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Abstract: Integrated photonic platforms have rapidly emerged as highly promising and extensively
investigated systems for advancing classical and quantum information technologies, since their
ability to seamlessly integrate photonic components within the telecommunication band with existing
silicon-based industrial processes offers significant advantages. However, despite this integration
facilitating the development of novel devices, fostering fast and reliable communication protocols
and the manipulation of quantum information, traditional integrated silicon photonics faces inherent
physical limitations that necessitate a challenging trade-off between device efficiency and spatial
footprint. To address this issue, researchers are focusing on the integration of nanoscale materials into
photonic platforms, offering a novel approach to enhance device performance while reducing spatial
requirements. These developments are of paramount importance in both classical and quantum
information technologies, potentially revolutionizing the industry. In this review, we explore the
latest endeavors in hybrid photonic platforms leveraging the combination of integrated silicon
photonic platforms and nanoscale materials, allowing for the unlocking of increased device efficiency
and compact form factors. Finally, we provide insights into future developments and the evolving
landscape of hybrid integrated photonic nanomaterial platforms.

Keywords: integrated silicon photonics; nanostructured materials; hybrid photonic platforms;
integrated photonic circuits

1. Introduction

The development of modern electronics has boosted the generation of unprecedented
amounts of data, which are becoming progressively more complex to store and, most
importantly, to transfer from server to client [1,2]. In this scenario, photonic technologies
offered a relatively easy and very effective way to transfer information in little time and
over wide distances [3–5]. Nonetheless, among the several contenders in the field, over the
past years silicon photonics has emerged as an excellent platform for developing devices
capable of manipulating and transferring optical signals, succeeding in offering high-
performance components for telecommunications [6,7]. Building upon the fundamental
building block of silicon (Si) waveguides [8,9], several optical components can be realized,
including—but not limited to—Bragg gratings [10], directional couplers [11] and arrayed
waveguide gratings [12,13]. Silicon photonic devices modulating optical signals have also
been demonstrated, such as ring resonators [14], high-speed optical modulators [15–17]
and Mach–Zehnder interferometers [18–20]. Figure 1 reports some relevant developments
achieved by silicon photonics for both classical and quantum information and commu-
nication technologies. These components have served as valuable demonstrators and
enablers of a technology that is increasingly posing itself as the standard in information
and communication technologies for the time to come.

Indeed, integrated silicon photonic platforms, which leverage their robust expertise
in device fabrication through the CMOS technological platform [21,22], have not only
proven their validity in providing high-efficiency photonics devices able to route optical
signals over complex geometries with the realization of bend multi-mode waveguides [23],
or over long distances with low losses [24], but also in being an effective platform to boost
quantum technologies [25–33]. Indeed, quantum information can be encoded in photons
propagating in multiple paths fabricated in silicon waveguides, and operations can be
performed on by employing, for instance, directional couplers [34,35], opening the path to
the realization of quantum processors [36]. Furthermore, silicon photonics is identified to
be the enabling technology for the development of Quantum Key Distribution, allowing for
secure communication protocols for quantum information over long distances [37,38]—as
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discussed in several works [25,39]—while being compatible with wavelengths used in
standard telecommunication protocols [40].

Figure 1. Classical and quantum optical components developed within the framework of silicon
photonics. (a) Optical micrograph of an arrayed waveguide grating for optical multiplexing and
demultiplexing. Image reprinted from [13], copyright Wiley 2013. (b) Optical micrograph of a
Mach–Zehnder Modulator. Image reprinted from [41]. (c) Optical micrograph of a 50 cm spiral
low-loss waveguide. Image reprinted from [24]. (d) Optical micrograph of a photonic integrated
circuit employing Multimode Waveguide Corner Bend (MWCB) structures for signal routing. A scan-
ning electron micrograph of an MWCB structure is reported in the lower panel. Image reprinted
from [23]. (e) Building blocks for quantum photonic platforms integrated in silicon, namely, inte-
grated waveguides. The upper panel reports a pictorial view and the lower-left panel reports the
computed intensity profile of a guided mode. The lower-right panel reports the schematic for the
implementation of a CNOT circuit using guided modes in a silicon photonic integrated circuit. Image
reprinted from [34], copyright AAAS 2008. (f) Integration of single-photon nanowire detectors in
photonic integrated circuits. Image reprinted from [42]. (g) Pictorial view and optical micrograph of
a photonic circuit implementing two-qubit entanglement. Image reprinted from [36].

