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Abstract: We experimentally validate a real-time machine learning framework, capable of
controlling the pump power values of Raman amplifiers to shape the signal power evolution in
two-dimensions (2D): frequency and fiber distance. In our setup, power values of four first-order
counter-propagating pumps are optimized to achieve the desired 2D power profile. The pump
power optimization framework includes a convolutional neural network (CNN) followed by
differential evolution (DE) technique, applied online to the amplifier setup to automatically
achieve the target 2D power profiles. The results on achievable 2D profiles show that the
framework is able to guarantee very low maximum absolute error (MAE) (<0.5 dB) between
the obtained and the target 2D profiles. Moreover, the framework is tested in a multi-objective
design scenario where the goal is to achieve the 2D profiles with flat gain levels at the end of
the span, jointly with minimum spectral excursion over the entire fiber length. In this case, the
experimental results assert that for 2D profiles with the target flat gain levels, the DE obtains less
than 1 dB maximum gain deviation, when the setup is not physically limited in the pump power
values. The simulation results also prove that with enough pump power available, better gain
deviation (less than 0.6 dB) for higher target gain levels is achievable.

© 2024 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement

1. Introduction

Distributed Raman amplifiers (DRAs) present several advantages over the erbium doped fiber
amplifiers (EDFAs) including lower noise figure (NF), and flexibility in power evolution design
by adjusting the pump power and wavelength values [1,2]. Due to multi-pumping scheme, DRAs
are also a practical solution to amplify a broad range of wavelengths beyond the C-band and
increase the available transmission capacity [3]. One approach in designing Raman amplifiers is
to optimize the pump power and wavelength values to obtain a desired signal power evolution
shape, jointly in spectral and spatial (fiber distance) domains. Shaping the signal power evolution
in frequency and distance is a beneficial way to approach some of the long-term goals in
optical communication systems such as signal-to-noise (SNR) maximization and nonlinearity
mitigation [4, 5]. As an example, a flat two-dimensional (2D) profile in frequency and distance,
resembling a lossless link, minimizes the accumulated amplified spontaneous emission (ASE)
noise at the end of the fiber [4,6,7]. This flat 2D profile is also a requirement for the transmission
based on Nonlinear Fourier Transform (NFT) [8, 9]. Another example is a 2D symmetric power
profile with respect to the middle point in distance. A symmetric 2D profile can be utilized to
mitigate the nonlinear impairments using optical phase conjugation (OPC) systems [5, 10, 11].

Power profiles in a 2D space are mostly addressed by heuristic tuning of the Raman pump
power and wavelength values, where the pump power values are adjusted based on experience and
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without applying an intelligent optimization framework [4, 12–14]. The heuristic optimization of
the parameters in a practical setup requires simplifying the optimization problem which can be
challenging when the dimensionality of the problem to solve, i.e. the number of parameters to
optimize, increases. This approach will be time consuming and also less accurate in case the
goal is to design several 2D target profiles with different cost functions using the same Raman
amplifier setup under test. In [15,16], we presented and numerically validated an online machine
learning framework to automatically optimize the Raman pump power values to design power
profiles of practical interest, jointly in frequency and fiber distance domains. The proposed
approach consists of a convolution neural network (CNN) [15], trained as an inverse system
model, followed by a differential evolution (DE) [16] technique. Numerical results shown that
the resulting framework has the flexibility to design different 2D profiles with specific objectives
by optimizing the pump power values.

In [17], we presented a Raman amplifier setup and experimentally verified the performance of
the CNN model and the CNN-assisted DE framework to design a data-set of achievable 2D power
profiles. This amplifier setup utilizes four first order counter-propagating pumps and the target
data-set is generated by applying random pump power values to the setup and measuring their
resulting 2D power profile. For each target 2D profile in the data-set, the pump power values
are optimized aiming to minimize the maximum absolute error (MAE) between the target and
designed 2D profile. First, the CNN prediction on the target 2D profiles is investigated, which
results in low MAE on average (0.37 dB), while showing high MAE(>1 dB) for roughly 2% of
the profiles. To improve the CNN accuracy on 2D profiles with high MAE, the CNN-assisted DE
is applied to perform online optimization on the Raman amplifier setup, resulting in less than 0.5
dB for all of the selected high-error 2D profiles.

