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Abstract
Prestressing wire breakage induced by corrosion is hazardous, especially for
concrete structures subjected to severe aging factors, such as bridges. Devel-
oping an automated monitoring system for such a damage event is therefore
essential for ensuring structural integrity and preventing catastrophic failures. In
line with this target, a supervised deep learning–based approach is proposed to
detect and classify acoustic emissions released by prestressingwire breakage. The
application of advanced signal processing techniques is central to this study to
determine optimal model performance and accurately detect patterns of various
events. Diverse pretrained convolutional neural network (CNN) architectures
are explored and further enhanced by incorporating Bottleneck AttentionMech-
anisms to refine their performance capabilities. Additionally, a novel hybrid
model, AcousticNet, tailored for acoustic event classification in the context of
structural health monitoring, is developed. Themodels are trained and validated
using an extensive data set collected from controlled laboratory experiments and
in situ bridge monitoring scenarios, ensuring comprehensive adaptability and
generalizability. The comprehensive analysis highlights that the Xceptionmodel,
enhanced with a bottleneck module, and AcousticNet significantly outperform
other models in capturing intricate patterns within acoustic signals. Integrating
advancedCNNarchitectureswith signal processingmethodsmarks a substantial
advancement in the automated monitoring of prestressed concrete bridges.

1 INTRODUCTION

Bridges are substantial for having a seamless trans-
portation network and significantly impact economic
prosperity and social development. In the post–World
War II economic recovery and construction boom, road
networks were expanded, and various bridges were
built in developed countries. Many of these bridges are
reaching or surpassing their originally planned lifespans,
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sometimes exhibiting structural deterioration, that can be
insidiously hidden. Notable collapses, such as that of the
internationally renowned Polcevera Viaduct in Genova
(Italy), known as Ponte Morandi, which tragically claimed
43 lives (Fox et al., 2023), underscore the importance
of addressing aging of bridge infrastructures. A major
concern is the difficulty in detecting deterioration of
prestressed concrete structures, especially post-tensioned
ones, caused by corrosion of prestressing tendons
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(Li et al., 2011). This corrosion gets worsened by con-
struction defects, poor-quality materials, exposure to
environmental elements, and de-icing agents (Bassuoni
& Rahman, 2016; Zhutovsky & Douglas Hooton, 2017).
The inaccessibility of cables and the localized nature of
degradationmake it a formidable challenge to detect. Even
though the collapse of a bridge because of the breakage
of corroded prestressing tendons involves the progressive
breakage of several wires, the inability to detect such
warning signals makes the corrosion of prestressing cables
highly hazardous. Therefore, the need for comprehensive
monitoring and maintenance of these structures to ensure
their safety cannot be overstated.
Despite the fact that conventional damage detection

methods, such as visual inspection (Saleem et al., 2021),
acceleration-based modal identification (Avci et al., 2021),
and strain sensing (Zhu et al., 2022) are widely employed
for monitoring damages in concrete structures, they face
limitations in detecting interior defects, exhibiting min-
imal sensitivity to them. Visual inspection is a quick
and cost-effective nondestructive method used extensively
for detecting surface-level damages such as cracks and
spalling in concrete structures (Alani et al., 2014). Its
effectiveness, however, depends heavily on the exper-
tise of the operators, and it struggles to identify internal
defects. Although acceleration-based is commonly used to
detect damage by analyzing natural frequencies and mode
shapes, its sensitivity is limited in large concrete structures,
where even significant damage causes minimal changes in
natural frequencies (Cawley, 2018). Additionally, noise can
reduce the reliability of mode shape analysis, impacting
its effectiveness in extensive structural health monitoring
(SHM) applications. More advanced techniques such as
fiber optic sensing (Hampshire & Adeli, 2000) present a
promising alternative; however, its integration into exist-
ing bridges poses challenges and requires careful consider-
ation, structural modification, and technical and financial
complexities. Therefore, the urgent need for an innova-
tive and automated approach to detect wire breakage in
prestressed concrete bridges is evident.
This study aims to explore the potential of acoustic event

detection and classification (AE/DC) using ultrasonic
acoustic emission signals, which can provide a noninva-
sive and efficient solution specifically in the context of
prestressed concrete bridges. AE/DC involves precisely
detecting and categorizing specific acoustic signals based
on their intricate patterns. While AE/DC offers a robust
framework for event classification with proven applica-
tions in various fields, including surveillance systems
(Foggia et al., 2016), scene recognition (Chu et al., 2006),
speech recognition (McLoughlin et al., 2015), and acoustic
scene segmentation (Madhu & Kumaraswamy, 2023), its
potential within SHM has remained overlooked. Building

on prior work proposing a sound event detection approach
and artificial neural networks for wire breakage detection
(Farhadi, Corrado, et al., 2024), this study emphasizes the
need to overcome the ongoing challenge of understand-
ing AE signal characteristics. To achieve this, key features
must be extracted fromAE signals using various signal rep-
resentations, forming a crucial step for accurate analysis
and meaningful event classification. Despite the exten-
sive exploration of signal representations across various
fields, such as heart anomaly detection (Wang et al., 2023),
zone detection in electrical grids (Ardito et al., 2022), and
engine fault diagnosis classification (Ramteke et al., 2022),
their potential within the SHM domain using AE signals
remains underexplored.
Understanding the propagation characteristics of AE

signals poses a key challenge, particularly in distinguish-
ing meaningful data from unwanted signals. Features
extracted from 2D spectrograms have shown enhanced
acoustic scene classification compared to representations
derived from 1D signals, such as energy, time, and
frequency-based features (Mesaros et al., 2021). Exploring
AE signals across different classes through AE/DC can
enhance signal comprehension, event classification, and
automation processes in SHM. Although AE monitoring
is well established in various fields of structural engineer-
ing for early damage detection (Dubuc et al., 2021; Ma
& Wu, 2023), its application to detect prestressing wire
breakage is substantially challenging (Yuyama et al., 2007).
Wire breakage signals possess intricate and variable char-
acteristics influenced by material properties, leading to
complexities in consistent detection. Moreover, AE sig-
nals face attenuation, reflection, and scattering, especially
within concrete structures at frequencies above 20 kHz.
Therefore, in this study, diverse signal representations
were explored, including short-time Fourier transform
(STFT) spectrogram, log-STFT, Mel-frequency cepstral
coefficients (MFCC), persistence spectrogram (PS), and
Hilbert–Huang transform (HHT), to determine the most
effective visual representation of AE signals for the specific
task of event classification in prestressed concrete bridges.
An effective approach to discern intricate patterns

within signals involves advanced machine learning (ML)
techniques, specifically employing deep learning (DL)
models. Thesemodels can discern highly complex patterns
within the data, precisely classify the data into distinct
categories, and even predict future occurrences (Jordan
& Mitchell, 2015). In recent years, substantial advance-
ments in DL algorithms have been propelled by hardware
advancements and the availability of extensive training
data. These advancements have significantly expanded
the exploration and application of ML and DL models
across various scientific and engineering fields, including
lithological classification (Farhadi, Tatullo, et al., 2024),
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FARHADI et al. 3

acoustic scene classification (Zhang et al., 2020), and
health assessment (Giglioni et al., 2023). This list can be
extended to a more specific domain of multipoint deflec-
tion of large-span bridges (Yin et al., 2023), large-scale
SHM (Eltouny & Liang, 2023), vision-based monitoring of
structures (Gao et al., 2023), and health condition assess-
ment of structures (Rafiei & Adeli, 2018). Transfer learning
(TL) (Gao & Mosalam, 2018) is an advanced approach
enabling DL models to leverage knowledge gained from
solving one problem and apply it to a related but dis-
tinct problem. Utilizing pretrained models on the large
data set and fine-tuning them for the specific task of
event detection in prestressed concrete beams can enhance
the robustness and predictive capabilities of the mod-
els, ultimately accelerating the development of the event
classification model.
Themain original contributions of this study in the field

of wire breakage detection are: (1) collecting data through
laboratory tests and real-case scenarios, (2) introducing
an innovative approach for automated event detection
utilizing acoustic signals, (3) assessing diverse signal rep-
resentations, (4) utilization of different pretrained models
including VGG19, ResNet50, Inception, and Xception to
efficiently discern complex patterns within the signals, (5)
conducting an extensive comparative analysis of both indi-
vidual pretrained models and a customized hybrid model.
This analysis aims to provide valuable insights into their
performance across different signal representations, aiding
to identify the most effective model and representation for
event classification, (6) demonstrating exceptional event
detection performance without directly relying on conven-
tional parametric analysis. This provides a significant step
toward a more profound comprehension of wire breakage
event detection in structures.

2 METHODOLOGY

This section outlines the methodological framework for
the event detection task, which is structured to com-
prehensively explore signal representation and leverage
deep convolutional neural network (DCNN). Subsequent
subsections will provide a detailed explanation of each
component, offering a comprehensive insight into the
innovative approach proposed in this study.

2.1 Signal representations

In the domain of event classification, signal represen-
tations significantly influence model performance. The
accurate detection and classification of events rely heav-
ily on the model’s capacity to discern specific features and
patterns within these signals. This study comprehensively

explores various signal-to-image transformation methods,
namely, STFT, log-STFT, MFCC, PS, and HHT.

