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Abstract
Improvements in the study of nonparametric maximal exponential models built on
Orlicz spaces are proposed. By exploiting the notion of sub-exponential random vari-
able, we give theoretical results which provide a clearer insight into the structure of
thesemodels. The explicit constants we obtain when changing the law of Orlicz spaces
centered at connected densities allow us to derive uniform bounds with respect to a
reference density.

Keywords Sub-exponential random variable · Orlicz space · Exponential model ·
Concentration inequality

Mathematics Subject Classification (2020) 46E30 · 46N30 · 62B10

1 Introduction

The theory of nonparametric maximal exponential models centered at a given positive
density p started with the seminal work by Pistone and Sempi [18] and is a gener-
alization of the statistical theory of exponential families. An infinite-dimensional or
nonparametric exponential family is typically defined by the form exp(u − Kp(u))p,
where the random variable u varies in an appropriate function space, p is the prob-
ability density function of a base probability P, and Kp(u) is the logarithm of the
normalization constant, which is also known as the cumulant generating function. In
[18], the sufficient statistics u in the exponential family are such that exp(θu) is p ·P-
integrable for all θ in a real open interval containing 0; in fact, a further restriction is
needed to avoid the border of the set {u : Kp(u) < +∞}. This integrability condition,
in turn, defines the Banach space of exponential Orlicz spaces L�(p), whose various
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equivalent characterizations are the starting point from which the results of this paper
arise.

The geometric theory of statistical models as manifolds modeled on exponential
Orlicz spaces was deeply investigated in [1, 6, 7, 17]. Specifically, two densities p and
q belonging to the maximal exponential model are connected by an open exponential
arc. (By open, we essentiallymean that the two connected densities are not the extremal
points of the arc.) All densities connected by an open exponential arc form a Banach
manifold P , and the space L�(p), p ∈ P , is an expression of the tangent space.

Subsequent upgrades and applications of maximal exponential models to Statistics,
Information Geometry, Physics and also to Finance have been presented in many
works, see, e.g., [8, 12, 14, 16, 20–25]. Mainly, in [20] the authors prove that the
exponential connection by arc for two densities is equivalent to the equality of the
corresponding Orlicz spaces. The possibility to switch from one Orlicz space to the
other was exploited in [23] to improve some duality results in a problem of exponential
utility maximization. Furthermore, since connected densities produce the same Orlicz
space with equivalent norms, in [25] robust concentration inequalities of Bernstein
type have been obtained.

An equivalent formulation given in [20] for defining themaximal exponentialmodel
requires that the ratio q/p has to satisfy with respect to both densities p and q an
integrability condition, denoted here by (Pα), with α > 1. From (Pα), the finiteness
of both the Kullback–Leibler divergences D(q‖p) and D(p‖q) immediately follows.

Different authors have generalized the original structure of themaximal exponential
model by replacing the exponential function with deformed exponentials (see, e.g.,
[11, 28, 29]) or by modeling the statistical manifold on other function spaces (see,
e.g., [4, 13]).

In this paper, new analytical properties of the maximal exponential model in the
topology of the exponential Orlicz space are presented. The notion of sub-exponential
random variable, equivalent to belonging to the Orlicz exponential space, leads to
investigate its link with the definition of BMO (bounded mean oscillation) function.
In this analysis, we use a suitable norm equivalent to the standard Luxemburg norm,
which allows us to obtain a sharp estimate for the distance to L∞ of a sub-exponential
random variable. This estimate, in turn, allows us to better understand the structure
underlying the maximal exponential model, as it establishes which is the smallest
α > 1 for which (Pα) holds. A comparison with the BMO theory highlights that
condition (Pα), characterizing the maximal exponential model, is a sort of “static”
Muckenhoupt condition on log(q/p)with respect to both densities p and q. This could
be a hint on how to introduce time dependence in the context of maximal exponential
models, allowing to change the perspective from static to dynamic.
An interesting issue in statistical applications is the possibility of knowing the constants
that the change of law produces on the equivalent norms of Orlicz spaces centered at
two connected densities. We provide an answer to this matter and exploit our results
to derive uniform bounds.

The paper is organized as follows. In Sect. 2, we investigate the notion of sub-
exponential random variable and its link with the distance in the Orlicz topology to
L∞. In Sect. 3, we use the results of the previous section to highlight the structure
underlying the maximal exponential model. In Sect. 4, we study the relationships

123



2078 Journal of Theoretical Probability (2024) 37:2076–2096

betweenOrlicz spaces centered at connected densities, in terms of how their equivalent
norms transform. We provide uniform bounds for the norms and some concentration
inequalities of Bernstein type that are robust in an exponential subfamily with respect
to a reference density.

2 Sub-exponentiality in Orlicz Spaces

In this section, we first describe the relevant Banach spaces: the exponential Orlicz
space and its conjugate endowed with the Luxemburg norm (2). We then present the
exponential space as a space of sub-exponential random variables with a new norm
based of moments, equivalent to the Luxemburg norm, and we investigate its connec-
tions to BMO spaces. The second part of the section is partly new and is devoted to
the study of a bound on the norm-distance of a generic sub-exponential random vari-
able from L∞. In fact, it is well known that the space of bounded random variables
is not dense in the exponential Orlicz space, unless the state space is finite, cf. [19].
Particularly, the sequence of truncations of a generic element of such a space does
not converge in general to the original variable. The bound we obtain characterizes in
terms of the moment generating function those random variables for which the trun-
cations converge. It also provides a better understanding of the structure of maximal
exponential models in the next section.

