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1. Introduction

In this paper we study critical points of the following (non-convex) energy functional

Eε(u,Ω) :=
ˆ

Ω

|∇u|2 + Φε(u) dx, (1.1)

where ε ∈ (0, 1] is a parameter, Ω ⊂ RN some open domain, and

Φε(t) := Φ(t/ε) (1.2)

Φ(t) :=
{´ t

0 β(τ)dτ for t ≥ 0
0 for t < 0,

(1.3)

for some given function β ∈ C∞
c

(
[0, +∞)

)
satisfying

β ≥ 0, β(0) = 0, β′(0) > 0,
´∞
0 β = 1. (1.4)

When ε = 1, E1(u, Ω) will be sometimes denoted by E(u, Ω). The assumption β′(0) >
0 is made for simplicity, but in all our main results it could be actually replaced by 
lim infτ↓0 β(τ)τ−p > 0 for some p ∈ (1, ∞) —see Remark 2.3.

These type of functional arises in combustion models (e.g. flame propagation) [12,4,
13,27,21], and were studied in detail in the book of Caffarelli and Salsa [11].

Connection to the one-phase problem

Due to the assumptions on Φ, as ε ↓ 0, the energy Eε formally converges towards

E0(u,Ω) :=
ˆ

Ω

|∇u|2 + χ{u>0} dx. (1.5)

Critical points of E0 are solutions to Bernoulli’s (or one-phase) free boundary problem:

u ≥ 0, Δu = 0 in {u > 0}, ∂nu = 1 on ∂{u > 0}, (1.6)

where n is the inwards unit normal to ∂{u > 0}. The regularity of solutions and free 
boundaries for minimizers of E0 has been extensively studied in [1,2,6–8,10,15,16,19,20,
24,25] (see also the treatment given in [23]). The convergence of Eε towards E0 as ε ↓ 0 is 
not merely formal: as proven in [11, Theorem 1.15], sequences of minimizers uεk of Eεk

converge as εk ↓ 0 (and up to subsequences) towards minimizers of the functional E0.
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A conjecture “à la De Giorgi”

By the results in [10,19], it is know that every minimizer u0 : RN → [0, ∞) of E0
in RN must have one-dimensional symmetry in dimensions N ≤ 4, while this fails for 
N ≥ 7 (see [16]). On the other hand if u : RN → R+ is a minimizer of E = E1 in 
RN , then the blow-down sequence uεk(x) := εku(x/εk), εk ↓ 0, are minimizers of Eεk
in RN . Since by [11, Theorem 1.15] uεk converges (up to subsequence and uniformly in 
every compact subset of RN ) to some entire minimizer of E0, every blow-down of u must 
one-dimensional if N ≤ 4. By analogy with De Giorgi’s conjecture for the Allen-Cahn 
equation (see for instance [14,22]), Fernández-Real and Ros-Oton raised the following

Conjecture 1.1 ([18]). Let N ≤ 4 and u : RN → R+ be a minimizer of E in RN (see 
Definition 1.2 below). Then, u must be of the form

u(x) = v(ν · x− l) where v(t) = ψ−1(t) for ψ(z) :=
zˆ

1

dζ√
Φ(ζ)

, (1.7)

for some ν ∈ SN−1 and l ∈ R.

The results in this paper answer positively this conjecture.

Minimizers and critical points

We define next minimizer and critical point of Eε.

Definition 1.2. Let Ω ⊆ RN be some open domain ad let ε > 0. We say that uε ∈ H1
loc(Ω)

is a minimizer of (1.1) in Ω if for every V ⊂⊂ Ω and for every ξ ∈ H1
0 (V ) we have

Eε(uε, V ) ≤ Eε(uε + ξ, V ).

Definition 1.3. Let Ω, N and ε > 0, as in Definition 1.2. We say that uε ∈ H1
loc(Ω) is a 

critical point of (1.1) in Ω if for every V ⊂⊂ Ω and for every ξ ∈ H1
0 (V ) we have

d

dt

∣∣∣∣
t=0

Eε(uε + tξ, V ) = 0 ⇔
ˆ

V

2∇uε · ∇ξ + Φ′
ε(uε)ξ dx = 0.

Notice that (after integration by parts) any critical point uε of satisfies

Δuε = 1
2Φ′

ε(uε), (1.8)

in the weak sense. Since Φ′ is smooth and bounded, by elliptic regularity and the standard 
“bootstrap argument” for semilinear equations, any critical point is locally smooth (with 
estimates which degenerate in principle as ε ↓ 0) and hence satisfies (1.8) in the classical 

sense.



4 A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380
New results

We describe next the main results of the paper. Our main contribution is the following 
rigidity results for critical points of E in RN which are “asymptotic” to (ν · x)+ at very 
large scales. In its statement (and in the rest of the paper) we use the following convenient 
notation for inclusion of sets: we write “X ⊂ Y in Z” when X ∩ Z ⊂ Y ∩ Z.

Theorem 1.4. Let Φ be as in (1.3)-(1.4). There exist constants ϑ1 and ϑ2 depending only 
on Φ such that the following holds. Let u : RN → R+ be a critical point of E in RN .

Assume there exist ν ∈ SN−1 and sequences Rk ↑ ∞ and δk ↓ 0 such that

|u− (ν · x)+| ≤ δkRk in BRk
, (1.9)

and

{ν · x ≤ −δkRk} ⊂ {u ≤ ϑ1} ⊂ {u ≤ ϑ2} ⊂ {ν · x ≤ δkRk} in BRk
. (1.10)

Then u is of the form (1.7).

On the other hand, building on the results of [11, Chapter 1] (and introducing new 
ideas) we establish the following

Proposition 1.5. Let Φ be as in (1.3)-(1.4) and let ϑ1 and ϑ2 be the constants from 
Theorem 1.4. Let u : RN → R+ be a minimizer of E in RN which is not identically 
0. Then, for every sequence Rk ↑ ∞ there exists a subsequence Rk�

, a 1-homogeneous 
minimizer u0 of E0 in RN — also not identically zero— and a sequence δ� ↓ 0 such that

|u− u0| ≤ δ�Rk�
in BRk�

, (1.11)

and

{x : dist(x, {u0 > 0}) ≥ δ�Rk�
} ⊂ {u ≤ ϑ1} ⊂ {u ≤ ϑ2}
⊂ {x : dist(x, {u0 = 0}) ≤ δ�Rk�

} in BRk
.

(1.12)

Combining Theorem 1.4, Proposition 1.5, and using the classification results for 1-
homogeneous minimizers of E0 of [10,19] we obtain

Corollary 1.6. Conjecture 1.1 holds true.

2. Overview of the proofs and organization of the paper

The proof of Theorem 1.4 is split into several intermediate steps, some of them having 

independent interest. The main step (and our main contribution) is establishing an 
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“improvement of flatness” result for critical points of E that we state below. Before that, 
we need to introduce two positive constants ϑ1 and ϑ2, with ϑ1 < ϑ2 and depending 
only on Φ, that will appear throughout the paper. Under our assumptions on Φ —see 
(1.2)-(1.4)— we can choose positive constants ϑ1, ϑ2, and c1, such that the following 
holds:

{
Φ = 0 in (−∞, 0], Φ = 1 in [ϑ2,∞),
1
c1
u ≤ 1

2Φ′(u) ≤ c1u, ∀u ∈ [0, ϑ1].
(2.1)

We can now give the statement of our “improvement of flatness” result.

Theorem 2.1. Let Φ be as in (1.3)-(1.4) and let ϑ1 and ϑ2 as in (2.1). Fix γ ∈ (0, 1). 
There exist constants δ0 > 0 and �0 ∈ (0, 1/4) depending only on N and Φ, such that 
the following holds. For every R > 0, every δ ∈ (0, δ0], every ε/R ∈ (0, δ2), and every 
critical point uε of (1.1) in BR ⊂ RN satisfying

uε(0) ∈ [ϑ1ε, ϑ2ε] (2.2)

and

uε(x) − xN ≤ δR in BR ∩ {uε ≥ ϑ1ε}
−δR ≤uε(x) − xN in BR,

(2.3)

there exists ν ∈ SN−1 such that

uε(x) − ν · x ≤ δ�1+γ
0 R in B�0R ∩ {uε ≥ ϑ1ε}

−δ�1+γ
0 R ≤uε(x) − ν · x in B�0R

(2.4)

with

|ν − eN | ≤
√

2Nδ. (2.5)

Let us discuss some key aspects in the statement of Theorem 2.1:
Assumption (2.2) must be though as the analogue of asking 0 to be a free boundary 

point in the one-phase setting (ε = 0+). Indeed, on the one hand it follows from the 
definition of ϑ2 that uε is harmonic in {uε > ϑ2ε}. On the other hand, using the definition 
of ϑ1 we will show (cf. Lemma 3.6) that uε has “exponentially small size in ε” inside 
{uε < ϑ1ε}. Consequently, the “fat hypersurface” {ϑ1ε < uε < ϑ2ε} is really analogous 
the free boundary in the one-phase setting.

Assumption (2.3) and conclusion (2.4) must be thought, respectively, as a δ-flatness 
property of uε at scale R > 0 and a (�γ0δ)-flatness property at scale �0R. In our frame-
work this turns out to the appropriate notion of δ-flatness. As it is customary, the 

flatness is a dimensionless parameter: Roughly speaking, it measures the ratio between 
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mine∈SN−1 dist
(
{ϑ1ε < uε < ϑ2ε} ∩ BR, {e · x = 0} ∩ BR

)
and R. With respect to [15], 

we remark that in (2.3)-(2.4) inequality from above is not required to hold in {uε > 0}, 
but only in {uε ≥ ϑ1ε} (otherwise the result would be empty since non-zero solutions to 
our semilinear PDE are everywhere positive!).

The conclusion of the theorem can be phrased as an “improvement of flatness”: if uε

is δ-flat at scale R (for small values of ε and δ), it is (�γ0δ)-flat at scale �0R.
We now say a few words about the proof of Theorem 2.1. In some sense, this proof is an 

“interpolation” of the proofs of De Silva in [15] and Savin in [22] (although an additional 
“sliding method” step in the spirit of Berestycki, Caffarelli, Nirenberg [3] is also needed, 
by similar reasons as in [17]). Indeed, our goal is to generalize the proof of De Silva [15]
for the one-phase free boundary problem to the setting of critical points of Eε(·, RN )). 
But since we need to go from a scaling invariant problem to a non-scaling invariant 
semilinear problem, there is an obvious analogy with what Savin did in his celebrated 
paper [22]. In this work Savin proved a version of the De Giorgi’s improvement of flatness 
for area-minimizing hypersurfaces (a scaling invariant problem), in the framework of 
energy minimizers of the Allen-Cahn equation (a semilinear PDE).

Both Savin’s and De Silva’s proofs follow a “small perturbations” approach (lineariza-
tion around flat solutions). In both cases — although for different reasons— the deviation
between an almost-flat solution and the flat one which best approximates it, is found 
to be an “almost-harmonic” function. Further, in both proofs, the quadratic decay of 
harmonic function towards their linear Taylor expansion is somehow transferred to the 
almost-flat solutions in order to obtain the improvement of flatness property. To accom-
plish this, both proofs use a delicate compactness argument, where deviations converge 
in C0 towards some limit function which is proved to be harmonic in the viscosity sense. 
This type of argument requires some Cα estimate, or improvement of oscillation esti-
mate, which guarantees the compactness in C0 (via Arzelà-Ascoli) of the sequences the 
deviations.

In our proof we also need such improvement of oscillation estimate, and finding an 
appropriate statement we could use in our setting turned out to be not easy at all! 
Indeed, in a first “naive approximation”, one could try to extend De Silva’s improvement 
of oscillation ([15, Theorem 3.1]) to the semilinear setting as follows:

Lemma 2.2. Let vε be the solution of (1.8) in R satisfying vε(0) = ϑ1ε (see Lemma 3.1, 
part (i)). There exist δ0, c0 ∈ (0, 1) and θ0 ∈ (0, 1) depending only on N , Φ such that 
the following holds. For every R > 0, every δ ∈ (0, δ0), every a ∈ R and b ≤ 0 such that 
a + |b| = δR, every ε/R ∈ (0, c0δ) and every critical point uε of (1.1) in BR satisfying

vε(xN − a) ≤ uε(x) ≤ vε(xN − b) in BR, (2.6)
there exist a′ ∈ R, b′ ≤ 0 such that
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vε(xN − a′) ≤ uε(x) ≤ vε(xN − b′) in BR/4,

b ≤ b′ ≤ a′ ≤ a,

a′ + |b′| ≤ θ0(a + |b|).

Lemma 2.2 is true.1 Unfortunately, it seems useless: the reason is that we cannot 
exclude the existence of minimizers Eε in B2R which are δ

100 -close to (xN )+ —with ε > 0
and ε/δ arbitrarily small— but failing to satisfy (2.6).

Lemma 6.3, where the δ-shifts of vε are replaced by δ-shifts of two suitable 1D super-
and subsolutions, is the right replacement to the previous naive statement. We construct 
these useful super and subsolutions in Lemma 3.1 part (ii) and (iii). Since they play a 
very important role in the paper, we devote the entire Section 3 to the classification of 
1D (super- and sub-) solutions and the study of their properties. We do not give yet the 
statement of Lemma 6.3 because such preliminaries are needed.

Let us remark that this notion of δ-flatness consisting in “being trapped” between 
δ-shifts of 1D super and subsolutions is essentially equivalent to the notion (2.3) when 
ε ∈ (0, δ2) —this is actually the reason behind this nonlinear relation between ε and 
δ in the statement of Theorem 2.1. Definition 6.1 and Lemma 6.2 establish this essen-
tial equivalence, when ε ∈ (0, δ2), of the these two notions of flatness which are used 
throughout the paper.

Last, but not least, in order to prove Theorem 1.4 we need to be able to apply our new 
improvement of flatness result (Theorem (2.1)) to uε := εu( · /ε) where u is a minimizer 
of E1 in RN , N ≤ 4. To do so, first we need to show that the assumption (2.3) will be 
satisfied —for some δ = δ0 and R = 1— when ε is taken sufficiently small. This part 
essentially combines previous results in [10,19] and [11] (although some improvements 
are needed) and it is contained in Section 4. However there is an important difference 
with respect to [22] that is related to our assumption ε/R < δ2 in Theorem 2.1. Indeed, 
in contrast with the Allen-Cahn setting (where ε and δ are comparable and the analogue 
of Theorem 1.4 is a corollary of the improvement of flatness), in our setting Theorem 1.4
does not follow as a direct consequence of Theorem 2.1. The reason is the following: 
suppose you want to apply Theorem 2.1 iteratively (in balls of radius R�−i

0 ) to an entire 
minimizer u of E1, starting from a huge ball BR (for which u is δ0-flat). Then, at a 
mesoscale 1 � R′ � R the flatness will have improved to δ = (R′/R)γδ0. So, if we want 
to continue applying Theorem 2.1 to u in BR′ , we must check that 1/R′ < (R′/R)2γδ2

0
(since ε = 1) and hence, we will always reach a critical mesoscale R′ = CR

2γ
1+2γ for which 

we cannot continue iterating. To solve this, we need an additional “sliding method” step 
in the spirit of Berestycki, Caffarelli, Nirenberg [3]. This last step follows the ideas of 
[17] and is done in Section 7.
1 By a small modification of the proof of Lemma 6.3.
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Remark 2.3. We assume β′(0) > 0 for simplicity, although this assumption is not really 
necessary. Indeed, our same proofs gives almost identical results if the assumption β′(0) >
0 is relaxed to lim inft↓0 β(t)t−p > 0, for some p > 1.

More precisely, Theorem 2.1 can be proved under this more general condition, up 
to assuming ε/R < δq (instead of ε/R < δ2), for some suitable q = q(p) > 2. The 
reason for this change is the following: while β′(0) > 0 implies the exponential decay 
increasing 1D solutions at −∞, β(t) ≥ tp gives a slower power-like decay. Accordingly, the 
properties of 1D solutions like (3.2) and (3.4) change to similar ones where powers replace 
logarithms. Up to this changes, all of our statements and proofs are still valid —with 
minor modifications— in this more general framework. The most important modifications 
are localized in Section 3 and only propagate to rest of the paper thought Lemma 6.2, 
where the size of the error is not 

√
ε/R but (ε/R)1/q (for some q > 2). This is the reason 

why we need to assume ε/R < δq instead of ε/R < δ2 in Theorem 2.1. By the rest, all 
the proofs remain essentially the same.

