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Abstract—Learning agents can optimize standard autonomous
navigation improving flexibility, efficiency, and computational
cost of the system by adopting a wide variety of approaches.
This work introduces the PIC4rl-gym, a fundamental modular
framework to enhance navigation and learning research by
mixing ROS2 and Gazebo, the standard tools of the robotics
community, with Deep Reinforcement Learning (DRL). The
paper describes the whole structure of the PIC4rl-gym, which
fully integrates DRL agent’s training and testing in several indoor
and outdoor navigation scenarios and tasks. A modular approach
is adopted to easily customize the simulation by selecting new
platforms, sensors, or models. We demonstrate the potential of
our novel gym by benchmarking the resulting policies, trained
for different navigation tasks, with a complete set of metrics.

Index Terms—Mobile Robots, Autonomous Navigation, Deep
Reinforcement Learning, ROS2, Gazebo, Simulation, Gym

I. INTRODUCTION

Autonomous navigation algorithms aim at providing mo-
bile robots with efficient planning and control policies to
go through cluttered and dynamic environments. Advanced
autonomous navigation systems have been explored to improve
planners’ and controllers’ robustness, reliability, and computa-
tional efficiency in real-world applications. In the last decade,
learning methods have seen a tremendous success among
robotics researchers, motivating an increasing collection of
innovative works which adopt Deep Reinforcement Learning
(DRL) for general autonomous navigation [1], socially aware
path planning [2], and agile aerial vehicles autopilot [3].
Besides the most common paradigm of sensorimotor agents
or local planners, learning agents can be successfully mixed
up in alternative ways with the navigation system. Recent
works proposed hybrid solutions to optimize classic planners
like the Dynamic Window Approach (DWA) [4]. Moreover,
[5], [6] recently showed the effectiveness of the planner’s
parameters learning approach compared to end-to-end policy
learning, resulting in an adaptive optimized planner. Despite
the impressive research output, many works never reach real
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robotic applications, and a great amount of them present
hard reproducibility limitations. These problems are often
tight to the lack of a common tool for robotics to easily
develop and compare solutions in the same conditions. Robot
Operating System (ROS), recently updated to ROS2 [7], is
the standard software exoskeleton for any robotics project.
Learning in simulation is certainly the most convenient and
safe procedure to train DRL agents for robotics, and Gazebo1

is the common choice among simulators. For this reason,
we propose the PIC4rl-gym2, an open-source framework in
ROS2/Gazebo realized to enhance, simplify and uniform the
research on learning-based autonomous navigation, bridging
the gap between DRL research and mobile robotics applica-
tions. The modular structure of our new gym allows the user
to easily adjust the simulation training settings, selecting the
desired robotic platform, sensors, neural network architecture,
and DRL policy. The importance of this flexibility resides
in the fact that autonomous navigation may present infinite
different contexts compared to game-like benchmarks where
RL algorithms are usually proposed. Moreover, a testing
package is also embedded in the gym to encourage the com-
parison of resulting policies and their transition to real-world
applications. It allows to automatically load trained agents
and compute navigation metrics for each task of interest in
different testing scenarios. We demonstrate the wide potential
of the PIC4rl-gym by presenting diverse ablation studies that
can be conducted within the framework. These include training
and testing navigation policies from scratch and reference to
already published works built upon the gym. The resulting
benchmarks are reported for each of the considered navigation
categories. We want to point out that the PIC4rl-gym does
not focus on a specific DRL methodology. It paves the way
for developing novel, generic DRL-based navigation solutions,
from end-to-end to hybrid approaches.

Therefore, the contributions of this work are:

1https://gazebosim.org/home
2Full code accesible at https://github.com/PIC4SeR/PIC4rl gym

https://gazebosim.org/home
https://github.com/PIC4SeR/PIC4rl_gym


• a modular ROS2/Gazebo framework to develop learning-
based navigation solutions for mobile robotic platforms;

• a starting collection of training and testing environments,
sensors, and neural networks models;

• a testing package for trained agents to easily build com-
mon benchmarks for each navigation task considered with
an established and expandable set of metrics.