Let (�,F ,P) be a fixed probability space. Denote by Lk , k ≥ 1, the ordinary
Lebesgue spaces and by L0 the set of all random variables u defined on the probability
space.

An exponential Orlicz space is a classical Banach space associated with an expo-
nentially growing Young function. Young functions can be seen as generalizations
of the power functions, and consequently, Orlicz spaces are generalizations of the
Lebesgue spaces. Specifically,

Definition 2.1 A Young function � is an even, convex function � : R → [0,+∞]
such that

i)�(0) = 0, i i) lim
x→+∞ �(x) = +∞, i i i)�(x) < ∞ in a neighborhood of 0.

The conjugate function � of � is defined as �(y) = sup
x∈R

{xy−�(x)}, ∀y ∈ R and

is itself a Young function.
The Orlicz space L�, associated with the Young function �, is defined as

L� =
{
u ∈ L0 : ∃ β > 0 s.t . E (�(βu)) < ∞

}
(1)

, and the corresponding subspace of centered random variables is denoted by L�
0 .

L� is a complete Banach space when endowed with the Luxemburg norm

‖u‖� = inf
{
α > 0 : E

(
�

(u
α

))
≤ 1

}
. (2)
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We refer to [19] for a general background on the subject.
Here, we focalize on the Young function �1(x) = cosh(x) − 1, whose conjugate

function is�1(y) = y log(y+√
1 + y2)−√

1 + y2+1. As a consequence, a random
variableu belongs to L�1 if andonly if itsmoment generating functionMu(t) = E(etu)
is finite in a neighborhood of 0. Moreover, the closed unit ball of L�1 is

B1 = {u ∈ L�1 E (�1(u)) ≤ 1} = {u ∈ L�1 E (cosh(u)) ≤ 2}.

It is worth recalling that the same Orlicz space can be related to different equivalent
Young functions. Specifically, the Young function �1(x) is equivalent to the more
commonly used�2(x) = e|x | − |x |−1 and its conjugate function �1(y) is equivalent
to �2(y) = (1 + |y|) log(1 + |y|) − |y|, whose analytic expression is related to the
Kullback–Leibler divergence.

Remark 2.2 We can easily locate the Orlicz spaces L�1 and L�1 in the hierarchy of
classical Lk spaces:

L∞ ⊆ L�1 ⊂ Lk ⊆ L�1 ⊂ L1, k > 1;

more precisely, every correspondent injection is continuous. In particular, if u ∈ L�1 ,
then the moment of u of any order is finite.

The following proposition gives equivalent conditions for a random variable to
belong to L�1 (cf. [30]).

Proposition 2.3 Let u ∈ L0. The following conditions are equivalent:

1. u ∈ L�1 , i.e., the moment generating function of u is finite in a neighborhood of
0.

2. There is λ > 0 such that

P(|u| ≥ t) ≤ δe−λt , ∃δ = δ(λ) ≥ 1 and ∀t > 0. (3)

3. sup
k≥1

(
E

(|u|k) /k!)1/k < ∞.

4. lim sup
k→∞

(
E

(|u|k) /k!)1/k < ∞.

For u ∈ L�1 , the mapping

‖u‖
 = sup
k≥1

(
E

( |u|k
k!

))1/k

(4)

is a norm on L�1 equivalent to ‖u‖�1 and it holds (see [24])

2

3
‖u‖�1 ≤ ‖u‖
 ≤ 4 ‖u‖�1 . (5)
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In particular, it can be easily checked that for constant random variables we have
‖c‖
 = |c| and for any bounded random variable u it holds ‖u‖
 ≤ ‖u‖∞.

In the sequel, we will prove our results with respect to the norm ‖ · ‖
, which turns
out to be a convenient choice in order to obtain sharp estimates (see Theorem 2.8).

Remark 2.4 A random variable u satisfying condition 2 in the previous proposition is
also called sub-exponential. If u satisfies the inequality P(|u| ≥ t) ≤ δe−λt2 , ∀t > 0,
it is called sub-Gaussian. It is immediate to see that a sub-Gaussian random variable u
is also sub-exponential and that u is sub-Gaussian if and only if u2 is sub-exponential.
More generally, un is sub-exponential, i.e., un ∈ L�1 , if and only if P(|u| ≥ t) ≤
δe−λtn , ∀t > 0.

Remark 2.5 Condition 2 of Proposition 2.3 can be rewritten in the form:

2’. There is λ > 0 such that P(|u| ≥ t) ≤ e−λt , ∀t > t0 = t0(λ) ≥ 0,

which results to be a probabilistic version of the John–Nirenberg inequality for
BMO-functions in classical analysis (see [9]). Specifically, we recall that a real-valued
locally integrable function f on Rd has bounded mean oscillation, that is, f ∈ BMO,
if

sup
I

1

|I |
∫

I
| f − f I | dx < +∞, (6)

where I denotes any cube inRd , |I | its volume and f I the mean of f over I . John and
Nirenberg proved in [9] that f ∈ BMO if and only if there is λ > 0 such that

sup
I

1

|I |
∣∣{x ∈ I : | f (x) − f I | ≥ t}∣∣ ≤ e−λt , ∀t > t0 = t0(λ) ≥ 0.

