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Abstract

Glucose is a primary energy source for cancer cells. Several lines of evidence support the idea
that monocarboxylate transporters, such as MCT1, elicit metabolic reprogramming of cancer cells in
glucose-poor environments, allowing them to reuse lactate, a byproduct of glucose metabolism, as an
alternative energy source with serious consequences for disease progression. We employ a synergistic
experimental and mathematical modelling approach to explore the evolutionary processes at the root
of cancer cell adaptation to glucose deprivation, with particular focus on the mechanisms underlying
the increase in MCT1 expression observed in glucose-deprived aggressive cancer cells. Data from
in vitro experiments on breast cancer cells are used to inform and calibrate a mathematical model
that comprises a partial integro-di↵erential equation for the dynamics of a population of cancer cells
structured by the level of MCT1 expression. Analytical and numerical results of this model suggest
that environment-induced changes in MCT1 expression mediated by lactate-associated signalling
pathways enable a prompt adaptive response of glucose-deprived cancer cells, whilst fluctuations in
MCT1 expression due to epigenetic changes create the substrate for environmental selection to act
upon, speeding up the selective sweep underlying cancer cell adaptation to glucose deprivation, and
may constitute a long-term bet-hedging mechanism.

1 Introduction

Glucose is one of the primary nutrients used by cancer cells to produce energy, and glucose deficiency
causes metabolic stress, cell dysfunction, and eventual death [1]. In fact, glucose consumption not only
results in decreased nutrient availability, but also generally correlates with lactate production and the
development of an acidic extracellular environment [2–5]. Cancer cells can rely on a variety of mecha-
nisms that activate protective functions under metabolic and environmental stress, including metabolic
reprogramming [4,6]. Accumulating evidence indicates that aggressive cancer cells may acquire the abil-
ity to absorb lactic acid and use it to synthesise pyruvate [3, 4, 7, 8], thus converting harmful byproducts
of glucose metabolism into alternative energy sources. Lactic acid is transported across cell membranes
through a family of four reversible monocarboxylate transporters (MCTs) belonging to the SLC16/MCT
family of solute carriers [9]. The intracellular uptake of lactate by cancer cells is primarily achieved via
the MCT1 transporter protein on the cytoplasmic membrane [10, 11]. Such an increase in pyruvate and
lactate metabolism has been associated with enhanced invasion and migration, and higher survival in
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the circulation, with overall consequences for metastasis [11,12], to the extent that MCT1 inhibition has
been investigated as a potential therapeutic target [13, 14].
While it is evident that the overexpression of MCT1 plays a key role in the metabolic reprogramming

of glucose-deprived aggressive cancer cells, allowing them to reuse lactate as an alternative energy source
with serious consequences for disease progression, the mechanisms underlying such a change in MCT1
expression remain, to this day, poorly explored. On the one hand, lactate may function as a signalling
molecule, triggering regulatory pathways that promote the expression of MCT1 [7, 15], thus mediating
environment-induced changes in MCT1 expression [16]. On the other hand, lactic acid accumulation
is known to cause reshaping of the tumour microenvironment and induce epigenetic changes in cancer
cells [17]. As lactate has been shown to be responsible for certain histone modifications, such as acety-
lation or lactylation [18,19], the e↵ect of non-genetic mechanisms may even be perturbed under glucose-
deprivation. Furthermore, MCT1 inhibition has been shown to prevent histone acetylation, suggesting
that lactate intake induces transcriptional and metabolic reprogramming that involves epigenetic modifi-
cations [20]. Therefore, protein expression levels, which vary in a systematic transcriptionally-regulated
way, may undergo fluctuations due to spontaneous and lactate-induced epigenetic changes [16].
In this work, a synergistic experimental and mathematical modelling approach is employed to explore

the evolutionary processes at the root of cancer cell adaptation to glucose deprivation, with particular
focus on the mechanisms underlying the increase in MCT1 expression observed in glucose-deprived ag-
gressive cancer cells. Data from in vitro experiments on breast cancer cells, which were specifically carried
out for this study, are used to inform a mathematical model that comprises a partial integro-di↵erential
equation (PIDE) for the dynamics of a population of cancer cells structured by the level of MCT1 ex-
pression, which is coupled with a system of ordinary di↵erential equations (ODEs) for the dynamics of
glucose and lactate present in the extracellular environment. This model allows for predictions on the
dynamics of the MCT1 expression distribution of cancer cells to be made and to be directly compared
with the results of flow cytometry analyses, while making it also possible to dissect out the evolutionary
processes underlying these dynamics. Related mathematical models have been employed to investigate
cancer cell adaptation to hypoxia [21–25], but not to assess MCT1-associated changes in lactate up-
take. Furthermore, alternative mathematical models have been proposed to study the role of MCT1
expression-regulated lactate uptake in the coexistence of di↵erent metabolic pathways within the same
tumour [5, 26, 27], but none of these proposes a causal mechanism for the reported increase in MCT1
expression.
Experimental data are used to carry out model calibration, through a likelihood-maximising

method [28–31] and bootstrapping algorithm for uncertainty quantification [32, 33], and the results of
numerical simulations of the calibrated model are complemented with analytical results on the qualita-
tive and quantitative properties of the solution to the PIDE that governs the evolution of cancer cells.
These results shed light on the evolutionary dynamics of glucose-deprived cancer cells by elucidating the
respective roles that environment-induced changes in MCT1 expression mediated by lactate-associated
signalling pathways and fluctuations in MCT1 expression due to epigenetic changes play in the adaptation
of cancer cell populations to glucose-poor environments.

