
9 or 10 classrooms. We classified the strategies used by students and, using the emergent models-
principle from RME, investigated to which of the four approaches the student strategies connect
best. The results show that the groups produced a variety of strategies in each classroom and
these strategies contributed to a meaningful institutionalization of the notion of slope of a curve.

1. Introduction

The mathematical notion of slope of a curve is a mathematization of the common sense idea of the steepness of a path.
Geometrically it is defined as the slope of the tangent line (if it exists). In practice, students’ intuitions of what a tangent line is do not
match up nicely with the common definition of a tangent line as a limit of secant lines. For instance, in a test by Orton (1977) 43 out
of 110 calculus students had difficulty seeing the tangent line as a limit of secant lines, and similar observations are found in the work
of Ferrini-Mundy and Geuther Graham (1991). Vinner (1982) observed that early experiences of the tangent line in circle geometry
introduce a belief that the tangent is the same as a bounding line: a line that touches but does not cross the curve. A study among 196
Greek students (grade 12) for their understanding of tangent lines reached similar conclusions (Biza, Christou, & Zachariades, 2008).
In the Greek curriculum the first tangent lines students encounter are all bounding lines (as in the case of circles and parabolas). A
precise classification of student work showed how students have difficulty with the transition from this geometric point of view to an
analytic point of view of tangent lines in terms of the slope of a curve (Biza et al., 2008).

In general, the transition between geometric and analytic/algebraic representations of slope is problematic for students (Orton,
1983). For example, students struggle to approximate the slope from graphs (by computing y

x
Δ
Δ

for two points), both for lines and for
more general curves. Similarly, the relation between instant rate of change of a function and the slope of the graph of that function is
challenging for students (Habre & Abboud, 2006). Once students learn to compute the slope symbolically and algorithmically
(computing derivatives by applying rules), they seem to have a preference for this, and the geometric interpretation is lost, if it was
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ever there. The computational focus of students seems to originate in a daily educational practice with a quick shift from the
conceptual introduction to calculation procedures (Thompson, 1994). And with this topic in particular this is problematic since the
calculation algorithms do not align with any idea of tangent line that might initially be meaningful for students. A way to learn new
concepts in a way that endows them with meaning is by guided reinvention, a design principle from the Realistic Mathematics
Education (RME) framework (Freudenthal, 1991). Freudenthal had, in our interpretation, a recursive idea of what meaningfulness is:
something has meaning if it is based on meaningful ideas and experiences; the ultimate sources of meaningful experiences are
everyday life experiences. Students’ everyday experiences of curved slopes, e.g. playground slides, marble tracks or paths in hilly
landscapes, give them a embodied sense of (relative) steepness: for a smooth curve they can tell (a) out of two points on the curve
where the slope is steeper; (b) where on the curve the slope is steepest; and (c) where the slope is ascending, descending or horizontal.
One could describe this as embodied knowledge; it does not take any (mathematical) reflection to consider these issues, instead
perhaps imagining sliding or walking along the curve. What is lacking is an absolute quantification of steepness. An issue is whether a
quantitative measure of steepness actually exists for a specific point on a curve. This too can be addressed using embodied (tactile)
knowledge, this time of smoothness. By (imagining) sliding a hand along a curve one can intuitively detect at which points the curve
is not smooth. These bodily experiences can be used for teaching slope (Tall, 2013). The aim of this study is to investigate how a
teaching scenario based on embodied knowledge of slope can support students’ reinvention of the notion of slope of a curve.

2. Theoretical framework

2.1. Reinvention and emergent models

A reinvention task does not need to aim for immediate rigorous mathematical results from the students. The emergent models
design principle explains how students’ activity at several levels are part of a reinvention process (Doorman & Gravemeijer, 2009;
Gravemeijer, 1999). Within this principle models are understood as student-generated ways of organizing their activity with ob-
servable and mental tools (Zandieh & Rasmussen, 2010). The theoretical four levels of activity relating to emergent models are: within
the task setting, referential, general and formal. For the 60–90 minutes lesson and task in this study, the goal is for the students to reach a
referential level (their solution as a model of slope) and for the teacher to push that to a general level (introducing a model for slope
based on the students activity). Hence, it is the teacher’s task to develop the students’ models that refer to the task setting into models
that “facilitate a focus on interpretations and solutions independent of situation-specific imagery” (Gravemeijer, 1999).

This approach needs problems/tasks that can be solved in a variety of ways to elicit students’ levels of understanding of modelling
slope. Students’ solutions ideally show the various difficulties and opportunities the students have in the process of learning the new
concept. This way the solutions of the students anticipate on the whole class learning process: “The cross-sectional view of the class
(the different levels of understanding of the students in a class at one particular moment) that is produced in this way can show at the
same time a longitudinal section of the intended learning trajectory” (van den Heuvel‐Panhuizen, 2005).