The probabilistic version of (6) for continuous uniformly integrable martingales M =
(Ms)0≤s≤∞ with M0 = 0 is

sup
τ

∥∥E (|M∞ − Mτ | |Fτ )
∥∥∞ < +∞,

where τ denotes any stopping time for the filtration F . The probabilistic analogue of
the John–Nirenberg inequality was proved by Emery [3]: M ∈ BMO if and only if
there is λ > 0 such that

P

(
sup
s≥0

|Mτ+s − Mτ | ≥ ε |Fτ

)
≤ e−λε, ∀ε > ε0 = ε0(λ) ≥ 0,

for any stopping time τ .

The following proposition establishes the equality between the largest range for which
the moment generating function of |u| is finite and the largest λ for which condition
(3) holds.
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Proposition 2.6 For u ∈ L�1 , define

a(u) = sup{a > 0 : Eea|u| < +∞}

and
λ(u) = sup{λ > 0 : u satisfies (3)}.

Then, it holds
a(u) = λ(u).

Proof In order to prove a(u) ≤ λ(u), we show that

{a > 0 : Eea|u| < +∞} ⊆ {λ > 0 : u satisfies (3)}.

Let us take a > 0 such that Eea|u| < +∞. By Markov inequality, for all t > 0 we
have

P(|u| ≥ t) = P(ea|u| ≥ eat ) ≤ e−at
E(ea|u|).

We then obtain (3) by taking λ = a and δ = E(ea|u|).
To prove a(u) ≥ λ(u), suppose by contradiction that a(u) < λ(u). We can then select
λ1, λ2 > 0 such that a(u) < λ1 < λ2 < λ(u). Since λ2 < λ(u), it holds

P(|u| ≥ t) ≤ δe−λ2t , (7)

for a suitable δ ≥ 1. Using (7), for any k = 1, 2... we have

E(|u|k) =
∫ +∞

0
P(|u|k > t) dt =

∫ +∞

0
P(|u| > s) ksk−1 ds

≤ kδ
∫ +∞

0
sk−1e−λ2s ds = k! δ

λk2

.

As a consequence, we get

Eeλ1|u| =
+∞∑
k=0

λk1

k! E(|u|k) ≤ δ

+∞∑
k=0

(
λ1

λ2

)k

= δ
1

1 − λ1
λ2

< +∞,

which implies λ1 ≤ a(u). �
The next result is a technical preliminary to our main results.

Lemma 2.7 Let u ∈ L�1 . If ‖u‖
 < 1, then

Ee|u| ≤ 1

1 − ‖u‖


.
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Proof By the definition (4) of ‖ · ‖
, we have

Ee|u| ≤
∞∑
k=0

1

k!E(|u|k) ≤
∞∑
k=0

‖u‖k
 = 1

1 − ‖u‖


.

�
The following theorem gives a very nice relation between a(u)(= λ(u)) and

d
(u, L∞), where

d
(u, L∞) = inf
∈L∞ ‖u − ‖
.

It is in the spirit of the results obtained in classical and stochastic analysis for the dis-
tance inBMO to L∞, where upper and lower bounds for a(u) in terms of dBMO(u, L∞)

are given (see, e.g., [5] and, for continuous martingales, [27]). In our setting, we can
prove that a(u) is exactly the reciprocal of the d
-distance of u ∈ L�1 to L∞.

Theorem 2.8 For u ∈ L�1 , we have

a(u) = 1

d
(u, L∞)

Proof Wefirst prove that a(u) ≥ 1
d
(u,L∞)

. Let 0 < a < 1
d
(u,L∞)

. Then, a‖u−‖
 < 1
for some  ∈ L∞. Using Lemma 2.7, we get

Eea|u| ≤ E

(
ea|u−|ea||) ≤ ea‖‖∞Eea|u−| ≤ ea‖‖∞

1 − a‖u − ‖


< +∞,

which implies a ≤ a(u). We now prove that a(u) ≤ 1
d
(u,L∞)

. It suffices to verify that

if 0 < a < a(u), then a ≤ 1
d
(u,L∞)

. Let us fix 0 < a < a(u). For any  ∈ L∞, it
holds

d
(u, L∞) ≤ ‖u − ‖
 = sup
k≥1

(
E

( |u − |k
k!

))1/k

≤ 1

a
Eea|u−|,

where the last inequality is due to the fact that for any a > 0 and k ≥ 1 it holds
E|v|k
k! ≤ 1

ak
Eea|v| and thus

(
E

( |u − |k
k!

))1/k

≤ 1

a

(
Eea|u−|)1/k ≤ 1

a
Eea|u−|.

Now, let us choose the sequence of truncations at n of u, i.e., un = 1|u|≤nu ∈ L∞;
then, the sequence |u − un| = 1|u|>n|u| decreases to 0. Since by hypothesis
a < a(u), the random variables ea|u−un | are bounded by the integrable random vari-
able ea|u|. Applying the Lebesgue dominated convergence theorem, we deduce that
limn→+∞ Eea|u−un | = 1 and thus d
(u, L∞) ≤ 1

a . �
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Remark 2.9 From the theorem above, we immediately see that the sequence of trun-
cations un converges to the original variable u ∈ L�1 if and only if the moment
generating function of u is defined on the whole real line (cf. [1], Lemma 2).

In the sequel, we investigate the relationships among L�1 spaces with respect to
different probability measures whose densities with respect to P belong to an open
exponential model. For this purpose, we need to recall the notion of open exponential
model, as well as its geometric meaning and the corresponding main results within
the Orlicz framework.

3 Exponential Models

This section discusses a crucial topic in the geometric theory of statistical models.
Here, the main new contributions are represented by Items 6 and 8 of Theorem 3.5
and by Proposition 3.8.

