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Abstract—Short-term mobile traffic forecasting is an important
topic for mobile network operators as accurate predictions are
essential for enhancing network efficiency and saving resources.
However, predicting mobile demand is difficult because it requires
to distinguish different types of patterns, e.g. periodic and short-
time behaviours. Recently, deep learning based approaches have
been proven effective because of their ability to learn complex
non-linear dependencies. Among different architectures, the mod-
els built on Recurrent Neural Network (RNN) show impressive
performance in sequence modelling and they are widely used
in mobile traffic forecasting; however, their rather long training
time raises the issue of a high training cost for mobile operators.
To better capture the latest trend of mobile demand, mobile
operators retrain the forecasting model every week using the
recent observations; the training is very expensive and consumes
a considerable amount of energy considering that there are
hundreds of thousands of cells managed by mobile operators.
For mobile operators, it is always desirable to reduce the training
cost while retaining the same level of forecasting performance.
To address this challenge, in this paper we propose a pure FC-
layer deep learning predictor allowing the mobile operators to
obtain excellent forecasting performance along with very low
training cost. The network is composed of three feature extraction
layers, containing RNN-inspired building blocks learning features
that are robust to unexpected local variations; these features are
then used to make predictions in the last two layers. Extensive
experiments are conduct on a real-world dataset, showing that
our model obtains almost the same prediction performance as
the state-of-the-art RNN-based baseline model, while requiring
only 1% of its training time.

Index Terms—mobile traffic prediction, wireless traffic analy-
sis, low-cost-training

I. INTRODUCTION

According to Ericsson annual report 2022, mobile data traf-
fic volume is estimated to increase by more than twice in the
period 2023-2027, and the mobile video traffic is forecasted
to grow by almost 30% annually through 2027 [1]. To provide
high-quality experience to mobile users, mobile operators are
required to manage mobile networks in such a way as to meet
specific QoS requirements; being able to make accurate short-
term mobile traffic forecasts of network KPIs becomes more
important than ever. Predicting mobile demand accurately is
never an easy task due to the characteristics of mobile traffic
over time: one can observe strong periodicity as the wireless
demand closely follows human daily activities, whereas traffic
is also affected by unexpected events (social events, etc.)
adding variability, resulting in complex temporal dynamics.

Based on this reason, traditional statistical approaches are not
favoured because they are inefficient at modelling non-linear
relationships. In recent years, deep learning approaches have
shown their superiority in time series forecasting, which have
also been used in the mobile traffic scenario [2].

Among deep learning architectures, RNN-based models are
very well suited to time series forecasting; however, their train-
ing process is rather time-consuming. In RNNS, the calculation
of the current hidden state is dependent on the preceding states,
which means the process cannot be parallelized. Considering
to apply RNN-based models to predict mobile traffic time
series, this problem is not negligible since network operators
typically retrain the predictor every week in order to capture
the latest trend of traffic demand. Generally, a city-wide
LTE network can easily cover thousands of cells, and the
total amount of cells would go for hundreds of thousands
considering all the areas managed by the mobile operators;
when there are so many cells in the system, the training
of forecasting model would be very expensive and consume
a considerable amount of energy, and the situation is more
critical when the forecasting model itself has a high training
cost. As mobile operators are profit-driven, it is always desired
to reduce the training cost without losing the accuracy of
forecasting. To tackle this challenge, it is essential to design
a model which obtains good prediction performance while
enabling fast training. Among the existing forecasting models,
N-BEATS [3] is a special one as it obtains good performance
using only FC layers, which allows a fast-training; even though
its performance is worse than the state-of-the-art RNN-based
models, it proves that a model can obtain good forecasting
performance using only FC layers along with residual connec-
tions. In this paper, inspired by the characteristics of RNN and
the design of N-BEATS, we propose a deep learning predic-
tor for mobile traffic forecasting called Variability-Enhanced
Network (VEN) which does away with the recurrent model
and is completely built on FC layers; to achieve fast training
speed of the model, we purposely avoid using computationally
expensive mechanisms such as multi-head attention and others.
The proposed model has a similar design as N-BEATS but
follows a different underlying mechanism: while N-BEATS
performs ensemble-style forecasting, our model focuses on
modelling the variability of time series. In particular, the
proposed architecture allows the network to introduce a certain
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Fig. 1: Visualization of hidden vectors learned by GRU in time series forecasting task; O is the collection of hidden states
whose shape is (¢, C') where ¢ is the number of input time steps and C' is the number of channels of GRU.