Nonetheless, despite its numerous advantages and promising features, silicon pho-
tonics is still trying to mitigate some limitations imposed by the material platform and
technology [43,44], namely, the large physical footprint of integrated photonic devices [45]
and the need for integrated light sources and detectors [46,47]. The former is caused by
the dimensions of some photonic components which constrain the footprint for Photonic
Integrated Circuits (PICs) and makes their integration in current microelectronic platforms
a challenge [48]. On the other hand, integrating optical sources and detectors on-chip
with silicon-only technology is limiting, due to the physical properties of the material—
i.e., indirect bandgap—hampering its effectiveness as when realizing photoemitters and
photodetectors [49].

To solve these issues, and to increase device performance, the integration of nanotech-
nology and nanostructures in PICs is taking place. Indeed, nanotechnology allows for the
precise fabrication of components, enabling the control and manipulation of optical fields
at the sub-micrometer scale [50], as well as the creation of compact and highly efficient
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devices such as modulators, detectors, light sources and polarization rotators [51]. This
comes from the exploitation of the favorable optical properties of purposefully engineered
nanostructures, which have been found to have several promising applications such as
biosensing [52,53], sustainable energy generation [54] and photon quantum light emit-
ting [55,56], to name a few. In this scenario, the combination of silicon photonic integrated
platforms with nanostructured materials aims to obtain the advantage of both worlds.
Indeed, semiconducting nanostructures can improve relevant photonic device parameters,
e.g., by reducing spatial footprint and allowing the realization of compact photonic devices,
or by allowing the integration of on-chip light detectors with high responsivity and low
dark currents. Furthermore, nanostructures integrated in silicon photonic platforms to
implement light modulation feature high modulation efficiency or enable polarization
control with reduced losses. Ultimately, nanostructures integration in silicon photonic
platforms provides access to the realization of scalable devices featuring high performance
and novel functionalities without compromising overall size [11,57].

Some excellent works in the literature report on the main results achieved by the
fruitful combination of nanostructures and silicon photonics, often focusing on a single
material platform [51] or on specific applications [58,59]. This review aims to illustrate
the main techniques developed by researchers to integrate semiconducting nanostructures
in silicon photonic platforms, as well as some of the main related advancements. The in-
tegration of nanostructures into silicon photonic devices is comprehensively examined,
describing the main methods developed for the realization of photonic devices combining
integrated silicon platforms and nanomaterials, elucidating key factors that contribute to
heightened performance and a minimized spatial footprint. The primary objective of this
review is to provide interested readers with an in-depth understanding of the integration
of nanomaterials onto photonic platforms. By doing so, it aims to provide insights into the
evolution of hybrid photonic platforms that seamlessly combine silicon technologies with
cutting-edge nanostructure fabrication techniques.

Section 2.1 will provide a brief description of each nanomaterial class, giving insights
on the main properties of each material. It will further describe several techniques to
integrate such nanomaterials in photonic devices and waveguides, highlighting the main
advantages and disadvantages of individual methods.

Section 2.2 will focus on the main results achieved by the integration of 1D nanos-
tructures, e.g., semiconducting nanowires, carbon nanotubes and graphene nanoribbons,
into silicon photonic platforms.

Section 2.3 will focus on the progress in devices incorporating 2D materials such as
graphene and Transition Metal Dichalcogenides (TMDs) on silicon waveguides.

2. Hybrid Integrated Photonic Platforms
2.1. Semiconducting Nanostructures and Integration Techniques

Figure 2 reports the main classes of semiconducting nanostructures generally available
in nanotechnological platforms, classified in 1D and 2D, as well as further details regarding
specific nanostructures which are commonly employed in combination with photonic
integrated circuits.