The reinvention and emergent models principles have been applied successfully in recent years in upper secondary schools and
bachelor university level: in calculus (Doorman, 2005; Doorman & Gravemeijer, 1999; Gilboa, Kidron, & Dreyfus, 2019; Herbert &
Pierce, 2008; Oehrtman, Swinyard, & Martin, 2014), in linear algebra (Andrews-Larson, Wawro, & Zandieh, 2017; Wawro,
Rasmussen, Zandieh, Sweeney, & Larson, 2012), in abstract algebra (Larsen, 2013), in statistics (Schwartz & Martin, 2004), and for
the teaching of bifurcation diagrams (Rasmussen, Dunmyre, Fortune, & Keene, 2019). Calling it “construction” instead of “re-
invention” Tall‘s approach to teaching slope in Tall (1987) is an older successful application of the reinvention principle on the basis
of examples and non-examples. Some of the studies aim at the reinvention of a definition (based on examples and non-examples), and
others aim at development of the conceptual understanding, without a formal definition being the aim. Indeed, students can develop
meaningful insights into the tangent-concept without being able to formulate a formal definition of a tangent (Gilboa et al., 2019).
Moreover, in our approach the definitions of slope and tangent that connect to the concepts that emerges from the students’ activity
need not align with the standard definitions. This is in contrast with for example the work of Larsen (2013), where the abstract
concept of group is reinvented, and the description of a group – as a set with certain operations – is a fixed endpoint. More in line is
the work of Wawro and colleagues (Wawro et al., 2012), who give students a task to reinvent the notion of linear dependence. These
students proceed to produce four different equivalent characterizations of linear dependence, allowing the instructor to bring out
connections. In all of these approaches the instructor seems to have an active, intervening role during the reinvention process. In our
study the instructor’s role is different.

2.2. Unguided inquiry in a-didactical phases

The emergent models principle describes a general trajectory from situational mathematics to formal, but does not give a fra-
mework for implementation in classroom practice. For this one might turn to the guided reinvention principle from RME, but we claim
that every reinvention intervention should contain episodes with just organizational guidance or no guidance at all, for at least two
reasons: (1) students are to experience ownership of the reinvention; (2) students should have the freedom to apply the knowledge
and methods that are meaningful to them. Neither can be achieved by providing didactical guidance at every step along the way.

It has been criticized under the name of the constructivist teaching fallacy (Mayer, 2004) that constructivist learning should require
constructivist teaching in the form of (unguided) behavioral activity. Indeed, periods of unguided activity lead to seemingly in-
efficient processes, leaving the learning goals out of reach: students’ struggle (or even stagnation), divergence of applied approaches,
and, in the end, suboptimal solutions for the problem. So why not just guide? Constructivist learning might be achievable through
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teaching without unguided periods, but will this teaching be able to address points (1) and (2)? Nevertheless, any constructivist
teaching that includes unguided episodes should address the issues of struggle, divergence and suboptimal solutions.

First, the struggle of students has the potential to be productive in mathematics classrooms (Warshauer, 2015), and failure in tasks
(that are demanding) can lead to deeper understanding than direct instruction (Kapur & Bielaczyc, 2012; Kapur, 2010). Struggle may
slow things down, but also lead to a deeper engagement with the subject matter.

Secondly, unguided activity may lead to divergent approaches by students, including suboptimal ones. The way to deal with this is
to implement episodes of converging activity in the lesson; where convergence is towards the (mathematical) learning goals. For
these classroom implementation issues we draw on ideas elaborated in Brousseau’s Theory of Didactical Situations (Brousseau, 2002),
TDS for short. He makes a distinction between didactical and a-didactical phases in a lesson. In didactical phases the teacher actively
intervenes in students learning processes, whereas in a-didactical phases the teacher only observes.

TDS proposes a phased lesson structure. First the problem (milieu) is set out (didactical devolution phase) and worked on by
students (a-didactical action phase), three phases followed that aimed at converging to the learning goals: a phase where students
present their results; a phase where students discuss the validity of their results, and a phase where the teacher relates the students’
models to the target knowledge (the so-called institutionalization phase).

Task design in TDS is oriented on creating a situation that captures the epistemological essence of the mathematical target
knowledge (Artigue et al., 2019), in our case the notion of a slope of a curve. This study investigates to what extent our task situation
has the potential to confront students with the epistemic obstacle of quantifying the steepness of a curve. Our concern is whether our
task offers opportunities for developing and formulating a variety of approaches that is rich and deep enough, capturing the con-
ceptual essences, allowing a meaningful institutionalization of the notion of slope of a curve. This study aims to demonstrate how the
emergent models principle from RME contributes to the analysis of student work for such opportunities. This study is not concerned
with further issues of classroom implementation of TDS-scenarios, but we do hypothesize that performing an analysis based on
emergent models could support teachers in preparing an institutionalization phase and a further learning trajectory.

3. A-priori analysis

In order to genuinely build on students informal ideas the teacher needs to be able to recognize their relation to not just the
standard approaches to the tangent line and the slope of a curve, but ideally to any approach. For this reason a comprehensive a-priori
analysis of these concepts follows, including informal approaches with, if known to us, a formalization. We are not aware of a
previous deliberate juxtaposition of approaches to the tangent line and slope of a curve, though all of these approaches are men-
tioned, but not together, in a Dutch book by Kindt (Kindt, 2015). The approaches were also found spread out through the book
Calculus Unlimited (Marsden & Weinstein, 1981). Since many teachers’ first pedagogical example of a computation of slope is in the
context of a parabola, we shall add this as an example for each approach.