level of variability in the time series, on three temporal levels:
daily observations, weekly observations and recent observa-
tions; on each level, the model generates series with different
degrees of variability allowing the model to better describe
the temporal dynamics of the input; eventually, the values at
the last time step of all generated series are concatenated and
used to make predictions. In this way, the proposed model can
make accurate mobile traffic predictions while saving a lot of
training time. Specifically, the main contributions of our work
are summarized as follows:

o We propose a forecasting model called VEN, which adds
different degrees of variability to a time series, allowing
the network to make improved mobile traffic predictions
along with a very low training time.

o In order to reduce the training time as much as possible,
the design of VEN uses only FC layers. This design
makes the network able to obtain both excellent fore-
casting performance and very fast training speed.

o We have conducted extensive experiments using a real-
world dataset provided the largest telecommunication
services provider in Italy, and the proposed model is com-
pared with twelve baseline methods which are popular in
time series forecasting field. According to the results, its
predictions have state-of-the-art accuracy, while reducing
training time by approximately 99%.

II. PROBLEM FORMULATION

In this work, our goal is to make short-term time series
predictions of the downlink usage traffic using a deep learning
model trained based on past observations. Assuming we want
to predict the future values of downlink mobile traffic with w
forecast horizons, a univariate time series is represented as a
vector Xi.; = [z1, T2, ..., ¥;] € R’ which consists of past
observations of the target mobile network KPI, where x; is the
record collected at time step ¢ and ¢ is the length of sequence;
the problem can be formulated as:

Xt littw = f(Xl:t), (1
where X;11.414 € RY is the vector of predictions from time
t+1 up to time t+w, and f(-) is the employed deep learning
predictor.

III. METHODOLOGY
A. Learning from RNN

While RNN-based models are known to be efficient at
time series forecasting, their specific learning mechanism is
not completely understood yet; Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) are efficient at
countering vanishing gradients, but the exact way they learn a
model with temporal dependencies is unclear. To get an insight
into RNNs characteristics, we have trained a GRU to predict
the downlink usage two steps ahead, where the details of the
dataset and experiment are discussed in Section IV. As shown
in Figure 1, we visualize several extracted hidden vectors O,
where each index (GRU channel) represents a specific hidden
series learned from the input. If we compare the hidden series
and the mobile traffic time series, we can find some similarities
between them: hidden series still retains a temporal behavior
similar to that of the input series, although they have been
processed by GRU leading to different levels of smoothing
and noise. By observing the figure, it seems that GRU learns
specific ways of scaling and introducing noises to the input
series; the hidden featureas created by applying multiple levels
of variability provide a better representation of the input space.
Following this idea, a non RNN-based architecture may be as
good as an RNN if it can learn how to modify the temporal
dynamics of series in a gradual way, while the training time
could be greatly reduced using only feedforward components;
this is the inspiration for this work.

B. Variability-Enhanced Predictor

To present the design of VEN, we first introduce its basic
building blocks and layers which are shown in Figure 2. The
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Fig. 2: Basic blocks and layers: a layer is composed of residual connected blocks whose depth is D (number of stacked blocks);
each block will generate a new equal-length series which is used to enhance the variability, where L is the length of the block
input and H is the number of hidden channels of the blue-coloured FC layers.

Input

s

Daily Layer

Daily
Observations

()

~N

J

N [

L

Weekly

Layer A

Weekly
Observations

Nyrele

J

N\ Vv

Recent

Layer h

Recent
Observations

zy).

L —

\ 4

Concatenate }-—)

A

0)
nT1™

~> Forecasting

J

Fig. 3: Architecture of VEN, where Z, D ZF/ and ZtRi: are the values of the corresponding layer outputs at the last time step t.

