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Abstract The historical journey of the Benford’s law and its most important definitions and
properties are shortly reviewed. Firstly, we define a new class of numbers based on the first-digit
law. Secondly, we investigate the relation between Benford’s sequence and normal numbers.

1 Introduction

In 1881, on the pages of the American Journal of Mathematics, a curious paper written by Simon
Newcomb [10] appeared. It began with the following sentence:

That the ten digits do not occur with equal frequency must be evident to any one
making much use of logarithmic tables, and noticing how much faster the first pages
wear out than the last ones.

This first attempt to understand the deep behaviour of the distributions of the digits of sets
(actually, sequences) of real numbers led Frank Benford to analyze many real-life sets of numer-
ical data from different fields. In 1938, he published a manuscript [1], in which he formalized
the distribution of such digits defining a suitable probability function. In particular, in its first
formulation, Benford proposed the following first-digit law:

F (n) = log10

(
n+ 1
n

)
, n ∈ {1, 2, . . . , 9},

where F (n) denotes the frequency of the digit n in the first place of the base-ten representation
of a sequence of real numbers. That pioneeristic paper allowed Benford to tie his surname to the
first-digit laws, which is indeed also known as Benford law1. In the following years, many other
authors carried out studies on the properties linked with the sequences, which respect the first-
digit law, the so-called Benford sequences. Moreover, generalizations including the distribution
of all digits of a number have been proposed, and nowadays it is possible to find an extensive
literature on this topic. Yet another interesting point of view is given by the probabilistic version
of the Benford’s law, which consists in defining a random variable with a suitable probability
function. However, in our context, it is highly non-trivial to formalize the main idea in the sense
of probability theory, as we explain in the following.

For the interested reader, we suggest to consult [2, 3, 4, 9, 11] for a general framework on
these topics. Moreover, for a very extensive collection of works concerning the Benford’s law
we refer to the online database Benford Online Bibliography [5].

In this work, we propose a new approach on the first-digit law that could be considered as the
first brick of the investigation in such a direction. The foundational idea is to provide a number-
theoretical characterization of the sequences for which first-digit law holds. To achieve that,
we define a particular class of numbers, which are closely related with the Benford sequences.
Furthermore, we propose a brief study on the relation between these sequences and the normal
number, another bizarre mathematical object, defined in 1909 by Émile Borel [6]. All these re-
sults are collected in Section 3. In Section 2, we introduce some useful notations and definitions,

1Sometimes also the name of the first discoverer accompanies his, and the law is hence called the Benford-Newcomb law.
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and summarize some interesting results, which shall be used in the following. Section 4 is de-
voted to take stock of what we have studied in this manuscript, and to provide some insights for
future developments.

2 Definitions and basic properties

In the following, we recall some fundamental definitions and basic properties underlying the
concept of Benford’s law. The notations we shall adopt are the same used in [4]. In particular,
we denote with N the set of positive integer numbers (i.e. natural numbers), with Z the set
of integer numbers, and with R the set of real numbers. A sequence of real numbers shall be
denoted by (·), for instance the sequence of natural numbers is given by (n), with n ∈ N. The
integer part and the fractional part of a real number ω are denoted by bωc and 〈ω〉, respectively.
For the remainder of the paper, we use the base 10 (the same results can be recovered for the
other bases by an easy adaptation). Hence, for ease of reading, we will not specify the base in
the continuation of the work; for instance log10(·) will be simply denoted by log(·).

Firstly, we need to to formalize the notion of significand of a number (also known as man-
tissa).

Definition 2.1. Let ω ∈ R+, we call the (decimal) significand of ω the unique number S(ω) = s,
such that s ∈ [1, 10) and ω = 10ks for some k ∈ Z. Moreover, for ω ∈ R−, we set S(−ω) =
S(ω), and S(0) = 0.

Definition 2.2. The first (decimal) significand of ω ∈ R, denoted by D1(ω), is the first (left-
most) digit of S(ω), where we consider by convention the terminating decimal representation
if S(ω) has two decimal representations (e.g., between 0.999 . . . and 1, we choose the latter).
Analogously, D2(ω) is the second digit of S(ω), and so on.