3. ODEs analysis and barriers

In this section we consider the family of second order ODEs

üε = 1
2Φ′

ε(uε) in R, (3.1)

and we provide a classification of its solutions, for every ε ∈ (0, 1) fixed. With respect 
to [18, Section 2.3], our ODEs analysis shows finer properties of global solutions such as 
(3.2), (3.3) and (3.4), which will be needed later in the proofs our main theorems.

Lemma 3.1. (1D global solutions) Fix ε ∈ (0, 1) and let Φ be as in (2.1). Then:
(i) Equation (3.1) has a unique solution vε with

vε(0) = ϑ1ε, lim
x→+∞

v̇ε(x) = 1,

which is implicitly given by

vε(x)ˆ

ϑ1ε

dw√
Φε(w)

= x.

This solution vε is smooth, positive, increasing, convex, and satisfies vε(x) → 0 as x →
−∞.
(ii) For every t > 0, equation (3.1) has a unique solution vtε with
vtε(0) = ϑ1ε, lim
x→+∞

v̇tε(x) = 1 + t.
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Moreover, vtε is of class C2, increasing, convex, and satisfies vtε(x) → −∞, v̇tε(x) →√
2t + t2 as x → −∞. Also, if xt

ε is denotes the unique root of vtε —i.e. the point where 
vtε(xt

ε) = 0—, then

xt
ε ≥ −ε

√
2c1 log

(
1 + ϑ1

t

)
, (3.2)

where c1 > 0 is the constant in (2.1).
(iii) For any τ ∈ (−1, 0), equation (3.1) has a unique solution vτε with

vτε (0) = ϑ1ε, lim
x→+∞

v̇τε (x) = 1 − |τ |.

Moreover, vτε is smooth, positive, and satisfies vτε (x) → +∞, v̇τε (x) → −1 + |τ | as 
x → −∞. Also, vτε has a unique point of minimum yτε satisfying

√
|τ |
c1

ε ≤ vτε (yτε ) ≤
√

2c1|τ | ε, (3.3)

and

yτε ≥ −ε
√

2c1
(

2 + log ϑ1√
2|τ |/c1

)
, (3.4)

where c1 > 0 is the constant in (2.1).

Proof. After scaling, let us assume ε = 1 and set u = uε, v = vε, vt = vtε and vτ = vτε .
Since Φ′ is bounded, nonnegative and continuous, a local C2 solution u = u(x) to (3.1)

with (u(0), u̇(0)) = (ϑ1, u̇0) exists and it is convex on its maximal interval of definition 
I. Using the assumptions on Φ′, it is not difficult to see that I = R. Further, since (3.1)
is invariant under even reflections (x → −x), we assume u̇0 > 0.

Step 1. Since u̇ is nondecreasing the limits limx→±∞ u̇ exist. Since u̇0 > 0 we see that 
u(x) → +∞ as x → +∞. Let us define

lim
x→+∞

u̇(x) =: A ∈ (0,+∞).

Hence, using that the Hamiltonian x → u̇(x)2−Φ(u(x)) must be constant (and Φ(u) = 1
for u > 0 large enough) we obtain

u̇(x)2 − Φ(u(x)) ≡ A2 − 1, x ∈ R. (3.5)

Step 2. Let us classify first monotone solutions: assume limx→−∞ u̇ ≥ 0 and hence 
u̇ > 0 in R. In this case (since Φ = Φ′(u) = 0 for u < 0) we obtain that either
lim
x→−∞

u(x) = 0 and lim
x→−∞

u̇(x) = 0
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or

lim
x→−∞

u(x) = −∞ and lim
x→−∞

u̇(x) =: B ∈ (0, A).

From (3.5), we obtain that in the first case A = 1, while in the second one we have

A2 −B2 = 1,

and hence A > 1.
Now in the first case integrating (3.5) —with A = 1— we get

v(x)ˆ

v(y)

dw√
Φ(w)

= x− y, (3.6)

for every y ≤ x and so (i) follows. The solution in (ii), is obtained in the case A = 1 + t, 
so B2 = A2 − 1 = 2t + t2. To complete (ii) we are left to show (3.2). Integrating (3.5)
between xt ≤ 0 (the root of vt) and 0 (recall vt(0) = ϑ1) and using (2.1) we obtain

0 − xt =
ϑ1ˆ

0

dw√
Φ(w) + 2t + t2

≤
ϑ1ˆ

0

dw√
1

2c1w
2 + 2t + t2

≤
√

2c1

ϑ1ˆ

0

dw
w + t

=
√

2c1 log
(

1 + ϑ1

t

)
.

Step 3. Let us consider now the case where u̇ changes sign. If so, there is x0 ∈ R such 
that u̇(x) ≤ 0 for x ≤ x0 and u̇(x) ≥ 0 for x ≥ x0 (by convexity of u). Since the equation 
is invariant under the reflection x �→ 2x0 − x, it follows that u(x) = u(2x0 − x) and thus 
limx→−∞ u̇ = −A. Note that the solutions u = vτ described in (iii) corresponds to the 
setting A = 1 − |τ |, with τ ∈ (−1, 0).

To show (3.3), we notice that if yτ is the minimum point of vτ , then v̇τ (yτ ) = 0. Thus, 
by (3.5), it follows

Φ(vτ (yτ )) = 2|τ | − τ2. (3.7)

Using again (2.1) —note that vτ (yτ ) < vτ (0) = ϑ1— we obtain

|τ |
c1

≤ 2|τ | − τ2

c1
≤ 1

2(vτ (yτ ))2 ≤ c1(2|τ | − τ2) ≤ 2c1|τ |
and (3.3) follows.
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We are left to prove (3.4). We use now (2.1) to obtain that, for all w ∈ (vτ (yτ ), ϑ1),

Φ(w) − 2|τ | + τ2 = Φ(w) − Φ(vτ (yτ )) =
ŵ

vτ (yτ )

Φ′(t) dt ≥ 1
c1

[
t2
]w
vτ (yτ )

= 1
c1

(
w2 − (vτ (yτ ))2

)
≥ w

2c1
(
w − vτ (yτ )

)
.

(3.8)

Hence, integrating (3.5) between yτ and 0 (recall vτ (0) = ϑ1) we obtain

0 − yτ =
ϑ1ˆ

vτ (yτ )

dw√
Φ(w) − 2|τ | + τ2

≤
√

2c1

ϑ1ˆ

vτ (yτ )

dw
√
w
√
w − vτ (yτ )

=
√

2c1

ϑ1/v
τ (yτ )ˆ

1

dω√
ω
√
ω − 1

≤
√

2c1
( 2ˆ

1

dω√
ω
√
ω − 1

+
ϑ1/v

τ (yτ )ˆ

2

dω
ω − 1

)

=
√

2c1
(

log(3 + 2
√

2) + log
(

ϑ1

vτ (yτ )

))
≤

√
2c1

(
2 + log ϑ1√

2|τ |/c1

)
. �

In the following remark we introduce important one-dimensional super- and sub-
solutions which will be used in the sequel.

Remark 3.2. Lemma 3.1 gives a classification of solutions to (3.1) in one dimension. The 
properties of such solutions are determined by their slopes at infinity, 1, 1 + t, or 1 − |τ |, 
where t > 0 and τ ∈ (−1, 0) are parameters. As done in Lemma 3.1 it is convenient 
to“center” these solutions so that their value at x = 0 is ϑ1ε.

In what follows, we will always take

t = ε, τ = −ε.

Within this setting, we define

wε
ε(x) :=

{
0 if x ≤ xε

ε

vεε(x) if x > xε
ε,

w−ε
ε (x) :=

{
v−ε
ε (x−ε

ε ) if x ≤ y−ε
ε

v−ε
ε (x) if x > y−ε

ε ,

where xε
ε and y−ε

ε are, respectively, the (unique) root of vεε and the point of minimum of 
v−ε
ε .

It is immediate to see that wε
ε and w−ε

ε are, respectively, a sub- and a super- solution 

of (3.1), both in the viscosity sense or in the weak sense.
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The next two lemmata are auxiliary results, which will be crucial in the proofs of our 
main theorems (see Section 6). In the statement of the next lemma we use the following 
standard notation diam(X) := supX − inf X for subsets X ⊂ R.

Lemma 3.3. There exists c > 1 depending only on ϑ1, ϑ2 and c1 > 0 as in (2.1) such that

diam
(
{ϑ1ε ≤ wε

ε ≤ ϑ2ε
})

≤ cε, ∀ε > 0,

and

diam
(
{ϑ1ε ≤ w−ε

ε ≤ ϑ2ε
})

≤ cε, ∀ε ∈
(
0, ϑ2

1
8c1

)
.

Proof. By scaling, we need to prove that wε := wε
1 and w−ε := w−ε

1 satisfy

(i) diam
(
{ϑ1 ≤ wε ≤ ϑ2

)
≤ c;

(ii) diam
(
{ϑ1 ≤ w−ε ≤ ϑ2

)
≤ c.

To prove (i) wee notice that (3.5) reads as (ẇε)2 = Φ(wε) + 2ε + ε2 in {wε > 0} and 
so, by (2.1), we find

ϑ2
1

c1
≤ Φ(ϑ1) ≤ (ẇε)2 in {ϑ1 ≤ wε ≤ ϑ2}.

Integrating between y and x, it follows

wε(x) − wε(y) ≥ ϑ1√
c1

(x− y).

So, choosing x such that wε(x) = ϑ2, y = 0 and recalling that wε(0) = ϑ1, we find 
ϑ1√
c1
x ≤ ϑ2 − wε(0) = ϑ2 − ϑ1, and (i) is proved.

To prove (ii) we use again (3.5): (ẇ−ε)2−Φ(w−ε) = −2ε +ε2. Hence, for ε ∈
(
0, ϑ

2
1

8c1

)
, 

we find

(ẇ−ε)2 ≥ Φ(w−ε) − 2ε ≥ ϑ2
1

2c1 − 2ε ≥ ϑ2
1

4c1 > 0, in {ϑ1 ≤ w−ε ≤ ϑ2},

which allows us to conclude similarly as for (i). �
Lemma 3.4. For every σ ∈ (0, 1), there exists ε0 ∈ (0, 1) depending only on ϑ1, ϑ2, c1 > 0
in (2.1) and σ, such that for every δ ∈ [0, 1) and every ε ∈ (0, ε0), if wε

ε and w−ε
ε are as 

in Remark 3.2, then:
(i) If xε

ε is such that vεε(xε
ε) = 0, then

wε
ε(x− δ − εσ) + δ + 1

2ε
σ ≤ x, x ∈ (xε

ε + δ + εσ, 1)
(3.9)
wε
ε(x + δ + εσ) − δ − 1

2ε
σ ≥ x, x ∈ (−1, 1).
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(ii) If y−ε
ε is the minimum point of v−ε

ε , then

w−ε
ε (x− δ − εσ) + δ + 1

2ε
σ ≤ x, x ∈ (y−ε

ε + δ + εσ, 1)

w−ε
ε (x + δ + εσ) − δ − 1

2ε
σ ≥ x, x ∈ (−1, 1).

(3.10)

Proof. Let us prove part (i). To simplify the notations, we set wε := wε
ε and xε = xε

ε. 
Let x̃ε > 0 > xε such that wε(x̃ε) = ϑ2ε, hence wε is linear for x ≥ x̃ε. Then if 
x ∈ (x̃ε + δ + εσ, 1), we have

wε(x− δ − εσ) − x = ϑ2ε + (1 + ε)(x− δ − εσ − x̃ε) − x

= (ϑ2 + x)ε− (1 + ε)(δ + εσ) − (1 + ε)x̃ε

≤ (ϑ2 + 1)ε− εσ − δ ≤ −δ − 1
2ε

σ,

for every ε ≤ ε0 ≤ [2(ϑ2 + 1)]
1

σ−1 , while if x ∈ (xε + δ + εσ, ̃xε + δ + εσ), we obtain by 
(3.2) (with t = ε)

wε(x− δ − εσ) − x ≤ ϑ2ε− (xε + δ + εσ) ≤ ϑ2ε + Cε| log ε| − δ − εσ

≤ −δ − 1
2ε

σ,

taking eventually ε0 smaller. Notice that the constant C > 0 depends only on ϑ1, and 
c1 (cf. (3.2)).

To show the second inequality in (3.9), we assume first x + δ + εσ ≥ x̃ε and we notice 
that, since x̃ε ∈ (0, cε) (where c > 0 is as in Lemma 3.3), we have

wε(x + δ + εσ) − x = ϑ2ε + (1 + ε)(x + δ + εσ − x̃ε) − x

≥ δ + εσ − x̃ε + ε(x + δ + εσ − x̃ε) ≥ δ + εσ − cε ≥ δ + 1
2ε

σ,

provided that ε0 is small enough. Further, since x̃ε ≤ cε, when x ≤ x̃ε − δ − εσ we have 
x ≤ 0, and the second inequality in (3.9) follows.

To show (ii), we set w−ε = w−ε
ε , yε = y−ε

ε , and we take ỹε such that w−ε(ỹε) = ϑ2ε. 
The proof of the first inequality works exactly as before, using (3.4) instead of (3.2). To 
show the second, we assume first x ∈ (ỹε−δ−εσ, 1) and, recalling that ỹε ≤ cε, we write

w−ε(x + δ + εσ) − x = ϑ2ε + (1 − ε)(x + δ + εσ − ỹε) − x

= (ϑ2 − x)ε + (1 − ε)(δ + εσ) − (1 − ε)ỹε
≥ δ + (1 − ε)εσ − (1 + c)ε− εδ ≥ δ + 1

2ε
σ,

taking eventually ε0 smaller. As above, if x ≤ ỹε − δ − εσ, then x is negative and the 

inequality is automatically satisfied. �
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We end this section by proving that solutions uε to (1.8) decay exponentially fast 
inside {uε ≤ ϑ1ε} as ε → 0. This is a main fact we will use later in Section 6 (see for 
instance Lemma 6.2). This decay is obtained in Lemma 3.6 using a sliding type argument 
based on the continuous family of super-solutions constructed in the following lemma.

Lemma 3.5. Fix c1 > 0 as in (2.1) and c2 := 1
c1

. For every ε ∈ (0, 1), � > 0 and R ≥ �, 
let

ϕ(r) = ϕε,�,R(r) := e−
μ+
ε (R−r)

1 − μ+
μ−

e−
μ+−μ−

ε (r−�)

1 − μ+
μ−

e−
μ+−μ−

ε (R−�)
, r ∈ [�,R], (3.11)

where μ± are defined by

μ± = −N−1
2� ε±

√(
N−1
2�

)2
ε2 + c2. (3.12)

Then, for every x0 ∈ RN and � > 0, the function

ψ(x) := ψε,�,R,x0(x) :=
{
ϕ(�) in B�(x0)
ϕ(|x− x0|) in BR(x0) \B�(x0)

(3.13)

satisfies
⎧⎪⎪⎨
⎪⎪⎩
−Δψ + 1

c1ε2
ψ ≥ 0 in BR(x0)

ψ = 1 in ∂BR(x0)
∂rψ ≥ 0 in BR(x0),

(3.14)

in the weak sense.

Proof. Up to translations and scaling, we may assume x0 = 0, ε = 1 and set ϕ = ϕ1, 
ψ = ψ1. Notice that if � = R, we have ψ ≡ 1 in BR (i.e. ϕ = 1 in (0, R)) and (3.14) is 
trivial.

If 0 < � < R, since ϕ(�) > 0 and ϕ(R) = 1, it suffices to verify that the differential 
inequality in (3.14) is satisfied in BR \B� with ϕ′(�) = 0 and ϕ′ ≥ 0 in (�, R).

