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DSP-based Nonlinear Interference Estimation using
Linear Least Squares Longitudinal Power

Monitoring
Lorenzo Andrenacci, Gabriella Bosco, Yanchao Jiang,
Antonino Nespola, Stefano Piciaccia and Dario Pilori

Abstract—A novel method for the estimation of nonlinear
interference (NLI) penalties in optical networks is presented. Its
theoretical derivation is grounded in linear least squares (LLS)
longitudinal power monitoring (LPM), an algorithm capable
of estimating the absolute power evolution of a signal along
the link. We demonstrate that closed-form NLI estimation is
inherently integrated into LPM. However, this method does not
account for the cross-channel interference (XCI) contribution to
NLI, since the receiver typically lacks knowledge of other WDM
channels. To address this limitation, simple analytical expressions
to compensate for the bias originating from neglecting XCI are
proposed for the scenario of homogenous WDM combs. These
formulas are derived from closed-form NLI models (e.g., the GN-
model) and require only limited information about the signal
configuration. The effectiveness of the proposed approach is
validated through a wide range of realistic numerical simulations
and experiments, including C-band transmissions over 300-km
and 1100-km EDFA-amplified optical links. The obtained results
confirm the reliability of the method, yielding nonlinear SNR
estimates with a maximum absolute error consistently below 0.97
dB when compared to well-established analytical NLI models or
measured values. The mean absolute errors in simulation and
experiments are 0.3 dB and 0.5 dB, respectively. Additionally,
a practical demonstration of transmit power optimization is
provided, leveraging the values obtained through the proposed
method.

Index Terms—Optical Performance Monitoring, Longitudinal
Power Monitoring, Nonlinear Penalty Estimation.

I. INTRODUCTION

THE ever-increasing demand for capacity and flexibility
required by modern optical communications poses an

important challenge for the operation and management of
today’s optical networks. The capability to adapt to different
traffic conditions through dynamic optical path routing and
wavelength switching, the need for low-margin operation and
effective network resource allocation are key challenging tasks
for the designers of the communication devices. In particular,
the telemetry information obtained from coherent transceivers
is crucial for the monitoring and the optimization of optical
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networks. In fact, especially in the context of modern elastic
optical networks (EONs) [1], this information can be used
to automatically build and update digital twins (DTs) of the
network [2], [3]. The DTs are then used to monitor, optimize
and simulate the network, thanks to the availability of simple,
closed-form models of the propagation of coherent signals
along the fiber [4]–[6].

The digital signal processing (DSP) modules in commercial
coherent transceivers already provide useful telemetry infor-
mation [3]. Some of this data, such as cumulated chromatic
dispersion (CD), state of polarization (SOP), and polarization-
dependent loss (PDL) [7], [8], are inherently estimated by
the DSP to properly perform data decoding. Additional in-
formation, like polarization-mode dispersion (PMD) and the
presence of interfering WDM channels [9], can be derived
through straightforward post-processing (online or offline) of
the data extracted from the DSP. Moreover, this information
can be obtained without the need for external monitoring in-
struments, e.g., optical spectrum analyzers (OSAs) and optical
time-domain reflectometers (OTDRs), enabling a cost-effective
and continuous stream of telemetry data from every transceiver
in the network.

Among these data, the constellation signal-to-noise ratio
(SNR), or – equivalently – the error vector magnitude (EVM),
is one of the most important parameters. Given that the
coherent optical channel can be accurately modeled as an
additive white Gaussian noise (AWGN) channel [10], this
parameter can precisely determine the bit error ratio (BER) or
the generalized mutual information (GMI). These two metrics
are directly linked to the achievable information rate (AIR)
of the system after, respectively, hard-decision (HD) or soft-
decision (SD) forward error correction (FEC) [11].

In an optically-amplified coherent link, there are three main
noise sources: the transceiver noise, the amplified spontaneous
emission (ASE) noise added by the optical amplifiers, and
the nonlinear interference (NLI) noise induced by fiber Kerr
nonlinearity. Segregating these noise components is crucial
for the optimization of the network, as the per-span optimal
optical transmit power directly depends on the ratio between
NLI power and ASE power [10]. While the transceiver noise
can be easily computed through a factory calibration procedure
(i.e., a back-to-back measurement), isolating the ASE and NLI
components presents a more complex challenge.