Let P denote the set of all densities which are positive P-a.s. For each fixed p ∈ P ,
we use Ep to indicate the integral with respect to p · P. Moreover, the corresponding
Orlicz space associated with �1 is denoted by L�1(p).

Let us consider the cumulant generating functional Kp(u) = logEp(eu) defined
on the subspace of centered random variables L�1

0 (p). We recall from [18] that Kp is
a positive convex and lower semicontinuous function, vanishing at zero. In addition,

the interior of its proper domain, denoted here by
◦

dom Kp, is a non-empty convex set
containing the open unit ball of L�1

0 (p). This allows us to give the following definition.

Definition 3.1 For every density p ∈ P , the maximal exponential model at p is

E(p) =
{
q = eu−Kp(u) p : u ∈ ◦

dom Kp

}
⊆ P.

Remark 3.2 Kp is defined on the set L�1
0 (p) because centered random variables

guarantee the uniqueness of the representation of q ∈ E(p).

One of the main results in [18] states that any density belonging to the maximal
exponential model centered at p is connected by an open exponential arc to p and vice
versa. By open, we mean that the two densities are not the extremal points of the arc:

Definition 3.3 p, q ∈ P are connected by an open exponential arc if there exists an
open interval I ⊃ [0, 1] such that p(θ) ∝ p(1−θ)qθ ∈ P , ∀θ ∈ I .

The connection by an open exponential arc is an equivalence relation. An equivalent
definition is provided by the following proposition (see [1]).

Proposition 3.4 p, q ∈ P are connected by an open exponential arc iff there exists an
open interval I ⊃ [0, 1] such that p(θ) ∝ eθu p ∈ P , ∀θ ∈ I , where u ∈ L�1(p) and
p(0) = p, p(1) = q.
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The following theorem gives different equivalent conditions for a density to belong
to the maximal exponential model. The proof of assertions 1–4 can be found in [1],
while that of assertions 5–7 can be found in [20, 23]. The equivalence between 4 and
the new assertion 8 follows from Theorem 2.8 of the previous section.

Theorem 3.5 (Portmanteau Theorem) Let p, q ∈ P . The following statements are
equivalent.

1. q ∈ E(p);
2. q is connected to p by an open exponential arc;
3. E(p) = E(q);
4. log(q/p) ∈ L�1(p) ∩ L�1(q);
5. L�1(p) = L�1(q);
6. There exists α > 1 such that

(Pα) : q/p ∈ L1/(α−1)(q) and p/q ∈ L1/(α−1)(p)

7. m
U
q
p : L�1(p) → L�1(q) s.t. mUq

p(v) = (p/q)v is an isomorphism of Banach
spaces.

8. d
,p(log(q/p), L∞) < +∞ and d
,q(log(q/p), L∞) < +∞.

It is worth noting that the maximal exponential model is a good environment when
dealing with divergence between densities. In fact, since (Pα) means q/p ∈ L1+ε(p)
and p/q ∈ L1+ε(q) for some ε > 0, it immediately follows that if q ∈ E(p), then
Kullback–Leibler divergences D(q‖p) and D(p‖q) are both finite.

The equivalence between the equality of the Orlicz spaces L�1(p) and L�1(q)

and property (Pα) has been exploited in [23] to improve some duality results in the
classical problem of exponential utility maximization in incomplete markets. In fact,
in many well-known works on relative entropy minimization, the minimal entropy
martingale (density) measure q∗ satisfies (Pα), allowing to switch from the reference
Orlicz space L�1(p) to L�1(q∗), and conversely, at convenience.

Remark 3.6 From Hölder inequality, (Pα) implies (Pr ) ∀r > α.

Lemma 3.7 The following equivalence holds:

(Pα) ⇐⇒ Eq

(
q

p

)± 1
α−1

< +∞,Ep

(
p

q

)± 1
α−1

< +∞.

Proof It suffices to observe that if 1 < α ≤ 2, then

Eq

(
q

p

) 1
α−1 = Ep

(
q

p

)1+ 1
α−1

< +∞ �⇒ Ep

(
p

q

)− 1
α−1 = Ep

(
q

p

) 1
α−1

< +∞.

Similarly, if 1 < α ≤ 2, then

Ep

(
p

q

) 1
α−1 = Eq

(
p

q

)1+ 1
α−1

< +∞ �⇒ Eq

(
q

p

)− 1
α−1 = Eq

(
p

q

) 1
α−1

< +∞.

123



Journal of Theoretical Probability (2024) 37:2076–2096 2085

If α > 2, the function x
1

α−1 is concave and, by Jensen inequality, Ep

(
p
q

)− 1
α−1 =

Ep

(
q
p

) 1
α−1 ≤ 1 and Eq

(
q
p

)− 1
α−1 = Eq

(
p
q

) 1
α−1 ≤ 1. �

The following proposition gives a characterization of the smaller α > 1 for which
(Pα) holds, in terms of the d
-distance of log(q/p) to L∞.

Proposition 3.8 Let q ∈ E(p) and define

αp,q = inf{α > 1 : (Pα) holds}.

Then,

αp,q = 1 + min

{
d
,p

(
log

(
q

p

)
, L∞

)
, d
,q

(
log

(
q

p

)
, L∞

)}
. (8)

Proof By Lemma (3.7), we get

αp,q = inf{α > 1 : Eq

(
q

p

)± 1
α−1

< +∞,Ep

(
p

q

)± 1
α−1

< +∞}

= inf{α > 1 : Eq

(
e

1
α−1 | log q

p |)
< +∞, Ep

(
e

1
α−1 | log q

p |)
< +∞}.