common way between our model and N-BEATS is that they
both use residual connections and block-layer architecture, but
their mechanisms are completely different: N-BEATS runs
a sequential analysis of the input signal recursively, every
time it forecasts part of the predictions and removes the
well-modelled part from the previous signal, which performs
an ensemble style forecasting. For our model, instead of
performing ensemble forecasting, the layers are designed to
model the unobserved hidden states of the last observations
to better describe the distribution of the predicted random
variable. The backbone architecture of VEN consists in layers
obtained stacking a number of basic blocks, where each block
consists of four FC layers. Blocks are used to generate a bias
sequence whose length L is the same as the length of its
input, and the blocks are connected in an residual way within
the layers; every time a block creates a bias sequence, the
generated series is added to the block input to introduce a
certain degree of oscillation, eventually creating a variability-

enhanced version of the input series. In the design of the block,
we choose Rectified Linear Unit (ReLU) as the activation
function for the first three FC layers to ensure the gradients
can fast propagate across the block, and the last activation
function is defined as the hyperbolic tangent function (Tanh)
as we need to scale the value range of output to the range
of -1 and 1 in order to ensure that every time only a small
modification will be made to the block input. By stacking
the blocks into a layer, it is feasible to gradually modify the
layer input in order to get sequences with different degrees of
variability; all the variability-enhanced series are collected and
concatenated at the end which forms the output of the layers
represented as Z € RUP, where L is the input length and
D is the number of stacked blocks (also known as the depth
of the layer). Comparing GRU and the proposed layer, they
employ different underlying mechanisms: a GRU will generate
32 hidden series if it has 32 channels, and all hidden series
are generated at the same time at each time step by updating



the previous hidden state. Conversely, at each time instant a
VEN layer generates a whole new hidden series without any
recurring component.

C. Application to Mobile Traffic Prediction

Figure 3 illustrates the architecture of VEN which is com-
posed of three layers and two FC layers. Instead of using a
single layer handling the whole input sequence, VEN uses
three layers in parallel to process different time slots of the
input series. The three layers are daily layer, weekly layer
and recent layer which handles daily observations, weekly
observations and recent observation respectively. Generally
speaking, in time series forecasting the useful information
is relatively sparse which means most of the data points do
not really help but rather add undesired noise to output. In
this case, processing the whole time series may not improve
the forecasting performance but indeed significantly increase
the processing time; in this work, we manually design three
time windows to enhance the ability of VEN to make a trade-
off among several temporal dependencies. Mobile traffic time
series has complex temporal dynamics whose pattern is seen as
a mixture of different terms; there are two important periodic
patterns in mobile traffic including the daily pattern and the
weekly pattern, where the daily pattern is mainly affected by
human’s daily schedule and the weekly pattern is dependent
on the different between working day and weekend. Aside
from these periodic patterns, the recent trend of mobile traffic
is also very important considering that recent observations can
be more useful to detect upcoming changes in mobile demand.
Following this idea, for periodic patterns we only use the
samples located at a local window, i.e., the samples just before
and after the target instants ¢ = ¢t — nT with n = 0,1,...,
and T is referred to as the “skip period”. For example, ¢’
would be the time steps of 4 PM every day if we want to
predict the mobile traffic at 4 PM, and the local window is
defined as twice the length of the forecasting horizon, i.e.,
one hour before and after the target instant ¢’ if we plan to
predict mobile demand half an hour in advance. Daily layer
and weekly layer use the same local window setting but have
different skip periods 7'; in the daily layer, the skip period
is set to 96 time steps which is the number of samples in
one day, and the period is increased to 672 time steps (one
week) in the weekly layer. In the recent layer, we use the
observations in the last 24 hours to capture the recent changes.
Once the model receives the outputs of all layers, only the
values at the last time step are concatenated and used by
FC layers to make predictions; the idea behind this is: the
layer output can be seen as a collection of layer input series
with different degrees of variability, where the last time step
values represent the potential unobserved states of the last
observation; the values encode the potential data distribution
at the last observed time step allowing the model to learn a
mapping between a distribution and predictions, this makes
the model robust to the potential noise and achieve better
generalization.

IV. EXPERIMENTS
A. Dataset

We conduct experiments on a real-world industrial dataset
to evaluate the performance of our proposed model. This is a
mobile traffic dataset provided by Telecom Italia S.p.A which
is the largest Italian telecommunications services provider; the
dataset includes the downlink usage data collected from LTE
network of a metropolitan city in Italy, describing the downlink
mobile demand of 100 cells. This dataset consists of 32300
downlink usage time series, each time series is recorded during
14 consecutive days, and the traffic profile of each cell is
aggregated over 15-minute intervals; our target is to predict
the downlink demand for the next two steps (half an hour)
and the next four steps (one hour). Notice that the time series
of the dataset have been normalized with the standard score
normalization, and the normalized time series is calculated by
first subtracting the mean value of raw time series and then
dividing by the standard deviation. The whole dataset has been
split into the train set, validation set and test set with the ratios
80%, 10% and 10% respectively.