In the literature, several approaches have been proposed
to achieve this result. Some studies exploit the fact that a
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Fig. 1: Schematic of the simulation setup and DSP used to validate the proposed method. Moreover, the fundamental equations
to implement LLS-based LPM and NLI estimation are also displayed.

portion of NLI does not behave as an AWGN source [12].
Under this assumption, the power of NLI can be extracted
from the carrier phase recovery (CPR) algorithm [13], or from
time-domain correlations in the received constellation diagram
[14]–[16]. Some regression techniques are then used to obtain
the actual power of NLI. However, these approaches have
proved to be effective and accurate only in “ideal” situations
(i.e., simulations without phase noise or experiments with
strong NLI). Moreover, they require some knowledge of the
link and transmission parameters to obtain the actual value of
NLI.

An alternative method is presented in [17], where a calibra-
tion factor based on amplitude noise correlation is incorporated
into the EVM calculation to eliminate the impact of NLI
and provide an estimate of the OSNR. The main limitation
of this approach is that it requires a calibration procedure
before operation, and the calibration factor is dependent on
both the link length and the modulation format. Another family
of methods introduces notches in the time-domain [18] or
in the frequency-domain [19] of the transmit signal. This
category proved to be more robust and effective than the
previous one. The major limitation, though, consists in the
modifications and the “calibration” procedure required at the
transmitter (i.e., the NLI cannot be extracted by passively
monitoring the receiver DSP). The method proposed in [20],
instead, leverages the spectral characteristics of ASE and NLI
noises and their correlation to jointly estimate the two noise
contributions. While this method still employs a calibration
procedure, it does not involve modifications at the transmitter
and requires in principle smaller datasets with respect to
machine learning techniques (discussed in the following).
However, the calibration parameters present a dependence on
the potential frequency offset, the roll-off of the shaping filter
and requires modifications in the case of non-central WDM
channels.

Another large family of methods leverages deep learning
techniques to extract the NLI directly from the received
constellation [21]–[23] or SNR fluctuations due to PDL [24].
However, these approaches have several limitations. First, they
are not based on physical models, making them difficult to

interpret and generalize across different network scenarios. In
addition, while they may offer lower computational complex-
ity, this advantage is offset by the higher costs associated with
the prior data collection step. The fundamental limitations
of all these methods stem from two key factors: (1) under
standard operating conditions, NLI is relatively weak, and (2)
in most scenarios, the non-AWGN portion of NLI is effectively
compensated by standard receiver DSP, such as CPR [25],
[26]. Consequently, a different approach is needed to address
this research problem.

In recent years, digital longitudinal monitoring (DLM) has
emerged as a promising technique for the monitoring of
optical links along the fiber propagation direction [27]–[29].
Demonstrations of DLM include the estimation of power
profiles, CD maps, optical amplifier’s gain spectra/tilt, optical
filters’ impulse response [30] and PDL [31]. Notably, DLM
has proved to be a very powerful tool, requiring only the
information already available in the receiver DSP and making
it well-suited for integration into coherent transceivers [32]. In
particular, linear least squares (LLS)-based longitudinal power
monitoring (LPM) [28] is able to estimate the absolute optical
power evolution of the signal along the link. This capability,
when combined with simplified NLI models (e.g., the GN-
model [10]), allows for accurate estimation of the NLI power.
By integrating this estimate with transceiver calibration data
and the overall estimated SNR, the three noise components
can be effectively segregated. A first suggestion for this type
of solution was made in [30], and a first implementation
proposal resorts to the power profiles estimated through LPM
to perform the split-step Fourier method (SSFM) and estimate
NLI [33]. However, the latter involves the re-propagation of all
the WDM channels, generally not available at the receiver side,
which significantly increases the complexity of the method.
Another possible approach consists in leveraging LPM to
estimate the link parameters required for the computation of
analytical NLI models (e.g., GN or EGN models). While
in some cases this solution could be a viable option for
the purpose of NLI estimation, it must be noted that it is
an “indirect” estimation method. For this reason, potential
inaccuracies in the link parameters would propagate in the NLI
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model, further degrading its performance. The simple model
presented in [34] could be used to quickly assess the impact
of such inaccuracies on system-level metrics. In this work,
extending [35], we propose an alternative and more direct
approach, demonstrating how the estimation of NLI power is
inherently integrated within LLS-based LPM. We then proceed
to validate this approach across a wide range of simulative and
experimental scenarios.

This paper is organized as follows. In Section II, we begin
by briefly introducing the main concepts of the LLS LPM
algorithm and then present the equations used to extract the
NLI power from it. Numerical simulations in a very simplified
scenario are used to show the basic features of the algorithm.
Then, in Section III we present simulation results in a more
realistic condition, demonstrating the potential accuracy that
can be achieved in real-world scenarios. Afterward, in Section
IV, we present experimental results over two different sce-
narios: a high-power QPSK transmission over a 300-km link
and a 16-QAM transmission over 1100 km. In both cases, we
demonstrate that the algorithm can achieve a good level of
accuracy, suitable to be used for network optimization (e.g.,
computation of the optimal transmit power).