Approach S (limit of secant lines). Informally, the tangent line to a curve c in a point P can be seen as a limit of secant lines
(where a secant line is a line through P and another point Q on the curve), see Fig. 1. The common formal definition of the tangent
line makes use of the notion of limit from analysis: Assuming the curve is the graph of a function f , the tangent line at P is the line
through P x f x( , ( ))0 0 with slope

→

+ −lim
x

f x x f x
xΔ 0

( Δ ) ( )
Δ

0 0 , if the limit exists. Geometrically, this entails taking a limit of secant lines through

the points P x f x( , ( ))0 0 and + +Q x x f x x( Δ , ( Δ ))0 0 with ≠xΔ 0.
The formal definition of slope of the curve in P is then, of course,

→

+ −lim
x

f x x f x
xΔ 0

( Δ ) ( )
Δ

0 0 .

Example. We want to compute the slope of the parabola described by =y x2 in the point x x( , )0 0
2 . To separate the algebra steps and

the conceptual steps we first translate the parabola so that the point of interest is in the origin (see Fig. 2): = − + +y x x x( )0
2

0
2, which

simplifies to = +y x x x2 0
2.

Applying the well-known definition to the translated curve in (0,0) we get =
→

+ xlim 2
x

x x x
xΔ 0

2 Δ (Δ )
Δ 0

0 2
.

Approach L (best linear approximation). This approach, advocated by Tall in e.g. (Tall, 2013), is based on the act of zooming in

Fig. 1. The tangent line as a limit of secant lines.
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on the curve at a point. Visualizing the curve around P under high enough magnification (and low enough resolution) will show it as
linear, if the curve is smooth at P . Informally, one sees the tangent line as the line that is indistinguishable from the curve after
enough magnification. One could say that the two are indistinguishable because the tangent line is the best linear approximation of
the curve at, and vice versa, see Fig. 3 (left).

We present a formalization of this idea is closely related to the previous approach, as found in (Marsden & Weinstein, 1981).
Again, we assume the curve is the graph of a function f . The equation = + −y f x m x x( ) ( )0 0 describes a line lm through P x f x( , ( ))0 0

with slope m. The line lm is a tangent line at P iff for every >ε 0 there is an open interval ∋I x0 such that for ∈x I , with ≠x x0 one has
− + − < −f x f x m x x ε x x| ( ) [ ( ) ( )]| | |0 0 0 , see Fig. 3 (right). This definition has great practical and insightful value in case the function

f can be described by a locally (around x0) convergent (Taylor) series ∑ −
≥

a x x( )k k
k

0 0 (i.e. if f is analytic), since each higher order
term −a x x( )k

k
0 (with ≥k 2) can easily be understood to vanish more rapidly than linear when approaching x0. Sangwin presents a

similar approach in his work on limit-free derivatives (Sangwin, 2011), where he defines and computes derivatives by truncating the
Taylor series (obtained algebraically) at the linear term, to obtain a linear approximation.

Example. Considering the equation for the translated parabola = +y x x x2 0
2 we see without computation that the linear ap-

proximation at (0,0) is =y x x2 0 , from which follows that the slope is x2 0.
Approach A (multiplicity intersection points). This approach to tangent lines, recently advocated by Michael Range (2018,

Michael Range, 2011), goes back to algebraic ideas about tangent lines by Fermat, Descartes and Hudde, so from before Barrow,
Newton and Leibniz (Grabiner, 2011). Informally, the point of view is that a line is tangent to the curve in point P , if a small rotation
of the line around P leads to one or more new nearby intersection points of the line and the curve. One could consider this is the

Fig. 2. Translating the parabola so that the point of interest lands in the Origin.

Fig. 3. The graph of f is locally linear at x0, as is suggested by zooming in (left). Formalized: the difference between the graph of f and the tangent
line lm can be fitted in an arbitrarily narrow cone (right).
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inverse of the secant line approach. The idea is that the point of tangency is actually a multiple point and the rotation reveals this by
separating the multiple point into multiple points, see Fig. 4.

This can be formalized for algebraic functions f : the line lm is tangent to the graph of f in P x f x( , ( ))0 0 iff the solution =x x0 of the
equation = + −f x f x m x x( ) ( ) ( )0 0 has a multiplicity of 2 or higher. This approach is unfortunately limited to algebraic functions; in
case of transcendent functions the notion of multiplicity for the solution of the equation is not defined. The informal formulation
leads into difficulty in case of, for example, the (famous in the context of differentiability) function =f x x( ) sin x

2 1 for ≠x 0 and
=f (0) 0. The slope in (0,0) equals zero, so the tangent line is =y 0. The problem is that =x 0 is an accumulation point (on the x

-axis) of the (countably infinite) solution set of =x sin 0x
2 1 .

Example. We equate = +y x x x2 0
2 (parabola) and =y m x (line through the origin) to find + =x x x m x2 0

2 . The solution =x 0
has multiplicity 2 only if this equation is equivalent to =x 02 , that is if =m x2 0.

Approach T (transitions in overtaking). This approach is introduced in the book Calculus Unlimited (Marsden & Weinstein,
1981) and can be viewed as a formalization of Euclid’s informal definition of a tangent line (in Proposition 16 in the Elements): a
tangent line to a curve in a point P is a line lthrough P such that no other line through P fits in the space between the curve and l.
Marsden and Weinstein mathematized the meaning of “fits” in a way that uses the idea of rotating the line around P as in the previous
approach, but now, instead of focusing on intersection points, the focus is on whether the line overtakes the curve or the curve
overtakes the line. Informally the idea is as follows: For a line with a slope smaller than the tangent line’s slope, the curve overtakes
the line at; if the slope of the line is greater than the tangent line’s slope, then the line overtakes the curve. If there is exactly one value
of the slope of the line where the first case changes into the second, then that is the slope of the curve, see Fig. 5.