2.1.1 Short-time Fourier transform

The STFT spectrogram is a fundamental and widely used
signal representation, offering valuable insight into the
time-frequency characteristics of acoustic emission sig-
nals. The frequency domain of a signal can be represented
mathematically through the discrete Fourier transform
(DFT):

𝑋[𝑘] =

𝑁−1∑
𝑛=0

𝑥[𝑛]𝑒
−𝑖2𝜋𝑛𝑘

𝑁 0 ≤ 𝑘 ≤ 𝑁 − 1 (1)

where 𝑒
−𝑖2𝜋𝑛𝑘

𝑁 is the twiddle factor that introduces phase
shifts for each term in the summation, 𝑁 is the number
of points used to compute the DFT, 𝑋[𝑘] is the spectrum,
𝑥[𝑛] is the discrete signal, and 𝑛 represents the discrete
time index. The spectrum𝑋[𝑘] is𝑓𝑠-periodic,with𝑓𝑠 being
the sampling frequency. In practice, the STFT involves seg-
menting the signal into frames of a fixed length 𝑁 and
applying the DFT to each frame after applying a window
function 𝑤[𝑛] to attenuate discontinuities at the frame
boundaries:

𝑋[𝑡, 𝑘] =

𝑁−1∑
𝑛=0

𝑤[𝑛]𝑥[tH + 𝑛]𝑒
−𝑖2𝜋𝑘

𝑁 (2)

Here, 𝑋[𝑡, 𝑘] represents the STFT of the signal at time
frame t and frequency k,𝑤[𝑛] is the window function (e.g.,
Hamming, Hanning, or Blackman), 𝑥[tH + 𝑛] is the signal
in the 𝑡-th frame and 𝑘-th sample within the frame, and
𝐻 is the hope size. In general, the frames overlap, which
is achieved by choosing a hop size smaller than the frame
length. This overlap introduces statistical dependencies
between adjacent frames, resulting in a smoother STFT
representation. The STFT allows for defining the linear-
frequency spectrogram,which is a 2D representation of the
signal where the energy in each frequency band is given as
a function of time (Virtanen et al., 2018).

2.1.2 Mel-frequency cepstrum coefficients

MFCC is one of the most prevalent representations specif-
ically used in speech recognition, which can capture the
signal’s spectral envelope by extracting cepstral coeffi-
cients in a mel-frequency scale. The MFCC computation
involves several steps, including framing, windowing,
Fourier transform, mel-filterbank computation, and dis-
crete cosine transform (DCT) (Rao & Manjunath, 2017).
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4 FARHADI et al.

The Mel spectrum 𝑆[𝑚] is obtained by passing the DFT
magnitude spectrum 𝑋[𝑘] of Equation (1) through a set of
triangular Mel weighting filters:

𝑆[𝑚] =

𝑁−1∑
𝑘=0

[∣ 𝑋[𝑡, 𝑘]∣
2
𝐻𝑚[𝑘]]0 ≤ 𝑚 ≤ 𝑀 − 1 (3)

where𝑁 is the number of points used to compute the DFT,
𝐻𝑚[𝑘] is the weight given to the 𝑘-th energy spectrum bin
contributing to the𝑚-th Mel filter, computed as follows:

𝐻𝑚[𝑘] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 𝑘 < 𝑓(𝑚 − 1)

2(𝑘 − 𝑓(𝑚 − 1))

𝑓(𝑚) − 𝑓(𝑚 − 1)
𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

2(𝑓(𝑚 + 1) − 𝑘)

𝑓(𝑚 + 1) − 𝑓(𝑚)
𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)

0 𝑘 > 𝑓(𝑚 + 1)

(4)
The parameter 𝑓(𝑚) can be expressed as:

𝑓(𝑚) =

(
𝑁

𝑓

)
𝑓−1
𝑚𝑒𝑙

(
𝑓𝑚𝑒𝑙(𝑓𝑙) + 𝑚

𝑓𝑚𝑒𝑙(𝑓ℎ) − 𝑓𝑚𝑒𝑙(𝑓𝑙)

𝑀 + 1

)
(5)

where 𝑓𝑙 and 𝑓ℎ indicate the lowest and highest frequen-
cies, respectively. The transformation from the linear fre-
quency scale (in Hz) to the Mel scale can be approximated
using the following formula:

𝑓𝑚𝑒𝑙 =
1000

log(2)
log

(
1 +

𝑓

1000

)
(6)

The Mel spectrum 𝑆[𝑚] represents the energy distribu-
tion in the Mel-frequency scale. To compactly represent
this information and extract the essential features, the
inverse DCT or DCT-III should be applied as presented in
Equation (7), which is known as MFCC.

𝐶[𝑛] =

𝑀−1∑
𝑚=0

log(𝑆[𝑚]) cos

(
𝜋𝑛(𝑚 − 0.5)

𝑀

)
𝑛 = 0, 1, 2, … ,𝑀 − 1

(7)

here, 𝐶[𝑛] represents the 𝑛-th MFCC, and 𝑀 is the total
number of Mel bands, which correspond to the number of
Mel coefficients (Farhadi, Corrado, et al., 2024).

2.1.3 Persistence spectrum

The PS provides a clear view of frequency component
development and a profound understanding of the signal’s
power-frequency domain, also known as the spectrum
histogram. It is particularly effective for observing short

events and low-power signals. To extract the PS, first com-
pute the STFT of the signal (Equation (2)), then compute
the power spectrum of each segment using the following
equation:

𝑃[𝑡, 𝑘] = |𝑋[𝑡, 𝑘]|2 (8)

where 𝑋[𝑡, 𝑘] represents the STFT coefficients. Then, the
bivariate histogram is made using log(𝑃[𝑡, 𝑘]), providing
valuable information into power distribution across time
and frequency. The persistent information can be obtained
by summing the histogram for each time value:

𝐻[𝑖, 𝑗] =

𝑡𝑚𝑎𝑥∑
𝑡=0

log(𝑃[𝑡, 𝑘], 𝑖, 𝑗) (9)

where 𝐻[𝑖, 𝑗] is the accumulated histogram for each bin
(𝑖, 𝑗), the index 𝑖 corresponds to specific frequency bands,
and 𝑗 relates to ranges of the logarithm of power values.
Each bin (𝑖, 𝑗) accumulates the logarithmic power values
from all time frames 𝑡, thus summarizing how frequently
certain power levels occurwithin specific frequency ranges
throughout the signal (Kumbasar et al., 2022; Lee & Le,
2021).

2.1.4 Hilbert–Huang transform

The HHT, introduced by Huang et al. (1998), stands out as
a robust signal processing technique for analyzing nonlin-
ear and nonstationary signals. This method unfolds in two
principal stages: empirical mode decomposition (EMD)
and Hilbert transform (HT).

Empirical mode decomposition
The EMD or variational mode decomposition (VMD)
decomposes an original signal 𝑥(𝑡) into a finite num-
ber of intrinsic mode functions (IMFs), each representing
different frequency components. The decomposition is
expressed as:

𝑥(𝑡) =

𝑛∑
𝑘=1

ℎ𝑘(𝑡) + 𝑟𝑛(𝑡) 𝑛 = 0, 1, 2, … ,𝑁 (10)

where𝑛 represents the total number of IMFs,ℎ𝑘(𝑡) denotes
the 𝑘-th IMF, and 𝑟𝑛(𝑡) indicates the residue of the sig-
nal reconstruction after all IMFs have been extracted. Each
IMF, ℎ𝑘(𝑡), is derived through an iterative process called
sifting, which involves the following:

1. Identify the maxima and minima of the original signal
and fit smooth cubic spline curves, 𝑥𝑢(𝑡) for the upper
envelope and 𝑥𝑑(𝑡) for the lower envelope.
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FARHADI et al. 5

2. Calculate the mean of the upper and lower envelope,
representing the local mean of the signal and subtract-
ing it from the original signal to obtain the difference
𝑥1(𝑡) as follows:

𝑥1(𝑡) = 𝑥(𝑡) −
𝑥𝑢(𝑡) + 𝑥𝑑(𝑡)

2

3. Check if 𝑥1(𝑡) satisfies the two following conditions:
The number of extrema and zero crossing must be
either the same or differ by atmost one. Themean value
of the local maxima and local minima should be zero.
If 𝑥1(𝑡) satisfies the two conditions, then the 1-st IMF
ℎ1(𝑡) is found and a residual 𝑟1(𝑡) is calculated:

𝑟1(𝑡) = 𝑥(𝑡) − ℎ1(𝑡)

Otherwise, the steps should be repeated using 𝑥1(𝑡) as
the original signal to find the subsequent IMFs. The sift-
ing process stops when the residual becomes smaller
than a set threshold or becomes a nonoscillatory signal.