II. NLI ESTIMATION FROM LINEAR LEAST
SQUARES-BASED LPM

As mentioned in the Introduction, the main goal of this
work is the segregation of transceiver, ASE and NLI noise
contributions. We recall that, after propagation over a coherent
optical link, the overall SNR (in linear units), computed on
the received constellation after the DSP, can be expressed as
[10]:

SNR = (SNR−1
TRX +OSNR−1 + SNR−1

NL)
−1 (1)

where SNRTRX accounts for transceiver noise, OSNR for
ASE noise and SNRNL for Kerr-induced NLI; the OSNR is
computed on a reference bandwidth equal to the symbol rate.
SNRNL represents the target of our estimation.

In this section, the NLI estimation method is presented. We
first give a brief overview of the LLS-based LPM algorithm
and show how NLI estimation is actually inherent in LPM.
We proceed to derive the NLI formula and a few corrections
to mitigate the estimation bias arising from such formula. A
preliminary validation of all the derived expressions is also
performed over a simple numerical setup.

A. Linear Least Squares-based LPM

The NLI estimation method proposed in this work relies on
LLS-based LPM [28], which provides a closed-form formula
of the nonlinear phase rotation (NLPR) γ′(z) = 8

9γ(z)P (z),
where γ(z) is the fiber nonlinear coefficient and P (z) is the
signal power at position z. Assuming that γ(z) is known, the
signal power profile can be simply computed from NLPR as
P (z) = 9

8
γ′(z)
γ(z) .

The estimation of γ′(z) can be formulated as a nonlinear
least squares optimization problem [30], given the received

signal A[L, n] and a reconstructed version of the transmitted
(or reference) signal Aref [0, n] as boundary conditions:

γ̂′ = argmin
γ′

∥A[L, n]−Aref [L, n]∥2. (2)

In (2), Aref [L, n] is the virtually-propagated reference sig-
nal, L is the link length and n = t/Ts is the discrete-
time index with respect to the sampling period Ts. In this
case, γ′ =

[
γ′
0, . . . , γ

′
k, . . . , γ

′
K−1

]T
with γ′

k = γ′(zk)
(k ∈ [0,K − 1], z0 = 0 and zK−1 = L). This problem can
be made linear resorting to the first-order enhanced regular
perturbation (eRP1) [36], [37] approximation. According to
eRP1, both received and virtually-propagated reference signals
can be expressed as:

A[L, n] ≃ A0[L, n] +A1[L, n]

Aref [L, n] ≃ Aref,0[L, n] +Aref,1[L, n].
(3)

The two terms A0[L, n] and A1[L, n] in (3) represent the
linear term after applying the total cumulated CD and the first-
order approximation of the Kerr effect, respectively. Specifi-
cally, the two terms of the approximation for Aref [L, n] are
computed as

Aref,0[L, n] = D0,L [Aref [0, n]]

Aref,1[L, n] = Gγ′ (4)

where each column gk of the perturbation matrix G =
[g0, . . . , gk, . . . , gK−1] is defined as

gk = −j∆zk ·Dzk,L [Np [D0,zk [Aref [0, n]]]] . (5)

In (5), Dzi,zj [·] is a linear operator which introduces CD
from position zi to zj , Np[·] =

(
∥ · ∥2 − 3

2PA

)
(·) is a

nonlinear operator, with PA being the average power of
Aref [z, n], and ∆zk = zk+1 − zk is the spatial step. Note
that A0[L, n] ≃ Aref,0[L, n], if the sampling rate satisfies
the Nyquist criterion. This makes the derivation of A1[L, n]
in (3) straightforward. We would like to highlight the fact
that the Nyquist criterion is required to accurately re-construct
Aref,0[L, n]. However, relaxations to this assumption have
been proposed and demonstrated [32], [38], in which LPM
is performed leveraging symbol-rate data. While this solution
reduces the complexity of the algorithm, it comes at the cost
of a calibration procedure that needs to be performed before
operation [38]. For the purpose of this work, the Nyquist
criterion will be considered valid in all cases. Substituting (3)
and (4) in (2), the nonlinear optimization problem reduces to
an LLS optimization problem:

γ̂′ = argmin
γ′

∥A1[L, n]−Gγ′∥2 . (6)

whose closed-form solution is yielded by

γ̂′ =
(
Re

[
G†G

])−1

Re
[
G†A1[L, n]

]
. (7)

Re(·) and (·)† represent the real part and Hermitian transpose
operators, respectively. Equations (6) and (7) are fundamental
for the following derivation of the NLI estimation formulas.
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a) b)

c)

Fig. 2: a) Results of SNRNL estimation using (10) (circles) and the GN-model (black dashed line) over a 10×50-km SMF link
at 128 GBaud per channel and ∆f = 200GHz for a varying number of WDM channels Nch. b) Example of estimated power
profiles in the single channel scenario. c) Mean estimation bias with respect to nominal SNRNL computed with GN-model.