To see this, we notice that if r ∈ (�, R) and ϕ′ ≥ 0, then

−Δϕ + c2ϕ = −ϕ′′ − N−1
r ϕ′ + c2ϕ ≥ −ϕ′′ − N−1

� ϕ′ + c2ϕ,

and so, it is enough to check that
⎧⎪⎪⎨
⎪⎪
−ϕ′′ − N−1

� ϕ′ + c2ϕ = 0 in (�,R)
ϕ′ ≥ 0 in (�,R)
⎩ϕ′(�) = 0.
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Integrating the equation above, we easily see that

ϕ(r) = Aeμ+r + Beμ−r r ∈ (R/2, R),

for some suitable constants A, B ∈ R, and μ± as in (3.12). Imposing that ϕ′(�) = 0 and 
ϕ(R) = 1, we deduce

A = 1
eμ+R(1 − μ+

μ−
e−(μ+−μ−)(R−�))

, B = −μ+
μ−

e(μ+−μ−)�A

and, substituting into the expression of ϕ, (3.11) follows. Checking that ϕ′ ≥ 0 in (�, R)
is a straightforward computation. �
Lemma 3.6. There exists ε0 ∈ (0, 1) depending only on N and c1 such that for every 
ε ∈ (0, ε0), every solution uε to (1.8), every x0 ∈ {uε ≤ ϑ1ε} and every ball Bε3/4(x0) ⊂
{u ≤ ϑ1ε}, then

uε ≤ 3ϑ1ε e
− ε−1/4

4c1/2
1 in B ε3/4

2
(x0). (3.15)

Proof. Fix R > 0 and x0 ∈ {u ≤ ϑ1ε} such that BR(x0) ⊂ {u ≤ ϑ1ε}. Let ψ� := ψε,�,R,x0

be defined as in (3.13), satisfying (3.14), and let ψ̃� := ϑ1εψ�.
If � = R, then ψ̃R = ϑ1ε satisfies (3.14), with ψ̃R ≥ uε in BR(x0). Setting v := ψ̃R−uε

and recalling that BR(x0) ⊂ {u ≤ ϑ1ε}, we obtain

−Δv + 1
c1ε2

v = −Δψ̃R + 1
c1ε2

ψ̃R + Δu− 1
c1ε2

u ≥ Δu− 1
2Φ′

ε(u) = 0,

and thus
{
−Δv + 1

c1ε2
v ≥ 0 in BR(x0)

v ≥ 0 in BR(x0).

By the strong maximum principle, v > 0 in BR(x0) (it cannot be v = 0 since ψR is a 
strict super-solution), that is ψR > uε in BR(x0). Now, let

�∗ := inf{� ∈ (0, R] : ψ� > uε in BR(x0)}.

We have �∗ = 0. If by contradiction, �∗ > 0, we may repeat the above argument setting 
v := ψ̃�∗ − uε and noticing that v ≥ 0 in BR(x0) with v(x∗) = 0, for some x∗ ∈ BR(x0). 
Since by construction BR(x0) ⊂⊂ {u ≤ ϑ1ε}, ψ̃�∗ = ϑ1ε on ∂BR(x0), and ψ�∗ is radially 
increasing near the boundary of the ball, it must be x∗ ∈ BR(x0). Thus using the linear 
equation for v and the strong maximum principle either v ≡ 0 or v > 0 in BR(x0). Since 

both scenarios are impossible, our contradiction follows.
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In particular, we have �∗ < R
2 and so, uε ≤ ψR/2 in BR(x0). Now, choosing R = ε3/4, 

taking � = R
2 in (3.11) and using (3.13), we obtain

uε ≤ εϑ1ϕε3/4/2(ε3/4/2) ≤ εϑ1
(
1 − μ+

μ−

)
e
− μ+

2 4√ε in Bε3/4/2(x0),

where μ± are defined in (3.12) (with R = ε3/4). Since μ± → ± 1√
c1

as ε → 0+, there is 
ε0 ∈ (0, 1) (depending only on N and c1) such that μ+ ≥ 1/(2√c1) and −μ+/μ− ≤ 2
for every ε ∈ (0, ε0) and thus (3.15) follows. �
4. Lipschitz and non-degeneracy estimates

We recall now a useful Lipchitz estimate from [11].

Proposition 4.1 (Uniform Lipschitz estimate; see [11, Theorem 1.2]). For any V ⊂⊂ B1, 
there exists C > 0 depending only on N , L, ϑ2 and V such that for every ε ∈ (0, 1) and 
for every critical point uε of (1.1) in B1 with uε(0) ≤ ϑ2ε we have

sup
V

|∇uε| ≤ C. (4.1)

We also need a non-degeneracy estimate related to [11, Theorem 1.8]. Our estimate is 
stronger since balls Br(z) do not need to be centered at some point in {u ≥ Cε}, with 
C large, and can be centered at any point in {uε ≥ ϑ1ε}

Lemma 4.2 (Uniform non-degeneracy). There exists ε0 ∈ (0, 1) depending only on ϑ1 and 
c1 such that for every κ > 0, there exists cκ > 0 depending only on N , L, ϑ2 and κ such 
that for every ε ∈ (0, ε0), every local minimizer uε of (1.1) in B1, every z ∈ {uε ≥ ϑ1ε}
and every r ≥ κε such that Br(z) ⊂⊂ B1, then

sup
Br(z)

uε ≥ cκ r. (4.2)

Proof. Let us fix κ > 0, and assume that ε ∈ (0, ε0), u = uε, z ∈ {uε ≥ ϑ1ε} and r ≥ κε. 
Define

ω(r) := 1
r sup
Br(z)

u. (4.3)

Our goal is to prove a lower bound for ω, which holds if ε0 is small enough. Up to 
translate and scaling, we may assume r = 1 and z = 0. Let σ := 1

3 where c > 0 is the 
constant appearing in (4.7) depending only on N and c1.

Step 1: Estimates. Let ϕ ∈ C∞
0 (B1), 0 ≤ ϕ ≤ 1, with ϕ = 1 in B7/8. Assume also
|∇ϕ| ≤ cN , |Δϕ| ≤ cN , (4.4)
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for some cN > 0. Testing the equation of u with η = uϕ2, it is not difficult to find
ˆ

B1

[
|∇u|2 + 1

2Φ′
ε(u)u

]
ϕ2 dx = 1

2

ˆ

B1

u2Δ(ϕ2) dx,

which, since Φ′
ε(u)u ≥ 0 implies

ˆ

B7/8

|∇u|2 dx ≤ cN

ˆ

B1

u2 dx, (4.5)

for some new cN > 0.
Now, let φ ∈ C∞(RN ), 0 ≤ φ ≤ 1 with φ = 0 in B3/4 and φ = 1 in RN \ B7/8, 

satisfying (4.4). Taking v = φu as a competitor for u, we deduce
ˆ

B1

Φε(u) − Φε(φu) dx ≤
ˆ

B1

|∇(uφ)|2 − |∇u|2 dx

≤
ˆ

B1

(
φ2 − 1

)
|∇u|2 dx + 2

ˆ

B7/8

u2|∇φ|2 dx +
ˆ

B7/8

|∇u|2φ2 dx

≤ cN

ˆ

B7/8

|∇u|2 + u2 dx,

for some new cN > 0 and so, recalling that φ ≤ 1, Φ′
ε ≥ 0 and using (4.5), it follows

ˆ

B3/4

Φε(u) dx ≤
ˆ

B1

Φε(u) − Φε(φu) dx ≤ cN

ˆ

B1

u2 dx.

In particular, by the definition of ω, we conclude
ˆ

B3/4

Φε(u) dx ≤ cNω(1)2, (4.6)

for some new cN > 0.
Step 2: Decay of ω. Note that for all y ∈ B1/2, since u is subharmonic, we have

u(y) ≤
 

B1/4(y)

u dx ≤ cN

ˆ

B3/4

u dx = cN

⎛
⎜⎝ ˆ

B3/4∩{u≥t}

u dx +
ˆ

B3/4∩{u≤t}

u dx

⎞
⎟⎠ ,

for every t > 0. Recalling that Φ is nondecreasing, there holds {u ≥ t} ⊆ {Φε(u) ≥ Φε(t)}

and, using that Φε(t) ≥ 1

2c1 (t/ε)2 for t ∈ (0, ϑ1ε] combined with (4.3), it follows
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ˆ

B3/4∩{u≥t}

u dx ≤ ω(1)
ˆ

B3/4∩{u≥t}

dx ≤ ω(1)
ˆ

B3/4∩{Φε(u)≥Φε(t)}

dx

≤ c1ω(1)
(ε
t

)2 ˆ

B3/4

Φε(u) dx ≤ c1cN

(ε
t

)2
ω3(1),

where the last inequality is a direct application of (4.6). Substituting into the inequality 
above, we deduce

u(y) ≤ cN

[
c1cN

(ε
t

)2
ω3(1) + t

]
≤ c

[(ε
t

)2
ω3(1) + t

]
,

for some c > 0 depending only on N and c1, and so, by the arbitrariness of y ∈ B1/2,

ω
( 1

2
)
≤ c

[ (ε
t

)2
ω3(1) + t

]
. (4.7)

Setting t := min{max{ε, ω(1)}1+2σ, ϑ1ε}, we have that t ≤ ϑ1ε thanks to the definition 
of ε0. So, using that σ = 1

3 , we may re-write (4.7) as

ω
( 1

2
)
≤ cmax{ε, ω(1)}1+2σ. (4.8)

Let us now assume by contradiction that we have ε ≤ ω0 and ω(1) ≤ ω0, for ω0 ∈
(0, 1/4) sufficiently small so that (4.8) implies

ω
( 1

2
)
≤ max{ε, ω(1)}1+σ.

After scaling (applying the above inequality to uε(rx)/r), we obtain provided ε/r ∈
(0, ω0),

ω
(
r
2
)
≤ max{ε/r, ω(r)}1+σ.

Iterating the above inequality, we obtain that whenever 2kε ≤ ω0, we have either

(i) ω(2−k) ≤ (2kε)1+σ or (ii) ω(2−k) ≤ ω(1)(1+σ)k ,

for all k ∈ N. Finally, choosing

k := �log2(ε−1/2)�,

we have 2−k ≤ ε1/2 ≤ 2−k+1 and hence 2kε ≤ 2ε1/2 ∈ (0, ω0), provided ε ∈ (0, ε0) with 
ε0 > 0 sufficiently small.

Hence, recalling ω(1) ≤ ω0 ≤ 1
4 and that by assumption 0 ∈ {uε ≥ ϑ1ε}, we have

k 1+σ (1+σ)k −k k 1/2
max{(2 ε) , (1/4) } ≥ ω(2 ) := 2 sup
B2−k

u ≥ ϑ1ε , (4.9)
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which clearly gives a contradiction if ε ∈ (0, ε0) with ε0 chosen sufficiently small (since 
(2kε)1+σ ≤ (2ε1/2)1+σ � ε1/2 and (1/4)(1+σ)k � 4−k � ε1/2 as ε ↓ 0). �
5. Proof of Proposition 1.5

This is section is devoted to the proof of Proposition 1.5. It will be obtained as a 
corollary of the following result, which is its equivalent version in terms of blow-down 
families.

Proposition 5.1. Let Φ be as in (1.3)-(1.4) and let ϑ1 and ϑ2 as in (2.1). Let u : RN → R+
be a minimizer of E in RN not identically 0, with 0 ∈ {ϑ1 ≤ u ≤ ϑ2}. Let {εj}j∈N be 
a sequence satisfying εj → 0 as j → +∞ and let uεj be the corresponding blow-down 
family.

Then for every α ∈ (0, 1), there exist sequences εj� , δ� → 0 and a 1-homogeneous 
entire local minimizer of (1.5) u0 ∈ W 1,∞

loc (RN ) — also not identically 0 — such that

|uεj�
− u0| ≤ δ� in B1, (5.1)

and

{x : dist(x, {u0 > 0}) ≥ δ�} ⊂ {uεj�
≤ ϑ1εj�} ⊂ {uεj�

≤ ϑ2εj�}
⊂ {x : dist(x, {u0 = 0}) ≤ δ�} in B1,

(5.2)

for every � ∈ N.

The above statement will follow as a byproduct of several auxiliary results, having 
independent interest: in Lemma 5.2 we prove that families of minimizers of (1.1) converge 
(in a suitable sense, up to subsequences) to a minimizer of (1.5), while in Lemma 5.3
and Corollary 5.4 we deal with the convergence of the level sets of uε. Proposition 5.1 is 
a consequence of these facts and a Weiss type monotonicity formula (Lemma 5.5).

Lemma 5.2. Let R > 0 and {uεj}, εj ↓ 0, be a sequence of minimizers of (1.1) in BR, 
with ε = εj. Assume uεj (0) ≤ ϑ2εj. Then, up to subsequence, we have

uεj → u0 in H1
loc(BR) ∩ Cα

loc(BR), for all α ∈ (0, 1), (5.3)

as j → +∞, where u0 ∈ W 1,∞
loc (BR) is a minimizer of (1.5) in BR.

Proof. By scaling we may assume R = 1. By Proposition 4.1, the family {uε}ε∈(0,1) is 
uniformly bounded in W 1,∞

loc (B1). So, by the Ascoli-Arzelà theorem, for every α ∈ (0, 1), 
there exists u0 ∈ W 1,∞

loc (B1) and εj → 0 as j → +∞ such that uεj → u0 in Cα
loc(B1). 

Furthermore, since in addition each uε is subharmonic and {uε}ε∈(0,1) is uniformly 

bounded in L2

loc(B1), we deduce uεj → u0 in W 1,1
loc (B1), up to subsequence (see for 
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instance [5, Lemma A.1]). Consequently, since uεj , u0 ∈ W 1,∞
loc (B1) we deduce uεj → u0

in H1
loc(B1) by interpolation and (5.3) is proved.

Now, let us set for simplicity u := u0 and uj := uεj . Let us fix V ⊂⊂ B1 and show 
that

E0(u, V ) ≤ lim inf
j→+∞

Eεj (uj , V ). (5.4)

Indeed, by H1
loc convergence, it is enough to check that

ˆ

V

χ{u>0} dx ≤ lim inf
j→+∞

ˆ

V

Φεj (uj) dx. (5.5)

To show (5.5), we first notice that Φεj (uj) → 1 in {u > 0}. Indeed, if x ∈ {u > 0}, that 
is u(x) ≥ εx for some εx > 0, then uj(x) ≥ εx/2 > 0 for all j large enough. Now, by the 
monotonicity of Φ, Φεj (εx/2) ≤ Φεj (uj(x)) for j large enough and thus, by definition of 
Φε,

1 = lim
j→+∞

Φεj (εx/2) ≤ lim sup
j→+∞

Φεj (uj(x)) ≤ 1.

Consequently, by Fatou’s lemma

ˆ

V

χ{u>0} dx =
ˆ

V ∩{u>0}

dx ≤ lim inf
j→+∞

ˆ

V ∩{u>0}

Φεj (uj) dx ≤ lim inf
j→+∞

ˆ

V

Φεj (uj) dx,

and (5.5) follows.
Once (5.4) is established, let us fix V := Br, r < 1, ξ ∈ C∞

0 (V ), and ϕ ∈ C∞(Br)
vanishing on ∂Br with ϕ > 0 in Br. Since uj is a local minimizer, we have

Eεj (uj , V ) ≤ Eεj (uj + ξ − δϕ, V ), (5.6)

for all j ∈ N and δ > 0. Since uj → u in H1(V ), we immediately see that

ˆ

V

|∇(uj + ξ) − δ∇ϕ|2 dx →
ˆ

V

|∇(u + ξ) − δ∇ϕ|2 dx (5.7)

as j → +∞. Now, if x ∈ {u + ξ − δϕ > 0} ∩ V , there is εx > 0 such that u(x) + ξ(x) −
δϕ(x) ≥ εx and, since uj → u locally uniformly, it must be uj(x) + ξ(x) − δϕ(x) ≥ εx/2
for every j large enough. Consequently, by monotonicity,
1 = lim
j→+∞

Φεj (εx/2) ≤ lim sup
j→+∞

Φεj (uj(x) + ξ(x) − δϕ(x)) ≤ 1.
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Similar, whenever x ∈ {u + ξ − δϕ < 0} ∩ V , then u(x) + ξ(x) − δϕ(x) ≤ −εx for some 
εx > 0 and so uj(x) + ξ(x) − δϕ(x) ≤ −εx/2 for every j large enough, which implies

0 ≤ Φεj (uj(x) + ξ(x) − δϕ(x)) ≤ Φεj (−εx/2) = 0,

when j is large enough. On the other hand, for and every m ∈ N, we have2

|{u+ξ−δϕ = 0}∩Br−1/m| = 0 for all δ ∈ Em ⊂ (0, 1), where |(0, 1) \ Em| = 0. (5.8)

Consequently, since | ∪m ((0, 1) \ Em)| = 0,

|{u + ξ − δϕ = 0} ∩Br| = 0 for a.e. δ ∈ (0, 1), (5.9)

and we deduce that for a.e. δ > 0, Φεj (uj + ξ − δϕ) → χ{u+ξ−δϕ>0} a.e. in Br, as 
j → +∞.