Among one-dimensional nanostructures, nanowires stand out due to their high aspect
ratio, unprecedented crystal quality and access to complex heterostructures owing to strain
relaxation [60]. These features has led this nanomaterial class to being at the foundation
of several advances for a plethora of applications, including energy storage and harvest-
ing [61], optoelectronics [62] and quantum technologies [63]. Furthermore, nanowires
hosting quantum dots are a key technology for the realization of single photon emitters [64]
and detectors [65]. Nanoribbons, with their flattened geometry, feature favorable electrical
transport properties [66] and advanced control of response to optical stimuli [67]. Carbon
nanotubes (CNTs), with their exceptional electrical and thermal properties, offer exciting
possibilities for high-performance photonic devices [68]. The diverse electronic proper-
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ties based on their chirality allow for both semiconducting and metallic behavior [69],
broadening their potential applications [70].

Moving towards two-dimensional nanostructures, graphene possesses exceptional
electrical transport properties, e.g., high carrier mobility [71]. Its properties show promise
for light modulators [72] and photodetectors [73]. However, its inherent lack of a bandgap
limits its use in applications like light-emitting devices. In contrast, transition metal
dichalcogenides (TMDs) feature diverse properties depending on their composition and
structure, offer strong light–matter interaction and tunable bandgaps [74]. This makes them
suitable for a wide range of photonic devices like light emitters [75], photodetectors [76]
and modulators [77].

Figure 2. Zoology of nanostructures to be integrated with silicon photonic platforms to enhance
device efficiency and lower the spatial footprint. (a) STM topography of graphene nanoribbons,
which can either be realized by selecting the zigzag or armchair direction. Images reprinted from [78],
copyright Springer Nature 2016, and from [79]. (b) Scanning electron micrograph of multi-walled
carbon nanotubes. Image reprinted from [80], copyright Elsevier B.V. 2002. (c) Scanning electron
micrographs of bottom-up grown forests of III-V semiconductor nanowires. (d) Optical micrograph of
CVD grown graphene flakes (left) and pictorial representation of the chemical structure of graphene
(right). (e) Optical micrograph (left) and chemical structure (right) of transition metal dichalcogenide
flakes of WS2. Image reprinted from [81], copyright Nature Springer 2017.

Notably, the integration of semiconducting nanostructure in photonic platforms en-
ables the exploitation of their functional operation as optically active media which can be
optimized by tuning material properties and device architectures, while avoiding nega-
tively affecting the spatial footprint of PICs. Notably, 1D and 2D materials differ in terms
of beneficial improvements and functionalities they can introduce, as will be shown in
Sections 2.2 and 2.3, and researchers need to adapt the platform of choice depending on the
specific functionality at need. One-dimensional nanostructures are preferred when small
and localized optically active elements are needed; for instance, nanowire quantum dots
are often integrated on silicon photonic platforms as localized single photon emitters. Ad-
ditionally, the high aspect ratio and reduced spatial extension of semiconducting nanowires
make them ideal to introduce asymmetries in waveguides to enable, e.g., light polarization
control or to give rise to collective phenomena involving many semiconducting elements.
On the other hand, 2D materials often feature better performance in terms of light mod-
ulation and absorption thanks to their lateral extension and favorable optical properties.
They are often integrated in photonic platforms as electrically tunable modulators and
electrically responsive photosensors. Interestingly, in the context of realizing complex
devices for applications in industrial and technological fields requiring large scales and
device repeatability, a great effort has been spent in developing techniques and methods



Photonics , 1, 0 6 of 19

to easily integrate semiconducting nanostructures on photonic waveguides and devices
employing large-scale-compatible approaches. Representative approaches are reported in
Figure 3, where the main techniques for the integration of 1D and 2D nanostructures on
target substrates are reported.