In this paper, we extend [17] by providing more details on the experimental validation of
the CNN model and the CNN-assisted DE framework for designing achievable 2D profiles.
Additionally, in this work we experimentally test the DE framework in a scenario where the target
is to shape the 2D signal power evolution to jointly satisfy multiple spatial-spectral objectives,
rather than designing a specific achievable 2D profile shape. In particular, we consider two cost
functions as the objectives and perform an online optimization of the pump power values to
minimize these cost functions using the Raman amplifier setup. The two cost functions are:
1) the maximum deviation from a spectrally flat-gain profile at the end of the fiber (over the
full C-band), and 2) the maximum spectral power excursion along the fiber distance. This is a
multi-objective optimization problem with non-differentiable cost functions with respect to the
free parameters, which is challenging to be solved with gradient-based neural network (NN)
approaches presented in [18]. Our approach in this scenario is to use only the DE framework
without involving the CNN. The proposed DE framework provides less than 1 dB gain deviation
and spectral power excursion when enough pump power value is provided in the amplifier setup.
Additionally, the simulation results also assert that the DE is able to achieve less than 0.6 dB gain
deviation when the amplifier setup is not limited by the upper-bound pump power values.

The paper is organized as follows. Section 2 presents the experimental Raman amplifier
setup used to validate the proposed machine learning-based power optimization framework. In
Section 3, the proposed framework is discussed in more details with particular emphasis to the
online application. Section 4 presents and compares the experimental results of the DE and the
CNN-assisted DE frameworks. Finally, section 5 concludes the paper.

2. Experimental setup

The experimental setup for verifying the proposed machine learning-based framework to optimize
the Raman pump power values is depicted in Fig.1. We consider a span of standard single-mode
fiber (SSMF) with 50 km length and the Raman pump module of four counter-propagating lasers.
Pump wavelengths are fixed (shown with their maximum available power value 𝑝𝑚𝑎𝑥 in the table



inset in Fig. 1), and able to amplify the entire C-band. The goal is to optimize the Raman pump
powers values p = [𝑝1, 𝑝2, 𝑝3, 𝑝4] to achieve the targeted 2D profile Pt ( 𝑓 , 𝑧), defined in both
spectral ( 𝑓 ) and spatial (𝑧) domains. In Raman amplification, the relation between the signal
and pump power evolution over the fiber distance is described by a well-known set of non-linear
ordinary differential equations [1]:

𝑑𝑃𝑠,𝑖

𝑑𝑧
= −𝛼𝑠𝑃𝑠,𝑖 + 𝐶𝑅 ( 𝑓𝑠,𝑖 , 𝑓𝑝, 𝑗 ) [𝑃+

𝑝, 𝑗 + 𝑃−
𝑝, 𝑗 ]𝑃𝑠,𝑖 , (1)

±
𝑑𝑃±

𝑝, 𝑗

𝑑𝑧
= −𝛼𝑝𝑃

±
𝑝, 𝑗 − (

𝑓𝑝, 𝑗

𝑓𝑠,𝑖
)𝐶𝑅 ( 𝑓𝑠,𝑖 , 𝑓𝑝, 𝑗 )𝑃𝑠,𝑖𝑃

±
𝑝, 𝑗 .

where 𝑃𝑠 is the signal power, 𝑃+
𝑝, 𝑗

and 𝑃−
𝑝, 𝑗

are respectively the co- and counter-propagating
pump powers (we only have considered counter-propagating pumps in the setup), 𝛼𝑠 and 𝛼𝑝

represent the signal and the pumps attenuation coefficients measured in m−1, 𝑓𝑠,𝑖 and 𝑓𝑝, 𝑗 are
the signal and the pump frequencies, and 𝐶𝑅 is the Raman gain efficiency, measured in 1/W/m.
In these equations, 𝑖 identifies the signal channel index for 𝑖 = {1, ..., 𝑛𝑐ℎ}, and 𝑗 identifies the
pump index for 𝑗 = {1, ..., 𝑛𝑝}, with 𝑛𝑝 = 4 in the proposed setup.
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Fig. 1. The experimental setup and the block diagram of the processes used to optimize
the pump powers values for designing a 2D target power profile Pt ( 𝑓 , 𝑧).