So, putting together (5.4), (5.6), (5.7), noticing that {u + ξ − δϕ > 0} ⊆ {u + ξ > 0}
and passing to the limit as j → +∞ by means of the dominated convergence theorem, 
we find

E0(u, V ) ≤
ˆ

V

|∇(u + ξ) − δ∇ϕ|2 + χ{u+ξ−δϕ>0} dx

≤ E0(u + ξ, V ) + 2δ‖∇(u + ξ)‖L2(V )‖∇ϕ‖L2(V ) + δ2‖∇ϕ‖2
L2(V ),

for a.e. δ > 0. Finally, passing to the limit along a sequence δ = δk → 0 for which (5.9)
is satisfied for every k ∈ N, we find E0(u, V ) ≤ E0(u + ξ, V ) and the thesis follows by the 
arbitrariness of Br ⊂⊂ B1 and ξ ∈ C∞

0 (Br). �
Lemma 5.3. Let R > 0, {uε}ε∈(0,1) and u0 as in Lemma 5.2. Then, for every ϑ ≥ ϑ1, 
there exists a sequence εj → 0 such that

{uεj ≥ ϑεj} → {u0 > 0} locally Hausdorff in BR, (5.10)

as j → +∞.

Proof. By scaling, we may assume R = 1. Fix � ∈ (0, 1) and ϑ ≥ ϑ1. Set u = u0, 
uj = uεj , Uj := {uεj > ϑεj} ∩ B�, Ω := {u > 0} ∩ B�, and notice that by assumption 
0 ∈ Ωc. We first show that for every z ∈ Ω and every r > 0 such that Br(z) ⊂⊂ B1, then

sup
Br(z)

u ≥ c
2r, (5.11)
2 To see this, it is enough to apply the Coarea formula to the function u+ξ
ϕ , which is Lipschitz in Br−1/m.
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where c > 0 is the constant appearing in Lemma 4.2 for κ = 1/2. Given such z ∈ Ω and 
r > 0, we take y ∈ Br/2(z) such that u(y) > 0. So, by uniform convergence, y ∈ U for 
j large enough (and thus uj(y) > ϑ1εj). So by (4.2) (with κ = 1), there is xj ∈ Br/2(y)
such that uj(xj) ≥ c

2r. Now, up to passing to a subsequence, xj → x ∈ Br/2(y) as 
j → +∞ and thus, by Cα

loc convergence, u(x) ≥ c
2r and (5.11) follows since x ∈ Br(z).

Now fix σ > 0, and define

Ωσ := {x : dist(x,Ω) ≤ σ}, Uj,σ := {x : dist(x, Uj) ≤ σ}.

Let us show that Uj ⊂ Ωσ for every j ≥ jσ, for some jσ large enough. Indeed, assume by 
contradiction there is a sequence zj such that uj(zj) ≥ ϑεj ≥ ϑ1εj , but zj /∈ Ωσ. Then, 
by (4.2), there is jσ such that

uj(xj) := sup
Bσ/2(zj)

uj ≥ c
2 σ,

for every j ≥ jσ and some xj ∈ Bσ/2(zj). In addition, up to passing to a subsequence, 
zj → z, xj → x ∈ Bσ/2(z) ⊂⊂ Ωc, and uj(xj) → u(x) as j → +∞, by Cα

loc convergence. 
Since u(x) = 0 by construction, we obtain a contradiction.

We also have Ω ⊂ Uj,σ for every j ≥ jσ. Indeed, assume by contradiction there is 
zj ∈ Ω such that zj /∈ Uj,σ. Then, by (5.11), there is xj ∈ Bσ/2(zj) such that u(xj) ≥ c

4σ

while, by construction, uj < ϑεj in Bσ/2(zj). So, since zj → z, xj → x ∈ Bσ/2(z) (up to 
a subsequence), we have c4σ ≤ u(x) ≤ 0, a contradiction. The limit (5.10) follows from 
the arbitrariness of σ > 0. �
Corollary 5.4. Let R > 0, {uε}ε∈(0,1) and u0 as in Lemma 5.2. Then, for every ϑ ≥ ϑ1, 
there exists a sequence εj → 0 such that

{uεj ≤ ϑεj} → {u0 = 0} locally Hausdorff in BR, (5.12)

as j → +∞.

Proof. It is enough to apply Lemma 5.3 and noticing that {uεj ≤ ϑεj} = {uεj ≥ ϑεj}c
and {u0 = 0} = {u0 > 0}c. �
Lemma 5.5. Let u be a nonnegative entire local minimizer of (1.1) with ε = 1.

Then, for every x0 ∈ RN , the function

r → W(u, x0, r) := r−N

ˆ

Br(x0)

|∇u|2 + Φ(u) dx− r−1−N

ˆ

∂Br(x0)

u2 dσ (5.13)
is well-defined in (0, ∞) and satisfies
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d

dr
W(u, x0, r) = 2r−N

ˆ

∂Br(x0)

(
∂nu− u

r

)2
dσ + r−1−N

ˆ

Br(x0)

uΦ′(u) dσ, (5.14)

where ∂nu := ∇u · n and n is the outward unit normal to ∂Br(x0). In particular, the 
function r → W(u, x0, r) is non-decreasing.

Proof. We follow [26, Theorem 2]. Note first that under our assumptions u is a critical 
point of 

´
|∇u| +Φ(u) with Φ of class C1,1. Hence u satisfies a semilinear equation of the 

type Δu = f(u) with f Lipschitz. Hence, by standard elliptic regularity and “semilinear 
bootstrap” we have u ∈ C2,α

loc (Rn). This qualitative regularity is enough in order to justify 
the computations below.

Fix x0 ∈ RN and let ur(x) := u(x0+rx)
r . Then

W(u, x0, r) =
ˆ

B1

|∇ur|2 dx +
ˆ

B1

Φ(rur) dx−
ˆ

∂B1

u2
r dσ.

Noticing that r d
drur = ∇ur · x − ur and using the equation of ur, we obtain

d

dr

ˆ

B1

|∇ur|2 dx = 2
r

ˆ

B1

∇ur · ∇(∇ur · x− ur) dx

= −2
r

ˆ

B1

Δur(∇ur · x− ur) dx + 2
r

ˆ

∂B1

(∇ur · x)(∇ur · x− ur) dσ

= −
ˆ

B1

Φ′(rur)(∇ur · x− ur) dx + 2
r

ˆ

∂B1

(∇ur · x)(∇ur · x− ur) dσ.

Similar,

d

dr

⎛
⎝ˆ

B1

Φ(rur) dx

⎞
⎠ =

ˆ

B1

Φ′(rur)(∇ur · x) dx,

− d

dr

ˆ

∂B1

u2
r dσ = −2

r

ˆ

∂B1

ur(∇ur · x− ur) dσ.

Summing and rearranging terms, we find

d

dr
W(u, x0, r) = 2

r

ˆ

∂B1

(∇ur · x− ur)2 dσ + 1
r

ˆ

B1

urΦ′
1/r(ur).
Changing variables x → x−x0
r , (5.14) follows. �
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Proof of Proposition 5.1. By scaling, {uεj}j∈N is a family of minimizers of (1.1) in RN

and thus, by Lemma 5.2, Lemma 5.3, Corollary 5.4 and using a standard diagonal argu-
ment, we deduce the existence of sequences ε� = εj� , δl → 0 and a minimizer u0 of (1.5)
in RN with 0 ∈ ∂{u0 > 0} such that (5.1) and (5.2) are satisfied. The fact that u0 is 
nontrivial follows by uniform non-degeneracy (Lemma 4.2).

We are left to show that u0 is 1-homogeneous. To see this, we use Weiss’ monotonicity 
formula. For every ε ∈ (0, 1), we consider the function

r → Wε(uε, r) := r−N

ˆ

Br

|∇uε|2 + Φε(uε) dx− r−1−N

ˆ

∂Br

u2
ε dσ.

Noticing that Wε(uε, r) = W(u, r/ε), we easily compute

d

dr
Wε(uε, r) = 1

ε

d

dr
W(u, r/ε) = 2r−N

ˆ

∂Br

(
∂nuε −

uε

r

)2
dσ + r−1−N

ˆ

Br

uεΦ′
ε(uε) dσ,

and thus, integrating and neglecting the second term in the r.h.s., we deduce

W(u,R/ε) −W(u, �/ε) ≥ 2
R̂

�

r−N

ˆ

∂Br

(
∂nuε −

uε

r

)2
dσdr, (5.15)

for every 0 < � < R fixed. On the other hand, since u is globally Lipschitz and Φ ≤ 1, 
we have

W(u, r) ≤ r−N

ˆ

Br

|∇uε|2 + Φε(uε) dx ≤ cN (1 + ‖∇u‖L∞(RN )) < +∞, ∀r > 0.

This, together with the monotonicity r → W(u, r), yields W(u, r) → l as r → +∞, for 
some l < +∞ (depending on u). Consequently, taking ε = ε� and passing to the limit as 
� → +∞ in (5.15), we obtain by H1

loc and Cα
loc convergence

R̂

�

r−N

ˆ

∂Br

(
∂nu0 −

u0

r

)2
dσdr = 0.

By the arbitrariness of � and R, it follows ∂nu0 = u0
r in ∂Br, for every r > 0, that is, u0

is 1-homogeneous. �
Proof of Proposition 1.5. Let {Rj}j∈N be any sequence satisfying Rj → +∞ as j →
+∞, and let εj := 1

Rj
. Let εj� , δ�, uεj�

and u0 as in Proposition 5.1 and Rj� := 1
εl

. Then, 
since u0 is 1 homogeneous, (1.11) and (1.12) follow by scaling back to u into (5.1) and 

(5.2). �
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6. Improvement of flatness

This section is devoted to the proof of Theorem 2.1. As mentioned in the introduction, 
its proof can be regarded as a suitable “interpolation” of the methods by De Silva [15] and 
Savin [22], and requires some auxiliary results: a uniform Hölder type estimate given in 
Lemma 6.3 and Lemma 6.4, and a compactness result provided by Lemma 6.5. Further, 
we will crucially use the 1D solutions studied in Lemma 3.1 and their truncations (cf. 
Remark 3.2).

Definition 6.1. Let uε be a critical point of (1.1) in BR ⊂ RN .

• We say that uε satisfies Flat1(ν, δ, R) if

uε(x) − ν · x ≤ δR in BR ∩ {uε ≥ ϑ1ε}
−δR ≤uε(x) − ν · x in BR.

(6.1)

• We say that uε satisfies Flat2(ν, δ, R) if

wε
ε(ν · x− δR) < uε(x) < w−ε

ε (ν · x + δR) in BR. (6.2)

Lemma 6.2. There exist ε0, δ0 ∈ (0, 1) depending only on ϑ1, ϑ2 and c1 > 0 as (2.1), 
such that for every R > 0, every ν ∈ SN−1, every ε/R ∈ (0, ε0), δ ∈ [0, δ0) and every 
critical point uε of (1.1) in BR, we have

uε satisfies Flat1(ν, δ, R) ⇒ uε satisfies Flat2(ν, δ +
√

ε/R, (1 −
√

ε/R)R), (6.3)

uε satisfies Flat2(ν, δ, R) ⇒ uε satisfies Flat1(ν, δ +
√

ε/R, (1 −
√

ε/R)R). (6.4)

Proof. Let ε0 ∈ (0, 1) as in Lemma 3.4, ε ∈ (0, ε0), and set Uε := {uε ≥ ϑ1ε}. By 
scaling, we may assume R = 1 while, up to a rotation of the coordinate system, we can 
set ν = eN .

Step 1. Let us prove first (6.3). Assume that uε satisfies Flat1(ν, δ, 1), as defined in 
(6.1). On the one hand we have uε(x) ≥ xN − δ in B1. Then, by the first inequality in 
(3.9) with σ = 1/2, we have

uε(x) ≥ xN − δ ≥ wε
ε(xN − δ −

√
ε) in B1 ∩ {wε

ε(xN − δ −
√
ε) > 0}. (6.5)

Further, since uε ≥ 0, the same inequality holds true in B1 ∩ {wε
ε(xN − δ − √

ε) = 0}
and the first inequality in (6.3) follows.

To show the second inequality, we use that, on the other hand, uε(x) ≤ xN + δ in 
B1 ∩ Uε. Then, by the second inequality in (3.10), we have

√ √

uε(x) ≤ xN + δ ≤ w−ε

ε (xN + δ + ε) − ε
2 in B1 ∩ Uε. (6.6)
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Now notice that by Lemma 3.6 (cf. (3.15)), we have

uε ≤ 3ϑ1ε e
− ε−1/4

4c1/2
1 in B1−√

ε \ Vε, Vε := B1 ∩ {x : d(x, Uε) ≤ ε3/4}. (6.7)

Thanks to (3.3) (with |τ | = ε), we also know that w−ε
ε (xN + δ+

√
ε) ≥ 1√

c1
ε3/2 and thus 

by (6.7)

uε < w−ε
ε (xN + δ +

√
ε) in B1−√

ε \ Vε,

for every ε ∈ (0, ε0), taking eventually ε0 smaller. We are left to check that uε(x) <
w−ε

ε (xN + δ+
√
ε) in B1−√

ε ∩ (Vε \Uε). Let x ∈ B1−√
ε ∩ (Vε \Uε). Let x̄ ∈ B1 ∩Uε such 

that |x − x̄| ≤ ε3/4. From (6.6) (using uε ≥ 0) we know that w−ε
ε (x̄N + δ +

√
ε) ≥ √

ε/2. 
Hence (using that w−ε

ε is 1-Lipschitz),

uε(x) ≤ ϑ1ε ≤
√
ε/2 − ε3/4 ≤ w−ε

ε (x̄N + δ +
√
ε) − ε3/4 ≤ w−ε

ε (xN + δ +
√
ε).

This completes the proof of (6.3).
Step 2. Now we show (6.4). Assume uε(x) > wε

ε(xN − δ) in B1. Then, by the second 
inequality in (3.9) (with σ = 1/2), we obtain

uε(x) > wε
ε(xN − δ) > xN − δ −

√
ε

2 > xN − δ −
√
ε in B1,

and the first inequality in (6.4) follows. On the other hand, if uε(x) < w−ε
ε (xN + δ) in 

B1, the first inequality in (3.10) yields

uε(x) < w−ε
ε (xN + δ) < xN + δ +

√
ε

2 < xN + δ +
√
ε in B1 ∩ {xN ≥ y−ε

ε − δ},

where y−ε
ε is as in Lemma 3.4. Finally, since uε(x) ≥ ϑ1ε and the assumption imply 

w−ε
ε (xN + δ) ≥ ϑ1ε, we deduce, by monotonicity, that xN + δ ≥ 0 ≥ y−ε

ε in Uε = {uε ≥
ϑ1ε}. Thus B1 ∩ Uε ⊂ B1 ∩ {xN ≥ y−ε

ε − δ} and the second inequality in (6.4) follows 
too. �
Lemma 6.3. There exist δ0, c0 ∈ (0, 1) and θ0 ∈ (1

2 , 1) depending only on N , ϑ1, ϑ2 and 
c1 as in (2.1) such that for every R > 0, every δ ∈ (0, δ0), every a ∈ R and b ≤ 0
such that a + |b| = δR, every ε/R ∈ (0, c0δ) and every critical point uε of (1.1) in BR

satisfying

wε
ε(xN − a) ≤ uε(x) ≤ w−ε

ε (xN − b) in BR,

uε(0) ∈ [ϑ1ε, ϑ2ε],
(6.8)

where wε
ε and w−ε

ε are as in Remark 3.2 with wε
ε(0) = w−ε

ε (0) = ϑ1ε, then there exist 

a′ ∈ R, b′ ≤ 0 such that
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wε
ε(xN − a′) ≤ uε(x) ≤ w−ε

ε (xN − b′) in BR/4,

b ≤ b′ ≤ a′ ≤ a,

a′ + |b′| ≤ θ0(a + |b|).
(6.9)

Proof. By scaling, we may assume R = 1. Set u = uε, wε = wε
ε, w−ε = w−ε

ε , and define

wε,a(xN ) := wε(xN − a), w−ε,b(xN ) := w−ε(xN − b).