It is worth mentioning that both the integration of 1D and 2D nanostructures give
rise to relevant challenges, mainly coming from the positioning and orientation of nanos-
tructures on the target photonic devices. For instance, the integration of nanowire light
sources on photonic platforms requires precise positioning in order to ensure good coupling
with waveguides, and even minimal displacements can induce loss in device performance.
Furthermore, the integration of a large number of nanowires can pose serious issues, for in-
stance in terms of nanostructures’ orientation and relative alignment. Two-dimensional
materials pose similar challenges: in this case, orientation is less critical, but typically 2D
nanostructures are fragile in terms of mechanical stress and can undergo damage during
the transfer process, hampering device performance. For these reasons, the development of
effective transfer techniques for both 1D and 2D nanostructures is of utmost importance for
the development of effective integrated photonic devices boosted by semiconducting nanos-
tructures.

In this context, the high aspect ratio of elongated 1D nanostructures led to the devel-
opment of several techniques, including the following:

• Direct growth, involving growing the nanostructures directly on the target substrate
using methods such as chemical vapor deposition (CVD) or molecular beam epitaxy
(MBE) [82]. For instance, InAs/GaAs quantum dots have been grown on Si sub-
strates [83] by MBE for the on-chip integration of lasers. This offers unparalleled
control over nanowire position and orientation, leading to high-quality interfaces be-
tween the nanowires and the substrate. This method provides intriguing advantages,
such as high material quality and the possibility to control the growth positions of the
nanostructures. However, it is typically limited to specific substrate materials com-
patible with the nanowires growth conditions and can be challenging for achieving
large-scale or complex nanowire patterns.

• Contact printing, a method involving physically pressing the 1D nanostructures grown
on a source substrate against the target substrate. An example of application of such
method is reported in [84], where the deposition of aligned Ge nanowires on a Si/SiO2
substrate is demonstrated. Contact printing is a rather cost-effective method which
has relevant advantages, including speed and ease of execution, allowing the transfer
of a large number of nanostructures to a target substrate. However, its disadvantages
include lack of fine control over nanostructures’ positioning on the target and risk of
physically damaging the sample due to mechanical stress. Overall, this approach is
suitable for large-scale transfers but offers limited control over the precise positioning
and alignment of individual nanowires.

• Fluidic assembly, leveraging the power of fluid flow or external forces like electric
fields to guide nanowires suspended in a liquid to specific locations on the target
substrate [85], as demonstrated with ZnSe nanowires deposited in µm-sized areas
with dense packing of the order of 60 × 103 µm−2 [86]. This approach allows for
some control over the nanowire position and density within the fluid and enables the
creation of more complex nanowire patterns compared to contact printing. However,
achieving accurate alignment can be challenging, and careful control over the fluid
flow and external forces is crucial to avoid harming the nanowires. Overall, fluidic
assembly of 1D nanostructures provides notable advantages, such as the possibility to
manipulate a large number of elements and compatibility with large-scale process-
ing, but is limited in terms of fine control over the positioning of each individual
nanostructure, and often relies on costly or difficult to manipulate liquids.

• Pick-and-place methods, utilizing micro-probes to physically manipulate and deposit
individual nanostructures onto the target substrate [87]. For instance, Zadeh et al. [88]
have demonstrated deterministic positioning of nanowire quantum dots employing
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a nanomanipulation setup composed of a tungsten tip mounted on a movable stage
under a high resolution optical microscope. This technique’s slow nature and labor
intensity render it impractical for large-scale production. Despite this disadvantage,
deterministic pick-and-place of individual nanostructures provides incomparable
control over each nanostructure’s positioning and orientation, providing a unique
advantage in terms of device architecture control. For this reason, it is the golden stan-
dard for the realization of complex geometries for proof of concept and fundamental
demonstrators.

• Transfer printing, involving employing an intermediate stamp, often made of a
polymer, to transfer nanostructures grown on a donor substrate to a target sub-
strate [89]. The work from Chang et al. [90], in which aligned ZnO nanowires have
been transferred on a host substrate using a PDMS stamp, is illustrative of such
method. The main advantages provided by this technique are greater control over
nanowire positioning, cost efficiency and the possibility to deterministically place both
individual nanostructures as well as arrays of nanostructures onto target substrates
with relatively high precision. However, the main disadvantages of transfer printing
are represented by potential contamination or residue from the stamp and limitations
imposed by the adhesion properties of the stamp are factors to consider.