By Theorem 2.8, we then deduce

αp,q = 1 + min

⎧⎨
⎩

1

aq
(
log q

p

) ,
1

ap
(
log q

p

)
⎫⎬
⎭

= 1 + min

{
d
,p

(
log

(
q

p

)
, L∞

)
, d
,q

(
log

(
q

p

)
, L∞

)}
.

�
In the next section, we will see that when q ∈ E(p), the distances d
,p and d
,q are

equivalent. So, from the proposition above we get that log q
p belongs to the closure in

L�1(p) = L�1(q) of L∞ if and only if αp,q = 1, which means that (Pα) holds for
all α > 1.

Remark 3.9 In the classical setting, it was shown (see [5]) that a locally integrable
function f on R

d belongs to the BMO-closure of L∞ if and only if both e f and e− f

satisfy the Muckenhoupt (Aα) condition for all α > 1:

sup
I

(
1

|I |
∫

I
e f dx

) (
1

|I |
∫

I
e− f

α−1 dx

)α−1

< +∞,

sup
I

(
1

|I |
∫

I
e− f dx

) (
1

|I |
∫

I
e

f
α−1 dx

)α−1

< +∞,
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where I denotes any cube in Rd and |I | its volume.
In the stochastic setting, a probabilistic analogue of the above result has been

obtained for continuous BMO-martingales (see [10]); specifically, a BMO-martingale
M = (Mt )0≤t≤∞ belongs to the BMO-closure of L∞ if and only if both E

(
eM∞|F·

)
andE

(
e−M∞|F·

)
satisfy the probabilistic version of theMuckenhoupt (Aα) condition,

for all α > 1:

sup
τ

∥∥E
(
eM∞|Fτ

)
E

(
e− M∞

α−1 |Fτ

)α−1 ∥∥∞ < +∞,

sup
τ

∥∥E
(
e−M∞|Fτ

)
E

(
e

M∞
α−1 |Fτ

)α−1 ∥∥∞ < +∞,

where τ denotes any stopping time for the filtration F . Observe that the class BMO
as well as (Aα) condition depends on the underlying probability. For τ = 0, (Aα)

implies

(A0
α) : E

(
e±M∞

)
< +∞, E

(
e± M∞

α−1

)
< +∞.

Thinking that the role of M∞ is played by log q
p , we immediately see that requesting

joint validity of (P2) and (Pα) means requesting the validity of (A0
α) with respect to

p and q

(P2) ∧ (Pα) ⇐⇒ (A0
α(p)) ∧ (A0

α(q)).

In particular, taking into account Remark 3.6, for 1 < α ≤ 2 it holds

(Pα) ⇐⇒ (A0
α(p)) ∧ (A0

α(q)).

4 Transformation of Norms by a Change of Law

Using essentially new computationswith inequalities, this section derives explicit con-
stants in the bounds between norms of equivalent Orlicz spaces. Since these constants
depend on the points, they can be viewed as a measure of distance between points in
the same maximal exponential model. Two applications of these bounds are proposed
in Sects 4.1 and 4.2. Specifically, concentration inequalities frequently appear in high-
dimensional probability and statistics ([26, 30]), but studies on the robustness of these
inequalities uniformly in bounded parts of the statistical model are still limited.

We first start by recalling the following result proved in Cena and Pistone [1].

Proposition 4.1 If the Orlicz spaces L�1(p) and L�1(q) are equal as sets, then their
Luxemburg norms ‖ · ‖�1,p and ‖ · ‖�1,q are equivalent.

The proof of the equivalence of norms is based on a standard argument for function
spaces, i.e., in proving that the identity map from L�1(p) to L�1(q) is an homeomor-
phism. In many statistical applications, however, it is crucial to know the constants
that this change of law yields on the norms. Theorem 4.2 provides an answer to this
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issue. It refers to the norm ‖ · ‖
, equivalent to ‖ · ‖�1 by (5), since it is more suitable
for applying the property (Pα) of the Portmanteau theorem.

Theorem 4.2 Let v ∈ L�1(p) = L�1(q). Then,

1. there exists α > 1 such that

c−1
α ‖v‖
,p ≤ ‖v‖
,q ≤ Cα‖v‖
,p, (9)

where

cα = α 2
α+1
α

(
Ep

(
p

q

) 1
α−1

) α−1
α

, Cα = α 2
α+1
α

(
Eq

(
q

p

) 1
α−1

) α−1
α

(10)

are constants independent of v;
2. it holds

c−1 ‖v‖
,p ≤ ‖v‖
,q ≤ C ‖v‖
,p, (11)

where
c = inf

α>1
cα, C = inf

α>1
Cα (12)

Proof For any γ > 0, using Hölder inequality with exponents α/(α − 1) and α we
have

Eq |v|k
k! ≤ 1

γ k
Eqe

γ |v| = 1

γ k
Eq

((
q

p

)1/α (
p

q

)1/α

eγ |v|
)

≤ 1

γ k

(
Eq

(
q

p

) 1
α−1

) α−1
α (

Epe
γα|v|) 1

α
.