Notice that, up to replace δ with δ + 1/j and then taking the limit as j → +∞, we may 
assume

wε,a < u < w−ε,b in B1,

and, since 0 ∈ {ϑ1ε ≤ uε ≤ ϑ2ε}, we also have

a ≥ −cε, |b| ≤ δ + cε, (6.10)

where c > 1 is as in Lemma 3.3. This can be easily verified since wε(0) = ϑ1ε and 
{ϑ1ε ≤ wε ≤ ϑ2ε} ⊂ {|xN | ≤ cε} by Lemma 3.3.

We define

δ0 := 1
32 , c0 := 1

16c , θ0 := 1 − cN , (6.11)

where c > 1 is as in Lemma 3.3 respectively (depending only on ϑ1, ϑ2 and c1 > 0 in 
(2.1)), and cN ∈ (0, 1) is the dimensional constant appearing in (6.14) (notice that we 
may assume θ0 > 1

2 taking eventually cN smaller). In particular, since δ ∈ (0, δ0), we 
have

{εϑ1 ≤ u ≤ εϑ2} ⊂
{
|xN | < 1

32
}
. (6.12)

Fix y = (y′, yN ) = (0, 18 ). We consider the following alternative. Either:

(a) w−ε,b(y) − u(y) ≤ u(y) − wε,a(y)

or

(b) w−ε,b(y) − u(y) ≥ u(y) − wε,a(y)

First case. Assume (a) holds. We first prove that

u > wε,a−cNδ in B15/16 ∩ {|xN | ≥ 1
16}, (6.13)

for some cN ∈ (0, 1). Let v := u − wε,a. In view of (6.12), v is harmonic and positive in 

B1 ∩ {|xN | > 1

32} and so, by the Harnack inequality, it follows
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inf
B15/16∩{|xN |≥1/16}

v ≥ 4cNv(y) ≥ 2cN [w−ε,b(y) − wε,a(y)] ≥ cNδ,

for some cN > 0. To justify the last inequality we proceed as follows. If ã > a and 
b̃ > b are such that wε,δ(ã) = w−ε,−δ(b̃) = ϑ2ε, then |ã − a| ≤ cε, |b̃ − b| ≤ cε where 
c > 0 is the constant appearing in the statement of Lemma 3.3. Consequently, since 
wε,a(y) = ϑ2ε + (1 + ε)(yN − ã), w−ε,b(y) = ϑ2ε + (1 − ε)(yN − b̃) and c > 1, we find

w−ε,b(y) − wε,a(y) = (1 − ε)(yN − b̃) − (1 + ε)(yN − ã) = ã− b̃− ε
4 + ε(ã + b̃)

≥ δ − 2cε− ε
4 + ε(a + b− 2cε) ≥ δ − 6cε− ε− εδ,

thanks to (6.10). Further, recalling that ε < c0δ by assumption, it follows

w−ε,b(y) − wε,a(y) ≥ (1 − 8cc0)δ > 1
2δ,

in view of the definition of c0 in (6.11). As a consequence, u ≥ wε,a + cNδ in B15/16 ∩
{|xN | ≥ 1

16} and thus, using that wε,a is a line with slope 1 + ε in {wε,a > ϑ2ε} and 
ε < 1, we deduce (6.13).

The second step is to show

u ≥ wε,a−cNδ in B1/4, (6.14)

for some new cN ∈ (0, 1). If (6.14) holds true, then (6.9) follows by setting a′ = a − cNδ, 
b′ = b, in view of the definition of θ0.

To prove (6.14) we use a sliding argument: given any smooth, nonnegative and 
bounded h, we define the family of functions

vλ(x) := wε,a(xN + λh(x)), x ∈ B1, λ ∈ [0, cNδ].

Notice that v0 = wε,a. Using the equation of wε, it is not difficult to check that

Δvλ = 1
2Φ′

ε(vλ)
(
1 + 2λ∂Nh + λ2|∇h|2

)
+ λẇεΔh, (6.15)

where ∂N := ∂xN
. We choose h(x) := h̃(x − y), where h̃ is the unique radially decreasing 

harmonic function in B1/2 \ B1/32 satisfying h̃ = 1 in B1/32 and h̃ = 0 in RN \ B1/2. 
Consequently,

Δvλ > 1
2Φ′

ε(vλ) in D := B1/2(y) ∩ {xN < 1
16}, (6.16)

for every λ ∈ (0, cNδ]. This follows neglecting the nonnegative terms in (6.15) and 
noticing that ∂Nh > 0 in D by construction. On the other hand,
vλ < u in ∂D, (6.17)
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for every λ ∈ [0, cNδ]. Indeed, recalling that h = 0 in ∂B1/2(y) it follows vλ = wε,a < u

in ∂D ∩ {xN < 1
16} while, since h ≤ 1 and λ ≤ cNδ, we have vλ ≤ wε,a−cNδ and so 

vλ < u in ∂D ∩ {xN = 1
16} in view of (6.13). Now, we define

λ∗ := max{λ ∈ [0, cNδ] : vλ ≤ u in D},

and show that λ∗ = cNδ. If this is not true, there must be λ ∈ [0, cNδ) and xλ ∈ D such 
that vλ ≤ u in D, with vλ(xλ) = u(xλ). Recalling that v0 = wε,a and that wε,a < u

by assumption, we immediately see that λ > 0 and, by (6.17), it must be xλ ∈ D. 
Thus, using the equation of u (or equivalently u) and (6.16), we obtain that the function 
ṽλ := u − vλ satisfies

{
ṽλ ≥ 0 in D

ṽλ(xλ) = 0, Δṽλ(xλ) < 0,

which leads to a contradiction since xλ ∈ D is a minimum point for ṽλ. Combining (6.13)
with λ∗ = cNδ, and noticing that B1/4 ⊂ B1/2(y), we deduce

u(x) ≥ wε(xN − a + cNδh(x)) in B1/4,

and thus, since h ≥ cN in B1/4 for some new constant cN > 0 by construction, the 
monotonicity of wε yields (6.14).

Second case. Assume now that (b) holds. In this case, following the proof of (6.13), 
we find

u < w−ε,b+cNδ in B15/16 ∩ {|xN | ≥ 1
16},

where cN > 0 can be taken as in (6.13). So, following the ideas of Step 1, we must prove

u ≤ w−ε,b+cNδ in B1/4, (6.18)

where cN ∈ (0, 1) is as in (6.14). As above, (6.18) implies (6.9) taking a′ = a and 
b′ = b + cNδ.

To do so, we consider

vλ(x) := w−ε,a(xN + λh(x)), x ∈ B1, λ ∈ [−cNδ, 0],

where h is as in Step 1 (note however that now λ < 0). Using (6.15), we deduce Δvλ <
1
2Φ′

ε(vλ) in D, for every λ ∈ [−cNδ, 0). To see this, it is enough to notice that
2∂Nh + λ|∇h|2 ≥ cN + λ|∇h|2 > 0 in D,
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for some small cN > 0, if |λ| is small enough and so, choosing eventually δ0 smaller 
(depending only on N), the above inequality is satisfied for λ ∈ [−cNδ, 0). Proceeding 
exactly as above, we find

λ∗ := min{λ ∈ [−cNδ, 0] : vλ ≥ u in D} = −cNδ,

and we are led to

u(x) ≤ w−ε(xN − b− cNδ) in B1/4,

for some new cN > 0, which is (6.18). �
Lemma 6.4. There exist α, ̃δ0 ∈ (0, 1) and C > 0 depending only on N , ϑ1, ϑ2 and c1 as 
in (2.1) such that for every δ ∈ (0, ̃δ0), every ε ∈ (0, δ2) and every critical point uε of 
(1.1) in B1 satisfying

uε(x) − xN ≤ δ in B1 ∩ {uε ≥ ϑ1ε}
−δ ≤uε(x) − xN in B1,

(6.19)

with uε(0) ∈ [ϑ1ε, ϑ2ε], then the function

vε,δ(x) := uε(x) − xN

δ

satisfies

vε,δ(x) − vε,δ(z) ≤ ωδ(x− z) in B1/2 ∩ {uε ≥ ϑ1ε}
−ωδ(x− z) ≤vε,δ(x) − vε,δ(z) in B1/2,

(6.20)

for every z ∈ B1/2 ∩ {uε ≥ ϑ1ε}, where

ωδ(y) := C(δ + |y|)α.

Proof. Let δ0, θ0 ∈ (0, 1) and c0 ∈ (0, 1) as in Lemma 6.3, and ε0 ∈ (0, 1) as in Lemma 6.2. 
We set

δ̃0 := min{δ0/4,
√
ε0/4, c0/4},

and take δ ∈ (0, ̃δ0), ε ∈ (0, δ2). Notice that the definition of δ̃0 guarantees 4δ < δ0 and 
4ε < ε0. For simplicity we also set u = uε, wε = wε

ε and w−ε = w−ε
ε , and define

κ := 1
δ̃0

, 0 < α < | log4(θ0)|, C ≥ 41+2α. (6.21)

Step 1. We first prove that (6.20) holds true for every z ∈ {ϑ1ε ≤ uε ≤ ϑ2ε} ∩ B1/2. 

Let us set
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δ̃ := 2(δ +
√
ε/2).

Notice that ε < δ2 implies δ̃ ≤ 4δ and thus, since δ̃ ≥ 2δ by definition, it is equivalent 
to work with δ̃ instead of δ, which is what we will do from now on.

So, we fix j ∈ N such that

4−j−2 ≤ δ̃

4δ̃0
= κ

4 δ̃ < 4−j−1, (6.22)

and we use the definition of δ̃ to combine (6.19) and (6.3), which yield

wε(xN − δ̃) < u(x) < w−ε(xN + δ̃) in B3/4.

Now, in view of (6.22), we have δ̃ ≤ 4−j δ̃0 and, since ε < δ2, we also have ε ≤ δ̃2 ≤ c0δ̃

and so we may apply Lemma 6.3 (rescaled and translated from B1 to B1/4(z), i.e. applied 
to the function u(z + 4 · )) iteratively on B4−k(z) for 1 ≤ k ≤ j, deducing the existence 
of ak and bk (with a0 = −b0 = δ̃) for which

wε(xN − zN − ak) ≤ u(x) ≤ w−ε(xN − zN − bk) in B4−k(z),

0 < ak + |bk| ≤ 4θk0 δ̃.
(6.23)

Then, applying (6.4) to (6.23) (choosing R = 4−k and δ = (ak + |bk|)4k) and recalling 
that θ0 ∈ (1

2 , 1), it follows

u(x) − (xN − zN ) ≤ 2θk0 δ̃ in B4−k/2(z) ∩ {uε ≥ ϑ1ε}
−2θk0 δ̃ ≤u(x) − (xN − zN ) in B4−k/2(z),

(6.24)

for all 1 ≤ k ≤ j (notice that since ε < δ2 < δ̃2 and δ̃0 <
√
ε0 we automatically have 

ε < ε04−k, for every k ≤ j).
Now, assume that |x −z| ≥ κδ̃. Then 4−j+n−2 ≤ |z−x| < 4−j+n−1, for some 0 ≤ n ≤ j

(n ∈ N) by the definition of j. Applying (6.24) with k = j − n, we find

u(x)− xN − (u(z)− zN ) = u(x)− (xN − zN )− u(z)
{
≤ 4θj−n

0 δ̃ if x ∈ {uε ≥ ϑ1ε}
≥ −4θj−n

0 δ̃,

and thus

v(x) − v(z) ≤ 4θj−n
0 if x ∈ {uε ≥ ϑ1ε}

−4θj−n
0 ≤v(x) − v(z),

(6.25)

where we have set v := vε,δ for simplicity. Using the definitions of α and C in (6.21) and 

that |x − z| ≥ 4−j+n−2, we have 4θj−n

0 ≤ C|x − z|α and (6.20) follows.



32 A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380
If |x − z| ≤ κδ̃, then, proceeding as above, we find that (6.25) holds true with n = 0
and so, since 4θj0 ≤ C(4−α)j+2 for α and C as in (6.21), and κδ̃ ≥ 4−j−2, we deduce

v(x) − v(z) ≤ C(κδ̃)α if x ∈ {uε ≥ ϑ1ε}
−C(κδ̃)α ≤v(x) − v(z),

and (6.20) follows.
Step 2. Now we consider the case x, z ∈ {u ≥ ϑ2ε} ∩ B1/4. We fix x0 ∈ ∂{u >

εϑ2} ∩B1/4 such that |x − x0| = dist(x, ∂{u > εϑ2}) := d(x).
Set d := d(x) and assume first κδ ∨ |x − z| < d/4. In this case, using Step 1, we easily 

obtain

|v(ξ) − v(x0)| ≤ C(κδ ∨ |ξ − x0|)α ≤ 2αC dα, ∀ξ ∈ Bd/2(x).

So, since v is harmonic in Bd(x), we have

sup
Bd/4(x)

|∇v| ≤ cN
oscBd/2(x) v

d
≤ cNCαd

α−1,

for some Cα > 0 and thus |v(x) − v(z)| ≤ cNCαd
α−1|x − z| ≤ Cα(κδ ∨ |x − z|)α for some 

new Cα > 0.
On the other hand, if κδ ∨ |x − z| ≥ d/4, we may apply the estimate of Step 1 twice 

to obtain

|v(x) − v(z)| ≤ |v(x) − v(x0)| + |v(x0) − v(z)|
≤ C [(κδ ∨ |x− x0|)α + (κδ ∨ |z − x0|)α]

≤ C {[κδ ∨ d(x)]α + [κδ ∨ (|x− z| + d(x))]α} ≤ Cα(κδ ∨ |x− z|)α,

for some C, Cα > 0 and our statement follows.
Step 3. If x ∈ {u ≤ ϑ1ε} and z ∈ {u > ϑ2ε} then there exists z̄ ∈ {ϑ1ε ≤ uε ≤ ϑ2ε}

which belongs to the segment xz. Hence, using the previous steps

v(x) − v(z) ≥ v(x) − v(z̄) − |v(z̄) − v(z)|
≥ −C(κδ ∨ |x− z̄|)α − C(κδ ∨ |x− z̄|)α ≥ −C(κδ ∨ |x− z|)α,

and the proof of (6.20) is complete. �
Lemma 6.5. There exists a Hölder continuous function v : {xN ≥ 0} ∩ B1/4 → R, 
harmonic in {xN > 0} ∩B1/4 and with ‖v‖L∞ = 1 such that for every sequence δj → 0+, 
every εj ∈ (0, δ2

j ) and every critical point uεj of (1.1) in B2 satisfying

uεj (x) − xN ≤ δj in B1 ∩ {uεj ≥ ϑ1εj}

−δj ≤uεj (x) − xN in B1,

(6.26)
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with uεj (0) ∈ [ϑ1εj , ϑ2εj ], then, setting

vj(x) :=
uεj (x) − xN

δj
,

the sequence of graphs

Gj =
{
(x, vj(x)) : x ∈ {uεj ≥ ϑ1εj} ∩B1/4

}
(6.27)

converge in the Hausdorff distance in RN+1 to

G =
{
(x, v(x)) : x ∈ {xN ≥ 0} ∩B1/4

}
, (6.28)

as j → +∞, up to passing to a suitable subsequence.

Proof. Let α ∈ (0, 1) and κ, C > 0 as in Lemma 6.4. Let δj → 0+, εj ∈ (0, δ2
j ) and set 

Uj := {uεj > ϑ1εj} ∩B1/4, H := {xN > 0} ∩B1/4.
Step 1: Compactness. We show that there is v (harmonic in H and α-Hölder in H and 

with L∞ norm bounded by 1) such that for every σ ∈ (0, 1/4),

‖vj − v‖L∞(Hσ) → 0, (6.29)

as j → +∞, up to passing to a suitable subsequence, where Hσ := {xN > σ} ∩B1/4.
By (6.26), there is jσ ∈ N, such that Hσ/2 ⊂ Uj and ‖vj‖L∞(Hσ) ≤ 1 (this follows 

(6.26) by δj) and every j ≥ jσ. In addition, vj is harmonic in Uσ and thus, by standard 
elliptic estimates and a diagonal procedure, there exists a harmonic function v in H such 
that vj → v locally uniformly in H, up to passing to a suitable subsequence. On the 
other hand, by (6.20), we have

|vj(x) − vj(y)| ≤ C(δj + |x− y|)α,

for every x, y ∈ U j , and thus, passing to the limit as j → +∞, we obtain that v can be 
continuously extended up to ∂U and v ∈ Cα(H) with ‖v‖L∞(H) ≤ 1.