II. RELATED WORKS

Previous works exist with similar scopes and objectives.
Multiple versions of a simulation gym for DRL specifically
applied to manipulator controls are proposed by [8], [9].
[10] is a recent similar work that proposes a gym in ROS,
handled with behaviour trees. Regarding this work, we are
proposing several advantages with PIC4rl-gym: first, ROS2
presents several benefits and updates and is the actual standard
for robotics developers. Second, our parameter-based approach
can be better understood by new users for customization, while
different behaviour trees may result difficult to be modified.
Differently, [11] adheres to our idea of a common benchmark
for advanced autonomous navigation, proposing interesting
metrics to evaluate a difficulty score for each generated
environment in Gazebo. Despite the rich collection of Gazebo
worlds proposed, this work proposes a dataset of challenging,
although not realistic, scenarios. The training framework used
to train the adaptive planner with reinforcement and parameter
learning approach in [12] has not been released. Moreover, it
was based on the previous ROS navigation stack and a single
platform.

Nonetheless, disparate research works have already been
developed within the PIC4rl-gym framework: end-to-end local
planners [13], position-agnostic vineyard navigation [14], and
RL-DWA person following [15].

III. APPROACH

In this section, we describe the structure of the PIC4rl-gym
and briefly formalize the theoretical framework of Reinforce-
ment Learning for autonomous navigation. The ROS2 nodes
architecture to perform parametric training sessions in Gazebo
is discussed. Then, the organization of the testing package
included in the gym is also presented, introducing the metrics
used to evaluate the different robot navigation tasks considered
so far.

A. Deep Reinforcement Learning formulation for navigation

A typical Reinforcement Learning (RL) framework can be
formulated as a Markov Decision Process (MDP) described
by the tuple (S ,A ,P,R,γ). An agent starts its interaction
with the environment in an initial state s0, drawn from a pre-
fixed distribution p(s0) and then cyclically selects an action
at ∈ A from a generic state st ∈ S to move into a new state
st+1 with the transition probability P(st+1|st,at), receiving a
reward rt = R(st,at).

In reinforcement learning, a parametric policy πθ describes
the agent behavior. In the context of autonomous navigation,
we usually model the MDP with an episodic structure with

maximum time steps T . Hence, the agent’s policy is trained
to maximize the cumulative expected reward Eτ∼π ∑

T
t=0 γ trt

over each episode, where γ ∈ [0,1) is the discount factor.
More in detail, we aim at obtaining the optimal policy π∗

θ

with parameters θ through the maximization of the discounted
term:

π
∗
θ = argmax

π

Eτ∼π

T

∑
t=0

γ
trt (1)

which can present alternative expressions according to the spe-
cific deterministic or stochastic policy adopted. As mentioned
in Section I, the agent’s policy can play a wide variety of roles
within a navigation framework, depending on the task and the
methodological approach.

B. PIC4rl-gym training framework

The PIC4rl-gym is designed to provide robotics developers
with an easy tool to start custom DRL training sessions in sim-
ulation with minimum action on the code. The gym focuses on
autonomous navigation tasks, which can be approached with
novel solutions based on learning agents or hybrid classic and
learning-based navigation components. To this end, we design
an extremely modular framework, leveraging ROS parameters
for fast simulation tuning. Indeed, two sets of parameters are
used to manipulate both the simulation settings and the training
details. The overall scheme of the PIC4rl-gym framework is
shown in Figure 1, depicting the organization of ROS nodes
and other elements composing the complete system. Arrows
indicate how they communicate with the Gazebo simulation
environment and the policy Trainer class.
PIC4rl training and environment The core section of
the gym consists of two elements: a training interface
pic4rl training which bridges the ROS system with the
Trainer, and the environment pic4rl environment. The overall
system has been optimized such that training and environment
modules are condensed in a single ROS2 node execution,
avoiding delays derived from massive data exchange between
different nodes. Hence, a class inheritance-based structure
is chosen: training(env(Node)). The environment reflects the
typical design of a DRL gym, presenting two main methods
to be called by the Trainer loop: step() to get observation
and reward data, and reset() to restart a new episode, as
shown in the schematic in Figure 1. Each of the fundamental
sub-methods in step() defines the specific navigation task.
Indeed, different navigation tasks can be tackled by defining
a clean environment with appropriate methods to send the
predicted action, calling the correct sensor data to process,
defining the end-of-episode state condition, and designing
the agent’s reward function and observation. The associated
pic4rl training will therefore instantiate the environment and
the desired training policy, starting the Trainer loop. ROS2
parameters allow the user to easily customize the training in
simulation as requested by the navigation task. For example,
it is possible to set episode duration and the number of initial
episodes, regulate the exploration, and change the robot’s
starting pose. This ensemble of practical settings strongly
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Fig. 1: Schematic of ROS nodes and processes composing the PIC4rl gym framework.