To experimentally measure the signal power evolution 𝑃𝑠 over the spectrum and along the
fiber distance, a frequency-tunable optical time-domain reflectometer (OTDR) is used. The
signal bandwidth of the OTDR covers the C-band between 191.8 THz and 196.1 THz, equivalent
to 𝑛𝑐ℎ = 44 channels with 100 GHz spacing. The OTDR is connected to the fiber span with
three elements in between: a tunable attenuator employed to control the signal power flow into
the OTDR, a 1 km SMF link to cover the dead-zone of the OTDR, and a wavelength division
multiplexer (WDM), utilized to filter out the pump waves in the range between 203.9 THz and
211.1 THz, such that they do not enter the OTDR. Another WDM coupler is placed at the end of
the fiber link to combine the signal and the pumps.

The OTDR introduces a low power signal (-12 dBm) into each of the channels and measures
their back-scattered signal, sequentially. Overall attenuator and WDM loss is 4 dB resulting in
almost -16 dBm input signal power to the 50 km fiber. To reduce the impact of noise on the



measurements and have a clear trace for each channel, the signal pulse width is set to 3 𝜇𝑠 and
the distance resolution of the OTDR to 8.2 m. The OTDR measures the signal power evolution
for all channels (𝑃𝑠,𝑖), and we post-process the measured signal by applying a Savitzky-Golay
smoothing filter [19] with window size 𝑤 = 19 (equivalent to 19×8.2=155.8 m) and polynomial
order 𝑛 = 2 in distance to reduce the signal fluctuations. According to the numerical results
reported in [15, 16], a distance resolution of 500 m is sufficient for the CNN training and
evaluation. Therefore, the smoothed traces are down-sampled in distance direction using a linear
interpolation to achieve 500 m resolution, and a 2D power profile P( 𝑓 , 𝑧) of size 44 × 100 is
formed. P( 𝑓 , 𝑧) is used as the input to the cost calculation block, where its MAE value with
respect to the pre-defined target 2D profile Pt ( 𝑓 , 𝑧) is calculated. After the cost calculation, the
power optimization framework updates the pump powers accordingly and applies a new set of
pump powers to the setup, aiming to reduce the MAE in the following iteration (see Section 3
for the framework description). The process of applying pump powers, recording the resulting
2D profile, and the cost calculation continues until a convergence criteria such as a minimum
cost value without considerable variation in pump power values or a maximum number of DE
iterations is achieved.

3. Raman pump power optimization framework

The proposed pump power optimization framework, shown in Fig.1, consists of an evolutionary
optimization algorithm, known as differential evolution (DE) [20]. The main goal of the DE
is to optimize the pump power values to achieve the target 2D power evolution profile Pt ( 𝑓 , 𝑧)
in the span. This framework is evaluated numerically in [16] using the synthetic data to find
the optimum pump powers values for 2D profiles of practical interest. The DE can be used to
perform optimization in an online closed-loop process by applying pump power values to the
setup, evaluating their resulting cost, and updating them aiming to reduce the cost in the next
iteration. If the DE optimization starts with a randomly selected population of individuals (as the
initial candidate solutions), it will be more time consuming and also prone to local minimum in
case the individuals in the initial population are not in the vicinity of the solution. Additionally,
if the number of parameters to be optimized is high, the volume of the space to explore increases,
and consequently, the DE can converge to different local minimum points each time it starts
to run. For a target 2D profile Pt ( 𝑓 , 𝑧), it is shown in [16] that a CNN-based inverse model
initialization improves the DE performance in terms of its finally achieved cost value, the speed
of the convergence and also the certainty in converging to the same optimum point every time
the DE starts to run. The CNN model, which consists of four CNN layers followed by two
fully-connected hidden layers, is trained to learn the mapping between the 2D profiles and their
corresponding pump powers values using a data-set. The data-set is generated by applying
randomly selected pump powers values to the amplifier setup and measuring their resulting 2D
power evolution profile.