Example 2.3. We have, for instance, S(2021) = S(0.2021) = S(202.1) = 2.021. Moreover, the
first significand is D1(2021) =D1(0.2021) =D1(202.1) = 2 and also D4(2021) = D4(0.2021)
= D4(202.1) = 1. We notice that Di(2021) = 0, for every i ≥ 5.

We are now ready to give the formal definition of Benford sequence, which generalizes the
formula introduced by Benford to describe the first-digit law.

Definition 2.4. A sequence of real numbers (ωn) is said to be a Benford sequence (Benford for
short), if the following holds:

lim
N→∞

#{1 ≤ n ≤ N : S(ωn) ≤ t}
N

= log t,

for every t ∈ [1, 10).

Example 2.5. The sequences (2n) and (3n), as well as the Fibonacci sequence, are Benford.
Instead, the sequence of integer numbers (n) is not Benford. For these and many other examples,
the interested reader can refer to [3].

A very useful characterization of Benford sequences is given by the following statement.

Proposition 2.6. A sequence (xn) of real numbers is Benford if and only if

lim
N→∞

#{1 ≤ n ≤ N : D1(xn) = d1, D2(xn) = d2, . . . , Dm(xn) = dm}
N

=

= log
(

1 +
1

10m−1d1 + 10m−2d2 + · · ·+ dm

)
,

for all m ∈ N, all d1 ∈ {1, . . . , 9}, and all dj ∈ {0, . . . , 9}, with 2 ≤ j ≤ m.

Remark 2.7. Sometimes (see, e.g., [3, Sect. 3]), Prop. 2.6 is given directly as an equivalent
definition of Def. 2.4.
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Remark 2.8. From Prop. 2.6 we obtain immediately the well-known first-digit law, which we
are going to use in the following sections. Indeed, for every Benford sequence of real numbers
(xn), we have:

lim
N→∞

#{1 ≤ n ≤ N : D1(xn) = d}
N

= log
(

1 +
1
d

)
, d ∈ {1, . . . , 9}. (2.1)

We notice that satisfying the first-digit law does not imply that a sequence is necessarily Benford
(we refer to [3] for an elegant proof of this result).

Theorem 2.9. A sequence of real numbers (xn) is Benford if and only if the sequence (log |xn|)
= (log |x1|, log |x2|, log |x3|, . . . ) is uniformly distributed modulo 1.

Remark 2.10. Thanks to Thm. 2.9 we can prove easily that the sequence (2n) is Benford. In fact,
the classical equidistribution theorem of Weyl [13] states that a sequence (na) = (a, 2a, 3a, . . . )
is uniformly distributed mod 1 if and only if a is irrational. Thus, we notice that log(2n) =
n log(2) and, since log(2) is irrational, we can conclude.

3 The number-theoretical approach

The following paragraphs are devoted to provide a new perspective on Benford sequences.
Firstly, we construct a class of number strictly linked to the first-digit law. Then we study the
relation between Benford’s sequences and normal number.

3.1 The class of fd-numbers

Number theory represents a useful tool in the studies of Benford sequences. The first step in
this direction is to understand how it is possible to formalize a number-theoretical concept that
coincides with Benford’s structure.

For ease of notation, we introduce a new object, based on Def. 2.1 in Sect. 2.

Definition 3.1. Let ω be a real number. The (decimal) full fractional representation of ω is given
by

R(ω) = 10−1S(ω).

Example 3.2. We have, for instance, R(2021) = R(0.2021) = R(202.1) = 0.2021.

We now introduce a new class of real numbers, deeply intertwined with the first-digit law.

Definition 3.3. A real number ω is a first-digit number (concisely, in the rest of the manuscript,
a fd-number) if and only if the sequence

(Rn(ω)) :=
(
〈R(ω) · 10n−1〉

)
(3.1)

respects the first-digit law. The set of all fd-numbers shall be denoted by fd.

Example 3.4. We provide now a construction of a fd-number. Let us take the Benford sequence
(2n), and let us consider the number constructed by taking the first-digits of each number of the
sequence and concatenated them, namely

ω = 248136125124 . . . .

Its full fractional representation is given by

R(ω) = 0.248136125124 . . . .

It is not difficult to verify that the sequence (Rn(ω)) satisfies the first-digit law.