B. Benchmarks and Performance Metrics

In the experiments, we have implemented two predictors:
the VEN and a single-layer predictor composed of a basic layer
and two FC layers. To compare the forecasting performance of
the proposed model, twelve baseline approaches are employed,
including: MLP [4], TCN [5], Transformer [6], DLinear [7],
NLinear [7], N-BEATS [3], LSTM [8], GRU [9], DeepAR
[10], MQ-RNN [11], LSTNet [12] and TPA-LSTM [13].
The baseline models cover the most popular approaches in
deep learning-based time series forecasting, and they can be
divided into two categories: non-RNN-based models (MLP,
TCN, Transformer, DLinear, NLinear, N-BEATS) and RNN-
based models (GRU, LSTM, DeepAR, MQ-RNN, LSTNet,
TPA-LSTM); among these architectures, TPA-LSTM is one
of the state-of-the-art forecasting models built based on RNN
and temporal attention mechanisms. The models are trained to
minimize the Mean Absolute Error (MAE) on train set, and the
hyperparameters have been tuned through grid search based
on the performance evaluated on validation set. Once the best
configurations have been determined, the models have been
retrained on the dataset employed in this paper, by merging
train set and validation set, and eventually evaluated on the
test set. To evaluate the prediction performance, two metrics
are used, namely MAE and Mean Squared Error (MSE); they
are defined as follows:

MAE = — XWZ;ZNXH] %] 2)
1 J
MSE-HXle;;xHJ %) (3)

where n is the number of time series, w is the number of
forecasting horizons, x, ; is the ground-truth of time series
i at the time step ¢ + j and Zj,, is the corresponding



TABLE I: Comparison of RNNs and single layer predictors: k is the shorthand notation for Thousand; the bold text represents
the best one and the underlined text represents the second-best one.

w=2 (up to 30 minutes)

w=4 (up to 60 minutes)

Model MAE MSE  #Parameters Training Time @ MAE  MSE  #Parameters  Training Time
LSTM 0295 0.303 265k 20.0 minutes  0.326  0.331 265k 11.4 minutes
GRU 0.286  0.298 50k 53.4 minutes  0.313  0.330 50k 23.0 minutes
Single-Layer Predictor (depth=8) 0.287  0.293 303k 0.9 minutes 0.306  0.305 145k 0.5 minutes
Single-Layer Predictor (depth=16) 0.289  0.290 605k 0.6 minutes 0.307  0.306 131k 0.1 minutes
Single-Layer Predictor (depth=32) 0.287  0.291 581k 0.7 minutes 0.304 0.303 580k 1.1 minutes
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Fig. 4: Visualization of the variability-enhanced series generated by the single-layer predictor (depth=8).

prediction. Besides MAE and MSE, the number of parameters
(#Parameters) and training time are also used to evalue the
models, where #Parameters is used to evaluate how many
parameters are included in the models, which is a good proxy
of the complexity of a neural network, and training time is
employed to compare the training speed of the methods. In
order to compare the performance of the models, for each
metric we use the bold text to indicate the best one and the
underlined text to indicate the second-best one.

V. RESULTS

To better understand the behavior of the proposed archi-
tecture, we first analyze the characteristics of the single-
layer predictor; we have trained the single-layer predictors
with three different depths and compare their performance
with the two most widely used RNNs (LSTM and GRU).
Table I evaluates the performance of RNNs and single-layer
predictors, and the forecasting performance of single-layer
models is better than RNNs from a global point of view: their
predictions are as accurate as GRU when we make predictions
two steps in advance, and their performance is significantly
better than both GRU and LSTM if the forecasting horizon is
four; at the same time, single-layer models require much less
training time and the price to pay is the larger model size.
Comparing the performance of the predictors with different
depths, we do not obtain obvious performance improvement

by including more blocks; according to this reason, the depth
of the layers in VEN is set to 8. Figure 4 visualizes the
variability-enhanced series created by the blocks of single-
layer predictor (depth==8), the sequences generated at three
different depths are illustrated. If we observe the series, the
output of the first block is very similar to the original time
series and only a little perturbation is added to the input
sequence; the introduced perturbation gradually increases as
more blocks are used to add oscillation, eventually resulting
in a very noisy series (the output of the seventh block). In this
case, we can say that the degree of introduced variability is
proportional to the depth of the layer. Based on these results,
we prove that the behavior of the basic layer follows our
desired way, which obtains good forecasting performance by
introducing different levels of variability to the input sequence
while having a quite fast training speed compared to RNNs.