All the techniques reported here to transfer 1D nanostructures to target substrates are
valid to integrate semiconducting nanomaterials in photonic platforms, but the specific
method of choice needs to be assessed depending on the application and compatibility of
the transfer process with other materials composing photonic devices. Indeed, if precise
positioning and orientation of an individual nanostructure is targeted, direct growth—when
applicable—or pick-and-place appear to be the best suited techniques to implement hybrid
nanomaterial photonic device integration. On the other hand, if large-scale processing is
needed, other techniques should be considered. For instance, contact printing is well suited
for mechanically robust nanomaterials. If this is not the case, fluidic assembly or transfer
printing—depending on the compatibility of the target substrate’s material with liquid
processing—should be considered.

Figure 3. Most widely employed techniques for nanostructures deposition on host substrates applica-
ble at the wafer scale. (a) Contact printing relies on the mechanical detachment of 1D nanostructures
from a growth (donor) substrate on a host substrate. Image reprinted from [84], copyright ACS 2007.
(b) MoO3 assisted pick-up transfer technique of CVD grown graphene on a target substrate. Image
reprinted from [91]. (c) Face-to-face transfer method for CVD graphene grown on Cu foils. Image
reprinted from [92], copyright Springer Nature 2013.

On the other hand, different strategies have been developed for the integration of 2D
nanomaterials in target substrates, including the following:
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• Epitaxial growth transfer, where the 2D material is directly grown on a sacrificial
substrate that shares a similar crystal structure, employed, for instance, for the growth
of monolayer MoS2 on silicon waveguides [93]. Subsequently, the sacrificial layer is se-
lectively etched, enabling the 2D material to be transferred onto a target substrate with
minimal lattice mismatch. Main advantages of epitaxial growth transfer are the high
quality of the resulting materials and the possibility to selectively grow nanostructures
on specific locations thanks to assisted growth techniques. However, this method is
limited by the growth conditions of the specific material under consideration, which
may not be compatible with the target substrate (e.g., growth temperature may be too
high, resulting in damage to the target substrate). Overall, this method offers excellent
control over the crystallographic orientation and minimizes interface defects, making
it ideal for specific device applications. However, it is limited to compatible material
combinations and can be more complex to implement compared to other techniques.

• Wet transfer, involving submerging the growth substrate with the 2D material in a sac-
rificial layer, typically a polymer film [92,94]. The sacrificial layer is then lifted onto the
desired target substrate, followed by dissolving the sacrificial material using a solvent,
leaving the 2D material deposited on the target. Exploiting this method, large-scale
transfer of CVD-grown graphene using polyvinyl alcohol polymer foils was demon-
strated without relevant losses in material quality in terms of residual doping [95].
This method has the major advantage of being cost-effective and straightforward,
but simultaneously suffers from several disadvantages: indeed, it can introduce sur-
face contamination and limit the choice of solvents compatible with both the sacrificial
layer and the 2D material. Additionally, for some applications the use of solutions
processes involving solvents may hamper device functionalities and induce materials
degradation.

• Dry transfer, aiming to eliminate the use of liquids and minimizing the risk of contami-
nation. This approach involves using a polymer stamp to pick up the 2D material from
the growth substrate and subsequently transfer it to the target [96]. This approach
allowed for the successful transfer of epitaxial graphene grown on SiC to SiO2, GaN
and Al2O3 target substrates [97]. This method shines for several advantages, including
cleanliness and the possibility to deterministically position 2D materials onto target
substrates thanks to proper alignment of the polymeric stamp. On the other hand,
dry transfer also has several disadvantages. For instance, it is a time-consuming
technique and is hardly compatible with large-scale processing, making it viable only
at laboratory scale.

• Electrochemical delamination, utilizing an electric field applied through an electrolyte
solution to selectively etch the sacrificial layer, releasing the 2D material that can
then be transferred to the target substrate [98,99]. Notably, this technique has been
employed to transfer an ordered array of deterministically positioned CVD-grown
graphene flakes to enable large-scale device fabrication [100]. This method offers
precise control over the transfer process and minimal surface contamination. Indeed,
electrochemical delamination features the promising advantage of greatly preserving
material quality, resulting in optimal values of relevant parameters, e.g., electrical
mobility. However, it requires careful control of the electrical parameters and is limited
to specific growth and target substrate combinations. Additionally, electrochemical
delamination shares the same disadvantage as wet transfer, namely, the presence of
solvents and liquids which may not be compatible with specific material platforms.