Theorem 3.5. Let (xn) be a sequence for which the first-digit law holds. Then the real number
ω, constructed by concatenating all the leading digits of (xn), is a fd-number.
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Proof. By Rmk. 2.8, we know that a sequence (xn) respect the first-digit law if

lim
N→∞

#{1 ≤ n ≤ N : D1(xn) = d}
N

= log
(

1 +
1
d

)
.

Let ω be the number constructed by concatenating all the leading digits of (xn). Thus, by
considering (Rn(ω)), we obtain immediately

lim
N→∞

#{1 ≤ n ≤ N : D1 (Rn(w)) = d}
N

= lim
N→∞

#{1 ≤ n ≤ N : D1(xn) = d}
N

= log
(

1 +
1
d

)
.

Remark 3.6. We notice that, given a fd-number, it is easy to construct other fd-numbers using
the first one as model. For example, one can consider the number ω of Ex. 3.4 and insert a zero
between every two consecutive digits:

ν = 204080103060102050102040 . . . ,

obtaining again a fd-number.

Remark 3.7. An equivalent way to define fd-numbers is the following. A real number ω is a
first-digit number if and only if the sequence:(

R̃n(ω)
)

:= (R (Rn(ω))) (3.2)

respects the first-digit law. The two sequences (3.1) and (3.2) are usually the same, but not
always. In fact, let us take, for instance, the number ν of Rmk. 3.6. We immediately obtain:

(Rn(ω)) = (0.204080 . . . , 0.040801 . . . , 0.408010, . . . , 0.080103 . . . , · · · );(
R̃n(ω)

)
= (0.204080 . . . , 0.408010 . . . , 0.408010, . . . , 0.801030 . . . , · · · ).

It is not difficult to verify the equivalence of these two definitions.

As we mentioned in the introduction, constructing a probabilistic space for fd-numbers is
a non-trivial issue. In fact, the count of the zeros in the construction of a suitable probability
function requires (and prompts) further reflection.
One may proceed as follows. We denote the set of base-10 digits by N := {0, . . . , 9}. Given a
real number ω ∈ R, we denote the string of digits in its decimal expansion by [ω], indexed by
the inverse of correspondent exponent of 10 in its 10-representation, namely

∞∑
i=k

si10−i = [sk, sk+1, . . . ].

We recall now the definition of Borel number, as it was introduced in [7].

Definition 3.8. We say that ω ∈ R is a Borel number if for every n ∈ N \ {0} and every string
[s1, . . . , sn] ∈ Nn, the following limit

lim
m→∞

|{[bk, . . . , bk+n−1] ⊂ [ω] : [bk, . . . , bk+n−1] = [s1, . . . , sn]}1≤k≤m−n+1|
m

(3.3)

exists. When it exists, we denote it by P([s1, . . . , sn]).

In the same spirit of Def. 3.8, we simply denote by [s] the event that a generic digit in the
decimal representation of ω is equal to [s]. Unfortunately, Def. 3.8 should be amended to omit
the zeros from the count. Thus, we denote by [ω]0 the string of digits in the decimal expansion
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of ω ∈ R in which we have removed the zeros. Thanks to this new construction, we can define a
new probability by the following limit:

lim
m→∞

|{[bk, . . . , bk+n−1] ⊂ [ω]0 : [bk, . . . , bk+n−1] = [s1, . . . , sn]}1≤k≤m−n+1|
m

.

when it exists or every n ∈ N \ {0} and every string [s1, . . . , sn] ∈ Nn
0 , with N0 := N \ {0}. We

shall denote it by P̂([s1, . . . , sn]).

Example 3.9. Let us consider the following real number

ω = 0.10203040506070809.

Thus we have:

[ω] = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9];

[ω]0 = [1, 2, 3, 4, 5, 6, 7, 8, 9].

Remark 3.10. We notice that existence of limit (3.3) is not guaranteed as explained in [7, Rmk.
2.4].

In this new framework, it is possible to give the definition of fd-numbers as follows.

Definition 3.11. A Borel number ω is said to be a fd-number if the equality

P̂([s]) = log
(

1 +
1
s

)
holds for any s ∈ N0.