2 Methods

2.1 In vitro experiments

A summary of the experimental set-up is provided below, and full details of experimental materials and
methods can be found in Sup.Mat.S2.

Cell lines

Breast cancer cells of the MCF7 and MCF7-sh-WISP2 lines are considered, with the latter being obtained
from the former upon inducing epithelial-to-mesenchymal transition through WISP2 gene silencing. The
focus of this study is on the MCF7-sh-WISP2 cell line, which has been documented to be more invasive
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and aggressive than the MCF7 cell line [34,35]. We also report on the results from experiments conducted
on MCF7 cells to corroborate the hypothesis that fast metabolic reprogramming associated with lactate
uptake under glucose deprivation is characteristic of more aggressive cancer cells.

‘Glucose-deprivation’ and ‘rescue’ experiments

Cells originally maintained in medium containing 24.75mM of glucose (i.e. 4.5g/l, a high level of glucose)
are seeded, at high cell numbers, in a medium containing 5.5mM of glucose (i.e. 1g/l, a physiological
level of glucose). In ‘glucose-deprivation’ experiments, glucose is not re-added to the medium during
cell culture (i.e. there is no glucose replenishment) so that, due to consumption by the cells, glucose
levels drop during the course of the experiment and thus cells experience glucose deprivation. In ‘rescue’
experiments, a similar protocol is followed for a few days and the culture medium is subsequently changed
to a medium containing 24.75mM of glucose, where cells are cultured for a few more days, so that cells
first experience glucose deprivation and are then rescued from it.

Measured quantities

Over the span of several days, we tracked: viable cell numbers and percentages of apoptotic cells; glucose
and lactate concentrations in the cell culture medium; MCT1 expression distribution (i.e. fluorescence-
intensity distributions), obtained through flow cytometry analysis and complemented with images from
immunocytochemistry analysis; mRNA expression of di↵erent MCT proteins measured by RT-qPCR –
i.e. MCT1, MCT2 (an MCT very similar to MCT1 although it displays a higher a�nity for L-lactic acid
and pyruvate), and MCT4 (an e�cient lactate exporter expressed in glycolytic cells that is not required
for lactate uptake [36,37]). All data are available in the supplementary Excel file ‘ExperimentalData.xlsx’.

2.2 Mathematical modelling

Building on the modelling strategies presented in [38], we develop a mathematical model that describes
the evolutionary dynamics of a population of MCF7-sh-WISP2 cells, structured by the level of MCT1
expression, under the environmental conditions which are determined by the levels of glucose and lactate
in the extracellular environment. An outline of the model is provided below, while a detailed description
of the model equations alongside the main modelling assumptions, which are informed by the results of
in vitro experiments underlying this study, is provided in Sup.Mat.S1.

Key model quantities

The model comprises a PIDE for the dynamics of the cell population density function n(t, y), which
represents the number of MCF7-sh-WISP2 cells with level of MCT1 expression y 2 R at time t 2 R+

(i.e. the MCT1 expression distribution of MCF7-sh-WISP2 cells at time t). Such a PIDE is coupled
with a system of ODEs for the dynamics of the concentrations of glucose and lactate in the extracellular
environment G(t) and L(t). The cell number, the mean level of MCT1 expression and the related
variance, which provides a possible measure for the level of intercellular variability in MCT1 expression,
are computed, respectively, as

⇢(t) =

Z

R
n(t, y) dy, µ(t) =

1

⇢(t)

Z

R
y n(t, y) dy, �

2(t) =
1

⇢(t)

Z

R
y
2
n(t, y) dy � µ

2(t). (2.1)

Modelling cell proliferation and death under environmental selection on MCT1 expression

The results of in vitro experiments (cf. Sec. 3.2) indicate that the mean of the MCT1 expression distribu-
tion of MCF7-sh-WISP2 cells moves from lower to higher expression levels when cells experience glucose
deprivation, and from higher to lower expression levels when cells are rescued from glucose deprivation.
Hence, we assume that there is a level of MCT1 expression (i.e. the fittest level of MCT1 expression)
endowing cells with the highest fitness depending on the environmental conditions determined by the
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concentrations of glucose and lactate. Moreover, the results of in vitro experiments (cf. Sec. 3.1) support
the idea that proliferation and survival of MCF7-sh-WISP2 cells correlate with glucose uptake when
glucose levels are su�ciently high and with lactate uptake when glucose levels are low. This is also in line
with the well-established notion of tumour metabolism indicating a preferential use of glucose for energy
production when glucose is abundantly available [4]. Therefore, we further assume that there are a level
of MCT1 expression, yL, endowing cells with the highest rate of proliferation via glycolysis and a higher
level of MCT1 expression, yH > yL, endowing cells with the highest rate of proliferation via lactate reuse
when glucose is scarce – i.e. when the concentration of glucose in the extracellular environment is lower
than a threshold level G⇤ above which cells stop taking lactate from the extracellular environment in
order to prioritise glucose uptake. Under these assumptions, in the framework of our model, the fittest
level of MCT1 expression is represented by the function Y (G,L), defined via Eq. (S.14) in Sup.Mat.S1,
which is such that if G � G