Similarly to the 1D case, the choice of a specific technique for transferring 2D materials
to target substrates for the realization of hybrid integrated photonic devices depends on
specific implementation needs. For instance, laboratory-scale experiments in which high
material quality is needed to realize proof-of-concept demonstrators would strongly benefit
from the employment of epitaxial growth transfer. On the other hand, wet transfer and dry
transfer are more cost-effective and large-scale compatible techniques. Furthermore, elec-
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trochemical delamination is optimal for large-scale applications in which the use of solvents
and electrochemical reactions do not significantly damage other device components.

Indeed, all the techniques described here—both for 1D and 2D nanostructures—
present advantages and disadvantages for their application, and which one is to be em-
ployed typically depends on the specific application in development, as well as the degree
of control over the positioning and orientation of the nanostructure required in order to
ensure the effective operation of the integrated photonic device to be realized.

2.2. One-dimensional Nanostructures Integration in Integrated Photonic Platforms

The integration of 1D nanostructures in integrated silicon photonic platforms has
enabled the increase of performance and the introduction of novel functionalities provided
by on-chip elements. Indeed, high-aspect-ratio nanostructures such as nanowires can allow
for the realization of complex high-quality heterostructures [60], allowing, e.g., for the
realization of single photon quantum emitters/detectors, a technology otherwise hardly
accessible. Additionally, the low spatial footprint of 1D nanostructures allows for their
integration in PICs with increased flexibility, thus being able to exploit the combined
effect of many nanostructures, e.g., to provide periodic perturbations or exploit avalanche
effects. Figure 4 reports examples of photonic devices combining silicon platforms with
semiconducting 1D nanostructures.

In this context, a novel polarization control device has been proposed [101], allowing
for the achievement of full polarization rotation within a reduced spatial scale (<20 µm)
and with low losses (<2 dB). This is achieved by introducing a set of semiconducting
nanowires on a Si waveguide in order to provide a periodic perturbation leading to the
controlled rotation of the polarization. Additionally, the number and distance between
nanowires has been observed to have a profound effect on the rotation effect, leading to the
possibility to tune device operation in order to implement arbitrary polarization rotations,
an essential feature needed for the operation of photonic circuits [102,103]. Furthermore,
other requirements of photonic devices have been fulfilled thanks to the integration of
high-aspect-ratio nanostructures on silicon photonic platforms, including mode filtering
achieved with the integration of graphene nanoribbons and featuring TE1 mode pass filter-
ing with a TE1-to-TE0 extinction ratio of 9.19 dB [104] and wavelength filtering employing
silicon-on-insulator nanowires [105], enabling wavelength conversion up to 160 Gb/s with
minimal power loss (<3 dB). Additionally, the favorable optical properties of semiconduct-
ing nanostructures in terms of light emission and detection have been combined with PICs
to provide on-chip emitting and detecting functionalities. For instance, carbon nanotubes
were integrated with Si waveguides at 1.3 µm wavelengths [106], successfully demonstrat-
ing emission and detection functionalities. Operation at 1.5 µm with carbon nanotubes
has also been achieved [107] and a carbon nanotube-based photodetector with 48 GHz
bandwidth featuring responsivity up to 73.62 mA/W has been demonstrated [108]. This
class of nanostructures has also been employed for the implementation of logic operation
with cascading nanotubes-based photodetectors [109]. On the other hand, semiconducting
nanowires allow for more complex heterostructures and doping control compared to their
hollow counterparts, owing to bottom-up growing techniques and strain relaxation [60].
For this reason, material properties are more easily controlled for this class of nanostruc-
tures, for instance, allowing the realization of multiple p/n junction in series on the same
nanowire. This leads to novel possibilities: for instance, nanowires featuring repeated p-i-n
junctions were integrated in Si waveguides to enable efficient photodetection [110]. Fur-
thermore, owing to the subwavelength emission capabilities of semiconducting nanowires,
their integration on silicon photonic platforms to enable on-chip light emission has been
investigated, both in classical [111,112] and quantum [113–115] regimes.