Hilbert transform
Each IMF is then subjected to the HT to determine its
instantaneous frequency and amplitude, essential for con-
structing the time-frequency-energy of the signal. For any
IMF, ℎ𝑘(𝑡), its HT is defined as follows:

𝐻[ℎ𝑘(𝑡)] =
1

𝜋
𝑃 ∫

∞

−∞

ℎ𝑘(𝜏)

𝑡 − 𝜏
𝑑𝜏 (11)

where P represents the Cauchy principal value, a mathe-
matical concept that highlights the local properties of the
signal. For each IMF, ℎ𝑘(𝑡), it computes the corresponding
analytic signal ℎ𝑎(𝑡) as follows:

ℎ𝑎(𝑡) = ℎ𝑘(𝑡) + 𝑖𝐻[ℎ𝑘(𝑡)] = 𝐴(𝑡)𝑒𝑖𝜃(𝑡) (12)

where i is the imaginary unit, 𝐴 and 𝜃 are instanta-
neous amplitude and instantaneous phase. Subsequently,
the instantaneous frequency𝜔 can be computed as follows:

𝜔(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
(13)

With amplitude and frequency varying over time, the
Hilbert spectrum𝐻(𝜔, 𝑡) can be represented as follows:

𝐻(𝜔, 𝑡) = Re
𝑛∑

𝑗=1

𝑎𝑗(𝑡)𝑒
𝑖 ∫ 𝜔𝑗(𝑡)𝑑𝑡 (14)

2.2 Deep neural networks

In this subsection, a comprehensive description of the
utilized models is provided, focusing on their develop-

ment and integration. Initially, the concept of TL is
introduced, which forms the foundational benchmark of
this study. The pretrained model leveraging a feature-
extraction approach was used, which was subsequently
enhanced with fine-tuning using the Bottleneck Atten-
tion Module (BAM) to refine their performance. At the
core of the study’s methodology is the deployment of
advanced DL models, including dilated convolutional net-
works, gated recurrent units, and multihead attention
mechanisms. These elements are combined to develop the
custom-designed AcousticNet model, which leverages the
strengths of each component to effectively address the
complexities of acoustic signal classification in SHM.

2.2.1 TL–based models

TL involves applying knowledge and information fromone
domain to solve problems in another related domain. Orig-
inated from educational psychology, Bray (1928), TL plays
a significant role in artificial intelligence, particularly in
computer vision domain. In TL, a model is initially trained
on a source data set. The unified definition of TL can be
stated as follows: Given a source domain 𝐷𝑠 with its asso-
ciated learning task 𝑇𝑠, a target domain 𝐷𝑡 associated with
its learning task 𝑇𝑡, the main objective of TL is to utilize
the knowledge derived from the source domain data 𝑋 to
learn a prediction function 𝑓𝑡(.)within𝐷𝑡 to minimize the
prediction risk, ensuring robust performance on the tar-
get domain data (Pan & Yang, 2010). There are two main
approaches to employ a pretrained model, namely, feature
extraction and fine-tuning (Chollet, 2018).

Feature extraction
Feature extraction involves using the knowledge from
pretrained models to extract valuable information and fea-
tures fromnew instances. These extracted features are then
processed by a different classifier trained from scratch. In
general, CNN models consist of two main parts: a convo-
lutional base consisting of convolutional, activation, and
pooling layers, and a densely connected classifier at the
end. During the feature extraction process, the convolu-
tional base is utilized to process the new data, followed
by training a new classifier on the output. The features
acquired through the convolutional base are generic, mak-
ing this part reusable. On the other hand, top layers (fully
connected layers) can learn a particular set of classes that
themodel was initially trained on and usually contain only
the information about the presence probability of the spe-
cific class, which makes them less adaptable for new tasks
particularlywhen the object locationmatters. Densely con-
nected layers in the classifier lack details about object
location and spatial characteristics and eliminate spatial
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6 FARHADI et al.

details. The benefit of using feature extraction in TL is that
it drastically reduces the epochs and training time due to
the reuse of already extracted features.

Fine-tuning
This approach is complementary to feature extraction.
It unfreezes a few of the top layers that were previ-
ously frozen on the convolutional base part (used for
feature extraction) and trains both top layers and newly
added classifiers (fully connected layers). In the tuning
approach, more abstract representations of the models
become adjusted to align them better with the specific task
being addressed. The reason for selecting unfreezing layers
lies in the nature of the features encoded by these lay-
ers. As mentioned earlier, the lower layers extract generic
features, making them suitable for reuse. Conversely, the
top layers encode more specific features, making them
valuable for fine-tuning the new target domains.

2.2.2 Bottleneck attention module

TheBAM is a novel attentionmechanismproposed by Park
et al. (2018). BAM is a simple and effective attentionmech-
anism that enhances feature representation in DL models
through channel and spatial attention.

Channel attention
The channel attention mechanism exploits informative
feature responses within a feature map (𝐹). This process
begins by applying global average pooling (GAP) on the
𝐹 and producing a channel vector, which encodes global
information in each channel. The channel vector can be
represented as follows:

𝐶𝐻𝑣 = GAP(𝐹) (15)

Here,𝐶𝐻𝑣 ∈ ℝ𝑐×1×1, and 𝑐 represents the number of chan-
nels. To compute channel-wise attention from 𝐶𝐻𝑣, a
multilayer perceptron (MLP) with one hidden layer is
needed to be utilized. The dimension of this hidden acti-
vation within the MLP is constrained to ℝ

𝑐

𝑟
×1×1, where 𝑟

is the reduction ratio. Mathematically, the MLP operation
for channel attention can be represented as:

MLP = 𝑤1(ReLU(𝑤0) + 𝑏0) + 𝑏1 (16)

where 𝑤0 ∈ ℝ
𝑐

𝑟
×𝑐, 𝑏0 ∈ ℝ

𝑐

𝑟 , 𝑤1 ∈ ℝ
𝑐×

𝑐

𝑟 , and 𝑏1 ∈ ℝ𝑐. The
output of MLP represents the attention weights for each
channel. The final channel attention can be represented as
follows:

𝑀𝑐(𝐹) = BatchNormalization(MLP) (17)

Spatial attention
The spatial attention module generates attention maps
emphasizing specific informative features in various spa-
tial locations. By employing dilated convolutions, the
module effectively enlarges the receptive field, leveraging
contextual information to understand the input com-
prehensively. In the initial step of this module, a 1 × 1

convolution is applied to integrate and compress the 𝐹

across the channel dimension (𝐹1×1
integrated). Then, two 3 ×

3 dilated convolutions are applied to obtain contextual
information (𝐹3×3

contextual). Subsequently, the feature maps
are reduced to ℝ1×𝐻×𝑊 using another 1 × 1 convolutions
(𝐹1×1

compress). Like channel attention, the feature maps are
further adjusted in scale using batch normalization:

𝑀𝑠(𝐹) = BatchNormalization(𝐹1×1
compress) (18)

Combining attention outputs
After computing the individual attention maps from the
channel attention module 𝑀𝑐(𝐹) and spatial attention
module 𝑀𝑠(𝐹), they are integrated through element-wise
summation to create the final 3D attention map𝑀(𝐹). To
refine and normalize the attention distribution, a sigmoid
function is applied to the element-wise summation, result-
ing in the final feature map𝑀(𝐹), which is expressed as:

𝑀(𝐹) = sigmoid(𝑀𝑐(𝐹) ⊕𝑀𝑠(𝐹)) (19)

To enhance the original input features, 𝑀(𝐹) is then
element-wise multiplied with the original input feature
map and added to it to obtain the final featuremap 𝐹refined,
which can be expressed mathematically as:

𝐹refined = 𝐹 + (𝐹 ⊗𝑀(𝐹)) (20)

2.2.3 Dilated convolutional neural network
(dilated CNN)

CNNs have been involved extensively in advancing DL
within different domains of computer vision. They have
proven highly effective in various tasks, such as image
classification, object detection, and image processing.
However, conventional CNNs cannot capture large recep-
tive fields without significantly increasing the network’s
size and parameters. Although increasing the kernel size
and receptive field can lead to extracting more informative
features, it also increases computational complexity and
resource requirements. To address this issue, dilated CNNs
introduced by Yu and Koltun (2015) provide a solution that
increases the receptive field without enlarging the kernel
size. Dilated CNN is a beneficial technique for capturing
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FARHADI et al. 7

multiscale contextual information while maintaining the
integrity of high-resolution details. This method can build
expanded feature maps with informative spatial data. The
operation of a 2D dilated convolution can be expressed as
follows (Zhang and Chen, 2018):

𝑦 =

𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑥(𝑚 + 𝑟 × 𝑖, 𝑛 + 𝑟 × 𝑗)𝜔(𝑖, 𝑗) (21)

where 𝑥 and 𝑦 are input and output, respectively, 𝑟 is the
dilated rate, which determines the spacing between sam-
pled values and can be adjusted to control the degree of
expansion of the receptive field, and 𝜔 is the filter. When
𝑟 = 1, it corresponds to the standard (nondilated) convolu-
tion.