To experimentally validate the pump power optimization framework, two DE population
initialization approaches are proposed as shown in Fig.1. In the first approach, so-called CNN-
assisted DE in Fig.1, the target 2D profile Pt ( 𝑓 , 𝑧) is used as the input to CNN model, where a set
of pump powers values p′ are predicted as the initial solution. These values are then used to define
the pump power lower-bound and upper-bound values p𝐿𝐵 and p𝑈𝐵, respectively. The p𝐿𝐵 and
p𝑈𝐵 are specified according to the deviation of the first-order pump values in [16] by considering
p𝐿𝐵 = p′ − 0.5 · p′ and p𝑈𝐵 = p′ + 0.5 · p′. In the second experimental approach, we have
proposed the DE with random initialization, so-called DE in Fig.1. In this approach, the CNN is
not involved and each element of p𝐿𝐵 and p𝑈𝐵 are defined without any prior knowledge and
basically are the minimum 𝑝𝑚𝑖𝑛 = −5 dBm and maximum 𝑝𝑚𝑎𝑥 pump powers values (provided
in the table inset in Fig. 1), respectively. To provide intuition on how the CNN improves the DE
initialization, the performance of the DE and the CNN-assisted DE is compared in terms of their



MAE in designing a data-set of achievable target 2D profiles in the proposed amplifier setup.

4. Experimental results

4.1. Designing achievable 2D profiles

In this section, we investigate and compare the performance of the CNN-assisted DE and the DE
on predicting the pump power values for a test data-set of achievable target 2D profiles. This
data-set consists of 500 set of pump powers and their resulting measured 2D profiles. For each
test 2D profile the goal is to predict the pump power values aiming to minimize the error between
the true and the predicted pump power values, or the MAE between the target 2D profile and
the resulting 2D profile in the span. Both CNN-based and random initialization approaches
are used and compared in terms of convergence speed and resulting MAE. We start with the
validation of the CNN-assisted DE framework, which its first step is to train and evaluate the
CNN model. Regarding this, 4400 2D profiles are generated in total, divided into two sets for
train and validation with the size of 4100 and 300 2D profiles, respectively.

Once the CNN is trained, the test 2D profiles are used as the input to the model and the 𝑅2

score is calculated to evaluate the correlation between the true and the predicted pump power
values. The 𝑅2 score takes the values between 0 and 1 where the highest value indicates a perfect
prediction. The 𝑅2 score attained for each pump is reported in Table 1. According to this results,
in general, the CNN has good performance on predicting all four pump power values with more
accurate prediction for 𝑝3 and 𝑝4, compared to the 𝑝1 and 𝑝2. The lower accuracy of 𝑝1 and 𝑝2
(compared to 𝑝3 and 𝑝4) is mainly because of their less impact on the signal power evolution
shape as the peak of their corresponding Raman gain efficiency lies slightly outside the signal
bandwidth (between 191.8 THz and 196.1 THz).

Table 1. 𝑅2 test scores for the CNN model prediction.

Pump 𝑝1 𝑝2 𝑝3 𝑝4

𝑅2 0.86 0.87 0.91 0.93

Additionally, a scatter plot of the true and the predicted pump power values is shown in Fig 2
(a)-(d) for all four pump values 𝑝1, 𝑝2, 𝑝3, 𝑝4, respectively. Based on this figure, the correlation
between the true and the predicted pump power values is low for low ranges of pump power
values which is because of the low impact of the low pump power values on the signal power
evolution shape. As the pump power values increase, they become more influential on the signal
power profile, and the prediction accuracy increases, accordingly.

A more rigorous and meaningful approach to evaluate the CNN prediction performance is to
apply the predicted pump power values to the experimental amplifier setup, measure the designed
2D profile and calculate the MAE between the targeted 2D profile and the resulting one. Fig.3 (a)
and (b) show the probability density function (PDF) and the cumulative density function (CDF)
of the MAE for all test profiles, respectively. For the test 2D profiles, the CNN achieves the MAE
with mean 𝜇 = 0.37 dB, and standard deviation 𝜎 = 0.23 dB. According to the CDF results, 80%
of the test 2D profiles have MAE lower than 0.5 dB, and 97.8% of them result in MAE values
lower than 1 dB.