⇤ then Y (G,L) = yL for any L � 0, whereas if G < G
⇤ then Y (G,L) ! yH as

G decreases and L increases. Furthermore, the strength of environmental selection on MCT1 expression
is linked to the value of the selection gradient b(G,L) defined via Eq. (S.12) in Sup.Mat.S1,

Modelling changes in MCT1 expression

The e↵ects of changes in the level of cell expression of MCT1 are also incorporated into the model. In
particular, we let fluctuations due to epigenetic changes – henceforth referred to as FECs – occur at rate
�. Moreover, we assume that environment-induced changes mediated by lactate-associated signalling
pathways – henceforth referred to as SPCs – lead to an increase in MCT1 expression at rate  + under
glucose deprivation (i.e. when G < G

⇤) and to a decrease in MCT1 expression at rate  � when the
glucose level is su�ciently high (i.e. when G � G

⇤).

2.3 Model calibration based on experimental data

Experimental data on MCF7-sh-WISP2 cells are used to carry out model calibration through a likelihood-
maximising method [28–30]. We assume G

⇤
> 5.5mM (i.e. the threshold level of glucose above which

cells interrupt lactate uptake to prioritise glucose uptake is above physiological levels) and calibrate the
model using data from ‘glucose-deprivation’ experiments. In summary, the optimal parameter set (OPS)
is obtained, through an iterative process, by minimising the weighted sum of squared residuals R(SP )

R(SP ) =
MX

i=1

(ūi

D
� u

i

P
)2

2(si
D
)
2 , (2.2)

where ū
i

D
and s

i

D
are the average and standard deviation of summary statistic i from the experimental

data and u
i

P
is the value predicted by the model under the parameter set SP , exploiting the in-built

Matlab function bayesopt, which is based on Bayesian Optimisation. At each iteration, in order to
retrieve ui

P
for i = 1, . . . ,M , we solve numerically the PIDE-ODE system that constitutes the model, using

the methods described in Sup.Mat.S2. Minimising (2.2) is analogous to maximising the log-likelihood,
having assumed that data for each summary statistic are normally distributed around their average values
with variance (si

D
)2, to account for heteroscedasticity [31]. In order to explore a variety of evolutionary

scenarios, calibration was carried out for the model in which both FECs and SPCs in MCT1 expression
are included (i.e. � 6⌘ 0 and  ± 6⌘ 0), and for reduced models that take into account only FECs (i.e.
� 6⌘ 0 and  ± ⌘ 0) or SPCs (i.e. � ⌘ 0 and  ± 6⌘ 0). The obtained OPSs are reported in Tab.S1
in Sup.Mat.S2. Uncertainty quantification of the OPS was carried out on the full model by means of a
bootstrapping algorithm [32, 33], based on random sampling of data with replacement and particularly
suited when only few data are available. The bootstrap statistics are reported in Tab.S2 in Sup.Mat.S2,
and bootstrap sampling distributions of the parameter values are plotted in Fig.S6. All Matlab source
codes used for model calibration have been made available on GitHub1.

1https://github.com/ChiaraVilla/AlmeidaEtAl2023Evolutionary
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2.4 Simulation and analysis of the model

To explore the mechanisms underlying the evolutionary dynamics of MCF7-sh-WISP2 cells under glucose
deprivation, the results of numerical simulations of the calibrated model, which are carried out using the
numerical methods described in Sup.Mat.S2.3, are integrated with the analytical results presented in
Sup.Mat.S2.5, which build on the results presented in [25,39].

3 Main results

3.1 Proliferation and survival of MCF7-sh-WISP2 cells correlate with lactate

uptake under glucose deprivation

Fig.1 and Fig.S1 in Sup.Mat.S3 summarise the dynamics of cell proliferation and glucose and lactate
concentrations in the cell culture medium observed during ‘glucose-deprivation’ experiments conducted
for four days on MCF7-sh-WISP2 and MCF7 cells, respectively. The corresponding dynamics of cell death
are summarised by Fig.S2 in Sup.Mat.S3. These results demonstrate that there is a stark di↵erence in
the proliferation dynamics of the MCF7-sh-WISP2 and MCF7 cell lines under glucose deprivation, with
the former reaching numbers of viable cells over twice as high as the latter. Moreover, cell death in the
MCF7-sh-WISP2 line does not significantly increase over time, as opposed to the MCF7 line for which
the percentage of apoptotic cells undergoes a four-fold increase during the experiment. The dynamics of
the concentration of glucose in the culture medium of the two cell lines are similar, though only cells of
the MCF7-sh-WISP2 line consume all the glucose available. Furthermore, the concentration of lactate
in the culture medium of MCF7 cells displays a steady increase mirroring glucose consumption, whilst a
decline in lactate concentration in the culture medium of MCF7-sh-WISP2 cells is observed when little
to no glucose is present in the medium, thus suggesting that lactate uptake occurs amongst MCF7-sh-
WISP2 cells under glucose deprivation. Taken together, these experimental results support the idea
that proliferation and survival of MCF7-sh-WISP2 cells correlate with glucose consumption when glucose
levels are su�ciently high and with lactate uptake under glucose deprivation.