2.2.4 Gated recurrent unit (GRU)

GRU is a recent successful variant of recurrent neural net-
work (RNN) architecture that was initially proposed by
Cho et al. (2014). GRU facilitates sequential data modeling
by effectively mitigating the vanishing gradient problem
and capturing long-term dependencies of different time
scales. It is a simplified version of the long short-term
memory (LSTM) network by utilizing a single reset gate
(Chung et al., 2014).
At each time step 𝑡, the activation (hidden state) ℎ𝑡 is

determined through a linear interpolation process. It is
computed as a weighted average of the previous activation
ℎ𝑡−1 and the candidate activation 𝑔𝑡:

ℎ𝑡 = (1 − 𝑧𝑡) ⊗ ℎ𝑡−1 + 𝑧𝑡 ⊗ 𝑔𝑡 (22)

where⊗ refers to element-wise multiplication, 𝑧𝑡 denotes
the update gate, which decides how much the unit should
update its activation or content. The 𝑧𝑡 is computed as
follows:

𝑧𝑡 = 𝜎
(
𝑤
⊺
𝑥𝑧 ⋅ 𝑥𝑡 + 𝑤

⊺

ℎ𝑧
⋅ ℎ𝑡−1 + 𝑏𝑧

)
(23)

here,𝑤𝑥𝑧 and𝑤ℎ𝑧 are theweightmatrices for the input and
hidden states, respectively, 𝑥𝑡 is the input, 𝑏𝑧 is the bias
vector. The update gate in GRU simultaneously performs
the role of the input and output gates in LSTM. The sig-
moid function (𝜎) scales 𝑧𝑡 to a range of values between 0
and 1, determining howmuch of ℎ𝑡−1 should be retained or
how much of 𝑔𝑡 can be adopted. The update gate controls
the flow of information from the previous hidden state to
the current hidden state.

F IGURE 1 Architecture of a gated recurrent unit (GRU).

The candidate activation 𝑔𝑡 can be computed similarly
to the hidden state in conventional RNN as follows:

𝑔𝑡 = tanh
(
𝑤
⊺
𝑥𝑔 ⋅ 𝑥𝑡 + 𝑤

⊺

ℎ𝑔
⋅ (𝑟𝑡 ⊗ ℎ𝑡−1) + 𝑏𝑔

)
(24)

here 𝑟𝑡 is the reset gate that can be computed akin to the
update gate as:

𝑟𝑡 = 𝜎
(
𝑤
⊺
𝑥𝑟 ⋅ 𝑥𝑡 + 𝑤

⊺

ℎ𝑟
⋅ ℎ𝑡−1 + 𝑏𝑟

)
(25)

𝑟𝑡 decides how much of the hidden state to retain from
the previous time step for a matrix-based update. Figure 1
illustrates the GRU architecture.

2.2.5 Multihead attention mechanism

The attention function is a promising mechanism that
maps a query, a set of key-value pairs, to produce an
output. All the elements—query (𝑄), keys (𝐾), value
(𝑉), outputs—are represented as vectors. The output is
computed through a weighted sum of values, and each
value’s weight is computed based on a compatibility
function between the query and its corresponding key.
In the context of a single-head attention mechanism, an
attention score is computed for each element in the input
sequence, indicating their relevance to the query. The two
most common attention functions are additive attention
(Bahdanau et al., 2014) and multiplicative (dot-product)
attention (Luong et al., 2015). While both functions are
similar in terms of theoretical complexity, the multiplica-
tive attention mechanism indicates significantly faster
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8 FARHADI et al.

and becomes more space-efficient. The attention score
can be computed as follows:

Attention(𝑄, 𝑉, 𝐾) = Softmax

(
𝑄 ⋅ 𝐾⊺√

𝑑𝑘

)
𝑉 (26)

Here, 𝑑𝑘 represents the key vector dimension, and the
Softmax operation ensures that the attention scores sumup
to 1, providing a probability distribution over the elements
in the sequence. The scaling factor 1√

𝑑𝑘
is employed to

normalize the dot product, mitigating the potential magni-
fication effect and excessively small gradients encountered
when applying the Softmax function.
Themultihead attentionmechanism, first introduced in

the paper “Attention is all you need” (Vaswani et al., 2017)
in the proposed transformer model, employs linear trans-
formation of the query (𝑄), key (𝐾), and value (𝑉) with
𝑑𝑞, 𝑑𝑘, and 𝑑𝑣 dimensions, respectively. This is performed
ℎ times instead of relying on a single attention function.
The multihead attention mechanism computes the atten-
tion for each head and then concatenates the results. This
allows the model to focus on distinct aspects of the input
sequence. Themathematical expression of thismechanism
can be represented as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑒𝑎𝑑1, … ,𝐻𝑒𝑎𝑑ℎ).𝑊
𝑂

(27)

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(
𝑄𝑊𝑖

𝑄, 𝐾𝑊𝑖
𝐾, 𝑉𝑊𝑖

𝑉) (28)

𝐻𝑒𝑎𝑑𝑖 denotes the output of the 𝑖-th attention head, ℎ
signifies the number of attention heads, and 𝑊𝑂 repre-
sents the learnable output weight matrix. Each attention
head functions independently, capturing different aspects
of the input sequence. The final output is achieved by
concatenating the outputs of all attention heads and lin-
early transforming them using the output weight matrix
𝑊𝑂. The multihead attention mechanism is a powerful
way to learn about complex dependencies and relation-
ships between sequences, which makes it an essential
part of many DL tasks. This mechanism is integrated into
the proposed customized model following the GRU lay-
ers, which ultimately enhances the model’s robustness in
understanding data complexity and improves the model’s
generalization ability.

3 DATA ACQUISITION AND PROBLEM
CONTEXT

This section highlights two distinct data acquisition path-
ways, including controlled laboratory experiments and
field tests from a few bridges in Italy.

3.1 Data collection from laboratory tests

Laboratory tests were carried out on prestressed concrete
poles, such as those often used in agricultural fields. Hav-
ing a length of 2.8 m, a cross-section of 11×11 cm, and being
made of high-strength concrete, they can be scaled-down
models of prestressed concrete beams. Each specimen fea-
tures four twisted prestressed tendons containing three
wires, 12 wires in total. The diameter of a single wire is 2.25
mm. The alignment between laboratory and real-world
conditions is crucial to secure robust and reliable experi-
mental tests (see Figure 2). The AE signals were acquired
using a MISTRAS Sensor Highway III system, which is
considered cutting-edge instrumentation. The system was
equipped with two resonant sensors from the PK family,
designed for a medium frequency range, that is, between
20 and 500 kHz. The sensors feature an integrated, ultra-
low noise, low power, and filtered preamplifier that offers
a 26 dB amplification. The AE signals were captured with
an acquisition rate of 500 kHz, while the duration of each
recorded signal was set to 0.01433 s. In order to mitigate
unwanted and irrelevant signals during data acquisition,
an optimal triggering threshold, variable between 60 and
75 dB depending on the sensor-to-source distance, was set
on amplitudes. One sensor was positioned at the center of
the specimen, capturing the signals originating close to the
event’s occurrence, while the other was installed farther
from the event. This setup not only enables the acquisition
of a large set of breakage events (impossible in real bridges)
and a comprehensive understanding of signal characteris-
tics but also facilitates the exploration of the attenuation
behavior of the events, contributing to highly reliable and
variegated data, which directly impact the generalization
ability of the models.
Four classes of events were collected, including wire

breakage, ambient noise, drilling, and hammering. To
collect the wire breakage events, the cross-section of
wires was cut with an electric trimmer until generating a
spontaneous tensile breaking. This test aims to simulate
the critical event of wire breakage, which commonly
happens in prestressed concrete beams due to factors such
as corrosion. The ambient noise signals were collected
because of operational noise that could occur before
or during the tests. The drilling signals were collected
to mimic potentially destructive activities on or close
to the bridge structures. Ultimately, hammering tests
were performed to replicate the impacts originating from
maintenance activities or on bridge joints between spans.
These varied test categories provide a comprehensive
data set and lead to the understanding of the acoustic
characteristics of various events, which is substantial for
developing a robust monitoring system for early event
detection.
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FARHADI et al. 9

F IGURE 2 (a) Laboratory test setup featuring a prestressed concrete beam; (b) sensor placement on the surface of the concrete beam
during laboratory tests; (c) close-up perspective capturing the wire breakage; (d) panoramic view of the Peticcio bridge; (e) positioning of
sensors on the Peticcio bridge.

3.2 Data collection from Italian bridges

A real-world data set was collected from different Italian
bridges: Alveo Vecchio, located on the A16 Napoli–Canosa
highway; Ansa del Tevere on the A91 Roma–Fiumicino
highway; two viaducts on the SS4 national road; Pesco di
Faggio on the SS212, and Peticcio on the SS16. Although
the six bridges have different geometric features andmate-
rial properties, they have a common structural arrange-
ment. They consist of longitudinal prestressed reinforced
concrete I-girders with a cast-inplace deck slab; the lon-
gitudinal girders are connected by cross beams. I-girders
are prestressed by post-tensioned cables placed in grouted
corrugated metallic sheaths.
Wire breakage in real bridges was triggered the same

way as in laboratory tests, and acoustic emissions were
recorded with the same system and configuration parame-
ters to maintain methodological consistency. The acquisi-
tion sensors were installed at different distances from the
point of event occurrence to include the effect of the signal
attenuation in the study. The recorded signals were cate-
gorized into two distinct classes of events: wire breakage
and ambient noise. In the case of Alveo Vecchio and Ansa
del Tevere bridge, eight sensors were installed, whereas
two sensors were installed in the remaining bridges. The
methodological consistency guarantees that the signal

characteristics observed in the laboratory can be directly
comparedwith those from real-world scenarios, although a
few differences emerge. First, signals from laboratory tests
have more echo because of a smaller sample dimension.
Anyway, echo is not an issue for event detection and classi-
fication because, even if it has lower amplitudes, it mainly
replicates the pattern of the original signal. Another com-
mon difference is that the in situ data collection provides
a more heterogeneous set of signals, especially concerning
the amplitudes. However, even this feature does not affect
much the performance of the models, which are trained
to recognize the pattern within images rather than the
intensity of the image’s pixels.
The data set collected through on-site experimental tests

was used to test and evaluate the robustness of the trained
models rigorously. This evaluation can enhance under-
standing of the model’s generalization capabilities under
various conditions and contribute to developing a more
reliable SHM approach.