According to Fig. 3, the CNN obtains statistically low MAE values, while only for eleven
2D profiles (≈ 2.2% of all 500 test 2D profiles), it results in a MAE higher than 1 dB. Selecting
this 2D profiles with the error higher than 1 dB, we apply the CNN-assisted DE approach to
improve the prediction results in real-time on the experimental setup with a limit of maximum
100 iterations.



0 5 10 15 20

0

10

20

P
re

d
ic

te
d

 p
u

m
p

p
o

w
e

r 
[d

B
m

] 

0 5 10 15 20

0

10

20

0 5 10 15 20
True pump power [dBm]

0

10

20
P

re
d

ic
te

d
 p

u
m

p
 

p
o

w
e

r 
[d

B
m

] 

0 5 10 15 20
True pump power [dBm]

0

10

20

(a) (b)

(c) (d)

Fig. 2. The scatter plot of the true versus predicted pump power values using the CNN
model on test data. Each blue dot corresponds to a test 2D profile and the orange solid
line represents the ideal prediction. (a) 𝑝1, (b) 𝑝2, (c) 𝑝3, (d) 𝑝4.
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over the selected 2D profiles for each DE iteration using the CNN-assisted DE and the
DE scenarios.

To provide an intuition regarding the CNN impact on the DE initialization, another set of
experiments for the proposed eleven 2D profiles is performed using DE. For each one of these



Fig. 5. CNN-assisted DE result for the 10th selected 2D profile in Fig.4 (a).(a) Target 2D
profile, (b) Heatmap of the absolute error (in dB) between the target and the predicted
2D profiles over the frequency and distance domains.

selected 2D profiles, indexed from 1 to 11, the MAE is shown in Fig 4 (a) for the CNN, the
CNN-assisted DE and the DE scenarios. The resulting error using CNN-assisted DE for all
eleven 2D profiles is less than 0.5 dB. Fig 4 (a) also asserts that the CNN-assisted DE results are
considerably better than the CNN and the DE results. In addition, the average MAE evolution for
all eleven 2D profiles over the number of DE iterations is shown in Fig.4 (b) for the CNN-assisted
DE and DE scenarios. This plot shows that the DE initialized with the CNN converges faster and
to a point with lower MAE.

Moreover, a visual representation of the CNN-assisted DE framework result (10th selected 2D
profile in Fig.4) is shown in Fig.5, providing the target 2D profile Fig. 5 (a) and the resulting
heatmap of its absolute error with the predicted 2D profile over the frequency and fiber distance
Fig. 5 (b). For this case, the resulting MAE value between the target and the predicted 2D profile
is 0.22 dB.

4.2. Designing objective-based 2D profiles

In this section we approach a different design scenario where the target is not to minimize
the MAE between a target 2D profile and the designed 2D profile, but to achieve a 2D profile
which fulfills multiple desired spectral-spatial objectives. In the following scenario, the specific
objective is designing 2D profiles with a desired flat gain level at the end of the span, meanwhile,
minimizing the spectral excursion in the entire span. This is a multi-objective optimization
problem which is quite complex to solve, and we experimentally prove that it can be approached
with the DE, applied real-time to the amplifier setup. It is worth noting that the CNN-assisted
in Fig.1 is not applicable since there is no 2D target profile Pt ( 𝑓 , 𝑧) to be used as the input to
the CNN model. Only the DE can be used effectively for this design scenario, therefore, we
define two cost functions for this purpose. The first objective is to have a spectrally flat 2D power
evolution in distance. For this objective, the first cost function 𝐽0 (p), referred to as the maximum
spectral power excursion, which is aimed to be minimized, is formulated as the following:

𝐽0 (p) = max
𝑧

[max
𝑓

(P( 𝑓 , 𝑧 |p)) − min
𝑓
(P( 𝑓 , 𝑧 |p))] . (2)

Minimizing 𝐽0 (p) results in achieving a 2D profile with the minimum spectral excursion
over the entire span. To provide a visual intuition on 𝐽0 value, Fig.6 (a) shows a sample power
evolution profile for all channels over the distance and the maximum spectral excursion as 𝐽0 is
specified, which for this specific case, occurs at the end of the span.