Now, choosing γ > 0 so that γα‖v‖
,p < 1, e.g., γ = 1
2α‖v‖
,p

, by Lemma 2.7 we
deduce

Epe
γα|v| ≤ 1

1 − γα‖v‖
,p
= 2, (13)

and therefore

Eq |v|k
k! ≤ 2

1
α (2α)k‖v‖k
,p

(
Eq

(
q

p

) 1
α−1

) α−1
α

. (14)

By the first inequality of (Pα), for some α > 1 the mean value Eq (q/p)
1

α−1 is
finite. Taking into account the definition (4) of ‖ · ‖
,q , from (14) we deduce

‖v‖
,q = sup
k≥1

(
Eq

( |v|k
k!

))1/k

≤ 2α‖v‖
,p sup
k≥1

{
2

1
αk

(
Eq

(
q

p

) 1
α−1

) α−1
αk }

. (15)

123



2088 Journal of Theoretical Probability (2024) 37:2076–2096

Since the function x
α

α−1 is convex, by Jensen’s inequality Eq (q/p)
1

α−1 =
Ep (q/p)

α
α−1 ≥ 1. As a consequence, the supremum in (15) is obtained for k = 1.

The right-hand inequality in (9) then follows.
The left-hand inequality in (9) can be proved by inverting the role of p and q and by

exploiting the second inequality of (Pα). Finally, inequality (11) follows immediately
from (9). �
Remark 4.3 In the previous theorem, we have chosen γ > 0 such that γα‖v‖
,p =
1/2, which implies 1

1−γα‖v‖
,p
= 2. But any other γ > 0 could be chosen such that

γα‖v‖
,p < 1, and this means that in (10) any number strictly greater than 1 can
replace the number 2.

The following proposition is a probabilistic version of Gehring’s inequality (see

[2]) and gives conditions for an upper bound on Eq

(
q
p

) 1
α−1

or (inverting the role of

p and q) on Ep

(
p
q

) 1
α−1

.

Proposition 4.4 Let p, q ∈ P . Assume there exist two constants δ > 0 and c > 0 such
that

Eq

(
1{ qp >λ}

)
≤ cλEp

(
1{ qp >δλ}

)
, ∀ λ > 1. (16)

Then, there is α > 1 depending only on c, δ such that Eq(
q
p )

1
α−1 < +∞ and it holds

Eq

(
q

p

) 1
α−1 ≤ 2

1 − c

αδ
α

α−1

. (17)

Proof Wemay assume 0 < δ < 1. Define�δ(x) = xδ
x

x−1 on (1,+∞). It is a continu-
ous strictly increasing function such that limx→1+ �δ(x) = 0 and limx→+∞ �δ(x) =
+∞. Fix α > �−1

δ (c). Multiplying both sides of (16) by 1
α−1λ

1
α−1−1 and integrating

with respect to λ on the interval [1,+∞), we find

Eq

(
1{ qp >1}

((
q

p

) 1
α−1 − 1

))
≤ c

α
Ep

(
1{ qp >δ}

((
q

pδ

) α
α−1 − 1

))
. (18)

Since δ < 1, we have 1{ qp >δ} = 1{δ< q
p ≤1} + 1{ qp >1}. Thus, rearranging the terms in

(18), we get

(
1 − c

αδ
α

α−1

)
Eq

(
1{ qp >1}

(
q

p

) 1
α−1

)
≤

≤ Eq

(
1{ qp >1}

)
+ c

α
Ep

(
1{δ< q

p ≤1}

((
q

pδ

) α
α−1 − 1

))
≤ 1 + c

αδ
α

α−1
,
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from which we deduce

Eq

(
q

p

) 1
α−1 ≤ 1 + c

�δ(α)

1 − c
�δ(α)

+ Eq

(
1{ qp≤1}

(
q

p

) 1
α−1

)

≤ 1 + c
�δ(α)

1 − c
�δ(α)

+ 1 = 2

1 − c
�δ(α)

.

�
We immediately deduce the following result.

Corollary 4.5 Let p, q = eu−Kp(u) p ∈ P . Assume (16) holds true for δ = (
Epeu

)−1 ∈
(0, 1). We have:

1. There is α > max{1, c} which satisfies (17), and it holds K p(u) < α−1
α

ln α
c .

2. Any α > max{1, c} such that K p(u) < α−1
α

ln α
c satisfies (17).

The proof follows from inequality α > �−1
δ (c), with �δ(x) = xδ

x
x−1 and δ =(

Epeu
)−1.

Remark 4.6 Note that a sufficient condition for the validity of (16) is

Ep

(
1{ qp≥δλ}

)
≥ 1

cλ
, ∀ λ > 1.

Letting δ = (
Epeu

)−1 as in the corollary above, the inequality rewrites as
Ep

(
1{eu≥λ}

) ≥ 1
cλ , ∀ λ > 1.

4.1 Robust Transformation of Norms

In the following proposition, we prove some robust transformations of norms when q
varies in a subset of E(p).

Proposition 4.7 Given r < 1, consider the ballBr (p) =
{
u ∈ L�1

0 (p) : ‖u‖
,p ≤ r
}

and define

Er (p) =
{
q = eu−Kp(u) p : u ∈ Br (p)

}
⊆ E(p). (19)

Then,

1. for any v ∈ L�1(p) and α > 1
1−r

sup
q∈Er (p)

‖v‖
,q ≤ Cα,r‖v‖
,p, (20)

where

Cα,r = α 2
α+1
α

(
α − 1

α(1 − r) − 1

) α−1
α ; (21)
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2. for any v ∈ L�1(p) and α > 1 + r

c−1
α,r‖v‖
,p ≤ inf

q∈Er (p)
‖v‖
,q , (22)

where

cα,r = α 2
α+1
α

(
1

1 − r

) 1
α

(
α − 1

α − 1 − r

) α−1
α ; (23)

3. for any v ∈ L�1(p)

c−1
r ‖v‖
,p ≤ inf

q∈Er (p)
‖v‖
,q ≤ sup

q∈Er (p)
‖v‖
,q ≤ Cr‖v‖
,p, (24)

where

cr = inf
α>1+r

α 2
α+1
α

(
1

1 − r

) 1
α

(
α − 1

α − 1 − r

) α−1
α

,

Cr = inf
α> 1

1−r

α 2
α+1
α

(
α − 1

α(1 − r) − 1

) α−1
α

.