4 EXPERIMENT AND ANALYSIS

The experiments and analyses were conducted on two
workstations equipped with an NVIDIA Tesla P40 (24 GB
memory) and RTX A6000 (48 GB memory). These GPUs
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10 FARHADI et al.

accelerate CNN training extensively, ensuring an efficient
and reasonable time frame. For the customized model
usingGPU, each epoch requires 5–15 s based on the applied
model. Additionally, the hardware system features two
Intel XenonCPUswith 16 cores each and 128GBRAM, pro-
viding appropriate computational power for the research
objectives. The DLmodels were developed using the Keras
library high-level neural network API on the TensorFlow
2.0 framework. Python 3.9 was used as a programming
language, taking advantage of its rich library ecosystem
for scientific computing. The workstations operated on
Windows Server 2019, leveraging CUDA Toolkit 11.2 and
cuDNN8.0 for GPU acceleration.

4.1 Data preparation and augmentation

Acquiring large amounts of data for wire breakage from
existing bridges is challenging without decreasing their
safety and load-bearing capacity. Such an activity is, there-
fore, limited to structures undergoing dismantling. To
overcome this limitation, this study incorporated data
from both controlled laboratory tests and real-world bridge
monitoring. The laboratory tests were carried out on six
prestressed concrete beams, providing 115 samples for wire
breakage, 82 for ambient noise, 120 for drilling, and 120
for hammering. Additionally, the data set from real bridges
includes 286 acoustic signals, consisting of 145 samples for
wire breakage and 141 for ambient noise. The collection
of laboratory and real-world data enriches the available
data set, enhancing the robustness and applicability of
the research. It is important to emphasize that the real-
world data were utilized solely as an independent test
set. This approach allowed us to rigorously evaluate the
trained models’ robustness and their generalization abil-
ity in real-case scenarios, thereby enhancing the reliability
and applicability of the research outcomes. Figure 3 shows
the signal time-domain for the four considered classes
of events.
The parameters involved in training DL models are

notably extensive; therefore, a substantial amount of data
for each event is required to build a model that can gener-
alize effectively across various real-world scenarios (Taka-
hashi et al., 2016). Therefore, data augmentation (DA)
approachesmust be applied. A broad range of available DA
methods includes jittering, time-stretching, time-warping
(Iwana & Uchida, 2021), and mixup for addressing com-
plex scenarios. In this study, considering the fundamental
physics of the acoustic signal, themixup technique (Zhang
et al., 2017) was used. It is important to emphasize that
the mixup augmentation technique was applied to the
training data set after splitting the original laboratory data
set. This strategy is considered to prevent data leakage

F IGURE 3 Time-domain signal representation for different
events: (a) wire breakage, (b) drilling, (c) hammering, (d)
environmental noise.

during the augmentation and subsequent model training
phases. This technique involves generating new training
data by linearly interpolating existing data. Following the
outlined procedure, the final training data set emerges
as an extensive collection of acoustic signals containing
992 wire breakage, 995 drillings, 991 hammering, and 942
ambient noise for each representation. To build this exten-
sive study, a data set of substantial size (40,000 images
in total) was generated and utilized for both training and
testing the models. This involved the development of DL
models, each tailored for five unique spectrograms, with
consideration for two different window sizes (128 and 256)
in each case.

4.2 Signal processing

Five signal representations–STFT, log-STFT, MFCC, PS,
and HHT—were selected for their distinct abilities to cap-
ture different aspects of acoustic events. These methods
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FARHADI et al. 11

F IGURE 4 Wire breakage signal representations with window size of 128: (a) time-domain waveform, (b) short-time Fourier transform
(STFT) spectrogram, (c) log-STFT spectrogram, (d) Mel-frequency cepstral coefficients (MFCC), (e) persistence spectrogram, (f)
Hilbert–Huang transform.

enhance the understanding of acoustic events in pre-
stressed concrete beams and enrich the feature space for
robust event classification. Specific details of the signal
analysis are discussed below.
The STFT application effectively captures the frequency

content of event signals across time. This process enables
a detailed examination of how different frequencies con-
tribute to the dynamic characteristics of the signal. Uti-
lizing the Hann window function with two distinct sizes
(128 and 256 samples) facilitates a comprehensive analy-
sis of the diverse frequency contributions to the signal’s
overall behavior. The deliberate selection of two win-
dow sizes covers a dual purpose: It provides versatility
in capturing broader temporal features, and it allows for
a robust comparison of the influence of this parameter
on model learning. Additionally, a 50% overlap (hop size)
was incorporated, ensuring continuity in the analysis, pre-
venting information loss between adjacent frames, and
enhancing the robust representation of signal dynamics.
As a result of these considerations, the STFT analysis
yields signal shapes of (111, 128) and (55, 256) for 128

and 256 frame sizes, respectively. In Figure 4b, the STFT
spectrogram transformed from a wire breakage event is
illustrated.
The log-frequency spectrogram is utilized to redefine the

frequency axis to correspond to the logarithmically spaced
frequency distribution of the equal-tempered scale. The
log-spectrogram retains the advantages of the spectrogram
while offering improved spectral clarity. This representa-
tion is particularly valuable for detecting subtle changes
in the frequency components of acoustic emission sig-
nals, which can be beneficial for wire breakage detection.
Figure 4c showcases the log-STFT spectrogram derived
from a wire breakage event.
The MFCC extracted discriminative features from the

events utilizing a triangular filter bank configured with
64 filters for the 128 window size and 128 filters for the
256 window size. The implication of the triangular filter
bank leads to capturing frequency contents considering
the human auditory perception. One notable strength of
MFCC is its robustness to noise and environmental vari-
ability, making it a reliable choice for discerning variations
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12 FARHADI et al.

and patterns in complex acoustic signals. This feature
extraction aimed to represent the signals more compactly
and informatively, focusing on assessing their impact on
the model’s performance. Visualizing theMFCC enhances
the comprehension of dominant frequency components
and their temporal variations. Figure 4d illustrates the
MFCC representation of the wire breakage event.
During the data acquisition, there is always the possibil-

ity of existing random and abnormal frequencies, which
pose a challenge to the event classification task, mainly
when these frequencies exhibit low amplitude. To address
this, the PS approach was utilized for 128 and 256 window
sizes, resulting in dimensions of (111, 65) and (129, 55),
respectively. The application of PS offers a unique advan-
tage by representing multiple overlapping spectra rather
than a singular line. The overlapping features provide
a richer representation, revealing patterns often hidden
when using other methods. The spectrum with more fre-
quent spectral passages in these figures represents higher
spectral density. This specific representation provides a
detailed understanding of the temporal evolution of the
topological features and addresses the intricate pattern
arising from the coexistence of random and abnormal
frequencies. Figure 4e shows the PS representation of the
wire breakage event.
HHT-specific strengths lie in capturing nonstationary

and nonlinear signal behaviors, shedding light on how sig-
nal energy evolves. Applying EMD within HHT without
relying on predefined assumptions enables the extraction
of localized features within the signal—an essential aspect
in event detection. HHT adopts a data-driven and non-
parametric approach, preserving signal energy without
assuming prior knowledge, in contrast to methods like
Fourier analysis, which assumes a periodic and station-
ary signal. The adoption of two different window sizes in
HHT transforms their effect on the kernel and smooths
the signal through the determination of the moving aver-
age filter size. Each IMF, derived from the EMD algorithm,
highlights distinct frequency components, enabling the
analysis of how these frequencies contribute to the sig-
nal over time. This approach provides valuable insights
into the time-frequency distribution of the signal. Figure 4f
shows the HHT representation of the wire breakage event.
The representations discussed are foundational ele-

ments and are employed as essential input features for the
proposed DL models.

4.3 Model development and training

4.3.1 Model architecture

The pretrained models were trained on ImageNet, one of
the largest data sets for image classification and recog-

TABLE 1 Metrics overview of pretrained convolutional neural
network models.