The second objective is to achieve a spectral flat target gain level such as g𝑡 ( 𝑓 ) at the end of
the span. Approaching this objective, the cost function 𝐽1 (p) is defined as the maximum absolute



deviation between the achieved gain ĝ( 𝑓 , p) and the target gain level g𝑡 ( 𝑓 ) at the end of the fiber,
formulated as:

𝐽1 (p) = max
𝑓

|ĝ( 𝑓 , p) − g𝑡 ( 𝑓 ) |. (3)

where 𝐿 is the span length, and the on-off gain ĝ( 𝑓 , p) is defined as:

ĝ( 𝑓 , p) = P( 𝑓 , 𝑧 = 𝐿 |p) − P( 𝑓 , 𝑧 = 𝐿 |p𝑜 𝑓 𝑓 ). (4)

where P( 𝑓 , 𝑧 |p𝑜 𝑓 𝑓 ) is the 2D power profile when all pumps are turned off. In Fig 6 (b), a target
gain level is targeted and the 𝐽1 value is specified according to a sample 2D profile’s achieved
gain at the end of the fiber.

Considering the above-mentioned objectives, we define the multi-objective optimization
problem aiming to minimize both 𝐽0 (p) and 𝐽1 (p), simultaneously, and find the optimal set of
pump power values p∗. To make the optimization process simpler and also to be able to control
the impact of each objective on the final result, we make an approximation by converting the
multi-objective optimization into a classical weighted-sum as proposed in [16]. Approaching
this, each objective is multiplied by a weight, defined as a hyper-parameter, and it is added to the
other objectives as the following:

p∗ = arg min
p

[𝑚0𝐽0 (p) + 𝑚1𝐽1 (p)], (5)

such that p𝐿𝐵 ≤ p𝑝𝑢𝑚𝑝 ≤ p𝑈𝐵, 𝑚0, 𝑚1 > 0, 𝑚0 + 𝑚1 = 1.
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Fig. 6. (a) Spatial representation of 𝐽0, (b) Spectral representation of 𝐽1.

where 𝑚0 and 𝑚1 are the weights used to control the impact of 𝐽0 and 𝐽1 on the optimal point.
In our analyses, we set 𝑚0 = 𝑚1 = 1/2, giving 𝐽0 and 𝐽1 the same impact. Five 2D profiles
with different flat gain levels are designed by solving the Eq. (5). The maximum possible gain
level provided by the pumps at the end of the fiber, when all of the pumps are operating at
their maximum available power, is equal to 𝑔𝑚𝑎𝑥 = 4.9 dB. Considering this, we target five
equally-spaced gain levels starting with 0.48 dB and ending with 4.4 dB. In Fig.7 (a), the resulting
five power evolution profiles with different flat target gains g𝑡 are shown over the distance, with
their corresponding spectral gain versus the target gain level, depicted in Fig.7 (b). Additionally,
the average of the cost value for all five profiles at each DE iteration is calculated and shown in
Fig.7 (c), demonstrating that the average cost does not significantly improve after 40 iterations.

Moreover, the cost values of 𝐽0 and 𝐽1 over the different target gain levels are illustrated in
Fig.7(d), showing less than 1 dB error for target gain levels up to 4 dB. Both 𝐽0 and 𝐽1 increase
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Fig. 7. DE results of pump power optimization by solving Eq.(5) with different target
gain levels. (a) Spatial representation of the resulting power evolution profiles over the
distance. (b) Spectral representation of target and designed gain levels at span end. (c)
The average cost value over the five 2D profiles for each DE iteration. (d) The 𝐽0 and
𝐽1 values achieved for different target gain levels.

noticeably when the target gain level reaches higher than 4 dB. This phenomenon is mainly
because of the limited pump power provided by the pumps in the setup depicted in Fig.1, rather
than the failure of the proposed power optimization framework. As the target gain level increases,
the experimental amplifier setup physically limits the performance of the DE framework in
achieving low cost 2D profiles by providing low upper-bound pump power p𝑈𝐵 values. Regarding
this, we have shown the resulting power values of all four pumps for different target gain levels by
applying the DE framework in Fig.8. In particular, it is shown that the power value of pump 𝑝4,
with increasing the target gain level, has an increasing trend towards its maximum value 19.94
dBm. In case the pumps, especially 𝑝4, provide enough power value and they do not limit the
optimization process, the DE would be able to design target gain levels more accurately.