Step 2: Convergence of graphs. Fix σ ∈ (0, 14 ), x ∈ H, p := (x, v(x)) ∈ G and set 
q := (y, v(y)), where y ∈ Hσ/2 is taken such that |x − y| ≤ σ. Then, by the Cα estimate 
proved above, we obtain

|p− q|2 = |x− y|2 + |v(x) − v(y)|2 ≤ σ2 + C2σ2α ≤ C2σ2α,

for some new C > 0. Now, if j is large enough, we have Hσ/2 ⊂ Uj and so

2 ′ 2 ′ 2 2 2
dist(q,Gj) = inf
y′∈Uj

|y − y | + |v(y) − vj(y )| ≤ |v(y) − vj(y)| ≤ ‖v − vj‖L∞(Uσ/2),
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from which we deduce

dist(p,Gj) ≤ |p− q| + dist(q,Gj) ≤ Cσα + ‖v − vj‖L∞(Uσ/2) ≤ Cσα, (6.30)

for some new C > 0, for every j large enough, in view of (6.29).
On the other hand, given any sequence pj = (xj , vj(xj)) ∈ Gj , if j is large enough we 

may take yj ∈ Hσ/2 such that σ2 ≤ |xj − yj | ≤ σ with j such that δj ≤ σ
2 . Consequently, 

setting qj = (yj , vj(yj)), we have by (6.20)

|pj − qj |2 = |xj − yj |2 + |vj(xj) − vj(yj)|2 ≤ σ2 + C2σ2α ≤ C2σ2α.

Further, as above

dist(qj , G) = inf
y′∈H

|yj − y′|2 + |vj(yj) − v(y′)|2 ≤ |vj(yj) − v(yj)|2 ≤ ‖v − vj‖L∞(Uσ/2),

and thus, by (6.29),

dist(pj , G) ≤ Cσα + ‖v − vj‖L∞(Uσ/2) ≤ Cσα, (6.31)

for j large enough. Since p, pj and σ > 0 are arbitrary, the thesis follows by (6.30) and 
(6.31). �
Proof of Theorem 2.1. By scaling, we may assume R = 1. Assume by contradiction that 
there are γ ∈ (0, 1) and a sequence δj → 0+ such that for every �0 ∈ (0, 1), there is 
εj ∈ (0, δ2

j ), a solution uj := uεj to (1.8) in B1 satisfying

uεj (x) − xN ≤ δj in B1 ∩ {uεj ≥ ϑ1εj}
−δj ≤uεj (x) − xN in B1,

(6.32)

with uεj (0) ∈ [ϑ1εj , ϑ2εj ], such that for every ν ∈ SN−1, either

uεj (x) − ν · x ≤ δj�
1+γ
0 in B�0 ∩ {uεj ≥ ϑ1εj}

−δj�
1+γ
0 ≤uεj (x) − ν · x in B�0 ∩ {uεj ≥ 0} (6.33)

or

|ν − eN | ≤
√

2nδj (6.34)

fails for j ∈ N large enough.
Step 1: Compactness. By Lemma 6.5, we have that the sequence

uj − xN

vj := vεj ,δj =

δj
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converge uniformly on compact sets of U := {xN > 0} ∩ B1/4 to some limit function 
v ∈ Cα(U) which is harmonic in U and, further, the sequence of graphs Gj defined in 
(6.27) converge in the Hausdorff distance in RN+1 to the graph G defined in (6.28). In 
addition, since 0 ∈ {ϑ1εj ≤ uj ≤ ϑ2εj} and εj ∈ (0, δ2

j ), then

0 < vj(0) ≤ ϑ2δ
2
j ,

for every j, and thus v(0) = 0. Before moving forward, we define the even reflection of v
w.r.t. the hyperplane {xN = 0}

ṽ(x) =
{
v(x′, xN ) in xN ≥ 0
v(x′,−xN ) in xN < 0,

defined in the whole B1/4 and satisfying ṽ ∈ Cα(B1/4).
Step 2. In this step we prove that ∂N ṽ ≤ 0 in {xN = 0} in the viscosity sense, 

that is for every ϕ ∈ C∞(B1) such that ϕ ≤ ṽ in B1/4 with equality only at some 
z ∈ {xN = 0} ∩B1/4, then ∂Nϕ(z) ≤ 0.

By contradiction, we assume there is ϕ ∈ C∞(B1) and z ∈ {xN = 0} ∩B1/4 as above, 
with ∂Nϕ(z) > 0. For simplicity, we assume z = 0, ϕ(z) = 0 (the same proof work in the 
general case with minor modifications). In addition, we may take ϕ to be a polynomial 
of degree 2 (cf. [9, Chapter 2]) with the form

ϕ(x) = mxN + m′ · x′ + xT ·M · x, x ∈ Br (6.35)

for some vector (m′, m) with m > 0, some matrix M ∈ RN,N with tr(M) = 0 and some 
r > 0. This can be easily obtained by modifying a generic polynomial of degree 2, taking 
r small enough and using the assumption ∂Nϕ(0) > 0. Taking eventually r smaller, we 
may also assume ϕ ≤ ṽ − ε in ∂Br, for some ε > 0 depending on r.

Now, since Gj → G in the Hausdorff distance and ṽ ∈ Cα(B1/4), then for every 
sequence σj → 0+ there is a sequence rj → 0+, such that

|vj(x) − ṽ(y)| ≤ σj , for every x, y ∈ U j satisfying |x− y| ≤ rj , (6.36)

where Uj := {uj > ϑ1εj} ∩ B1/4. Since ṽ ≥ ϕ in Br with ṽ ≥ ϕ + ε in ∂Br and 
v(0) = ϕ(0) = 0, we have vj ≥ ϕ − σj in U j ∩ Br, vj ≥ ϕ + ε − σj in U j ∩ ∂Br and 
vj ≤ σj in U j ∩Brj , for every j. Let

tj := sup{t ∈ R : vj ≥ ϕ + tσj in U j ∩Br}.

Since vj ≤ σj in U j ∩Brj and ϕ > 0 in {xN > 0} ∩ {x′ = 0} ∩Brj , we have tj ∈ [−1, 2]. 
So, setting δ̃j := tjσjδj = o(δj),
φj(x) := xN + δjϕ(x) + δ̃j ,
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and using the definition of tj and vj , we deduce

⎧⎪⎪⎨
⎪⎪⎩
uj ≥ φj in U j ∩Br

uj ≥ φj + εδj in U j ∩ ∂Br

uj(xj) = φj(xj) for some xj ∈ U j ∩Br.

(6.37)

Further, by (6.20), we have

vj(x) − vj(y) ≥ −ωj(x− y) ∀x ∈ Br, y ∈ U j , (6.38)

where ωj(x − y) := C(δj + |x − y|)α, and C > 0 and α ∈ (0, 1) are as in Lemma 6.4, for 
every j.

Now, given x ∈ {xN > −
√

δj} ∩ Br, since by assumption {xN ≥ −δj} ⊂ Uj , we can 
take y ∈ U j such that |x − y| ≤ 2

√
δj . Hence, using (6.38) we deduce

vj(x) ≥ vj(y) − ωj(x− y) ≥ ϕ(y) − σj − Cδ
α/2
j

≥ ϕ(x) − C|x− y| − σj − Cδ
α/2
j

≥ ϕ(x) − 2Cδ
1/2
j − σj − Cδ

α/2
j ,

(6.39)

for j large enough and a new constant C > 0. Consequently, noticing that

vj(x) = uj(x) − xN

δj
≥ −xN

δj
≥ δ

−1/2
j → +∞ in Br ∩ {xN ≤ −

√
δj}, (6.40)

for large j, it follows

uj ≥ φj in Br, (6.41)

for j large enough, eventually taking δ̃j = o(δj) smaller.
Now, let us set wεj = w

εj
εj . Combining the first inequality of (3.9) (with δ = 0 and 

σ ∈ (1/2, 3/4)) with (6.41), we obtain uj > wεj (φj − εσj ) in Br ∩{wεj (φj − εσj ) > 0} and 
thus, since uj > 0,

uj > wεj (φj − εσj ) in Br, (6.42)

for j large enough. Using (3.9) again and the last two inequalities in (6.37), it follows

{
uj > wεj (φj − εσj + ε

2δj) + ε
2δj in U j ∩ ∂Br

uj(xj) < wεj (φj(xj) + εσj ),
(6.43)
for every j large enough. Now, let us set wλ := wεj (φj + λεσj ) and define
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λ∗ := sup{λ ∈ (−1,∞) : wλ < uj in Br}.

By definition of λ∗, we have

{
uj ≥ wλ∗ in Br

uj(y) = wλ∗(y) for some y ∈ {wλ∗ > 0} ∩Br,
(6.44)

while, following (6.15) and recalling that ∂Nϕ > 0 in Br and Δϕ = tr(M) = 0, we easily 
find

Δwλ∗ = 1
2Φ′

εj (wλ∗)
[
1 + 2δj∂Nϕ + δ2

j |∇ϕ|2
]

> 1
2Φ′

ε(wλ∗) in {wλ∗ > 0} ∩Br.
(6.45)

If y ∈ {wλ∗ > 0} ∩Br, then Δ(uj −wλ∗)(y) < 0, in contradiction with (6.44). So, we are 
left to show that it cannot be y ∈ {wλ∗ > 0} ∩ ∂Br, obtaining a contradiction with the 
definition of λ∗.

To see this, we notice that λ∗ ∈ (−1, 1), thanks to (6.43) and the monotonicity of wεj . 
Consequently, since for j large enough we have 2δ2σ−1

j < ε
2 , the first inequality in (6.43)

yields

wλ∗ = wεj (φj + λ∗ε
σ
j ) ≤ wεj (φj − εσj + 2εσj ) ≤ wεj (φj − εσj + 2δ2σ

j )

≤ wεj (φj − εσj + ε
2δj) < uj − ε

2δj in U j ∩ ∂Br.

Notice that the above inequality also implies wλ∗ = 0 in ∂Uj ∩ ∂Br, that is {wλ∗ >

0} ∩ ∂Br ⊂ Uj ∩ ∂Br, and our contradiction follows.
Step 3. Now we show that ∂N ṽ ≥ 0 in {xN = 0} in the viscosity sense, that is for every 

ϕ ∈ C∞(B1) such that ϕ ≥ ṽ in B1/4 with equality only at some z ∈ {xN = 0} ∩ B1/4, 
then ∂Nϕ(z) ≥ 0.

Proceeding as in Step 2, we assume by contradiction ∂Nϕ(0) < 0 for some ϕ ∈ C∞(B1)
as in (6.35) with m < 0 and tr(M) = 0.

By (6.36) and the assumptions on ϕ, we have vj ≤ ϕ + σj in U j ∩Br, vj ≤ ϕ − ε + σj

in U j ∩ ∂Br and vj ≥ −σj in U j ∩Brj , for every j. So, similar to Step 2, we deduce

⎧⎪⎪⎨
⎪⎪⎩
uj ≤ φj in U j ∩Br

uj ≤ φj − εδj in U j ∩ ∂Br

uj(xj) = φj(xj) for some xj ∈ U j ∩Br,

where φj(x) := xN +δjϕ(x) + δ̃j , for some δ̃j = o(δj). As above, by the second inequality 
in (3.10) (with σ ∈ (1/2, 3/4) and δ = 0), we obtain
uj < w−εj (φj + εσj ) in U j ∩Br,
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and
{
uj < w−εj (φj + εσj − ε

2δj) −
ε
2δj in U j ∩ ∂Br

uj(xj) > w−ε
ε (φj(xj) − εσj ).

(6.46)

Actually, we have

uj < w−εj (φj + εσj ) in Br, (6.47)

for j large enough. Indeed, exactly as in (6.7), uj exponentially decays in Br \Vj , where

Vj := Br ∩ {x : d(x, Uj) ≤ ε
3/4
j },

and thus, by (3.3), we have uj < w−εj (φj + εσj ) in Br \ Vj . Moreover, by monotonicity,

w−εj (φj + εσj ) ≥ w−εj (φj + εσj − ε
2δj) ≥ uj + ε

2δj in U j ∩ ∂Br, (6.48)

by the first inequality in (6.46). So, thanks to the comparison principle, we are left to 
check that

uj < w−εj (φj + εσj ) in ∂Br ∩ (Vj \ Uj).

This follows exactly as the end of the proof of Lemma 6.2 (Step 1): by the inequality 
above and εj ≤ δ2

j , we have

w−εj (φj + εσj ) ≥ ε
2
√
εj in U j ∩ ∂Br,

and so, if y ∈ Br is any point such that w−εj (φj(y) + εσj ) = ϑ2εj and x ∈ U j ∩ ∂Br, 
then it must be |x − y| ≥ c

√
εj , for some c > 0 independent of j, which implies

w−εj (φj + εσj ) ≥ ϑ2εj in {x : d(x, Uj ∩ ∂Br) ≤
√
εj
2 }.

Finally, since ε3/4
j < εσj for every j large enough, we have

w−εj (φj + εσj ) ≥ ϑ2εj > ϑ1εj ≥ uj in ∂Br ∩ (Vj \ Uj),

and (6.47) follows.
Now, similar to Step 2, we define wλ := w−εj (φj + λεσj )

λ∗ := inf{λ ∈ (−∞, 1) : uj < wλ in Br},
which satisfies λ∗ ∈ (−1, 1) in view of the second inequality in (6.46). Further,
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{
uj ≤ wλ∗ in Br

uj(y) = wλ∗(y) for some y ∈ Br,
(6.49)

and by (6.15)-(6.45), and that ∂Nϕ < m
2 in Br with Tr(M) = 0, there holds

Δwλ∗ = 1
2Φ′

εj (wλ∗)
[
1 + 2δj∂Nϕ + δ2

j |∇ϕ|2
]
+ δjẇλ∗Δϕ < 1

2Φ′
εj (wλ∗) in Br,

if j is large enough. Exactly as above, (6.49), the equation of uj and the above differential 
inequality imply y ∈ ∂Br. On the other hand, since σ ∈ (1/2, 3/4), λ∗ ∈ (−1, 1) and 
using (6.48), we see that

wλ∗ = w−εj (φj+εσj− ε
2δj+

ε
2δj−(1−λ)εσj ) ≥ w−εj (φj+εσj − ε

2δj) ≥ uj+ ε
2δj in U j∩∂Br,

up to taking j larger. Further, uj < wλ∗ in Br \ Vj by exponential decay as j → +∞
by Lemma 3.6 (similar to (6.7)). The fact that uj < wλ∗ in ∂Br ∩ (Vj \ Uj) follows 
exactly as in the proof of (6.47) (that is, the case λ∗ = 1) and thus uj < wλ∗ in ∂Br, in 
contradiction with y ∈ ∂Br.

Step 4. As a consequence of Step 2 and Step 3, we obtain that ṽ is bounded and 
harmonic in B1/4 and ∂N ṽ|xN=0 = ∂Nv|xN=0 = 0, ṽ(0) = v(0) = 0. In particular, by 
standard elliptic estimates, ṽ ∈ C∞(B�) and

sup
x∈B	

|ṽ(x) −∇v(0) · x| ≤ cN�2,

every � ∈ (0, 14 ) and some cN > 0. Proceeding as in (6.39), we have

vj(x) ≥ vj(y) − ωj(x− y) ≥ ṽ(y) − σj − Cδ
α/2
j ≥ ṽ(x) − 2Cδ

1/2
j − σj − Cδ

α/2
j ,

for every x ∈ {xN > −
√

δj} ∩ Br, we take y ∈ U j such that |x − y| ≤ 2
√
δj , while, by 

(6.40), vj(x) ≥ δ
−1/2
j in {xN < −

√
δj} ∩Br. Consequently, by (6.36), for every � ∈ (0, 14 ), 

there is j� > 0 such that

vj(x) −∇v(0) · x ≤ cN�2 in B� ∩ U j

−cN�2 ≤vj(x) −∇v(0) · x in B�
(6.50)

for some new cN > 0 and all j ≥ j�. Now, let us define the unit vector

ν := eN + δj∇v(0)
|eN + δj∇v(0)| .