Formally: the line lm is tangent to the graph of f in P x f x( , ( ))0 0 iff

- for all <n m the difference − + −f x f x n x x( ) [ ( ) ( )]0 0 is defined on an open interval around x0 and changes sign from negative to
positive at =x x ,0 and

- for all >n m the difference − + −f x f x n x x( ) [ ( ) ( )]0 0 is defined on an open interval around x0 and changes sign from positive to
negative at =x x0.

Example. We investigate − + = + −f x f nx x x x nx( ) [ (0) ] 22
0 , where f refers to the translated parabola. This equals

Fig. 4. The tangent line meets the curve in a multiple point; a slight rotation of the tangent line reveals a new nearby intersection point.

Fig. 5. Line ln2 overtakes the curve at P . The curve overtakes line ln1 at P . The tangent line is the transition case.
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+ −x x x n( 2 )0 . Which changes sign at =x 0, except if =n x2 0.
In the example it becomes obvious how close approach T is to approach S. For algebraic functions whether a sign change takes

place at a zero can be concluded from the multiplicity of the zero, so the approaches are computationally equal. The strength of
approach T is that is “sign change/overtaking” can replace “multiplicity” beyond algebraic functions, and is more directly accessible.

4. Research questions

We designed a task based on a meaningful context, that begs to be mathematized by the target knowledge and activates previous
embodied knowledge of slope. Our aim is to better understand how to design tasks that support students’ reinvention. At stake are our
main choices of design principles, inspired by RME – rich, meaningful contexts and the emergent models principle – and by TDS –
working in an a-didactical action phase, followed by phases leading to institutionalization. Our main research question is: to what
extent and in what way does a reinvention task based on these principles have the potential to lead to informal student models from
which the more formal models representing the target knowledge can emerge? Related to this we have the following sub-questions:

1 What referential activities (design strategies and validation strategies) do the task evoke? What informal models do students
construct?

2 How do these activities and models relate to the four formal models we present in our a-priori analysis? Do some models emerge
more often than others?

5. Method

5.1. Task description

The slope reinvention task that we used is expected to support students to draw on their embodied knowledge of steepness and
smoothness. To this purpose the didactical approach to slope of a curve is through geometry, not analysis: the slope of the curve in a
point is seen as the slope of the tangent line. Students are challenged to design within a coordinate system a slide or ski jump
consisting of a linear part and a curved part (see Fig. 6).

Each part is to be described by an equation and the point where the curves meet smoothly, without bumps, has to be indicated.
A mathematician’s solution to the task consists of (1) a description of a function →f D:  on a domain ⊂D , such that the

graph of f accounts for the bended bit, (2) a point ∈x D0 , and (3) an equation for a line that accounts for the straight bit, e.g.
= + ′ −y f x f x x x( ) ( )( )0 0 0 . For example, =f x x( ) 2, with chosen point −( 1,1), and line equation = − +y x1 2( 1). In short: students

need to construct and describe a curve, a point, and a tangent line in that point, before they know how to do so by standard
mathematical methods. The order “curve – point – line” is not imposed on students, so they will not necessarily conceive the task as
constructing a tangent line to a chosen curve in a chosen point. Instead, they may interpret the task by constructing a tangent curve to
a chosen line and the point comes out last.

Students are supposed to already be familiar with several curves and their algebraic description. In particular, they are supposed
to understand the notion of slope of a line, and how it is represented in an equation for a line. The task intends to let students use this
pre-knowledge of slope of a line to make sense of the slope of a curve. The task strongly draws attention to the fact that you do have a
number to describe the slope of a line, but do not yet have a method to quantify the slope of the curve. Central to the task is finding a
way to deal with this issue. In that sense the task answers to the requirements of a Didactical Phenomenology (Freudenthal, 1983):
the task situation begs to be mathematized by means of the target knowledge. Or, in terms of TDS, the “winning” strategy coincides
with the target knowledge.

Fig. 6. Task: design a slide or ski jump with one straight part and one bended part.
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The slide context of the task is chosen to activate the students’ embodied knowledge of steepness and smoothness. The task of
teaching students about the steepness or tangency, without referring to real-world experiences and sensations would seem non-
sensical. On contrary, the slide-task puts these experiences on the foreground. Students are invited to use every-day language (e.g.
“meeting without a bump”, “here it’s steeper than there”, “here the line touches”), and pictures describing their experiences with this
common object (slide/ski jump) to support their mathematization process.

5.2. Implementation

We invited teachers in our network from the Utrecht region to participate in the study. Five of them were willing to participate
(one with two classes), all teaching at upper secondary pre-university schools (the Dutch name for this is: VWO) classes of grade 9 or
10 (Dutch grade 3 and 4). In grade 10 students either have chosen for a science oriented stream or a humanities oriented stream.

The lesson was designed and piloted as part of the European Erasmus + project Meria in several countries (Bos et al., 2019).
For each lesson the students formed groups of three, seated together by joining three tables. The groups were formed sponta-

neously by the students. Different classes were given different amounts of time in the action phase (ranging from 25 to 50 min), so
that we could register the influence of available time on the outcome. If students had a graphical calculator or GeoGebra to their
disposal and knew how to use it, they were invited, but not urged, to use it. We did not aim to measure the effect of tool use on the
outcome in detail.