Proof We first observe that Er (p) ⊆ E(p) since Br (p) ⊆ ◦
dom Kp. In fact, if we take

u ∈ L�1
0 (p) such that ‖u‖
,p ≤ r < 1, by Lemma 2.7 we get e|u| ∈ L1+ε(p) for

any 0 < ε < 1 − r . The inclusion then follows since, from the equivalence between

1 and 6 of the Portmanteau theorem, u ∈ ◦
dom Kp if and only if u ∈ L�1

0 (p) and
eu ∈ L1+ε(p) for some ε > 0.

Since Kp(u) ≥ 0, we get

Eq

(
q

p

) 1
α−1 = Ep

(
q

p

) α
α−1 ≤ Ep e

α
α−1 u,

and, by Lemma 2.7, for α > 1 such that α
α−1‖u‖
,p < 1 we deduce

Cα = α 2
α+1
α

(
Eq

(
q

p

) 1
α−1

) α−1
α

≤ α 2
α+1
α

(
Ep e

α
α−1 u

) α−1
α

(25)

≤ α 2
α+1
α

(
1

1 − α
α−1‖u‖
,p

) α−1
α

For u ∈ Br (p) and α > 1
1−r , we then obtain

Cα ≤ Cα,r = α 2
α+1
α

(
1

1 − α
α−1 r

) α−1
α

.
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From the right-inequality in (9), we finally deduce (20) and, taking the infimum over
α > 1

1−r , we get the right-hand inequality in (24).
In order to prove (22), we start from the left-inequality in (9). Since

Ep

(
p

q

) 1
α−1 = Ep e

1
α−1 (−u+Kp(u)) = (

Ep e
u) 1

α−1 Ep e
−u
α−1 ,

again by Lemma 2.7, for α > 1 such that 1
α−1‖u‖
,p < 1 we deduce

cα = α 2
α+1
α

(
Ep

(
p

q

) 1
α−1

) α−1
α

= α 2
α+1
α

(
Ep e

u) 1
α

(
Ep e

−u
α−1

) α−1
α

(26)

≤ α 2
α+1
α

(
1

1 − ‖u‖
,p

) 1
α

(
1

1 − 1
α−1‖u‖
,p

) α−1
α

.

For u ∈ Br (p) and α > 1 + r , we then obtain

cα ≤ cα,r = α 2
α+1
α

(
1

1 − r

) 1
α

(
1

1 − 1
α−1r

) α−1
α

.

From the left-inequality in (9) we finally deduce (22) and, taking the infimum over
α > 1 + r , we get the left-hand inequality in (24). �
Remark 4.8 An equivalent condition to sub-exponentiality that we can add to Proposi-
tion 2.3 in the particular case of centered randomvariables u ∈ L�1

0 (p) is the following
(cf. [26]):

5. There exist a, b > 0such that Ep(eλ|u|) ≤ 2eaλ2 ,∀ 0 < λ ≤ 1
b .

The constants in the bound can be expressed in terms of the norm ‖ · ‖
,p as follows
(cf. [25]):

Ep(e
λ|u|) ≤ 2e

β
β−1 ‖u‖2
,pλ2 , ∀0 < λ ≤ 1

β‖u‖
,p
, (27)

where β is any number strictly greater than 1. By (25) and (26), we can then obtain
robust bounds for Cα and cα in exponential form.

Example 4.9 (The maximal exponential model with Gaussian weight; cf. [15, 25])
Let us consider the real Borel space (R,B) endowed with the probability measure P
associated with the standard Gaussian density

dP(x) = 1√
2π

e− 1
2 x

2
dx

and the Gaussian exponential Orlicz space L�1 = L�1(p), with p = 1.
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The Orlicz space L�1 trivially contains all second-order polynomials of the form
P(x) = a2x2 + a1x + a0.

For a centered polynomial P(x) ∈ L�1
0 , where a2 + a0 = 0, we get

‖P(x)‖
 ≤ |a2|‖x2‖
 + |a1|‖x‖
 + |a2| = 3|a2| +
√

2

π
|a1|. (28)

In fact, for k = 1, 2, . . .

E(x2k) = 1√
2π

∫ ∞

−∞
x2ke− 1

2 x
2
dx = 1 · 3 · 5 · · · (2k − 1),

and we can write

E(x2k)

k! = 1 · (2 − 1

2
) · (2 − 1

3
) · · · (2 − 1

k
).

The sequence
(
E(x2k )

k!
)1/k

is increasing, and it holds

‖x2‖
 = sup
k≥1

(
E(x2k)/k!

)1/k = 2.

In addition, for k = 1, 2, . . .

E(|x |k) = 2√
2π

∫ ∞

0
xke− 1

2 x
2
dx =

⎧
⎪⎪⎨
⎪⎪⎩

√
2
π

if k = 1√
2
π
(k − 1)(k − 3) · · · 2 · 1 if k ≥ 3, k odd

(k − 1)(k − 3) · · · 3 · 1 if k ≥ 2, k even

which implies

‖x‖
 = sup
k≥1

(
E(|x |k)/k!