B. NLI Estimation Algorithm

The overall information on NLI is carried by the term
A1[L, n] in (3). According to eRP1, the received cumulated
NLI is simply the sum of all the local NLI contributions
g(z)γ′(z) at position z in the link, after applying the remaining
CD (see (5)), and can be expressed as

A1(L, t) =

∫ L

0

g(z, t)γ′(z) dz. (8)

where t is the continuous time instant. Note that the expression
in (4) is simply the discretized version of (8), where gk =
g(zk, n), γ′

k = γ′(zk) and ∆zk = dz.
The idea at the basis of the proposed NLI estimation method

is to get an estimate of this perturbation term and use it
to retrieve the corresponding SNRNL. To this purpose, it is
possible to notice that such estimation is actually intrinsic to
the LLS-based LPM algorithm. The LLS optimization problem
in (6) aims to find the γ′ that minimizes the difference between
A1[L, n] and Aref,1[L, n] in the least-square sense. Hence,
computing γ̂′ from (7) and multiplying it by G results in an
estimate – in discrete time – of (8):

Â1[L, n] = Gγ̂′ (9)

It is then straightforward to compute SNRNL. Let us define the
power spectral densities (PSDs) of (9) and the reference signal
as GÂ1

(f) and GAref
(f), respectively. Under the assumption

that the PSD is flat over the band of interest, SNRNL can be
computed as:

SNRNL =
GAref

(0)

GÂ1
(0)

(10)

Both (9) and (10) provide several advantages. In the first
place, they are closed-form formulas. This eliminates the
need for SSFM (or other numerical techniques) to estimate
the nonlinear noise. Moreover, the impact of ASE noise is
limited since it only affects γ̂′ in (9) and can be mitigated

resorting to successive profile averaging and/or increasing the
number of samples employed in the LPM algorithm [28].
Lastly, the required knowledge of the system is – in principle
– restricted only to the cumulated CD, which is generally
available in coherent transceivers at the CDC stage or can
be easily estimated [39].

C. Preliminary Validation

A preliminary numerical validation is performed over the
simple setup in Fig. 1, in which all the fundamental steps
to implement LLS-based LPM and NLI estimation are also
displayed. It consists of a WDM comb of dual polarization
(DP) 64-QAM channels, modulated at a symbol rate Rs = 128
Gbaud, and shaped by a square-root raised-cosine (SRRC)
filter (roll-off ρ = 0.1). The simulations are carried out
considering the main parameters spanning in the following
ranges: number of channels Nch ∈ {1, 5, 11, 21}, per-
channel power Pch ∈ {−2, . . . ,+5} dBm and channel spacing
∆f ∈ {150, 175, 200} GHz. The channel of interest (COI)
is the center channel, if not specified otherwise. The link
is composed of 10 × 50-km identical spans of G.652 single
mode fibers (SMFs), with attenuation αdB = 0.2 dB/km, CD
coefficient β2 = −21.28 ps2/km and nonlinearity coefficient
γ = 1.3 1/W/km. Each span is followed by an EDFA with
noise figure F = 5dB to fully compensate for the span loss.
Fiber propagation is modeled according to our internal SSFM
implementation [40]. The received signal is then processed by
a standard DSP chain, which includes resampling at 2 sample-
per-symbol, CD compensation (CDC), adaptive equalization
and CPR. The output of the CPR stage is finally extracted
and used as input for the LLS-based LPM and the subsequent
NLI estimation algorithm. All results are compared to those
obtained with a GN-model [41] running in parallel to the
numerical simulations and used as a reference. Note that the
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implemented version of the GN model does not take into
account the impact of the modulation format.