Figure 1: Dynamics of cell proliferation and glucose and lactate concentrations in ‘glucose-

deprivation’ experiments conducted on MCF7-sh-WISP2 cells. Dynamics of cell proliferation
(panel (A)), glucose concentration (panel (B), red line, left y-axis) and lactate concentration (panel (B),
pink line, right y-axis) in ‘glucose-deprivation’ experiments conducted on MCF7-sh-WISP2 cells for four
days. Cell proliferation was assessed by counting the number of viable cells upon seeding (i.e. day 0)
and at the end of each day of culture (i.e. days 1-4). Glucose and lactate concentrations were measured
in the cell culture medium on days 0-4. These figures display the average (dots) and standard deviation
(error bars) of two replicate experiments.
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3.2 Glucose deprivation induces a reversible increase in MCT1 expression of

MCF7-sh-WISP2 cells

The experimental results summarised by Fig.2 show a steady increase in MCT1 expression of MCF7-sh-
WISP2 cells throughout ‘glucose-deprivation’ experiments. On the other hand, in ‘rescue’ experiments,
MCT1 expression levels of MCF7-sh-WISP2 cells increase during the glucose-deprivation phase of the
experiment and then decrease again during the phase of rescue from glucose deprivation, which demon-
strates reversibility of changes in MCT1 expression. Similar trends are observed in the MCT1 mRNA
levels of MCF7-sh-WISP2 cells during ‘glucose-deprivation’ and ‘rescue’ experiments. Note that due to
delayed transcription and translation, which have been reported by several authors and for various sys-
tems – see for instance [40, 41] –, there is a delay between the surge in the mRNA level and the surge
in the corresponding protein level. On the other hand, an increase resembling the one detected in the
MCT1 protein expression levels is not observed in the MCT2 mRNA levels, and no MCT4 mRNA is
detected (cf. Fig.S4 in Sup.Mat.S3). In contrast, our data give no indication of a significant change in
MCT1 expression of MCF7 cells during both ‘glucose-deprivation’ and ‘rescue’ experiments (cf. Fig.S3
in Sup.Mat.S3).

Figure 2: Dynamics of MCT1 expression in ‘glucose-deprivation’ and ‘rescue’ experiments

conducted on MCF7-sh-WISP2 cells. (A),(C) MCT1 protein expression of MCF7-sh-WISP2 cells,
assessed through flow cytometry analysis (panel (A)) and immunocytochemistry analysis using an MCT1
antibody (green staining in panel (C)), upon seeding (i.e. on day 0) and on days 3-5 of ‘glucose-
deprivation’ experiments conducted for five days (sub-panel D0 and sub-panels D3-D5). MCT1 protein
expression of MCF7-sh-WISP2 cells during the phase of rescue from glucose deprivation in the corre-
sponding ‘rescue’ experiments (i.e. on days 4 and 5) is also displayed (sub-panels D4 Rescue and D5
Rescue). The ‘Events’ legend indicates the number of events (i.e. the total number of cells analysed) for
each distribution plotted in panel (A) on a logarithmic scale. (B) Mean fluorescence intensity of MCT1
labelling for MCF7-sh-WISP2 cells (in units of 103), displaying average (coloured bars) and standard
deviation (small black error bars) of two replicate experiments.

3.3 Both FECs and SPCs in MCT1-expression may contribute to the adap-

tation of MCF7-sh-WISP2 cells to glucose deprivation

There is good quantitative agreement (R(SP ) ⇡ 84) between numerical results obtained by simulating
‘glucose-deprivation’ through the calibrated model in which both FECs and SPCs in MCT1 expression are
included (i.e. � 6⌘ 0 and  ± 6⌘ 0) and experimental observations for MCF7-sh-WISP2 cells deprived of
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glucose, as shown by the plots in Fig.3. Instead, levels of intercellular variability in MCT1 expression much
higher or lower than those estimated from experimental data are observed in numerical simulations of the
experiments carried out through calibrated reduced models that take into account only FECs or SPCs
in MCT1 expression (i.e. � 6⌘ 0 and  ± ⌘ 0 or � ⌘ 0 and  ± 6⌘ 0), respectively – this is demonstrated
by the dynamics of the variance of the MCT1 expression distribution, �

2, displayed in Fig.S5(d) in
Sup.Mat.S3. Furthermore, the results of numerically simulated ‘glucose-deprivation’ experiments carried
out over a time span longer than that of in vitro experiments suggest that the synergy between these two
forms of changes in MCT1 expression accelerates collective cell adaptation to glucose deprivation. This is
demonstrated by the fact that, when � 6⌘ 0 and  ± 6⌘ 0, the mean level of MCT1 expression, µ, converges
more quickly to the level yH , which in our modelling framework is the level endowing MCF7-sh-WISP2
cells with the maximum capability of taking lactate from the extracellular environment and reusing it to
produce the energy required for their proliferation when glucose is scarce (cf. Fig.S7 in Sup.Mat.S3).
Taken together, these results support the idea that both FECs and SPCs in MCT1 expression contribute

to the adaptation of MCF7-sh-WISP2 cells to glucose deprivation. In particular, the modelling assump-
tions underlying these numerical results provide the following theoretical explanation for the increase in
the mean level of MCT1 expression experimentally observed amongst glucose-deprived MCF7-sh-WISP2
cells. Cells with di↵erent levels of MCT1 expression emerge as a consequence of fluctuations in MCT1
expression due to epigenetic changes. On top of this, as the glucose concentration decreases and the
lactate concentration increases during ‘glucose-deprivation’ experiments, SPCs in protein expression me-
diated by lactate-associated signalling pathways lead cells to express MCT1 at a higher level. Cells with
levels of MCT1 expression closer to the fittest one, which in glucose-poor environments is higher than
in glucose-rich environments, are then dynamically selected. The interplay between these evolutionary
processes results in a progressive increase in the mean level of MCT1 expression of MCF7-sh-WISP2 cells.
Similar conclusions can be drawn by calibrating the model with data from both ‘glucose-deprivation’

and ‘rescue’ experiments – cf. the results of numerical simulations displayed in Fig.S10 in Sup.Mat.S3
– although the delay in the dynamics predicted by the model compared to experimental observations
suggest additional evolutionary mechanisms are at play under high glucose levels, i.e. for G � 5.5mM.

3.4 Respective contributions of FECs and SPCs in MCT1-expression in the

adaptation of MCF7-sh-WISP2 cells to glucose deprivation

The analytical results of Proposition S2.1 in Sup.Mat.S2 (cf. Eqs. (S28)1 and (S28)2 along with the
relations given by Eq.(S4)) clarify how, under the assumptions on which our model is built, FECs and
SPCs in MCT1 expression, along with environmental selection on MCT1 expression, a↵ect the dynamics
of the mean level of MCT1 expression, µ, and the corresponding variance, �2, in MCF7-sh-WISP2 cells.
In summary, larger values of the rate of FECs in MCT1 expression, �, accelerate the growth of �2, while a
stronger environmental selection on MCT1 expression (i.e. a larger selection gradient b) leads to reduced
values of �2. In turn, larger values of �2 enhance the rate at which µ approaches the fittest level of MCT1
expression, Y . Such a rate also increase with the strength of environmental selection on MCT1 expression
(i.e. the selection gradient b). Moreover, under glucose deprivation, larger values of the rate at which
SPCs lead to an increase in MCT1 expression,  +, promote the growth of µ. These analytical results
are confirmed by the results of numerical simulations of ‘glucose-deprivation’ experiments presented in
Fig.S8 in Sup.Mat.S3, which show that larger values of � and  + correlate with a faster increase of �2

and µ.
Taken together, these results may clarify the roles played by FECs and SPCs in MCT1 expression in

the evolutionary dynamics of glucose-deprived MCF7-sh-WISP2 cells. Under our model’s assumptions,
the former promote intercellular variability in MCT1 expression, which creates the substrate for envi-
ronmental selection to act upon and speed up the selective sweep underlying collective cell adaptation
to glucose deprivation, while the latter triggers a prompt adaptive response of glucose-deprived MCF7-
sh-WISP2 cells by promoting overexpression of MCT1. These conclusions are also supported by the fact
that estimation of the model parameters from experimental data (cf. the OPS reported in Tab.S1 in
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Figure 3: Numerical simulations of ‘glucose-deprivation’ experiments conducted on MCF7-

sh-WISP2 cells. Simulated dynamics of the cell number ⇢(t) (top-left panel), the glucose concentration
G(t) (top-central panel), the lactate concentration L(t) (top-right panel), the mean level of MCT1 expres-
sion µ(t) (bottom-left panel, solid line), the related variance �2(t) (bottom-central panel), and the MCT1
expression distribution n(t, y) (bottom-right panel, t = 0 - t = 5) in ‘glucose-deprivation’ experiments
conducted on MCF7-sh-WISP2 cells. Numerical simulations were carried out for the calibrated model
in which both FECs and SPCs in MCT1 expression are included (i.e. � 6⌘ 0 and  ± 6⌘ 0), under the
OPS reported in Tab.S1 in Sup.Mat.S2 (blue lines), and under 200 parameter sets generated by random
sampling from the empirical 95% confidence interval (CI) of the bootstrap sampling distributions (green
areas) – see Fig.S6 in Sup.Mat.S3 and Tab.S2 in Sup.Mat.S2. The MCT1 expression distribution ob-
tained under the OPS is plotted on a logarithmic scale as for the outputs of flow cytometry analyses to
facilitate visual comparison. The red markers highlight average (scatter points) and standard deviation
(error bars) of the experimental data that are used to carry out model calibration. The values of t are in
days, while the values of G(t) and L(t) are in mM.