Notice that, since ∂Nv(0) = 0, we have
|eN + δj∇ṽ(0)|2 = 1 + δ2
j |∇ṽ(0)|2, (6.51)
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and so

|eN − ν|2 =
δ2
j |∇v(0)|2 + (|eN + δj∇v(0)| − 1)2

1 + δ2
j |∇v(0)|2 =

2δ2
j |∇v(0)|2 + 2 (1 − |eN + δj∇v(0)|)

1 + δ2
j |∇v(0)|2

≤ 2δ2
j |∇ṽ(0)|2.

Hence, recalling ‖ṽ‖L∞(B1) = ‖v‖L∞(B1∩{xN>0}) ≤ 1 and using the standard gradient 
estimate for harmonic functions

|eN − ν| ≤
√

2δj |∇ṽ(0)| ≤
√

2δjN‖ṽ‖L∞(B1) ≤
√

2Nδj ,

for and j large enough. On the other hand, since uj is uniformly bounded in B1/4 by 
(6.32), (6.51) yields

uj(x) − ν · x
δj

=
uj(x)

(√
1 + δ2

j |∇v(0)|2 − 1
)

δj
+ uj(x) − (eN + δj∇v(0)) · x

δj

= O(δj) + vj(x) −∇v(0) · x,

and thus, by (6.50),

uj(x) − ν · x ≤ cN�2δj in B� ∩ U j

−cN�2δj ≤uj(x) − ν · x in B�,
(6.52)

for some new cN > 0 and j ≥ j�. Finally, given any γ ∈ (0, 1) and taking �0 ∈ (0, 14 ) such 
that cN�2

0 ≤ �1+γ
0 , we obtain that both (6.33) and (6.34) are satisfied, a contradiction. �

7. Proof of Theorem 1.4 and Corollary 1.6

The goal of this section is to prove Theorem 1.4 and Corollary 1.6. The former will 
be a consequence of Theorem 7.3 below, which is obtained combining Theorem 2.1 and 
a sliding argument in the spirit of [3,17]. The latter will be an immediate byproduct 
of Proposition 1.5, Theorem 1.4 and the classification of 1-homogeneous entire local 
minimizers of (1.5) established in [10,19].

We begin with two consequences of Theorem 2.1 that we will use in the proof of 
Theorem 7.3.

Corollary 7.1 (Preservation of flatness). Fix γ = 1/2, and let δ0 > 0 and �0 ∈ (0, 1/4)
be the constants as in Theorem 2.1. Let R0 := 1/�0. Given δ > 0, we define

⌈
| log δ2|

⌉

jδ := logR0

. (7.1)
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Let u : RN → R+ be a critical point E with u(0) ∈ [ϑ1, ϑ2]. If u satisfies Flat1(νk, δ, Rk
0)

for some δ ∈ (0, δ0), k ≥ jδ, and νk ∈ SN−1, then for every i such that jδ ≤ i ≤ k, u
satisfies Flat1(νi, δ, Ri

0) for some νi ∈ SN−1.

Proof. The proof is by iterating Theorem 2.1. Indeed, thanks to (7.1) we have

1
δ2Ri

0
≤ 1

δ2Rjδ
0

< 1 for all i ≥ jδ . (7.2)

Thanks to Theorem 2.1 if u satisfies Flat1(νi, δ, Ri
0) for some νi ∈ SN−1, and i ≥ jδ

then u satisfies Flat1(νi−1, R
γ
0δ, R

i−1
0 ) for some νi−1 ∈ SN−1. In particular u satisfies 

Flat1(νi−1, δ, R
i−1
0 ). Iterating this the corollary follows. �

Corollary 7.2 (Improvement of flatness). Fix γ = 1/2, and let δ0 > 0 and �0 ∈ (0, 1/4)
be the constants as in Theorem 2.1. Let R0 := 1/�0. Let k, n ∈ N and δ > 0 such that

(1 + 2γ)n ≤ k − | log δ2|
logR0

. (7.3)

Let u : RN → R+ be a critical point of E with u(0) ∈ [ϑ1, ϑ2]. If u satisfies Flat1(νk, δ, Rk
0)

for some δ ∈ (0, δ0), k ≥ jδ and νk ∈ SN−1, for every i such that k − n ≤ i ≤ k, u
satisfies Flat1(νi, R−γ(k−i)

0 δ, Ri
0) for some νi ∈ SN−1.

Proof. The proof is by iterating Theorem 2.1. Indeed, thanks to (7.3) we have

1(
R

−γ(k−i)
0 δ

)2
Ri

0

≤ 1
δ2Rk−n−2γn

0
< 1 for all i ≥ jδ . (7.4)

Thanks to Theorem 2.1 if u satisfies Flat1(νi, R−γ(k−i)
0 δ, Ri

0) for some νi ∈ SN−1

(which is satisfied by assumption for i = k), and i ≥ k − n then u satisfies 
Flat1(νi−1, R

−γ(k−i+1)
0 δ, Ri−1

0 ) for some νi−1 ∈ SN−1. Iterating this, the corollary fol-
lows. �
Theorem 7.3. Let γ = 1/2, and let �0 ∈ (0, 1/4) be the constant in Theorem 2.1, and 
R0 := 1/�0 ≥ 2.

Suppose that u : RN → R+ is a critical point of E with 0 ∈ {ϑ1 ≤ u ≤ ϑ2} and let 
{uε}ε∈(0,1) be a blow-down family, where uε := εu( · /ε).

Set εj := R−j
0 and assume there exist ν ∈ SN−1, and a sequence jl → +∞ and δl → 0

(as l → +∞) for which

|uεjl
− (ν · x)+| ≤ δl in B2, (7.5)

and
{x : ν · x ≤ −δl} ⊂ {uεjl
≤ ϑ1εjl} ⊂ {uεjl

≤ ϑ2εjl} ⊂ {x : ν · x ≤ δl} in B2, (7.6)
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for every l ∈ N. Then u is 1D.

Proof. Throughout the proof δ0 will denote the constant of Theorem 2.1. Observe that, 
by possibly replacing δl by some sequence with slower convergence towards 0, we may 
assume without loss of generality that ϑ2εjl ≤ δl/2.

Up to a rotation of the coordinate system, we may assume ν = eN . The proof is 
divided in several steps as follows.

Step 1. Fix δ ∈ (0, δ0) to be chosen later. We first show that

u satisfies Flat1(νj , δ, Rj
0) ∀j ≥ jδ :=

⌈ | log(δ2)|
logR0

⌉
, (7.7)

for some νj ∈ Sn−1.
By (7.5) (ν = eN ), we have

(xN )+ − δl ≤ uεjl
≤ (xN )+ + δl in B2. (7.8)

Let us show that this implies

uεjl
(x) − xN ≤ δl in B1 ∩ {uεjl

≥ ϑ1εjl}
−δl ≤uεjl

(x) − xN in B1,
(7.9)

for all l sufficiently large.
Indeed on the one hand, (7.8) implies uεjl

≥ xN − δl in B1 (for l large), which gives 
the inequality from below in (7.9).

To show the one from above, we set v := uεjl
− xN − 2δl and we show v ≤ 0 in 

B1∩{uεjl
≥ ϑ1εjl} using a comparison argument. Thanks to (7.8), using (xN )+−δl ≤ xN

in {xN ≥ −δl} we find (using ϑ2εjl ≤ δl/2)

v ≤ uεjl
− (xN )+ − δl ≤ ϑ2εjl − δl ≤ − δl

2 in B2 ∩ {uεjl
≤ ϑ2εjl} ∩ {xN ≥ −δl},

for every l large enough. Further, (7.8) automatically implies v ≤ −δl ≤ 0 in B2∩{xN ≥
0}, since (xN )+ = xN there. Also, by (7.8) again, v ≤ δj in B2∩{uεjl

≥ ϑ2εjl} ∩{|xN | ≤
δj}.

On the other hand, Δv = Δuεjl
= 1

2Φ′
εjl

(uεjl
) ≥ 0 in B2 and thus the function

v := v

δl
+ Ax2

N

satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪

Δv ≥ 2A in B2 ∩ {−δl ≤ xN < 0}
v ≤ −1

2 + Aδ2
l in B2 ∩ {xN = −δl}

v ≤ 0 in B2 ∩ {xN = 0}
⎩
v ≤ 1 + Aδ2

l in ∂B2 ∩ {−δl ≤ xN < 0},
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for every A > 0. Now, consider the function hx0(x) = A
N |x − x0|2. For every x0 ∈

B1 ∩ {−δl < xN < 0}, we have

hx0 ≥ A
N in ∂B2 ∩ {−δl ≤ xN ≤ 0},

and taking A := 2N , we have hx0 ≥ 2 in ∂B2 ∩ {−δl ≤ xN ≤ 0}. Then, for l large, we 
have Aδ2

l ≤ 1 and

⎧⎪⎪⎨
⎪⎪⎩

Δv ≥ 2A = Δhx0 in B2 ∩ {−δl ≤ xN < 0}
v ≤ 0 ≤ hx0 in B2 ∩ ∂{−δl ≤ xN < 0}
v ≤ 2 ≤ hx0 in ∂B2 ∩ {−δl ≤ xN < 0}.

Then, by the maximum principle we obtain v ≤ hx0 . Consequently, since hx0(x0) = 0
and x0 is arbitrary in B1 ∩ {−δl < xN < 0}, we have v ≤ 0 in B1 ∩ {−δl < xN < 0} and 
so, by the definition of v, we obtain v ≤ 0 in B1 ∩ {−δl < xN < 0}. This proves (7.9). In 
other words, after scaling we have shown that (7.7) holds for j = jl and νjl = ν, provided 
that l is sufficiently large. Hence, as a consequence of Corollary 7.1 we obtain that that 
(7.7) holds for every integer j such that jδ ≤ j ≤ jl for some νj ∈ SN−1. Observing that 
jl can be taken arbitrarily large concludes the proof of (7.7).

Step 2. In this second step, we prove that there exists C ≥ 1 such that for every 
z ∈ {ϑ1 ≤ u ≤ ϑ2} and every R ≥ C

u(z + · ) satisfies Flat1(eN , CR−1/2, R) ∀R ≥ C. (7.10)

Note that this is a really strong information since the constant C and the direction 
eN of flatness are independent of z, which varies in an unbounded set!

To obtain (7.10), we first show the existence of some k0 (independent of z) such that 
for every k ≥ k0 and every z ∈ {ϑ1 ≤ u ≤ ϑ2}, there are νz,k ∈ SN−1 such that, for all 
k ≥ k0,

u(z + · ) satisfies Flat1(νz,k, δ0, Rk
0) (7.11)

for some νz,k ∈ Sn−1. Indeed, given z ∈ {ϑ1 ≤ u ≤ ϑ2} choose i ∈ N such that 
|z| ≤ δ0

2 Ri
0. Take j = i + 1 in (7.7), and choose δ such that 2δR0 ≤ δ0. We then have

u(x) − νi+1 · x ≤ δ0
2 Ri

0 in BRi+1
0

(0) ∩ {u ≥ ϑ1}
− δ0

2 Ri
0 ≤u(x) − νi+1 · x in BRi+1

0
(0).

(7.12)

Now since |z| ≤ δ0
2 Ri

0 and R0 ≥ 2 we have BRi
0
(z) ⊂ BRi+1

0
and
|u(x) − νi+1 · (x− z)| ≤ |u(x) − νi+1 · x| + |z| ≤ δ0R
i
0 in BRi

0
(z).
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Thus, (7.12) implies

u(x) − νi+1 · x ≤ δ0R
i
0 in BRi

0
(z) ∩ {u ≥ ϑ1}

−δ0R
i
0 ≤u(x) − νi+1 · x in BRi

0
(z).

In other words, setting νk,z := νi+1, we see that (7.11) is satisfied for k = i large enough 
(where i depends on z). But then thanks to Corollary 7.1 (applied with δ = δ0 and to 
the “translated function” u(z + · )) we obtain that (7.11) holds for all k ≥ k0 := jδ0 .

We will now use (7.11) and Corollary 7.2 (applied again to the translated function 
u(z + · )) to show (7.10). Indeed, for given j ∈ N large enough, set

n :=
⌊
j − | log δ2|/ logR0

2γ

⌋

and

k := j + n

Then,

(1 + 2γ)n = n + 2γ
⌊
j − | log δ2|/ logR0

2γ

⌋
≤ k − | log δ2

0 |
logR0

. (7.13)

The above inequality implies that (7.3) is satisfied. By (7.11) (since we assume that 
j ≥ C sufficiently large we have k ≥ j ≥ k0), we may apply Corollary 7.2 to u(z + · )
to obtain that u(z + ·) satisfies Flat1(νz,i, R−γ(k−i)

0 δ0, Ri
0) for some νz,i ∈ SN−1 for all 

i = j, j + 1, . . . , j + n (in particular for i = j). Hence using the definition of Flat1 and 
that k − i = n ≥ j

2γ − C, we obtain

δ0R
−γ(k−j)
0 Rj

0 ≤ δ0R
j−γn
0 ≤ CR

j(1−1/2)
0

and

u(x) − νz,i · (x− z) ≤ CR
j/2
0 in BRj

0
(z) ∩ {u ≥ ϑ1}

−CR
j/2
0 ≤u(x) − νz,i · (x− z) in BRj

0
(z).

(7.14)

Now, on the one hand, as a consequence of (7.14), we have

max
(
0 , νz,j · x− CR

j/2
0

)
≤ u(z + x) ≤ max

(
ϑ1 , νz,j · x + CR

j/2
0

)
in BRj

0
,

and thus, using this in two consecutive scales, we obtain

( ) ( )

max 0 , νz,j · x− CR

j/2
0 ≤ max ϑ1 , νz,j+1 · x + CR

(j+1)/2
0 in BRj

0
.
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This implies (for j large)

∣∣νz,j − νz,j+1
∣∣ ≤ C(R0)R−j/2

0 , (7.15)

where C(R0) is independent of z an j. This shows that νz,j → νz as j → ∞ for all z. 
On the other hand, since for every two pair of points z1, z2 (7.14) applied at a scales 
Rj

0 >> |z1 − z2| implies (νz1,j − νz2,j) → 0, we see that νz ≡ ν∗ for all z, where ν∗ is 
independent of z. On the other hand, assumption (7.5) (where ν = eN as said in the 
beginning of the proof), forces ν∗ = eN and hence limj→∞ νz,j = eN for all z. Finally, 
using again (7.15), triangle inequality, and summing the geometric series we obtain

∣∣νz,j − eN
∣∣ ≤ ∣∣νz,j − lim

j→∞
νz,j

∣∣ ≤ C(R0)
∞∑
l=j

R
−l/2
0 ≤ CR

−j/2
0 ,

for all z ∈ {ϑ1 ≤ u ≤ ϑ2}. Combining this information with (7.14) we conclude the proof 
of (7.10).

Step 3. We now observe that (7.10) has two significant consequences. First, it implies 
the existence of a function G : RN−1 → R with G(0) = 0 satisfying

|G(x′) −G(y′)| ≤ C
√
|x′ − y′|, ∀x′, y′ ∈ RN−1 (7.16)

and

{xN ≤ G(x′) − C} ⊂ {u ≤ ϑ1} ⊂ {u ≤ ϑ2} ⊂ {xN ≤ G(x′) + C} in RN . (7.17)

Second, since u − xN is harmonic in {u > ϑ2}, standard elliptic estimates yield

sup
x∈Br/2(y)

|∇(u(x) − xN )| ≤ cN
r

sup
x∈Br(y)

|u(x) − xN | ≤ cNC

r
Rj/2,

for every Br(y) ⊂ {u > ϑ2} ∩BRj . Consequently, for every j ∈ N and every y such that 
BRj/2(y) ⊂ {u > ϑ2} ∩BRj , we have

sup
x∈BRj/4(y)

|∇(u(x) − xN )| ≤ cNCR−j/2. (7.18)

This easily implies that

|∇u| ≤ C in RN (7.19)

Indeed, if x = (x′, xN ) is a point in RN and let R◦ ≥ C to be chosen. We consider 
two complementary cases: either xN − G(x′) ≤ R◦ or xN − G(x′) > R◦. In the first 

case, by (7.10) with R = 2R◦, we obtain |u| ≤ C in BR◦(x) (with a possibly larger C). 
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Now, since u is a bounded solution of the semilinear equation Δu = 1
2Φ′(u) standard 

elliptic estimates yield |∇u(x)| ≤ C. In the second case, using (7.17)-(7.16) we obtain 
that, if R◦ is chosen large enough and R := dist(x, ∂{u > ϑ2}) ≥ R◦, then it also follows 
|∇u(x)| ≤ C, thanks to (7.18).