For all lessons (except one) we had two or three observers which were allocated to a group in consultation with the teacher. So
roughly 30% of the groups had an observer. The goal was to have more detailed information on groups that teachers judged to be
different in level and possibly in approach. Observers had an observation form to use to report. Some approaches, that were observed
in the pilot, were already presented on the form with a box to tick. Observers were asked to (1) report on the steps that students
suggested and/or took, and (2) quote sentences used by students, if those sentences were about specific ideas related to the slope of
the curve. Students worked on a work sheet with an extra column on the right. They were requested to use this column to explain
what they were drawing or computing at that point on the working sheet. Our data consist of the student worksheets and the
observation forms.

The data were analyzed by the first and third author and compared. Another form of triangulation was achieved by comparing
observations on the worksheet to reports on the observation forms, for observed groups.

5.3. Method of analysis

In a preliminary investigation of all students’ works we discerned seven reoccurring slide design strategies, as described in the
Table 1 and Fig. 7.

Then we studied the data again to agree, for each group, on a description of their work and, if possible, a description of the design
process in the action phase. Then we classified the strategies using the labels in Table 1.

As a final step we decided for each group whether their result could serve as a model of or building block in the in-
stitutionalization, and, if so, if one approach, S, L, A or T clearly emerged from it as a model for. The other two possibilities here were
V, if there were various options, and N, if none of the previous applied. The ascription of this label was based on (1) the design
strategy and (2) the validation method. Validating the result means doing something to know your design is correct. The validation
can be a-didactical or didactical. So, in case students did not wonder why their design was correct or not, the teacher intervened
during group work and drew their attention to this issue, if judged necessary suggesting an approach matching their design strategy.
We discerned three ways to validate the designs.

Zooming in on the graphs. If students worked using graphical software, like GeoGebra, or a graphical calculator a validation
often used was zooming in on the point where the line and curve meet. This way students got a better view to judge (1) whether the
line and curve meet smoothly or (2) whether what seemed to be one intersection point were actually two or no intersection points.
Obviously, zooming in does not objectively verify a design, but it can falsify a design. If students commented on the locally linear
nature of the curve this contributed to a classification as L, but otherwise zooming in did not necessarily lead to L. Instead, if they

Table 1
Classification labels for student design strategies.

Label Description

D Draw a line and curve and find the equations from the data (like points, slope of a line, or top of a parabola) taken from the drawing
PS Choose a line and a curve (equation); then vary the Parameter for the Slope of the line
PT Choose a line and a curve (equation); then vary the Parameter to Translate the line
PC Choose a line and a curve (equation); then vary the Parameter(s) of the Curve
A Use Algebraic means to find a good design: e.g. computing intersection points
HS Use the tangent line perpendicular to the Symmetry axis of a Hyperbola
C Use the tangent line perpendicular to the radius of a Circle
R The Rest: strategies not mentioned above
O Obscure, untraceable strategies, no data on strategy
N No serious attempt registered
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commented on the intersection point(s), this contributed to a classification as A.
Computing intersection points. If students computed the intersection points of the line and the curve, they found confirmation

about whether the two intersect. Finding two nearby intersection points could suggest the solution is almost correct, and finding just
one solution (possibly recognized as a double point) could suggest the design is correct. If students computed the intersection points
algebraically or numerically, we interpreted it as a strong cue to classify as A.

Geometric arguments and mirror symmetry. In case of a circle strategy (C), students knew the solution was correct from the
theorem that states that the tangent line is perpendicular to the diameter. In case of a hyperbola (HS), where students find the tangent
line in a point on the symmetry axis, they could know the solution is correct from the result that this tangent line is perpendicular to
the symmetry axis. In fact, the symmetry argument also applies to the circle, where diameters are symmetry axes. In both cases the
perpendicular to the curve plays an important role. Imagine putting a mirror on that perpendicular. The curve and it mirror image
will meet smoothly, see Fig. 8.

As soon as the mirror rotates away from the perpendicular this will not be the case anymore. So the perpendicular position marks
a specific transition point while rotating the mirror around the point on the curve. Therefore we took this validation based on
symmetry as a cue to connect to approach T.

On top of this, we took the strategy PS (varying the slope of the line) as a cue for approach T, since varying the slope is a crucial
ingredient in this approach. Combinations of D, PT and/or PC generally led to a classification as V, unless complimentary ob-
servations suggested otherwise. In most of these cases the teacher could suggest a validation method (zooming in, computing in-
tersection points, or otherwise), which, in turn, guided students’ thinking towards one approach or another.

Fig. 7. Students design strategies depicted.