Sup.Mat.S2) and uncertainty quantification via bootstrapping (cf. the bootstrap statistics reported in
Tab.S2 in Sup.Mat.S2 and the bootstrap sampling distributions plotted in Fig.S6 in Sup.Mat.S3) indicate
that the rate of SPCs in the level of MCT1 expression is approximately three orders of magnitude larger
than the rate of FECs – see Sup.Mat.S2.4 for more details.
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3.5 FECs in MCT1-expression may constitute a long-term bet-hedging mech-

anism for MCF7-sh-WISP2 cells under glucose deprivation

The mathematical model makes it possible to explore the cell evolutionary dynamics beyond timescales
and scenarios which can be investigated through experiments. In particular, the analytical results of
Theorem S2.2 in Sup.Mat.S2 (cf. Remark S2.3 in Sup.Mat.S2) provide a complete characterisation of the
equilibrium values of the number, the mean level of MCT1 expression and the related variance of MCF7-
sh-WISP2 cells under virtual scenarios where the glucose and lactate concentrations are kept constant,
i.e. a complete characterisation of the limits ⇢(t) ! ⇢1, µ(t) ! µ1 and �

2(t) ! �
2
1 as t ! 1 when

G(t) = G and L(t) = L for all t � 0. These analytical results are confirmed by the results of numerical
simulations of the calibrated model summarised by Fig.S9 in Sup.Mat.S3, which demonstrate that the
equilibrium values ⇢1, µ1 and �

2
1 are ultimately attained when (G(t), L(t)) ⌘ (G,L).

The results of Theorem S2.2 complement the results discussed in Sec. 3.3 by showing that the equi-
librium value of the variance of the MCT1 expression distribution, �2

1, increases with the rate of FECs
in MCT1 expression, �, and decreases with the strength of environmental selection on MCT1 expres-
sion (i.e. the selection gradient b). The results of Theorem S2.2 also demonstrate that when glucose is
scarce and lactate is present (i.e. when G < G

⇤ and L > 0), and thus under glucose deprivation, the
distance between the equilibrium value of the mean level of MCT1 expression, µ1, and the fittest level
of MCT1 expression, Y , increases with the rate at which SPCs lead to an increase in MCT1 expression,
 +, and decreases with both the rate of FECs , �, and the strength of environmental selection on MCT1
expression (i.e. the selection gradient b). This supports the idea that, whilst enabling a faster adaptive
response to glucose deprivation, as discussed in Sec. 3.4, SPCs in MCT1 expression may ultimately lead
to suboptimal adaptation, whereas FECs may constitute a long-term bet-hedging mechanism.
Moreover, the heat maps in Fig. 4 illustrate how the equilibrium values ⇢1, µ1 and �

2
1 vary with

the glucose and lactate concentrations G and L, under the OPS reported in Tab.S1 in Sup.Mat.S2. In
summary, when glucose is scarce (i.e. for G < G

⇤ with G
⇤ ⇡ 5.5mM in the obtained OPS and bootstrap

sampling distribution mean reported in Tab.S3 in Sup.Mat.S2): µ1 decreases with G and increases with
L; �2

1 increases as G decreases and reaches maximum levels when L is also small; ⇢1 increases with G

and decreases with L when G is su�ciently large, while it increases with L when G is closer to zero. In
particular, the values of ⇢1 obtained for G = 0mM and L = 9.645mM are only one order of magnitude
smaller than those obtained for G = 5.52mM and L = 0mM (cf. Fig.S9, first panel in Sup.Mat.S3).
These findings recapitulate the results of numerical simulations of ‘glucose-deprivation’ experiments

displayed in Fig.3 by corroborating the idea that, whereas lower mean levels of MCT1 expression emerge
when the concentration of glucose in the extracellular environment is su�ciently high, as in ‘rescue’
experiments (cf. Fig.S10 in Sup.Mat.S3), glucose deprivation leads to the selection for cells that are
capable of exploiting lactate as an alternative energy source, which results in higher mean levels of
MCT1 expression amongst MCF7-sh-WISP2 cells and allows for relatively high cell numbers in spite of
glucose scarcity.

4 Discussion

We adopted an experimentally-informed mathematical modelling approach to investigate the evolutionary
dynamics of glucose-deprived cancer cells.
In vitro experiments were conducted on two breast cancer cell lines, MCF7 and MCF7-sh-WISP2,

seeded at high cell numbers and quickly consuming the glucose initially available at physiological levels.
Experimental outputs revealed that the more aggressive MCF7-sh-WISP2 cells have the ability to survive
and sustain substantial proliferation in low-glucose conditions, as opposed to the less aggressive MCF7
cells. Changes in lactate levels in situ suggested lactate uptake by MCF7-sh-WISP2 cells, and flow
cytometry and immunocytochemistry analyses indicated an associated increase in MCT1 expression,
which was then reversed when cells were rescued and exposed again to higher glucose levels.
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Figure 4: Equilibrium values of the number, the mean level of MCT1 expression and the

related variance of MCF7-sh-WISP2 cells predicted by the mathematical model under con-

stant concentrations of glucose and lactate. Plots of the equilibrium number ⇢1 (left panel), the
mean level of MCT1 expression µ1 (central panel), and the related variance �2

1 (right panel) of MCF7-sh-
WISP2 cells given by Theorem S2.2 in Sup.Mat.S2 (cf. Eq.(S51)) as functions of constant concentrations
of glucose and lactate (G,L), under the OPS reported in Tab.S1 in Sup.Mat.S2. The green, blue and red
dots highlight the values of (G(t), L(t)) ⌘ (G,L) that are used to obtain the numerical results of Fig.S9
in Sup.Mat.S3. The values of G and L are in mM.