Step 4. We now perform a sliding argument à la Caffarelli-Berestycki-Nirenberg. We 
fix σ > 0, e′ ∈ SN−1 ∩ {xN = 0}, and define, for any given λ > 0,

e := (e′, σ), uλ(x) := u(x− λe). (7.20)

Choose λσ > 0 such that C
√
λσ + 2C ≤ σλσ, where C is the constant in (7.17)-(7.18). 

Let us show that

uλ ≤ u in RN for every λ ≥ λσ. (7.21)

To prove so, we first observe that, for every λ ≥ λσ

{u ≤ ϑ2} ⊂ {uλ ≤ ϑ1}. (7.22)

Indeed, let x ∈ {u ≤ ϑ2} and notice that (7.16) yields

(x− λe)N −G((x− λe)′) + C = xN − σλ−G
(
x′ − λe′

)
+ C

≤ −σλ + G(x′) −G
(
x′ − λe′

)
+ 2C

≤ −σλ + C
√
λ + 2C ≤ 0,

for every λ ≥ λσ, provided λσ is chosen large enough.
Now, we set v := u − uλ and we show that v ≥ 0 in RN for every λ ≥ λσ, that is 

(7.22).
To do so, we first notice that RN = Ω1∪Ω2 := {u ≥ ϑ2} ∪{uλ < ϑ1} for every λ ≥ λσ, 

thanks to (7.22). Further, in the domain Ω1 the function v satisfies Δv = 0 in {uλ > ϑ2}
and u − uλ ≥ ϑ2 − ϑ2 = 0 in uλ ≤ ϑ2. Hence the negative part of v− is subharmonic in 
Ω1.

Also, thanks to (7.22), the boundary ∂{u > ϑ2} of Ω1 is contained in {uλ ≤ ϑ1}
and hence u − uλ ≥ ϑ2 − ϑ1 > 0 on ∂{u > ϑ2}. In other words v− is subharmonic and 
vanishes on the boundary of Ω1. Since —thanks to (7.16) and (7.17)— the complement 
of Ω1 contains a cone with nonempty interior, and —thanks to (7.19) v (and in particular 
v−) is bounded in all of RN , we deduce v− = 0 in Ω1 from the comparison principle in 
unbounded domains which contain a cone (see for instance [3, Lemma 2.1]).

Similarly inside Ω2, either u ≥ ϑ1 and uλ < ϑ1 and so v ≥ 0 or both u and uλ

are smaller than ϑ1. In that second case, recalling that Φ′ is increasing in (0, ϑ1), we 
have Δv = Φ′(u) − Φ′(uλ) ≤ 0 at points where v = u − uλ ≤ 0. Hence v− is again a 

subharmonic function in Ω2. Similarly as before we can show that v− = 0 on ∂Ω2 and 
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that it is bounded. And again the complement of Ω2 contains a cone, so we may conclude 
v− = 0 everywhere (that is v ≥ 0).

Step 5. Let C and G as in (7.17). Define

C := C + (1 + λσ)‖∇G‖L∞(RN−1), (7.23)

and

G :=
{
x = (x′, xN ) ∈ RN : |xN −G(x′)| ≤ C

}
. (7.24)

We prove that for every λ > 0

uλ ≤ u in G ⇒ uλ ≤ u in RN . (7.25)

In light of (7.21), it is enough to treat the case λ ∈ (0, λσ). Following the ideas of Step 
4, we observe that

{xn ≤ G(x′) − C̄} ⊂ {u ≤ ϑ1}

Indeed, let x satisfy

xN ≤ G(x′) − C.

Consequently, by (7.23), the above inequality and the definition of e, we obtain

(x− λe)N −G((x− λe)′) ≤ xN −G(x′) + λ‖∇G‖L∞(RN−1)

≤ xN −G(x′) + λσ‖∇G‖L∞(RN−1) ≤ −C + C − C = −C,

and thus, by (7.17), we have x − λe ∈ {u ≤ ϑ1}.In a very similar way, we show

{uλ ≤ ϑ2} ⊂ {xN ≤ G(x′) + C}, (7.26)

for every λ ∈ (0, λσ). To complete the proof of (7.25), it is enough to consider v = u −uλ, 
notice that v ≥ 0 in ∂G (by assumption) and repeat the arguments of Step 5.

Step 6. In this step we show that for every λ > 0

uλ ≤ u in G. (7.27)

Notice that, as a consequence of (7.25), (7.27) implies that for every λ > 0

uλ ≤ u in RN . (7.28)
To verify (7.27), we let
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λ∗ := inf{λ ≥ 0 : uλ ≤ u in G} ≤ λσ,

and show that λ∗ = 0. Assume by contradiction that λ∗ ∈ (0, λσ).
By definition of λ∗, we have uλ∗ ≤ u in G and, in addition, there exists xj ∈ G such 

that u(xj) −uλ∗(xj) ≤ 1/j. Set uj(x) := u(x +xj), uλ∗
j (x) := uλ∗(x +xj), vj := uj −uλ∗

j

and Gj := G − xj .
We have

Gj = {(x′, xN ) ∈ RN : |xN −Gj(x′)| ≤ C},

where Gj(x′) := G(x′ + x′
j) − xj,N (here xj,N := (xj)N ) with

|Gj(x′)| ≤ |G(x′ + x′
j) −G(x′

j)| + |G(x′
j) − xj,N | ≤ C

√
|x′| + 2C

‖∇Gj‖L∞(RN−1) ≤ ‖∇G‖L∞(RN−1),
(7.29)

for every j in view of (7.16) and that xj ∈ G. As a consequence, we deduce the existence 
of a locally bounded function G : RN → R such that Gj → G locally uniformly in RN

and Gj → G locally Hausdorff in RN (up to subsequence), where G := {(x′, xN ) ∈ RN :
|xN −G(x′)| ≤ C}.

In particular, thanks to (7.17), we have

{xN ≤ G(x′) − 2C} ⊂ {uj ≤ ϑ1} ⊂ {uj ≤ ϑ2} ⊂ {xN ≤ G(x′) + 2C} in RN , (7.30)

for every j large enough. On the other hand, using (7.29) for x′ = 0 and recalling (7.19)
we have

|uj(0)| ≤ 2C and |∇uj | ≤ C in RN ,

thus, the sequence {uj}j∈N is locally uniformly bounded in RN .
Further, since Δuj = 1

2Φ′(uj) in RN and Φ′ is bounded, standard elliptic estimates 
and a diagonal argument yield uj → u in C2

loc as j → +∞, for some u ∈ C2
loc(RN ), up 

to passing to a subsequence. Similar, uj → uλ∗ in C2
loc as j → +∞ and, since

⎧⎪⎪⎨
⎪⎪⎩

Δvj = 1
2 (Φ′(uj) − Φ′(uλ∗

j )) in RN

vj ≥ 0 in Gj

vj(0) ≤ 1/j,

for every j ∈ N, vj → v in C2
loc as j → +∞. By uniform convergence we have v(0) = 0, 

Δu = 1
2Φ′(u) in RN , and v ≥ 0 in G. Therefore, using (7.25) applied to the function ū

and with λ = λ∗, we deduce
v ≥ 0 in RN . (7.31)
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On the other hand,

Δv = 1
2 (Φ′(u) − Φ′(uλ∗)) ≤ ‖Φ‖C1,1(R)v in RN ,

and so, v(0) = 0, (7.31) and the strong maximum principle yield v = 0 in RN . Conse-
quently, for every fixed x ∈ RN

u(x) = uλ∗(x) = lim
j→+∞

uλ∗(x + xj) = lim
j→+∞

u(x + xj − eλ∗)

= lim
j→+∞

uj(x− eλ∗) = u(x− eλ∗),

that is, u is λ∗-periodic along the direction e.
Now, fix ϑ ∈ (ϑ1, ϑ2) and take x̃j ∈ G such that x̃j,N = xj,N and u(x̃j) = ϑ, for every 

j ∈ N and set x̂j := x̃j − xj . By (7.17), (7.23) and (7.24), we have |x̂j | ≤ 2C and thus, 
up to passing to a subsequence, x̂j → x̂ ∈ G as j → +∞, and

ϑ = lim
j→+∞

u(x̃j) = lim
j→+∞

u(x̂j + xj) = lim
j→+∞

uj(x̂j) = u(x̂), (7.32)

by uniform convergence. We also have

{u = ϑ} ⊂ {xN ≥ −C(1 +
√

|x′|)}, (7.33)

up to taking C > 0 larger. To see this, we take y ∈ {u = ϑ} and we notice that y ∈ {ϑ1 ≤
uj ≤ ϑ2} for large j’s or, equivalently, y + xj ∈ {ϑ1 ≤ u ≤ ϑ2} ⊂ {xN ≥ G(x′) − C}, in 
light of (7.17). This, combined with the fact that xj,N ≤ G(x′

j) + C (since xj ∈ G) and 
(7.16) give

yN ≥ G(y′ + x′
j) − xj,N − C ≥ G(y′ + x′

j) −G(x′
j) − C − C ≥ −c

√
|y′| − C − C,

which is (7.33), up to taking c > 0 large enough (depending on C and C).
To complete the contradiction argument, we notice that by (7.32) and the λ∗-

periodicity of u (along the direction e), it must be x̂ − neλ∗ ∈ {u = ϑ} for every 
n ∈ Z, and thus, using (7.33), it follows x̂ − neλ∗ ∈ {xN ≥ −C(1 +

√
|x′|)} for every 

n ∈ Z. Using the definition of e and passing to the limit as n → +∞, we find

0 ≤ (x̂− neλ∗)N + C(1 +
√

|(x̂− neλ∗)′|)
= x̂N − nσλ∗ + C

(
1 +

√
|x̂′ − ne′λ∗|

)
→ −∞,

as n → +∞, a contradiction, and (7.27) follows.
Step 7. By (7.28), we have ∂eu ≥ 0 in RN , independently of σ > 0 (cf. (7.20)) and so 

∂(e′,0)u ≥ 0 in RN , for every e′ ∈ SN−1 ∩ {xN = 0}. Since ∂(−e′,0)u = −∂(e′,0)u ≤ 0 in 
RN and e′ is arbitrary, it must be ∂(e′,0)u = 0 in RN for every e′ ∈ SN−1 ∩ {xN = 0}, 

that is u is 1D. �
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Proof of Theorem 1.4. Let u : RN → R+ be a critical point of E in RN satisfying (1.9)
and (1.10) for some Rk → ∞ and δk → 0. Setting εk := R−k and scaling, we immediately 
see that uεk := εku(·/εk) satisfies (7.5) and (7.6) for k large and so u(x) = v(xN ) for 
some v : R → R (up to a rotation), by Theorem 7.3.

On the other hand, by Lemma 3.1, we know there are exactly three families of 1D 
solutions (cf. (i), (ii), (iii) of Lemma 3.1 with ε = 1). However, by (7.5), we have uεk →
(xN )+ locally uniformly, up to a translation and a rotation, and thus v cannot be of 
class (ii) and (iii). The only possibility is that v is of class (i). Recalling that v(0) = ϑ1

by construction, a direct integration of (3.5) (with A = 1) yields (cf. (3.6))

v−1(z) =
zˆ

ϑ1

dζ√
Φ(ζ)

,

for every z ∈ R, which is (1.7), up to a shift. �
Proof of Corollary 1.6. Let u : RN → R+ be an entire local minimizer of E in RN . Up to 
shift, we may assume u(0) = ϑ1. If {Rj}j∈N is an arbitrary sequence satisfying Rj → +∞
as j → +∞ then, by Proposition 1.5, there exist sequences Rj� → +∞, δ� → 0 and a 
1-homogeneous nontrivial entire local minimizer u0 of (1.5) with 0 ∈ ∂{u0 > 0}, such 
that (1.11) and (1.12) hold true (with k = j). Consequently, since we know that

u0(x) = (ν · x)+,

for some ν ∈ SN−1 (see [10,19]), we deduce that (1.9) and (1.10) are satisfied too, and 
thus u satisfies (1.7) by Theorem 1.4. �
References

[1] H.W. Alt, L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. 
Reine Angew. Math. 325 (1981) 105–144.

[2] H.W. Alt, L. Caffarelli, A. Friedman, Variational problems with two phases and their free bound-
aries, Trans. Am. Math. Soc. 282 (1984) 431–461.

[3] H. Berestycki, L. Caffarelli, L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz 
domains, Commun. Pure Appl. Math. 50 (1997) 1089–1111.

[4] J.D. Buckmaster, G.S. Ludford, Theory of Laminar Flames, Cambridge Univ. Press, Cambridge, 
1982.

[5] X. Cabré, A. Figalli, X. Ros-Oton, J. Serra, Stable solutions to semilinear elliptic equations are 
smooth up to dimension 9, Acta Math. 224 (2020) 187–252.

[6] L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free 
boundaries are C1,α, Rev. Mat. Iberoam. 3 (1987) 139–162.

[7] L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. II. Flat free 
boundaries are Lipschitz, Commun. Pure Appl. Math. 42 (1989) 55–78.

[8] L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. III. Existence 
theory, compactness, and dependence on X, Ann. Sc. Norm. Super. Pisa 15 (1988) 583–602.

[9] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, 

AMS, 1995.



A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380 51
[10] L.A. Caffarelli, D.S. Jerison, C.E. Kenig, Global energy minimizers for free boundary problems and 
full regularity in three dimensions, in: Contemp. Math., vol. 350, Amer. Math. Soc., Providence RI, 
2004, pp. 83–97.

[11] L.A. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems, Grad. Stud. Math., 
vol. 68, AMS, 2005.

[12] L.A. Caffarelli, J.L. Vázquez, A free-boundary problem for the heat equation arising in flame prop-
agation, Trans. Am. Math. Soc. 347 (1995) 411–441.

[13] D. Danielli, A. Petrosyan, H. Shahgholian, A singular perturbation problem for the p-Laplace op-
erator, Indiana Univ. Math. J. 52 (2003) 457–476.

[14] E. De Giorgi, Convergence problems for functionals and operators, in: Proceedings of the Interna-
tional Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, Bologna, 1979, 
pp. 131–188.

[15] D. De Silva, Free boundary regularity from a problem with right hand side, Interfaces Free Bound. 
13 (2011) 223–238.

[16] D. De Silva, D.S. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math. 635 
(2009) 1–21.

[17] S. Dipierro, J. Serra, E. Valdinoci, Improvement of flatness for nonlocal phase transitions, Am. J. 
Math. 142 (2020) 1083–1160.

[18] X. Fernández-Real, X. Ros-Oton, On global solutions to semilinear elliptic equations related to the 
one-phase free boundary problem, Discrete Contin. Dyn. Syst., Ser. A 39 (2019) 6945–6959.

[19] D.S. Jerison, O. Savin, Some remarks on stability of cones for the one phase free boundary problem, 
Geom. Funct. Anal. 25 (2015) 1240–1257.

[20] D. Kinderlehrer, L. Nirenberg, J. Spruck, Regularity in elliptic free boundary problems, J. Anal. 
Math. 34 (1979) 86–119.

[21] A. Petrosyan, N.K. Yip, Nonuniqueness in a free boundary problem from combustion, J. Geom. 
Anal. 18 (2007) 1098–1126.

[22] O. Savin, Regularity of flat level sets in phase transitions, Ann. Math. 169 (2009) 41–78.
[23] B. Velichkov, Regularity of the one-phase free boundaries, https://cvgmt .sns .it /paper /4367/, 2019.
[24] G.S. Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Commun. 

Partial Differ. Equ. 23 (1998) 439–455.
[25] G.S. Weiss, Partial regularity for a minimum problem with free boundary, J. Geom. Anal. 9 (2) 

(1999) 317–326.
[26] G.S. Weiss, A homogeneity improvement approach to the obstacle problem, Invent. Math. 138 (1) 

(1999) 23–50.
[27] G.S. Weiss, A singular limit arising in combustion theory: fine properties of the free boundary, Calc. 
Var. Partial Differ. Equ. 17 (2003) 311–340.