This probabilistic construction, strongly related to Def. 3.8, could be used to build a class of
numbers starting from the more general Benford law. However, one would consider a very small
class of numbers with no zeros in their decimal expansion, to generalize Def. 3.11 in the most
natural way. A more “inclusive” probabilistic interpretation represents a stimulating challenge
that could be tackled in the near future.

Remark 3.12. Ergodic theory can be used to show that specific sequences are Benford.
In [8, Ex. 6.2.2], the author shows that the first digits sequence

{1, 2, 4, 8, 1, 3, . . . },

obtained by considering only the first digit of each number in the sequence

{2n | n ≥ 0}, (3.4)

satisfies condition (2.1). For each k = 1, 2, . . . , 9 we can define an interval Jk := [log k, log(k+
1)) ⊂ [0, 1). The result is obtained by exploiting the unique ergodicity of a specific irrational
rotation, Tθ with θ = log 2, on [0, 1).
This approach can clearly be generalized to show that any sequence obtained by taking the first
digits of {kn | n ≥ 0}, for any k ∈ N \ {10m | m = 0, 1, . . . }, is actually Benford; the correct
irrational rotation is the one with θ = log k.
Moreover, the procedure can be generalized to obtain a result related to Prop. 2.6. We show a
sketch of the procedure for the sequence (3.4). We want to quantify the frequency of numbers
whose first digit is d1, second digit is d2, . . . , m-th digit is dm. A power of 2n satisfies this
requirement if, for some r ∈ N,

d110r + d210r−1 + · · ·+ dm10r−m+1 ≤ 2n < d110r + d210r−1 + · · ·+ (dm + 1)10r−m+1.

We take the log of the inequality, and we factor out 10r−m+1.
Then, the size of the interval we are considering is

log
(

10r−m+1(d110m−1 + d210m−2 + · · ·+ dm + 1)
10r−m+1(d110m−1 + d210m−2 + · · ·+ dm)

)
= log

(
1 +

1
d110m−1 + d210m−2 + · · ·+ dm

)
,

which is precisely the desired formula. The same application of the Ergodic Theorem used in [8,
Ex. 6.2.2] allows us to conclude.
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3.2 Relation with normal numbers

A real number is called normal (in its base-ten representation) if every finite sequence of digits
is uniformly distributed. In this brief subsection, we present an interesting link between this
particular class of numbers and the Benford sequences, which represents a starting point for the
an investigation in such a direction.

Firstly, it seems appropriate to point out the connection between normal number and se-
quences which are uniformly distributed modulo 1 (see, e.g, [12, Thm. 8.15]), as we do in the
next theorem.

Theorem 3.13. A real number ω is normal to base 10 if and only if the sequence (10n−1ω) =
(ω, 10ω, 102ω, . . . ) is uniformly distributed modulo 1.

Lemma 3.14. The sequence (xn) =
(

1010n−1ω
)

is Benford if and only if ω is 10-normal.

Proof. From Thm. 2.9, we have that (xn) is Benford if and only if (log |xn|) is uniformly
distributed modulo 1. Thus, we immediately obtain that (10nω) has to be uniformly distributed
modulo 1 and, by Thm. 3.13, this last requirement holds if and only if ω is 10-normal.

Remark 3.15. Since almost all real number are normal, we have that almost all sequences of the
form (1010n−1ω) are Benford.

Remark 3.16. It is important to highlight that no fd-number is also a normal number (this is
trivial to check). Thus, for the same reason as in Rmk. 3.15, the class of fd-numbers is smaller
than the class of normal numbers.

4 Conclusions

In this paper, we have presented a number-theoretical approach to the study of Benford’s law. In
particular, we analyze three possible direction of investigation. The first is based on the definition
of a new class of numbers, the fd-numbers, which are based on the classical first digit law. Then,
we deepened the relation between Benford sequences and normal numbers. Finally, we give an
interesting insight related to the ergodic theory, which may lead to fascinating development.

The work contained on this paper inspires many other issues, such as the properties of fd-
numbers or additional links between Benford’s sequences and particular classes of number (as
in the case of normal numbers). We leave these, and other promising leads on Benford’s law and
number theory, as outlook for future research.

Acknowledgments. The authors would like to thank Marco Capolli and Daniele Taufer for the
fruitful exchanges during the writing of this paper.
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