Experimental data from ‘glucose-deprivation’ experiments on the MCF7-sh-WISP2 cell line were used
to calibrate the proposed mathematical model of cell evolutionary dynamics, as well as to conduct uncer-
tainty quantification of the model calibration results, and the MCT1 expression distributions obtained
through flow cytometry analyses were compared with those predicted by the mathematical model. We
found that the calibrated model, whose numerical simulation results are in good quantitative agreement
with experimental data, best reproduces experimental observations when the e↵ects of both FECs and
SPCs in MCT1 expression are taken into account. This finding suggests that cognate studies considering
only one of these two types of changes in protein expression may be overestimating the rates at which
the considered type of change occurs, overall disregarding the combined e↵ect of the two of them.
The analytical and numerical results of the calibrated model presented here suggest that environment-

induced changes in MCT1 expression mediated by lactate-associated signalling pathways enable a prompt
adaptive response of glucose-deprived cancer cells. Furthermore, fluctuations in MCT1 expression due to
epigenetic changes may create the substrate for natural selection to act upon, speeding up the selective
sweep underlying cancer cell adaptation to glucose deprivation, and may constitute a long-term bet-
hedging mechanism. These results on the respective roles played by FECs and SPCs in MCT1 expression
in the evolutionary dynamics of cancer cells, whilst having been obtained for glucose-deprived cells of the
MCF7-sh-WISP2 line, may extend to other cell lines and scenarios whereby changes in protein expression
elicit metabolic reprogramming of cancer cells under nutrient deprivation – e.g. HIF1 favouring anaerobic
energy pathways or CD36 promoting fatty acid uptake [12,42].
The optimal parameter set recovered from model calibration, and related bootstrap sampling distri-

butions obtained through the uncertainty quantification procedure, suggest that the MCT1 fluorescence
intensity levels recorded at the end of the in vitro experiments on MCF7-sh-WISP2 cells do not corre-
spond to maximal levels of lactate uptake, and MCT1 expression levels may continue to increase over
time. In practice, performing the experiments over a longer timeframe we expect cells to die out faster
than as predicted by the model, due to external factors, demographic stochasticity at low cell numbers
or additional byproducts of cell metabolism that are not incorporated into the modelling framework pro-
posed here. Therefore, our study supports the idea that alternative experimental conditions may need to
be considered in studies aimed at investigating the fitness of aggressive breast cancer cells at maximum
MCT1 expression levels in glucose-deprived conditions – for instance by periodically, or continuously,
adding lactate to the medium and recording data for a longer period of time. This would also reproduce
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the inflow of lactate we expect the cells to be exposed to in vivo, as cells closer to blood vessels may
still perform glycolysis due to exposure to high glucose concentrations and thus produce lactate, which
could then reach glucose-deprived areas via spatial di↵usion [24]. Nevertheless, it is evident from our
experimental and numerical results that the observed increase in MCT1 expression of MCF7-sh-WISP2
cells over the span of a few days is su�cient to ensure survival and sustain proliferation under glucose
deprivation, maintaining the population at high cell numbers for about a week, by the end of which
we expect cells to have initiated alternative survival mechanisms associated with disease progression in
vivo [11, 12].
Analogous results have been obtained calibrating the model with data from ‘glucose-deprivation’ and

‘rescue’ experiments, although with a worse quantitative agreement between numerical simulation results
and experimental data. This suggests that additional evolutionary mechanisms may need to be considered
in regimes of glucose abundance wherein, for instance, carrying capacities and net proliferation rates may
di↵er from those recorded at physiological levels of glucose [43]. Nonetheless, such regimes are outside
the scope of this work, and the good qualitative agreement of the model results with experimental data
still highlights the model’s ability to predict the reversibility of MCT1 expression observed in ‘rescue’
experiments.
While we recorded an increase in MCT1 expression of glucose-deprived MCF7-sh-WISP2 cells, no

MCT4 mRNA was detected, which suggests that the in vitro environmental conditions here investigated
do not influence the expression of such a monocarboxylate transporter. It would be relevant to perform
similar experiments under hypoxic conditions, as hypoxia-regulated signalling pathways may explain the
increase in MCT4 expression observed in vivo far from tumour blood vessels. In this regard, it would also
be significant to formulate a spatially-explicit extension of the present model where oxygen dependency
of various dynamics, here ignored as experiments were carried out in normoxic conditions, was modelled
explicitly. Such an extended model would allow for theoretical studies on the still debated role of hypoxia
in MCT1 expression at tissue level, which might reconcile reported discrepancies between oxygen and pH
profiles [5,44–46], and could inform anti-cancer therapeutic approaches based on MCT1 blockers [13,14].
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Université), and LabEx CARMIN (ANR-10-LABX-59-01). L.A., T.L. and C.V. gratefully acknowledge
support from the CNRS International Research Project ‘Modélisation de la biomécanique cellulaire et
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[3] Juan C Garćıa-Cañaveras, Li Chen, and Joshua D Rabinowitz. The tumor metabolic microenviron-
ment: Lessons from lactate. Cancer Research, 79(13):3155–3162, 2019.