affects the success of the DRL training, being autonomous
navigation a much more complex task to learn compared to
standard RL benchmarks. Changing the robot pose along the
simulation is a fundamental feature for the generalization
properties of the agent. In such a way, it is possible to
augment the variety of states experienced by the agents
without drastically increasing the computational cost of the
simulation training.
Gazebo simulation It is possible to launch a simulation in
Gazebo, choosing the desired world, robotic platform, sensor
data, and velocity limits in the main parameters file. In the
actual version of the gym, we include standards packages to
spawn differential drive platforms such as Jackal3 and Husky4

UGV from ClearPath Robotics or TurtleBot5, together with
omnidirectional custom platforms [16]. The structure of the
simulation package, which handles the Gazebo virtual environ-
ment, grants to easily add new platforms and sensor plugins.
Moreover, the gym automatically manages a precise detection
of collisions with obstacles by specifying the shape and desired
tolerance for collisions in the parameters. Whenever a reset()
is performed to start a new episode, the environment calls
the reset world service of Gazebo to reset the simulation
to the original state. Then, the gazebo-ros set entity state
service is called to re-spawn the robot and the visual model
of the goal in a new starting pose. When requested by the
task, pause/unpause services can be used at each training
step to stop the simulation while computing a new action
and guarantee the MDP property of the agent-environment
interaction loop.
Sensors A particular focus is devoted to developing a modular
framework for sensors. No available tools offer the possibility
to choose or combine data deriving from different sensors for
navigation policies with DRL. In PIC4rl-gym, it is possible

3https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
4https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
5https://www.turtlebot.com/

to specify the desired sensors and the associated properties in
the parameters: the number of range points and max distance
for 2D LiDAR, resolution and max depth for RGB-D images.
The Sensors() class will take care of subscribing to the desired
topics and process sensor data at each environment step call.
Nonetheless, according to the sensor data shape, a set of
suitable neural network architectures is already available to
be selected in the pic4rl-training node. Simple dense networks
are used for 2D LiDAR, while Convolutional neural networks
with multiple inputs are implemented to organically deal with
feature extraction from images (single-channel or 3-channels)
and task-dependent state information such as goal location or
robot pose.
Trainer The gym’s DRL training section is developed by
customizing and integrating the TF2RL library 6 in a ROS2
system. The Trainer() class takes care of interacting with
the ROS environment at each step and training the RL
policy. Real-world autonomous navigation usually requires
agents with continuous action space. According to this, the
Trainer focuses on state-of-the-art policy training algorithms
which respect this condition. Among them, we have Deep
Deterministic Policy Gradients (DDPG) [17], Twin Delayed
DDPG (TD3) [18], and Soft Actor-Critic (SAC) [19]. The
TF2RL library also includes diverse replay buffer options,
from basic to prioritized and N-step experience replay. The
original implementation of the Trainer has been adapted to
our gym case integrating it into the modular framework where
different network architectures can be selected according to
state shape and task and automatically tune the action output
shape. Nonetheless, the library only provided an initial warm-
up phase for experience collection with a random policy. An
ε-greedy exploration policy with exponential decay γε has
also been included to guarantee a continuous exploration rate
during the entire training.

6https://github.com/keiohta/tf2rl



C. Testing package

A testing package has also been developed to easily evaluate
trained agents and compute navigation metrics in different
testing scenarios. The structure of the Tester() reflects the
one used for training, only performing policy evaluation.
Necessary data are collected from the simulation thanks to ros
topics and the Gazebo service get entity state, which allows
the robot to store the full traveled path, which can be used to
compute metrics for trajectory comparison. The scheme of the
PIC4rl-gym testing package is shown in Figure 2. New metrics
can be easily added to the testing framework and selected from
the parameters configuration interface.
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sensors_msg
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Fig. 2: Schematic description of the testing package.

IV. EXPERIMENTS AND BENCHMARKS

In this section, some representative experimental sessions
are described to demonstrate the effectiveness of the PIC4rl-
gym on a wide variety of potential applications. Nonetheless,
this work aims to introduce the framework without focusing
on a specific approach. We report three different case studies, a
representative one conducted from scratch, the others referring
to already published works realized with the gym.