To confirm this statement, we have performed a set of simulations to analyze the amplifier
setup in Fig.1. In the simulations, the set of equations in Eq.(1) is solved numerically using
GNPy library [21] with the same setup configuration as proposed by Fig.1, except that each
pump in the simulations provides a higher power value, up to 23 dBm. In addition, since the
range of space to explore with the new pump power ranges has higher volume compared to the
experimental analyses, we set the number of the DE iterations to 300 (higher than 100 iterations
in the experimental analyses).

In the simulation analyses, we use the same weight values( 𝑚0 = 𝑚1 = 1/2). Nine 2D profiles
with equally-spaced targeted gain levels starting from 0.7 dB and ending with 6.3 dB (slightly
higher than 60% merit of Raman pumping as proposed in [22]) are generated by applying the
DE to solve Eq. (5) In Fig. 9(a) the power evolution of the designed 2D profiles with their
corresponding flat target gains g𝑡 are shown. The corresponding target gain level and the designed
spectral gain levels of each 2D profile is demonstrated in Fig. 9(b). Moreover, the average cost
over the nine 2D profiles for each DE iteration is calculated and shown in Fig.9 (c), which asserts
that no considerable accuracy improvement after 260 iterations is obtained. Additionally, Fig.
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Fig. 8. Resulting pump power values in the experimental analyses for different target
gain levels.
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Fig. 9. Simulation results of pump power optimization by solving Eq.(5) with different
target gain levels. (a) Spatial representation of the resulting power evolution profiles
over the distance. (b) Spectral representation of target and designed gain levels at span
end. (c) Average cost value over the five 2D profiles for each DE iteration. (d) 𝐽0 and
𝐽1 values achieved for different target gain levels.

9(d) shows that the resulting cost values are less than 0.6 dB for target gains levels less than 5.6
dB. For all cases with different target gain levels, the obtained pump power values are shown in
Fig.10. It is illustrated that for the case with the highest target gain level (6.3 dB), the power
value of the pump 𝑝4 reaches its upper-bound 23 dB value and does not allow the DE to improve
further. This results confirm that in case the amplifier setup is provided with pumps with higher
upper-bound power values, high target gains can be achieved accurately using the DE framework.
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Fig. 10. Resulting pump power values in the simulation analyses for different target
gain levels.

5. Conclusion

The DE and the CNN-assisted DE frameworks are experimentally validated for designing 2D
power evolution profiles using Raman amplifiers. For test 2D profiles, the CNN model achieves
less than 0.4 dB MAE on average while it is inaccurate for 2.2% of the 2D profiles in the test
data-set. Addressing these profiles, CNN-assisted DE is applied to fine-tune the pump powers
values, showing more than 1 dB improvement in average over the CNN results. In a second
designing scenario, the DE framework is employed to design 2D profiles with two different
objectives: 1) flat gain levels and, 2) minimum spectral power deviation. The results assert that
the proposed frameworks can be effectively used to design 2D profiles, by online tuning of the
pump power values in an amplifier setup under test.

Funding. European Research Council (ERC-CoG FRECOM grant no. 771878); The Villum Foundation
(OPTIC-AI grant no. 29334); The Italian Ministry for University and Research (PRIN 2017, project FIRST).

Disclosures. The authors declare no conflicts of interest.

Data Availability Statement. Data underlying the results presented in this paper are not publicly available
at this time but may be obtained from the authors upon reasonable request.

References
1. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
2. W. S. Pelouch, “Raman amplification: An enabling technology for long-haul coherent transmission systems,” J. Light.