Models
Size
(MB)

Top-1
accuracy (%)

Top-5
accuracy (%)

Parameters
(𝑴)

VGG19 549 71.30 90.00 143.7
Inception 92 77.90 93.70 23.9
ResNet50 98 76.00 93.00 25.6
Xception 88 79.00 94.50 22.9

nition tasks, offering a vast collection of diverse images.
The extensive diversity of ImageNet, especially textured
images, aligns with the intricate patterns of signal repre-
sentations.
In this study, an extensive pretrained approach was

employed using some of the most successful pretrained
CNN architectures by Keras, including VGG19 (2014),
Inception (2015), ResNet50 (2015), and Xception (2016).
The selection of these architectures was precisely based
on their unique design, ensuring a diverse approach for
a comprehensive exploration of their efficacy in the spe-
cific task of event classification. Moreover, these models
have shown remarkable performance on various image
classification tasks and proved their reliability in TL sce-
narios. Each model has unique features that might benefit
the event classification task differently. VGG19 is known
for its simplicity, and it has a straightforward architec-
ture that serves as a valuable baseline, offering insights
for comparison with more complex models. Inception is
characterized by modules employing various kernel sizes
within the same layer; it enables capturing features at dif-
ferent scales, which helps to discern intricate patterns.
ResNet50 is recognized for implementing skip or short-
cut connections and facilitating effective training of deeper
networks. Xception, a variant of GoogleNet, stands out
with its depthwise separable convolutional layer, reducing
computational complexity. Table 1 represents an overview
of the selected pretrainedmodel. In this table, “Top-1 accu-
racy” represents the percentage of instances where the
model correctly predicted the correct label with the highest
probability and “Top-5 accuracy” indicates the percentage
of instances where the true label was among the top five
predictions made by the model.
In this study, the feature extraction approach was uti-

lized during the TL process. The lower layers, which have
acquired generic features from pretraining, were frozen
to retain their learned knowledge, including weights and
biases. In contrast, the top layer was fine-tuned to bet-
ter adapt the model to the specific requirements of the
event classification tasks by adding two fully connected
layers with 128 units. Furthermore, a dropout regulariza-
tion layer with a 0.2 dropout rate was incorporated to
enhance the model performance. This approach was con-
sistently applied to all pretrained models, ensuring a fair
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FARHADI et al. 13

F IGURE 5 Architecture of the proposed customized model (AcousticNet).

and consistent comparison across the board. Sparse cate-
gorical crossentropy was chosen as the loss function for
its suitability in classification tasks where each instance
belongs to a single class.
The BAM was integrated into pretrained models to

enhance their performance. This integration stems from
the capability of the attention mechanism to enhance the
model’s focus on critical regions within the input data.
BAM introduces a selective attention mechanism, allow-
ing the model to dynamically weigh the importance of
different spatial locations in the feature maps. This can
play a key role in capturing intricate patterns and features
within the signal representations, as it causes the model to
prioritize information that is most relevant to the classifi-
cation task. As recommended in the literature, the BAM
block should be placed after the bottleneck blocks. These
blocks are composed of a series of convolutional layers
that refine the feature maps by reducing their spatial res-
olution while increasing depth. In this study, BAM was
strategically placed following the last building block in the
proposed pretrained models before the CNN output. The
processed feature map from the BAM layer is then effi-
ciently passed on to a subsequent MaxPooling layer. This
setup allows for a comparative analysis of the impact of the
BAM layer onmodel performance. The integration of BAM
is tailored to avoid unnecessary memory or computational
overhead, ensuring the efficiency of the architecture. Two
hyperparameters are considered to optimize the BAM per-
formance: reduction ratio and dilation rate, which are set
to 16 and 4, respectively, as introduced in the original BAM
research paper.
To further tailor the proposed approach for AE/DC, a

customized hybrid model (AcousticNet) was designed to
capture intricate patterns present in signal representations.
This model integrates a combination of architectural ele-
ments to ensure the effective extraction of both spatial

and temporal features. As depicted in Figure 5, the initial
layer comprises a convolutional layer coupled with max-
pooling layers, leveraging CNNs’ well-known efficiency
in extracting features from spatial data such as signal
spectrograms. These layers excel at recognizing complex
patterns, including edges and shapes, crucial for precise
feature extraction. The subsequent layer introduces a sec-
ond convolutional layer without pooling, followed by a
third convolutional layer that incorporates max-pooling,
boosting the model’s capacity to discern textural features.
Notably, all convolutional layers employ a kernel size of
3, optimizing their receptive fields for hierarchical rep-
resentation of sequences, which, unlike RNNs, do not
depend on previous step computations. This allows for the
parallelization of processing, significantly enhancing com-
putational efficiency. To further make the model robust in
capturing detailed spatial patterns in the acoustic signals,
three parallel dilated convolutional layers with a kernel
size of 5 are used. Following this, two bidirectional gated
recurrent units (BiGRUs) are strategically positioned to
learn temporal dependencies present in the acoustic sig-
nals. Amultihead attentionmechanismwith eight parallel
attention layers is then incorporated into themodel’s archi-
tecture to focus on specific patterns within the signal,
enhancing the model’s ability to handle long-range depen-
dencies with high parallelizability, similar to transformers.
The subsequent layers include dense layers, utilized for
feature aggregation, ending in the final classification layer.
Careful consideration of hyperparameters, including the
number of filters, kernel sizes, and attention mechanism
parameters, such as the reduction ratio and dilation rate,
was undertaken to balance computational efficiency and
the capture of relevant information. The model output
employs a softmax activation function, facilitating mul-
ticlass classification and providing probabilities for each
event category.
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14 FARHADI et al.

TABLE 2 Summary of training parameters and configurations.

Parameter Optimal value Range
Data set split Training: 65%, Validation: 15%, Test: 20% −

Cross-validator Stratified ShuffleSplit, 10-fold −

Learning rate (initial) 5e-5 1e-3 to 1e-8
Learning rate adjustments Factor: 0.15, Patience: 5 Factor: 0.1 to 0.5, Patience: 3 to 10
Batch size 32 16 to 64
Epochs Max 100 50 to 250
Optimizer Nadam (Adam with Nesterov momentum) Adam, Nadam, RMSprop
Loss monitoring Early stopping after 5 epochs with no improvement −

Regularization Batch normalization, Dropout rate: 0.2 Dropout: 0.1 to 0.4
Activation function Leaky ReLU ReLU, Leaky ReLU, ELU

4.3.2 Training procedure

The data set was split into training, validation, and test
sets to build a robust evaluation framework. The test size
was set to 20% of the entire data set, providing a separate
set of instances for final model evaluation. A stratified
ShuffleSplit cross-validator was employed to ensure a
balanced representation of classes in both training and
validation sets. This method shuffles the data set before
splitting, providing randomness to the sample selection
process and maintaining the proportional distribution of
classes observed in the original data set. This causes an
unbiased performance during the testing phases. Tenfold
was selected for this procedure with a 15% size for the
validation set.
It is noteworthy that to have a fair comparison, the

training procedure is set to be the same across all the
models. Selecting an optimal learning rate is substantial
for efficient model training. To address this, a learning
rate schedule strategy with step-based adjustments was
employed. The initial learning rate was set to 5 × 10−5, and
dynamic adjustments with a factor of 0.15 and patience
of 5 were considered based on preliminary experiments.
This adaptive strategy causes efficient convergence, espe-
cially in the later stages of training when the optimization
landscape becomes narrower. Specifically, the validation
loss was monitored to determine whether there was an
improvement or not. All the models in this study were set
to train for amaximumof 100 epochs, and a batch size of 32
was selected to balance the computational efficiency and
model convergence. Moreover, early stopping was imple-
mented tomonitor the validation loss, and the trainingwas
halted if no improvement was observed after five consecu-
tive epochs. This regularization approach also helps avoid
overfitting and ensures that the model generalizes well on
the unseen data.
Nadam optimization, which is Adam optimization plus

the Nestrov momentum, was selected as it has shown

a slightly faster convergence than Adam. The Nesterov
momentum accelerates convergence by considering the
future gradient direction, contributing to more effective
optimization. This is particularly advantageous for han-
dling large-scale data sets and high-dimensional parame-
ter spaces, making it a reasonable choice for TL scenarios.
The “leaky-relu” activation function was employed due to
its ability to handle vanishing gradient problems by leak-
ing some gradient backward. To further enhance model
robustness and mitigate overfitting, a dropout regulariza-
tion layer with a rate of 0.2 was incorporated. Table 2
represents the summary of the training parameters.

4.4 Results

In this section, the results of the comprehensive eval-
uation of different pretrained models and the proposed
AcousticNet model are presented. The main goal is to
evaluate the performance of pretrained models, inves-
tigate the impact of integrating BAM into the selected
pretrained models, and evaluate the proposed customized
model. Key metrics, including F1-score, Cohens Kappa,
Fowlkes–Mallows index (FMI), and Matthews Correla-
tion Coefficient (MCC), will be employed to provide a
detailed assessment.

4.4.1 Pretrained models

Table 3 represents the metrics performance of various pre-
trained models. The model evaluation was assessed across
different signal representations with two selected window
sizes of 128 and 256.
The VGG19 model, chosen as the baseline for its

simplicity and effectiveness, demonstrates commendable
performance across diverse representations. The best per-
formance is observed in the log-STFT representation using
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FARHADI et al. 15

TABLE 3 Performance metrics of pretrained models across diverse spectrogram representations.