A. End-to-end policy comparison

The classic point-to-point navigation is tackled here with a
basic end-to-end policy learning approach, training sensorimo-
tor agents that directly map different sensor data to robot ve-
locity commands [v,ω] for mapless navigation. We conducted
an ablation study by training and testing four different policies,
changing sensors observation and DRL algorithms. A TD3 and
a SAC dense agents are trained with 2D LiDAR ranges as
observations, and a TD3 and a SAC convolutional agents are
trained with depth images as input. Figure 3 shows the indoor
world used to train the agents. In this case, a Jackal UGV is
used. Alternative ablation studies can be conducted by varying
the velocity ranges, the platform, the reward function, and all
the training settings. Figure 4 shows the reward signal trends
obtained during the training. The agents receive a reward
rg = 1000 if the goal is reached, rc = −150 for collisions,
and a dense reward proportional to distance reduction from
goal rd = (dt−1 − dt). The first 300 episodes are conducted
in the central area of the world with random goals. All the
agents are perfectly able to learn this behaviour, as confirmed
by the growing reward trend. Then, the robot is positioned
among realistic obstacles, and the agents should adapt to this

complex condition. The metrics used to evaluate the point-to-
point navigation are:

• number of successes;
• clearance time, cumulative heading average, total path

distance, distance/path ratio;
• mean and standard deviation of linear and angular veloc-

ities, max and mean linear/yaw acceleration;
• min and mean distance from obstacles;

Table I reports the main results obtained from the testing
stage of the study, averaging metrics over five different testing
episodes with five different start-goal couples assigned around
the indoor world.

Fig. 3: Example of indoor environment in Gazebo where
navigation policies can be trained or tested, accessing different
areas with realistic obstacles and narrow passages. A Jackal
UGV has been spawned to reach the goal (red circular target).

B. Row-based crops navigation

A position-agnostic navigation agent for vineyards row-
based crops has been trained in the PIC4rl-gym and already
presented in detail in the paper [14]. In this case, a SAC
convolutional agent learns how to safely guide a robot through
vineyard rows without localization data. Besides velocity
comparison, the robot’s trajectory is evaluated in terms of
difference from the center of the row. Different Gazebo
vineyard worlds are available in the gym for testing. Row-
based crops navigation is a fundamental and novel benchmark
in the precision agriculture domain that the PIC4rl-gym can
significantly boost and uniform.

C. Person monitoring

The PIC4rl-gym has also been used to develop an RL-DWA
peculiar person monitoring algorithm presented in [15]. In this
alternative assistive navigation task, a DRL agent is trained to
keep the orientation of an omnidirectional robot towards the
person to be monitored, while the robot is moving avoiding
obstacles.



TABLE I: End-to-end policy comparison: average navigation metrics obtained testing the agents on 5 different episodes.

success time[s] cum. heading[rad] path[m] dist/path vmean[m/s] ω[rad/s] std. dev. max linear acc.[m/s2] max yaw acc.[rad/s2] min obstacle dist[m] mean obstacle dist[m]

TD3 LiDAR 5/5 24.11 0.10 5.84 0.96 0.28 0.54 3.41 18.73 0.37 3.08
TD3 Depth 5/5 19.29 0.11 5.77 0.94 0.31 0.43 2.60 17.23 0.53 3.65

SAC LiDAR 5/5 29.36 0.28 6.06 0.94 0.25 0.44 2.98 16.98 0.31 2.66
SAC Depth 5/5 16.65 0.13 5.74 0.98 0.36 0.41 2.51 16.58 0.42 2.78

Fig. 4: End-to-end policy comparison: reward signals obtained
during training the agents. Average reward trend in bold.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented PIC4rl-gym, a novel modular
framework in ROS2/Gazebo to train and test Deep Reinforce-
ment Learning agents specifically for mobile robot navigation
tasks. The highly modular and adaptable structure of PIC4rl-
gym provides robotics researchers with a complete and fast
tool for developing cutting-edge DRL-based navigation solu-
tions for various tasks. Our experiments highlight the large
set of possible configurations one can explore by combin-
ing different platforms, sensors, policies, and neural network
models, leading to performance optimization and flexibility.
Nonetheless, we also release a testing package and a standard
set of testing environments to enhance the practice of compar-
ing proposed solutions on a common research benchmark.

• Increase the variety of training and testing scenarios
• Expand available sensors (stereo depth camera and

Ultrawide-band anchors)
• Include other navigation tasks and benchmarks like ex-

ploration and social navigation.
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