Photonics , 1, 0 10 of 19

Figure 4. Integrated photonics platforms employing 1D nanostructures. (a) Polarization control
devices can be realized by combining semiconducting nanowires with silicon waveguides. Image
reprinted from [101]. (b) Single nanowire-based light sources embedded on-chip for light generation
in PICs. Image reprinted from [112], copyright ACS 2020. (c) PICs integrated with graphene nanorib-
bons to deploy mode filtering in silicon waveguides. Image reprinted from [104], copyright ACS
2022. (d) Integration of carbon nanotubes photodetectors in PICs to achieve on-chip light detection.
Image reprinted from [109].

2.3. Two-dimensional Materials Integration in Integrated Photonic Platforms

Two-dimensional materials, similarly to their one-dimensional counterparts, present a
vast zoology of different materials featuring different physical properties, spanning from
gap-less monolayer graphene to the TMDs featuring tunable direct bandgap. Generally
speaking, layered materials present specific challenges with respect to sample manipulation,
but the positioning of 2D flakes on silicon integrated photonic circuits is less critical
compared to elongated nanostructures. Furthermore, the huge experimental effort towards
the development of optoelectronic devices based on graphene and TMDs has inevitably
cross-fertilized the employment of these materials as components in PICs [116].

In this context, TMDs provide an ideal material platform to be employed in integrated
photonic devices, owing to their flexibility in terms of material properties [117] and access
to reversible tuning of their electrical properties by exploiting ionic liquid gating—a non
conventional gating technique which has been proven to outperform conventional gating
techniques [118,119]. The integration of TMDs in integrated photonic platforms has been in-
vestigated in order to develop photonic circuitry exploiting the aforementioned promising
features of this material class [120], enabling the development of essential photonic devices
such as Mach–Zehnder interferometers [121]. Additionally, the possibility to tune the
effective refractive index of TMDs by means of bandgap engineering [117] or by exploiting
electrostatic doping via ionic liquid gating [122,123] enabled the realization of photonic
modulators [124,125]. For instance, Joshi et al. [126] have realized electro-optical modu-
lators with different TMDs integrated in silicon nitride waveguides, investigating their
performance in terms of modulation strength and finding that in their device geometry WS2
resulted in the strongest modulation (19.88%), followed by WSe2 (9.48%), MoS2 (3.72%) and
MoSe2 (2.95%). Another essential functionality which needs to be available on photonic
platforms and which cannot be fulfilled by silicon owing to its indirect bandgap—i.e., light
generation—has been addressed exploiting TMDs, and specifically employing electrically
tunable p-n junctions [127], which can act both as light emitters and detectors. Further-
more, additional coupling mechanisms between TMDs and photonic elements have been
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investigated, such as the interconnection between excitons in TMDs—observable at room
temperature—and plasmonic modes [128,129]. In this context, 2D materials hold great
promises to boost a fast-developing field within photonics in general, i.e., plasmonics [130],
and in silicon photonics specifically [131]. Indeed, the possibility to exploit the propaga-
tion of surface plasmon polaritons at the interface between a dielectric and an electrically
charged region enables confinement in the sub-wavelength regime, allowing for device
miniaturization [130]. However, these devices are typically realized using metals to host
the free charges to couple with the electromagnetic wave, resulting in high losses due to
heating effects [132]. For this reason, the development of novel material combinations
to enable the realization of effective plasmonic devices and overcoming the limitations
coming from the use of metals is rapidly proceeding forward [133], and 2D materials stand
as promising candidates in the race for the realization of plasmonic waveguides.