)1/k =
√

2

π
.

By (28), the ball Br =
{
u ∈ L�1

0 : ‖u‖
 ≤ r
}
contains all polynomials P(x) =

a2x2 + a1x − a2 such that 3|a2| +
√

2
π

|a1| ≤ r .

More generally, L�1
0 also includes the functions u ∈ C2(R;R) having E(u) = 0

and bounded second derivative. In fact, for a suitable ξ ∈ R in a neighborhood of 0,
these functions can be written in the form

u(x) = u(0) + u
′
(0)x + 1

2
u

′′
(ξ)x2, (29)

with

u(0) = −1

2
E

(
u

′′
(ξ)x2

)
, |u ′′

(x)| ≤ c, ∀x ∈ R, (30)
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from which we deduce that

eP1(x) ≤ eu(x) ≤ eP2(x), ∀x ∈ R, (31)

for suitable second-order polynomials P1 and P2.
Since

‖u‖
 ≤ |u(0)| + |u ′
(0)|‖x‖
 + 1

2
‖u ′′

(ξ)x2‖
,

where |u(0)| ≤ 1

2
c, ‖x‖
 =

√
2
π
and ‖u ′′

(ξ)x2‖
 ≤ c‖x2‖
 = 2c, we deduce

‖u‖
 ≤ 3

2
c +

√
2

π
|u ′

(0)|.

This means that Br also contains the class of functions u defined by (29), (30) and

such that
3

2
c+

√
2
π

|u ′
(0)| ≤ r , and therefore, our results on the equivalence of norms

are robust with respect to all densities q ∝ eu obtained by varying u in this class of
functions.

4.2 Robust Concentration Inequalities

In the previous sections, we have seen that densities connected by an open exponential
arc produce the same Orlicz space with equivalent norms and we have explicitly stated
the related equivalence constants. In addition, a robust equivalence of norms has been
obtained when q varies in the subset Er (p) of the maximal exponential model. An
interesting application that we present in this section is to derive robust concentration
inequalities of Bernstein type.

We first recall some concentration inequalities of Bernstein type which hold true
for centered random variables belonging to the exponential Orlicz space (see, e.g.,
[25, 26]).

Proposition 4.10 Let v ∈ L�1
0 . Then, ∀t > 0 and for any β > 1,

P(|v| ≥ t) ≤ 2 exp

(
−min

{
t

2β‖v‖


t2

4 β
β−1‖v‖2


})
, (32)

P(|v| ≥ t) ≤ 2 exp

(
− t2

2‖v‖
(t + 2‖v‖
)

)
. (33)

Since sub-exponentiality is preserved by linear transformations, we can obtain
more general concentration inequalities for sums of independent random variables
(see [26]).

Due to the form of the concentration bounds, when q varies in Er (p) defined by
(19), the robust version of the concentration inequalities can be immediately stated as
in the following corollary.

123



2094 Journal of Theoretical Probability (2024) 37:2076–2096

Corollary 4.11 For a fixed p ∈ P , let v ∈ L�1(p). Then, ∀t > 0 and for any β > 1

sup
q∈Er (p)

Eq
(
1{|v−Eq (v)|≥t}

) ≤ 2 exp

(
−min

{
t

4αCr‖v‖
,p

t2

16 β
β−1C

2
r ‖v‖2
,p

})
,

(34)

sup
q∈Er (p)

Eq
(
1{|v−Eq (v)|≥t}

) ≤ 2 exp

(
− t2

4Cr‖v‖
,p
(
t + 4Cr‖v‖
,p

)
)

. (35)

Proof The proof follows the lines of some concentration inequalities stated in [25], so
we only sketch it. For t > 0 and for any β > 1, we can write

sup
q∈Er (p)

Eq
(
1{|v−Eq (v)|≥t}

) ≤ 2 exp

(
−min

{
t

2α Ñr (v)

t2

4 β
β−1 Ñ

2
r (v)

})
, (36)

sup
q∈Er (p)

Eq
(
1{|v−Eq (v)|≥t}

) ≤ 2 exp

(
− t2

2Ñr (v)
(
t + 2Ñr (v)

)
)

, (37)

where
Ñr (v) = sup

q∈Er (p)
‖v − Eq(v)‖
,q < ∞. (38)

Finally, by Proposition 4.7(3) we get

Ñr (v) ≤ sup
q∈Er (p)

‖v‖
,q + sup
q∈Er (p)

Eq(|v|) ≤ 2Cr‖v‖
,p.

�

5 Conclusion

The theoretical results of this paper first highlighted the link existing between the expo-
nentialOrlicz space and the space ofBMO functions.As a consequence, it was possible
to understand that the property (Pα) characterizing the maximal exponential model
is a sort of static Muckenhoupt property which holds simultaneously with respect to
two densities connected by an open exponential arc. This could help to understand
how to introduce time dependence in the study of maximal exponential models, which
is still an open issue. The explicit constants we obtained when changing the law of
Orlicz spaces centered at connected densities are one of the main contributions of the
paper. As an application, for random variables belonging to the exponential Orlicz
space we obtained concentration inequalities of Bernstein type robust with respect
to densities in an exponential subfamily. Their extension to sums of sub-exponential
random variables can be applied to derive uniform exponential bounds for the law of
large numbers.
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