[4] Melissa Keenan and Jen-Tsan Chi. Alternative fuels for cancer cells. Cancer Journal, 21(2):49, 2015.

[5] Qian Wang, Peter Vaupel, Sibylle I Ziegler, and Kuangyu Shi. Exploring the quantitative relationship
between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and
lactate oxidation in solid tumors. Physics in Medicine & Biology, 60(6):2547, 2015.

[6] Douglas Hanahan and Robert A Weinberg. Hallmarks of cancer: the next generation. Cell,
144(5):646–674, 2011.

[7] Luigi Ippolito, Andrea Morandi, Elisa Giannoni, and Paola Chiarugi. Lactate: a metabolic driver
in the tumour landscape. Trends in Biochemical Sciences, 44(2):153–166, 2019.

[8] Chongru Zhao, Min Wu, Ning Zeng, Mingchen Xiong, Weijie Hu, Wenchang Lv, Yi Yi, Qi Zhang,
and Yiping Wu. Cancer-associated adipocytes: Emerging supporters in breast cancer. Journal of
Experimental & Clinical Cancer Research, 39(1):1–17, 2020.

[9] Andrew P Halestrap. Monocarboxylic acid transport. Comprehensive Physiology, 3(4):1611–1643,
2013.

[10] Aaminah Khan, Emanuele Valli, Hayley Lam, David A Scott, Jayne Murray, Kimberley M Hanssen,
Georgina Eden, Laura D Gamble, Rupinder Pandher, Claudia L Flemming, et al. Targeting
metabolic activity in high-risk neuroblastoma through monocarboxylate transporter 1 (mct1) in-
hibition. Oncogene, 39(17):3555–3570, 2020.

[11] Alpaslan Tasdogan, Brandon Faubert, Vijayashree Ramesh, Jessalyn M Ubellacker, Bo Shen, Ashley
Solmonson, Malea M Murphy, Zhimin Gu, Wen Gu, Misty Martin, et al. Metabolic heterogeneity
confers di↵erences in melanoma metastatic potential. Nature, 577(7788):115–120, 2020.

[12] Baoyi Liu and Xin Zhang. Metabolic reprogramming underlying brain metastasis of breast cancer.
Frontiers in Molecular Biosciences, 8, 2021.

[13] Cyril Corbet, Estelle Bastien, Nihed Draoui, Bastien Doix, Lionel Mignion, Bénédicte F Jordan,
Arnaud Marchand, Jean-Christophe Vanherck, Patrick Chaltin, Olivier Schakman, et al. Interruption
of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and
radiosensitizing e↵ects. Nature Communications, 9(1):1–11, 2018.

[14] Zi-Hao Wang, Wen-Bei Peng, Pei Zhang, Xiang-Ping Yang, and Qiong Zhou. Lactate in the tumour
microenvironment: From immune modulation to therapy. EBioMedicine, 73:103627, 2021.

[15] Lucia Longhitano, Nunzio Vicario, Daniele Tibullo, Cesarina Giallongo, Giuseppe Broggi, Rosario
Caltabiano, Giuseppe Maria Vincenzo Barbagallo, Roberto Altieri, Marta Baghini, Michelino
Di Rosa, et al. Lactate induces the expressions of MCT1 and HCAR1 to promote tumor growth and
progression in glioblastoma. Frontiers in Oncology, 12, 2022.

[16] Sui Huang. Genetic and non-genetic instability in tumor progression: link between the fitness
landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Reviews, 32(3):423–
448, 2013.

12



[17] Ting Wang, Zeng Ye, Zheng Li, De-sheng Jing, Gui-xiong Fan, Meng-qi Liu, Qi-feng Zhuo, Shun-
rong Ji, Xian-jun Yu, Xiao-wu Xu, et al. Lactate-induced protein lactylation: A bridge between
epigenetics and metabolic reprogramming in cancer. Cell proliferation, page e13478, 2023.

[18] Gabriele Bergers and Sarah-Maria Fendt. The metabolism of cancer cells during metastasis. Nature
Reviews Cancer, 21(3):162–180, 2021.

[19] Di Zhang, Zhanyun Tang, He Huang, Guolin Zhou, Chang Cui, Yejing Weng, Wenchao Liu, Sunjoo
Kim, Sangkyu Lee, Mathew Perez-Neut, et al. Metabolic regulation of gene expression by histone
lactylation. Nature, 574(7779):575–580, 2019.

[20] Luigi Ippolito, Giuseppina Comito, Matteo Parri, Marta Iozzo, Assia Duatti, Francesca Virgilio,
Nicla Lorito, Marina Bacci, Elisa Pardella, Giada Sandrini, et al. Lactate rewires lipid metabolism
and sustains a metabolic–epigenetic axis in prostate cancer. Cancer Research, 82(7):1267–1282, 2022.
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and Michèle Sabbah. Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells
promotes a stem-like cell phenotype. PloS One, 9(2):e87878, 2014.
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