Technol. 34, 6–19 (2016).
3. U. C. de Moura, M. A. Iqbal, M. Kamalian, L. Krzczanowicz, F. Da Ros, A. M. R. Brusin, A. Carena, W. Forysiak,

S. Turitsyn, and D. Zibar, “Multi–band programmable gain Raman amplifier,” J. Light. Technol. 39, 429–438 (2020).
4. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in

ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
5. M. Tan, M. A. Ai-Khateeb, M. A. Iqbal, and A. D. Ellis, “Distributed Raman amplification for combating optical

nonlinearities in fibre transmission,” in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR),
(IEEE, 2018), pp. 1–2.

6. J. D. Ania-Castanon, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,”
Opt. Express 12, 4372–4377 (2004).

7. J. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” 2002 28TH Eur. Conf. on Opt.
Commun. 3, 1–2 (2002).

8. L. F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000 km in fiber with loss
periodically compensated by Raman gain,” Opt. Lett. 13, 675–677 (1988).

9. S. T. Le, J. E. Prilepsky, P. Rosa, J. D. Ania-Castañón, and S. K. Turitsyn, “Nonlinear inverse synthesis for optical
links with distributed Raman amplification,” J. Light. Technol. 34, 1778–1786 (2016).



10. I. Phillips, M. Tan, M. Stephens, M. E. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan,
S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the nonlinear-Shannon limit using Raman laser
based amplification and optical phase conjugation,” in Optical Fiber Communication Conference, (Optical Society of
America, 2014), p. M3C.1.

11. M. Tan, P. Rosa, T. T. Nguyen, M. A. Z. Al-Khateeb, M. A. Iqbal, T. Xu, F. Wen, J. D. Ania-Castañón, and A. D.
Ellis, “Distributed Raman amplification for fiber nonlinearity compensation in a mid-link optical phase conjugation
system,” Sensors 22 (2022).

12. T. Ellingham, J. Ania-Castanon, R. Ibbotson, X. Chen, L. Zhang, and S. Turitsyn, “Quasi-lossless optical links for
broad-band transmission and data processing,” IEEE Photonics Technol. Lett. 18, 268–270 (2006).

13. P. Rosa, G. Rizzelli, M. Tan, P. Harper, and J. D. Ania-Castañón, “Characterisation of random DFB Raman laser
amplifier for WDM transmission,” Opt. Express 23, 28634–28639 (2015).

14. A. E. Bednyakova, M. Fedoruk, P. Harper, and S. Turitsyn, “Hybrid gain-flattened and reduced power excursion
scheme for distributed Raman amplification,” Opt. Express 21, 29140–29144 (2013).

15. M. Soltani, F. D. Ros, A. Carena, and D. Zibar, “Inverse design of a Raman amplifier in frequency and distance
domains using convolutional neural networks,” Opt. Lett. 46, 2650–2653 (2021).

16. M. Soltani, F. Da Ros, A. Carena, and D. Zibar, “Spectral and spatial power evolution design with machine
learning-enabled Raman amplification,” J. Light. Technol. pp. 1–1 (2022).

17. M. Soltani, F. D. Ros, A. Carena, and D. Zibar, “Experimental validation of spectral-spatial power evolution design
using Raman amplifiers,” accepted for ECOC (2022).

18. U. C. de Moura, F. D. Ros, A. M. R. Brusin, A. Carena, and D. Zibar, “Experimental characterization of Raman
amplifier optimization through inverse system design,” J. Light. Technol. 39, 1162–1170 (2021).

19. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures.” Anal.
Chem. 36, 1627–1639 (1964).

20. T. Eltaeib and A. Mahmood, “Differential evolution: A survey and analysis,” Appl. Sci. 8 (2018).
21. A. Ferrari, M. Filer, K. Balasubramanian, Y. Yin, E. Le Rouzic, J. Kundrat, G. Grammel, G. Galimberti, and V. Curri,

“GNPy: an open source application for physical layer aware open optical networks,” IEEE/OSA J. Opt. Commun.
Netw. 12, C31–C40 (2020).

22. V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links supporting NyWDM
transmission,” J. Light. Technol. 34, 554–565 (2016).