Fig. 8. A curve meets its mirror image smoothly, if the mirror is perpendicular to the tangent line.
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6. Results

The experimental lesson was given in six classes in three different pre-university schools I, II and III, see Table 2.
We first present five samples of illustrative cases that are representative for the observed variety in strategies of the students and

then we present an overview of all observed strategies and connecting approaches.
Case 1 (Class 4, classified as C/R→ L). This group had an observer. The students used GeoGebra to visualize their designs. Their

first solution attempt was based on a circle, but then they switched to a parabola. Their equations were = +y x2 8 and
= + +y x x2 8.1

2
2 A correct design: the line and curve are tangent in the point (0,8). They wrote on their work sheet

b in the formula of the parabola and a in the formula of the line must be the same.
(they had the formulas = + +y a x bx c2 and = +y a x b in mind). They specified this to the observer who quoted their remark in

her observation form:
the directional coefficients of the line and the curve must be the same
So this group tried to relate the directional coefficient of the line to a parameter in the equation for the parabola and succeeded,

because in the point c(0, ) the parameter b does represent the slope of the parabola. Students noted that the only difference between
the two equations is the term x1

2
2. For the teacher there is great opportunity to build on this informal idea towards the approach via

linear approximation (L). This group produced the line algebraically by omitting the quadratic term, as if they truncate a Maclauren
(Taylor) series off after the linear term.

Case 2 (Class 5, classified as HS → T). This group had an observer. Their design consisted of a hyperbola, described by the
equation =y x

1 , and a line, described by the equation = − +y x 2 (see Fig. 9). This is correct; the line and curve meet smoothly at the
point (1,1). The observer noted that students explicitly mention symmetry as a justification of their design.

However, when the teacher joined the students’ table and asked how they could find out whether the design was correct, they
mentioned that they would like to zoom in on the intersection point. They remarked that to have absolute certainty, they would like
to “zoom in forever”. Even though we classified this group as T, it is worth mentioning that this remark would have also been a
natural starting point for a discussion on limits, because the students indicate they need a way to deal with the infinite (in the sense of
infinitesimal).

Case 3 (Class 5, classified as PC/PS/PT → L. This group used a graphical calculator (GC) to visualize their designs. First the
students fixed a seemingly random line and tried to adjust the parameters in the equation for the parabola. Then they changed
strategy and fixed the parabola to = ( )y x3

10

2
and fixed a point on it (10,9). Next, they wanted to adjust the parameters of the line. In

the end, they settled for = −y x 615
10 , which is not correct. Graphing it on a GC on a “standard” scale shows a convincing picture, since

the second intersection point is quite close to (10,9). When students spontaneously began to validate their design, one students said

I think that when the line touches the curve, in that small part the equation of the parabola must be the same as the line.

Table 2
Data for the six classes where the experimental lesson took place.

Class label School Grade Length of action phase in minutes Number of groups
(n = 44)

% of groups with a (nearly) correct solution

1 I 9 25 8 12,5%
2 I 9 25 7 100%
3 II 9 25 3 66,7%
4 III 10 25 7 42,9%
5 II 10 35 9 55,6%
6 II 10 50 10 80%

Fig. 9. Students’ drawing of a design based on a hyperbola (case 2).
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The students did not manage to mathematize this statement, but it phrases the idea of local linear approximation in an informal
way. So in this case the classification as L is a consequence of the validation and not of the design itself.

Case 4 (Class 5, classified as PC → A). This group started by drawing a line and a parabola.
Then the students derived an equation for the line from the graph: = − +y x2 7. Next, they found an equation for the parabola:

= − +( )y x 17
2

2
. When the teacher arrived at this table, the students explained that they wanted ( ), 17

2 as the coordinates for the top

of the parabola, since the line intersected the x -axis in ( ), 07
2 . Even though they could not explain why this was needed, it does give

them a correct solution. When the teacher challenged them to explain why they knew their design was correct, they produced the
computation in Fig. 10. They explained that, because there was a single intersection point, the design was good. Therefore, this
groups’ work was classified by A.

Case 5 (Class 6, classified as A → A). This group relied on algebraic methods from the beginning of their attempt. If the students
had a picture, it was just in mind. They chose for a hyperbola, =y x

6 , and a line described by = − +y x 5.
They computed the intersection points and found two, at =x 2 and =x 3. At this point they remark (inside the bottom “circle”,

see Fig. 11): “not good, we need 1 outcome”. They realize they can adjust the “5” in the equation, which means translating the line, to
force having just one solution. In the next line the “5” is replaced by “2 6 ”, which allows a unique solution, with multiplicity 2. So,
their new line is = − +y x 2 6 , a correct solution. Consequently, this was classified as an algebraic approach.

Table 3 shows how we classified the strategies and connecting approaches of these five sample groups and the remaining 39
groups. Fig. 12 presents the absolute frequency of the student strategies. Note that these do not add up to 44, since some groups
followed more than one strategy. The cases of untraceable strategies come from groups without observer, often using GeoGebra or a
graphical calculator. Those groups would forget to write down most of what they were doing. In group 3 and 6 there are no cases
where the strategy is untraceable. In these lesson the teacher prompted and helped students to make their strategies explicit.

Fig. 13 shows the relative frequencies of the approaches to the tangent line and slope of a curve to which the students’ work
connects. Note that the secant line approach (S) is not occurring.

Fig. 10. Students’ work from case 4.

Fig. 11. Students’ work on a design using algebraic methods (case 5).
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7. Discussion

We first discuss what can be concluded with respect to our sub-questions, and then address the main research question.

7.1. Sub-question 1: strategies

Tabel 3 and Fig. 12 show that students use a wide range of strategies. The most frequently applied strategy was to fix the line and
vary the parameters of the curve (11 occurrences of PC). An experienced mathematician would chose to fix the curve and compute
the slope in a point. Student groups that follow strategy PC or PT go the opposite way: they begin by fixing the slope (of the line). In
case of PT they pursue this by suitably translating the line until it touches the curve; in case of PC by suitably transforming the curve
until it touches the line. So, varying the slope of a line (PS), with the curve and point fixed, is less favored: only four occurrences.