Spectrograms
STFT Log-STFT MFCC PS HHT

Models Metrics 128 256 128 256 128 256 128 256 128 256
VGG19 F-1 score 82.78 84.30 85.14 85.76 70.66 75.57 81.47 85.47 74.13 74.78

Cohens Kappa 77.70 79.90 81.08 81.88 61.26 67.40 74.95 81.00 66.01 67.30
FMI 70.71 74.74 75.08 76.31 57.34 60.15 67.00 74.01 58.01 59.58
MCC 77.92 79.99 81.48 82.07 61.34 67.60 75.47 81.38 66.67 67.70

ResNet50 F-1 score 90.81 87.19 93.54 89.41 74.96 72.63 82.20 83.92 80.98 81.97
Cohens Kappa 88.41 83.46 91.31 86.42 67.03 63.73 76.16 78.50 75.93 77.01
FMI 84.32 78.11 87.15 81.41 60.34 56.32 68.40 71.00 70.31 71.18
MCC 88.54 83.69 91.45 86.74 67.12 63.88 76.55 78.66 76.08 77.16

Inception F-1 score 86.67 85.97 87.90 87.86 71.65 76.75 76.63 82.84 77.90 78.47
Cohens Kappa 82.94 82.04 84.82 84.34 62.56 69.55 68.91 77.04 71.21 71.96
FMI 77.34 76.58 80.73 78.75 54.91 62.25 61.26 69.37 63.98 64.75
MCC 83.19 82.14 85.09 84.76 62.61 69.65 69.21 77.12 71.25 72.00

Xception F-1 score 91.91 87.52 93.54 90.29 72.67 74.63 78.52 79.50 76.74 76.63
Cohens Kappa 89.97 84.07 91.76 87.51 64.37 66.76 71.35 72.70 70.40 70.25
FMI 86.94 79.21 88.42 82.63 58.03 59.24 63.01 64.10 64.25 64.08
MCC 90.03 88.40 91.81 87.59 64.55 66.95 71.89 73.02 70.25 70.40

Abbreviations: STFT, short-time Fourier transform; MFCC, Mel-frequency cepstral coefficients; PS, persistence spectrogram; HHT, Hilbert–Huang transform;
FMI, Fowlkes-Mallows index; MCC, Matthews Correlation Coefficient.

a window size of 256, achieving an FMI of 76.31% and
an MCC of 82.07%. VGG19 faces challenges in accurately
identifying the wire breakage, misclassifying it as drilling
and noise.
ResNet50 showcases a consistent and competitive per-

formance across the utilized signal representations. The
best performance is achieved with the log-STFT represen-
tation with a window size of 128, where FMI and MCC are
equal to 87.15% and 91.45%, respectively. The second-best
performance was achieved by using STFT representation
with a window size of 128. Similar to ResNet50, Incep-
tion achieved its best performance using log-STFT with a
window size of 128, obtaining 80.73% and 85.09% for FMI
and MCC, respectively. The model performance and effi-
cacy varied significantly across different representations,
which addresses the existing challenge of optimizing the
model.
The Xception model, known for its depth and high per-

formance, indicates remarkable performance across signal
representations, particularly in STFT and log-STFT. Its
best result was achieved using log-STFT with a window
size of 128, obtaining 88.42% and 91.81% for FMI and MCC,
respectively. However, a notable contrast occurs when
using MFCC, PS, and HHT representations. In particular,
usingMFCCwith awindow size of 128 reveals a significant
performance drop.
All models’ performances highlight sensitivity to differ-

ent representations and window sizes, emphasizing the

need to explore various representations for optimal detec-
tion. The Xception model using log-STFT with a window
size of 128 achieved the best performance and highest
metrics over all the other models.

4.4.2 BAM-integrated models

As indicated in Table 4, the incorporation of BAM
consistently elevates the performance of pretrained
models across various signal representations. Notably,
the models with BAM outperform their counterparts,
showcasing significant improvements, particularly in
the PS representation. The utilization of the BAM to
the VGG19 model results in consistent performance
improvements across all representations. The most
notable enhancement is achieved in log-STFT with a
window size of 128, where the FMI and MCC experi-
ence substantial improvements of over 10% resulting in
83.31% and 88.46%, respectively. However, its performance
over MFCC, PS, and HHT highlights the potential for
improvements.
ResNet50 integrated with BAM demonstrates substan-

tial and consistent performance enhancements across
various signal representations. Notably, it achieved a
remarkable boost in MFCC representation with a window
size of 256, showcasing an impressive improvement of over
30% in FMI. Overall, the results over different represen-
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16 FARHADI et al.

TABLE 4 Performance metrics of pretrained BAM-integrated models across diverse spectrogram representations.

Spectrograms
STFT Log-STFT MFCC PS HHT

Models Metrics 128 256 128 256 128 256 128 256 128 256
VGG19+BAM F-1 score 88.33 87.12 91.05 90.05 71.10 73.41 86.15 81.24 72.70 76.29

Cohens Kappa 84.42 83.07 88.26 87.05 61.84 66.53 81.13 75.23 65.09 70.88
FMI 78.24 76.92 83.31 82.04 55.49 62.42 73.50 66.98 59.29 65.80
MCC 84.49 83.27 88.46 87.13 61.90 66.82 81.26 75.60 65.70 71.47

ResNet50+BAM F-1 score 92.30 92.81 91.75 93.90 83.50 83.93 88.39 89.44 81.23 81.89
Cohens Kappa 89.93 90.57 89.03 91.92 78.78 79.85 84.39 85.90 75.85 77.10
FMI 85.97 86.66 84.43 88.25 72.30 74.32 77.95 80.00 68.82 71.01
MCC 90.01 90.61 89.09 91.98 78.93 79.94 84.50 85.97 76.49 77.42

Inception+BAM F-1 score 92.87 93.40 92.63 93.33 86.39 82.87 87.42 87.06 87.00 84.15
Cohens Kappa 90.88 91.32 90.25 91.32 82.76 78.20 82.96 82.65 83.50 80.14
FMI 87.19 87.51 86.00 87.68 77.42 72.31 76.17 75.65 78.00 74.67
MCC 90.94 91.37 90.37 91.39 82.81 78.26 83.08 82.73 83.63 80.38

Xception+BAM F-1 score 91.88 92.65 94.05 94.05 81.65 83.14 87.07 87.14 85.95 84.04
Cohens Kappa 89.18 90.58 92.38 92.55 76.61 78.75 82.68 82.80 82.13 79.37
FMI 84.57 87.03 89.23 89.76 70.13 72.97 75.95 75.95 76.31 72.72
MCC 89.32 90.73 92.44 92.64 76.81 78.90 82.86 82.84 82.23 79.65

Abbreviations: BAM, Bottleneck AttentionModule; STFT, short-time Fourier transform; MFCC, Mel-frequency cepstral coefficients; PS, persistence spectrogram;
HHT, Hilbert–Huang transform; FMI, Fowlkes-Mallows index; MCC, Matthews Correlation Coefficient.

tations have less variance. The best model performance
was obtained by utilizing log-STFT with a window size of
256, where it achieves an FMI of 88.25% and an MCC of
91.98%. Additionally, it could achieve the best result using
PS representation among all the other models for both
window sizes.
InceptionwithBAMsimilarly could experience substan-

tial improvements across different signal representations,
underscoring its adaptability. The highest enhancements
are achieved in the MFCC with a window size of 128.
The model achieves a remarkable increase of over 40% in
FMI and a substantial 30% improvement inMCC, reaching
77.42% and 82.81%, respectively. While the most substan-
tial improvements occur in MFCC, it is noteworthy that
its overall best performance is in log-STFT representation
with a window size of 256. The evaluation indicates that,
in both STFT and log-STFT representations, this model
achieved superior performance when utilizing a window
size of 256. This suggests that the model benefits from a
larger temporal context when processing these specific sig-
nal representations. Among all the proposed pretrained
models, Inceptionwith BAM could achieve the best results
using HHT representation.
Xception with BAM not only enhances model perfor-

mance relative to its counterparts but also appears as the
top performer among all other pre-trained models. Uti-
lizing log-STFT with a window size of 256, this model
achieves outstanding metrics: FMI of 89.76%, MCC of

92.64%. The model robustness is evident by just four
misclassified outputs, proving its reliability in accurately
distinguishing various patterns within signals. While log-
STFT performs best with remarkable results, other repre-
sentations such as MFCC, PS, and HHT also experience
substantial enhancements. These improvements under-
score the model adaptability and its ability to extract
intricate features from a diverse range of spectrogram rep-
resentations.

4.4.3 Evaluation of AcousticNet

The performance metrics of the AcousticNet model
across selected signal representations are presented in
Table 5, showcasing its proficiency in event classification
across various scenarios. Remarkably, this model exhibits
reduced prediction variability compared to pretrained
models. AcousticNet not only outperforms all pretrained
models, indicating significant performance enhancements
for MFCC, PS, and HHT representations, but it also
achieves comparative results to pretrained models with
BAM. The best performance for this model is observed
using log-STFT with a window size of 128, achieving MCC
results of 89.82% and FMI of 85.02%. Compared to the other
models, AcousticNet excels in PS representations with a
window size of 128, where it obtains 85.35% and 89.79% for
FMI and MCC, respectively.
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FARHADI et al. 17

TABLE 5 Performance metrics of pretrained models across diverse spectrogram representations.