After discussing the characteristics and effectiveness of our
proposed basic layer, we compare the performance of VEN
with the twelve baseline approaches, and the results can be
found in Table II. According to the results, the RNN-based
baseline models generally perform better than non-RNN-based
baseline models, and the best two baseline approaches are
both RNN-based which are LSTNet and TPA-LSTM; the
two models combine RNN architectures with other mecha-
nisms such as temporal attention and skip connections, which



TABLE II: Comparison of the performance of models: k and M are the shorthand notation for Thousand and Million; the bold
text represents the best one and the underlined text represents the second-best one.

w=2 (up to 30 minutes)

w=4 (up to 60 minutes)

Model MAE MSE  #Parameters Training Time @ MAE  MSE  #Parameters  Training Time

MLP 0.301  0.297 188k 0.1 minutes 0316 0.312 188k 0.2 minutes

Non-RNN-Based TCN 0.298 0.326 61k 24.7 m@nutes 0.403 0416 64k 27.2 m@nutes
Transformer 0.332  0.342 1.12M 57.8 minutes 0.382  0.390 1.12M 24.6 minutes

DLinear 0.294  0.290 Sk 0.3 minutes 0.316  0.308 11k 0.3 minutes

NLinear 0.298  0.293 3k 0.3 minutes 0.319  0.306 5k 0.4 minutes

N-BEATS 0.298  0.306 471k 0.9 minutes 0.323  0.321 471k 1.2 minutes

LSTM 0.295 0.303 265k 20.0 minutes 0.326 0.331 265k 11.4 minutes

GRU 0.286  0.298 50k 53.4 minutes 0.313  0.330 50k 23.0 minutes

RNN-Based DeepAR 0.314 0.313 265k 11.7 minutes 0.358  0.359 265k 11.6 minutes
MQ-RNN 0.290  0.299 141k 28.4 minutes 0.319  0.320 174k 22.9 minutes
LSTNet 0.282  0.287 102k 47.6 minutes 0.302  0.307 102k 128.7 minutes
TPA-LSTM 0.278 0.284 69k 218.0 minutes  0.296  0.305 115k 138.6 minutes

Our VEN (depth=8) 0.279  0.281 425k 1.3 minutes 0.298  0.301 549k 1.5 minutes

improves the forecasting performance significantly. However,
these mechanisms are usually computationally slowly and this
makes LSTNet and TPA-LSTM have longer training time
compared to other methods; besides this problem, LSTNet
and TPA-LSTM are still seen as two state-of-the-art short-
term forecasting models. For the non-RNN-based models, we
can find that some models have very short training time; for
example, the training time of MLP, NLinear and DLinear is
less than half a minute; but at the same time their forecating
performance is not that good. Even though Transformer and
TCN are not built on RNNs, but their training time is much
longer considering that they either use a multi-head attention
mechanism or stack many dilated convolutional layers. Com-
pared to the best baseline model TPA-LSTM, our model has
almost the same performance; if we check the table, we can
find that the difference in forecasting performance between
VEN and TPA-LSTM is minor, but the training time of VEN
is much shorter than TPA-LSTM: VEN requires approximately
1.5 minutes for training and the required training time of TPA-
LSTM is hundreds of minutes. In this case, VEN obtains ex-
cellent forecasting performance while using only 1% training
time of the best baseline approach. Even though N-BEATS is
also a very fast model, its performance is much worse than
ours.

VI. CONCLUSION

In this work, we have proposed VEN, a low-cost mobile
traffic forecasting model aiming at making accurate short-term
forecasting while reducing the training time of the network.
Inspiring by the characteristics of RNNs, the backbone layer
of the network has been designed to gradually introduce vari-
ability into the input time series, and the generated variability-
enhanced sequences can be seen as different representations of
the input sequence suffering from various degrees of variation,
which better describes the input space of the mobile traffic
time series. To make VEN more efficient, we carefully design
three layers and each of them focuses on one specific pattern,
including daily pattern, weekly pattern and recent trend. We

conduct extensive experiments on a real-world mobile traffic
dataset, and the results show that our model achieves excellent
prediction performance while having a very fast training speed:
its predictions are as accurate as the predictions of state-of-the-
art forecasting models (RNN-based), while its training time is
approximately 99% lower.
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