What is appealing about fixing the line, and in particular its slope, before fixing the curve? We see four possible explanations: (1)
Without a standard technique to apply to the problem, the students might consider the order line-curve or curve-line as unimportant;
(2) for students making an equation for a line is easier than making an equation for a curve, so they prefer to begin with this; (3) the
problem formulation leads students this way: students may see the straight bit of the slide as most important and the curved bit as a
less important ramp; (4) We put the entry for the line equation before the one for the curve on the final answer work sheet. They were
supposed to fill it in at the end of the action phase, but they could have looked at it.

Table 3
Strategies and connecting approach per group.

Class label School Strategies per group Connecting approach

1 A PC, PC, O, PT, HS, D/PS, O, N V, V, N, T, N, T, N
2 A PC/PT, O/PT, O, O, O, PS/PC, O V, V, V, V, V, V, V
3 B A, C, C A, T, N
4 C PT/PC, D, O, C/R, O, R, N V, V, V, L, N, L, N
5 B D, R, PC, O, R, PC/PS/PT, PC, HS, O V, V, V, N, A, L, A, T, N
6 B A, C, D, PT/PC/C, D, R, PC/PT/PS/A, C, D, PC A, N, L, V, N, V, A, V, V, A

Fig. 12. Frequency of student strategies.

Fig. 13. Relative frequency of approaches.
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In class 5 and 6 students had more time in the action phase. In those classes some groups used that time to switch strategy.
In class 2 students used GeoGebra and in class 1 they didn’t. There is a remarkable difference between those classes in the number

of nearly correct solutions (100% versus 12,5%, see Table 1). GeoGebra helped students to experiment: dragging lines and curves
across the plane without computation, and, complimentary, changing parameters without drawing the graphs again. In many groups,
students knew or found out that GeoGebra can provide the equations of lines and curves. Altogether, GeoGebra facilitated students to
arrive at a correct or nearly correct solution with less mathematical demand, but still allowing for conceptual reflections.

7.2. Subquestion 2: emergent models

As is clear from Fig. 14 the secant lines approach (S) never emerged from students’ work. A condition for this approach – that is
met in few cases – is that students first fix the curve. Next, students should fix a point on the curve, which happened in even less cases.
On top of that, student should then have the idea to construct a line using another point on the curve. This did not occur. This would
only be a first step, where the next would be to move the second point closer to the first. We think the reason that students do not
choose a second point on the curve is that they intuitively know that, if there is a second intersection point, the design will have a
bump. Students want a solution that is immediately correct. Deliberately beginning with a bumpy slide and working your way towards
a better one is an unfamiliar strategy for students. Moreover, even if they are willing to pursue this strategy, they may realize that it
has the serious difficulty – the problem of limits – that the perfect solutions seems out of reach. The conclusion is that from the slide
assignment the tangent line as a limit of secant lines-model does not emerge from the informal student models for good reasons. The fact
that this model does not appear in students work on a situation that begs to be mathematized by tangent lines and the slope of curve
confirms the status of epistemic obstacle of the secant line approach.

For 91% of the groups the curve was a conic section, with parabolas most popular (61%), so students had the means to compute
the intersection point(s) algebraically. We observed that only science oriented students spontaneously use algebra in either of these
phases. This is no surprise, because these are students that usually feel more comfortable with algebra and would apply it in new
situations. Algebraic validation was sometimes proposed by the teacher to individual groups and in classroom discussions. Fig. 14
shows that for 14% of the groups the algebraic approach (A) emerged naturally, but in many more groups (classified as V) the teacher
had the opportunity to conduct a group in that direction. Note that for groups classified as V the teacher could alternatively connect
the student work to the other approaches, in particular L. Students using GeoGebra or the GC had the opportunity to compute the
intersection points digitally. Remarkably, this use has not been observed.

The locally linear approach (L) emerged from 9% of the groups (see Fig. 14), but in many of the groups classified as V, the teacher
had the option to connect students work to L as well. The approach is closely related to the idea of zooming in on the curve, but
students did not zoom in to construct a line. Zooming until the curve looks more or less like a line, then choosing two points to
construct a line with, did not occur.

Rather, after they had a candidate line and curve, they would zoom in to validate the design. Probably, the reasons why zooming in
is not used as a means of construction are the same as the reasons why students do not use secant lines (students want to construct an
immediately correct design, etcetera). Still, zooming in as a validation method alone is not enough to connect the students reasoning
to approach L. It matters what students are looking for: Are they checking whether they really have one intersection point and not
two, then we should classify as A; are they checking whether the line and curve are indistinguishable, then we should classify as L. In
many cases from the data it could not be decided which of the two applied so we classified as V, although in some cases, like case 1
and 3 above, we could classify as L.