Spectrograms
STFT Log-STFT MFCC PS HHT

Models Metrics 128 256 128 256 128 256 128 256 128 256
AcousticNet F-1 score 91.97 90.76 92.49 90.29 80.87 82.85 92.09 87.08 82.06 84.50

Cohens Kappa 89.32 87.65 89.78 86.59 75.20 78.48 89.65 82.81 77.22 80.13
FMI 84.61 82.30 85.02 80.60 68.47 73.07 85.35 75.88 70.74 73.64
MCC 89.37 87.69 89.82 86.64 75.30 78.60 89.79 83.05 77.52 80.37

Abbreviations: STFT, short-time Fourier transform; MFCC, Mel-frequency cepstral coefficients; PS, persistence spectrogram; HHT, Hilbert–Huang transform;
FMI, Fowlkes-Mallows index; MCC, Matthews Correlation Coefficient.

F IGURE 6 Confusion matrices comparing model performance across different architectures using a 128-window size persistence
spectrum: (a) Xception, (b) Xception+BAM, (c) AcousticNet.

In addition, AcousticNet ranks as the third-best model
for both window sizes in the HHT representation and
MFCC, with a window size of 256. AcousticNet stands out
as a robust model for event classification across diverse
spectrogram representations, exhibiting superior perfor-
mance and promising potential for applications in acoustic
event detection. Further comparative analysis with other
pretrained models will enhance our understanding of
AcousticNet’s strengths in various signal processing sce-
narios.
For the sake of example, Figure 6 illustrates the con-

fusion matrices across different models that are useful
to understand what classes are misclassified. Consider-
ing all models performance, wire breakage was mostly
misclassified with drilling events.
In the context of this study, the tolerance for false neg-

atives (FNs) can be relatively higher. For instance, in the
Ansa del Tevere bridge, each beam contains 378 wires so,
missing a single breakage does not immediately risk struc-
tural integrity. An FN rate of 5% to 10% is therefore accept-
able. Conversely, the impact of false positives (FPs) is more
significant due to the operational implications. Even a
low FP rate (e.g., 1%) could lead to frequent and unneces-
sary interventions that are not practical or cost-effective.
Therefore, the primary target is minimizing FPs.

4.4.4 Real-world application

The evaluation of AcousticNet and Xception+BAM mod-
els on real-world data from various Italian bridges, as
shown inTable 6, highlights the challenges of uncontrolled
environments. Performance metrics across different spec-
trogram inputs (STFT, log-STFT, MFCC, PS, HHT) and
resolutions (128, 256) demonstrate the adaptability and
efficiency of these models under real-world conditions.
The Xception+BAMmodel exhibited high performance

in high-resolution STFT (256) settings, achieving a remark-
able F-1 score of 97.71%, alongside Cohen’s Kappa, FMI
and MCC scores surpassing 95%. This performance under-
scores its remarkable ability to distinguish event differ-
ences, which is important for applications demanding
high-frequency resolution. Conversely, AcousticNet’s per-
formance in the same domain was notably less impressive,
indicating a potential limitation in handling STFT data.
AcousticNet, on the other hand, showcased its strength

in processing log-STFT 128 spectrograms, where it
achieved an F-1 score of 83.18%. This indicates a high
potential to handle logarithmically transformed signals,
suggesting its suitability for scenarios where signal
dynamic range compression is advantageous. The
Xception+BAM model demonstrated a reduced capacity
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18 FARHADI et al.

TABLE 6 Performance metrics of best models on real-world data.

Spectrograms
STFT Log-STFT MFCC PS HHT

Models Metrics 128 256 128 256 128 256 128 256 128 256
Xception+BAM F-1 score 87.47 97.71 55.85 40.61 34.51 34.81 44.93 11.40 39.58 34.02

Cohens Kappa 78.65 95.43 28.84 8.75 2.13 2.48 2.07 0.00 5.56 8.81
FMI 87.06 95.57 68.93 66.89 66.66 66.20 56.23 80.10 64.24 66.99
MCC 79.79 95.52 36.62 17.07 4.82 5.29 2.76 0.00 10.04 16.79

AcousticNet F-1 score 48.86 38.09 83.18 55.27 58.83 55.28 33.17 25.90 42.65 45.73
Cohens Kappa 16.30 4.93 68.71 24.53 27.78 23.34 1.75 0.50 9.61 11.65
FMI 63.39 67.10 77.20 62.51 61.40 61.42 69.79 62.07 63.42 61.30
MCC 27.27 12.11 72.36 37.27 34.82 31.87 8.67 4.23 17.25 19.48

Abbreviations: STFT, short-time Fourier transform; MFCC, Mel-frequency cepstral coefficients; PS, persistence spectrogram; HHT, Hilbert–Huang transform;
BAM, Bottleneck Attention Module; FMI, Fowlkes-Mallows index; MCC, Matthews Correlation Coefficient.

to effectively process logarithmic frequency represen-
tations, as evidenced by its lower performance in both
resolutions of log-STFT.
Even though Xception+BAM reaches its high perfor-

mance in specific scenarios like high-resolution STFT,
its efficiency across other spectrograms and resolutions
varied significantly, indicating a specialization that may
limit its applicability in diverse conditions. In contrast,
AcousticNet exhibited consistency across broad spectro-
gram types, including log-STFT and MFCC, indicating a
more adaptable application. The distinct performance pat-
terns of thesemodels highlight the importance of selecting
the right spectrogram input and resolution based on the
specific characteristics of the acoustic emission signals and
the environmental context.

4.5 Constraints and future directions

Although this research significantly advances automated
event detection, there are some limitations. Complex
architectures and optimized parameters can be hard to
interpret, complicating decision making. Hyperparameter
optimization requires substantial computational power,
limiting scalability. Despite its high efficacy, the proposed
hybrid model may struggle with data outside the training
set. Data scarcity and relevant events, although partially
mitigated by DA, remain significant constraints. The neg-
ative impact of the signal attenuation on the model perfor-
mance shall also be considered when properly designing
the position of the acquisition sensors. Additionally, the
variety of potential events that can occur in structures is
not limited to the four event types defined in this study.
Real-world applications may encounter diverse events
occurring in different locations and scenarios, which
makes detection and classification more demanding and
complex. This diversity requires a model capable of gen-

eralizing well across a broad range of acoustic signatures
while maintaining high reliability. Moreover, practical
deployment challenges, including the high costs of exten-
sive sensor networks, vulnerability to extreme weather
conditions, and difficulties accessing structural locations,
are critical to address. Advancements in cost-effective sen-
sor technologies, enhancing sensor durability for weather
protection, and strategic sensor placement are essential for
the broad adoption of this monitoring technology.
Despite the achievements of the proposed model, it

could be beneficial to explore new approaches that can
automatically configure themodel based on the data. Tech-
niques such asNatural Architectural Search (NAS) (Mellor
et al., 2021; Zoph & Le, 2016) or advanced classification
algorithms (Ning & Xie, 2024; Rafiei & Adeli, 2017) might
offermore effective and adaptive solutions to this problem.
Additionally, the application of advanced learning frame-
works such as the finite element machine (FEMa) for fast
learning (Pereira et al., 2020) could enhance the learn-
ing efficiency of the learning model. Similarly, employing
a Dynamic Ensemble Learning Algorithm (Alam et al.,
2020) and quantum CNN (Bhatta and Dang, 2024) can
improve the robustness and accuracy by effectively man-
aging diverse learning models in a unified framework.
Moreover, incorporating a deterministic algorithm for
nonlinear, fatigue-based SHM (Pavlou, 2022) can enhance
the accuracy of fatigue damage estimation and life predic-
tion under complex loading conditions. The integration of
self-supervised learning techniques, as explored by Rafiei
et al. (2024), might also allow for leveraging unlabeled
data, potentially abundant in SHM scenarios. Moreover,
incorporating explainable AI techniques (Cheng et al.,
2021) could enhance the transparency of the predictions,
enabling a more in-depth understanding and trust in the
decision-making process of the models. These advance-
ments could lead to a more nuanced and powerful tool for
early detection and monitoring in civil engineering.
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5 CONCLUSION

This study highlights the effectiveness of novel DL-
based approaches, specifically the pretrained+BAM and
AcousticNet models, for AE/DC tailored for the early
monitoring of structural damage in prestressed concrete
bridges. Comprehensive evaluations, detailed in Sec-
tion 4, demonstrate that AcousticNet and Xception+BAM
models are proficient in handling complex acoustic
signal patterns. AcousticNet achieved an F1 score of
92.49%, while Xception+BAM reached 94.05%, as illus-
trated in Tables 4 and 5. Considering the information in
Table 6, AcousticNet demonstrates more robust and con-
sistent performance across diverse data sets, whereas the
Xception+BAM model excels particularly in certain rep-
resentations. Among the tested signal representations, the
log-STFT was identified as the most effective dynamic
signal representation, enhancing the models’ ability to
detect and classify structural damage events due to its
robust handling of dynamic patterns. The application of
the proposed approaches was validated through experi-
ments on both laboratory and real-world bridges, high-
lighting the potential of the AE/DC approach in improving
monitoring strategies and enhancing infrastructure safety
and integrity.
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