Figure 5. Examples of integrated photonic devices combining silicon and TMDs. (a) Integration of
WS2 in PICs exploiting ionic liquid gating to tune the effective refractive index of the material. Image
reprinted from [121], copyright Nature Springer 2020. (b) The same platform can integrate Mach–
Zehnder interferometers to probe the phase shift of guided mode, to investigate its dependence on
the combination between light polarization and WS2 electrostatic doping. Image reprinted from [121],
copyright Nature Springer 2020. (c) MoTe2 electrically tunable p-n junction integrated with silicon
photonics waveguides to achieve on-chip light generation and detection. Image reprinted from [127],
copyright Nature Springer 2017. (d) Response of the MoTe2 light detector. Image reprinted from [127],
copyright Nature Springer 2017.

Together with TMDs, another well-known 2D material in the field is graphene. Indeed,
this material has been extensively studied since its discovery, leading to the development
of great advances regarding its electrical and optical properties. For instance, high-mobility
graphene is readily available both in the laboratory as well as in larger scales, and it can
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be processed by means of scalable techniques [134]. Figure 6 reports some examples of
photonic devices integrating graphene with silicon photonic platforms.

In combination with high mobility [135], the semi-metallic nature of monolayer
graphene makes it an ideal material for high speed photodetectors. Indeed, this functional-
ity has been readily added on integrated photonic platforms [136], allowing them to reach
good performance in terms of photoresponse and signal processing speeds. For instance,
Schiue et al. [137] reported the realization of a graphene-based photodetector integrated
on a SiO2 waveguide featuring a responsivity of 0.36 A/W with a cutoff frequency at 3 dB
of 42 GHz, while Schall et al. [138] reported high-speed photodetectors based on CVD
graphene working at 1.5 µm with data rates up to 50 GBit/s and featuring a bandwidth of
41 GHz. An increase of performance has been investigated for the realization of waveguides
as well, exploiting the capability of graphene to couple with plasmonic resonances and
to realize plasmonic photonic waveguides [139,140]. Despite graphene being limited in
terms of light generation due to the absence of a bandgap, its favorable electrical transport
properties allowed for the integration on silicon waveguides, enabling the realization of
effective optical modulators [141–144], reaching modulation efficiency up to 1 dB/V and
data rate up to 20 Gbps [145] and switches [146]. Additionally, several proposals employed
graphene to realize polarization control devices with fixed polarization filtering [147],
as well as tunable filters [148,149].

Figure 6. Photonics devices realized by combining graphene with silicon integrated platforms. (a) In-
tegration of graphene photodetectors on silicon photonics waveguides. Image reprinted from [138].
(b) Fast response features by graphene allows for signal detection up to 50 Gbit/s. Image reprinted
from [138]. (c) Tunable polarization control enabled by graphene integration in PICs. Image reprinted
from [149]. (d) The integration of graphene on silicon photonic devices enables high efficiency electro-
optical modulation. Image reprinted from [142] with permission from ACS. (e) Graphene-enabled
optical modulation on silicon photonic platform achieved by exploiting a double-layer graphene
p-oxide-n junction. Image reprinted from [141] with permission from ACS.
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3. Conclusions

This review explored the significant advancements in merging integrated silicon
photonics with semiconducting nanostructures. It provided insights into the principal
methods employed for this integration, enabling the realization of enhanced photonic
platforms that leverage the advantages of nanostructures. The review further highlighted
the key achievements made possible by this synergistic approach, demonstrating how
nanomaterials can not only significantly enhance device performance but also overcome
inherent limitations of conventional technologies, paving the way for the introduction of
novel device functionalities.

The central role of semiconducting nanostructures in the development of next-generation
photonic platforms appears undeniable. However, further advancements in this field will
require effort on two fronts. Firstly, the continuous development of scalable fabrication pro-
cesses is crucial for cost-effective and high-throughput production of integrated photonic
platforms, laying the foundation for widespread adoption of this technology. Secondly,
ongoing refinement of nanostructure integration techniques will unlock the full potential
of these materials to further enhance device performance and functionality, ultimately
leading to the realization of advanced photonic devices with unprecedented capabilities.
By pursuing these advancements the field of integrated silicon photonics empowered by
semiconducting nanostructures has the potential to revolutionize various sectors, including
telecommunications, healthcare and quantum computing.
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