The “transition in overtaking” approach (T) is another approach that requires students to first fix the curve and a point. For this
reason it did not emerge from many groups (9%, see Fig. 14). Of this 9% a majority is based on students applying a symmetry, whose
connection to T is not as strong as other connections. Also, in students’ discussions about the validation of design the idea of
overtaking lines and curves was not observed. So approach T does not emerge convincingly. This comes as a surprise, since rotating a
ruler at a point until it touches the curve a-priori seemed a very accessible strategy and the language of overtaking seemed readily

Fig. 14. Design strategy not observed: zooming in to construct the line.
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available.
We conclude that the intersection point approach (A) is slightly favoured over the other approaches (see Fig. 14: 14% versus 9% L,

9% T, 0% S), in particular by science oriented students. Given the many occurrences of V (which in most cases means A or L is a
possible emergent model), we can state that these together are the favourite ones. An explanation for the popularity of the inter-
section point approach A is that students spend a lot of time on computing intersection points algebraically in lower secondary, so to
them it is a readily available and meaningful frame of reference and tool. We conclude that the slide activity succeeded in clarifying
what pre-knowledge and tools are meaningful to students to approach the problem of tangent lines. Additionally, the slide activity
makes clear what connecting approaches to slope have good potential to become meaningful to the students.

7.3. Main question: supporting reinvention

For 77% of the groups, and 100% of the classes, there were models of that could be developed into models for (see Fig. 14). In every
class multiple connecting approaches were found suitable, so the teacher had a choice, either to single one out or to discuss several
approaches and possibly combine them into more complete picture of the target knowledge. The previous section supports the
conclusion that in many lessons a reinvention process took place. How? It is important to stress the RME emergent models-principle.
The students did not fully reinvent the formal definition of slope of a curve. Instead, students solutions and strategies represented
informal models of the notion. Together with a teacher these models could be developed during the institutionalization phase and
later lessons into more general models based on mostly the intersection points approach (A) and locally linear approximation ap-
proach (L).

Biza studied a lesson design for the meaning of slope of a curve based on the diagnostic teaching methodology (Biza, 2011). This
was a guided reinvention study focussed both on concept and definition development where the instructor provided well-timed cues
with examples and non-examples. She observed that students’ personal meaning of the definition of evolved significantly, but also in
various ways, in response to the lesson. We like to emphasize that in our study students developed the concepts independently of the
teacher in an a-didactical (non-guided) action phase, and therefore the sense of ownership was preserved and only techniques that are
meaningful to the students were used. As a consequence the students’ personal meanings of the slope concept developed in various
ways. Andrews-Larson and collaborators (Andrews-Larson et al., 2017) stress the importance to connect to students’ thinking in a
reinvention task. We see this role situated in the institutionalization phase, a phase that is very demanding for the teacher. Analysing
students work for informal models during the action phase, without interfering in their work, is a challenge. In the last experiment,
class 6, we improved the scenario by spreading the activity over two lessons. Students handed in their work sheets at the end of the
action phase, which coincided with the end of the first lesson. This gave the teacher enough time to prepare for the in-
stitutionalization looking for the potential in students’ approaches.

It is tempting to conclude from our study that approach A and L are generally more accessible and meaningful for secondary
school students. Their didactic potential has been observed before and deployed for teaching approaches, see (Michael Range, 2018)
for A and (Tall, 2013) for L. The task however has characteristics that evoke these approaches. First of all the task is geometric in
nature and appeals to embodied knowledge of students concerning steepness and smoothness; a task about average growth of a
quantity – or in kinematic context (average speed to instant speed) – could still provoke the secant line approach, although we are not
aware of any unguided reinvention task that achieves this. Secondly, a small adjustment to the task may already lead to different
results. If the task would have required to fix the curve equation for the slide before the linear equation, approach S and T perhaps
would have become more likely. This would also make the task more directive, limiting the approaches the students might take in
favor of certain approaches to slope. It is important to note that the task was stated in most open form for this experiment. The strength
of the task it that is manages to activate students to apply meaningful methods from which didactically potent formal approaches (A
and L) to the slope of a curve emerge – and not the standard approach S.

We can think of no reason why a teacher implementing our activity in a different school (in a different country) would have a very
different experience than described in this paper. It is important to note that the outcomes do depend on the students’ mathematics
level, and on the pre-knowledge of synthetic/analytic geometry and algebra of the class. If the mathematics level is average or lower,
or time is limited, we suggest encouraging students to use graphing software, like GeoGebra, for reasons discussed before.

Is the reinvention principle suitable and feasible at secondary school level? Our cases contributes to the point of view that it is
suitable, since (1) there were hardly any groups that were not engaged (2 out of 44 (≈ 4,5%) did no serious attempt, see N in Table 3)
and (2) as mentioned before in 77% of the groups (in 100% of the classes) produced informal models. So constructivist learning can
be achieved through constructivist teaching. The feasibility depends on the effort a teacher is willing to make. The teacher needs to
prepare and study the subject more thoroughly than usually to be able to recognize non-standard strategies and approaches in the
students’ work. Since students’ reinvention may be non-standard (as in our case), they may also need to provide a meaningful bridge
from the students’ reinvention (which maybe based on approach L or A) to what is required by the curriculum (probably based on
approach S).

Measuring whether the slide task made the slope-concept more meaningful to students would be a self-fulfilling prophecy within
the RME-framework. According to RME the concept is meaningful if it is based on what is already meaningful to the student. So the
issue is to what extent task characteristics activate experiences that connect to and support the development of mathematical notions
aimed at. This study illustrates how everyday embodied experiences of steepness and smoothness can be activated in a classroom
setting and have the potential to make slope of a curve meaningful, and how to institutionalize this notion with all students in a
classroom practice. Further research is needed to investigate whether these students really have grasped and retained the meaning of
slope, even when calculational procedures enter the learning trajectory.
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