All combinations of values for Nch and Pch were tested,
while keeping the channel spacing constant at ∆f = 200GHz.
The results are reported in Fig. 2(a), while an example of
the power profiles utilized in the NLI estimation algorithm
is shown in Fig.2(b), for Nch = 1. The estimation is very
accurate for the single-channel case; however an estimation
bias appears when the number of WDM channels increases,
as displayed in Fig. 2(c). In fact, the major limitation of
the proposed method derives from the LPM algorithm itself,
since LPM only leverages self-channel interference (SCI) [41]
for power profile estimation. All other sources of stochastic
noise, such as ASE or laser phase noise, or static distortions
from transceiver implementation, are seen as noise by the
LPM algorithm. Among these sources of noise, cross-channel
interference (XCI) is also included. In general, no knowledge
of the interfering WDM channels is available at the receiver
side and only the COI is virtually-propagated in the LPM
algorithm. Hence, it is not possible to estimate the XCI
contribution to the total NLI. Although multichannel LPM has
recently been proposed [42], [43] to include both the SCI and
XCI contributions in the power profile estimation, it comes at
the cost of an increased complexity and may not be feasible
when the number of WDM channels is large, e.g., full C-band
transmissions. For this reason, we will present a few examples
of solutions to this problem in the form of a simple correction
factor applied to (10), based on the knowledge of some system
parameters.

D. Estimation Bias Correction

It has been demonstrated in Sec. II-C that the LLS-based
algorithm only estimates the NLI power generated by the non-
linear beating of the COI with itself i.e., the SCI. However,
there are two other sources of the NLI that need to be
accounted for, namely XCI and multichannel interference
(MCI). In the context of long-distance high-symbol-rate (i.e.,
≥ 60 GBaud) multi-channel transmission over uncompensated
SMF links, MCI is negligible [44]–[46]; however, XCI cannot
be neglected. Therefore, in order to obtain the power of the
overall NLI, the XCI power must be evaluated.

Without any loss of generality, we can define an “XCI
correction factor” ζ as:

PNLI ≈ PSCI + PXCI = PSCI

(
1 +

PXCI

PSCI

)
= PSCI · ζ (11)

With the knowledge of ζ and PSCI, the full NLI power PNLI

can be estimated, obtaining a full segregation of the noise
source. Moreover, including ζ into (10), the expression for
SNRNL becomes:

SNRNL =
1

ζ

GAref
(0)

GÂ1
(0)

. (12)

If all the parameters of the link are known, ζ can be
easily obtained by using any NLI model. For instance, if
we consider as COI the central channel of a homogeneous
WDM comb, comprising Nch channels with a symbol rate Rs

and spaced by ∆f , we can apply the straightforward closed-
form approximation provided by the GN model [41, Eq. (15)],
yielding

ζ ≈
asinh

(
π2

2 β2Leff,aR
2
sN

2Rs
∆f

ch

)
asinh

(
π2

2 β2Leff,aR2
s

) . (13)

This expression depends on the symbol rate and the frequency
spacing of the channel, as well as on the fiber’s dispersion
(β2) and attenuation (Leff,a = 1/2α, where α is the field
attenuation parameter). Then, assuming “standard” conditions

150 175 200
0

0.5

1
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2.5

3
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4

Fig. 3: Accuracy of ζ from (13) (dashed line) and (14) (dash-
dotted line) for varying number of channels Nch and channel
spacing ∆f compared to previously computed estimation bias
arising from (10) (circles).

(i.e., transmission over SMF of modern coherent optical chan-
nels), in [34, Eq. (23)] the authors provided an even simpler
approximation, which was also adopted in [35]:

ζ ≈ 4
√
Nch . (14)

The introduced error is relatively large due to the higher level
of approximation. However, it proves effective while requiring
only the knowledge of a single additional transmission param-
eter. A comparison between the two approaches is displayed
in Fig. 3, where the mean estimation bias arising from (10) is
reported for several combinations of Nch and ∆f .

We stress the fact that both (13) and (14) have been derived
under the assumption of homogeneous WDM combs. This is
the assumption that has been made in II-C, as well as in
all the following sections. It is a reasonable assumption for
terrestrial WDM applications leveraging ASE noise loading
[47] and ROADMs to equalize the relative power of the
WDM channels along the network, for instance. In the case
of specific applications that require a different power loading
strategy and/or coarsely-spaced WDM channels, more com-
prehensive NLI models are to be employed to also account
for these aspects. Nevertheless, it is important to remark that
all these approximations do not require the knowledge of the
nonlinear parameter γ, which is generally hard to estimate.
Both approximations, though, assume that the COI is the
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central WDM channel. Potentially, an expression of ζ for other
channels may be obtained from closed-form equations of NLI
models. However, such expression would be quite long, albeit
in closed-form. As it will be shown in the next section, for the
specific purpose of noise segregation in the context of modern,
high symbol rate (≥ 60 GBaud), coherent transmission, an
accurate estimation of ζ is actually not required. Therefore,
we try to obtain a rough approximation of ζ, by adding a
correction term to (14), yielding

log10(ζ) ≈
1

4
log10(Nch) + a

[
log10

(
BL

BR

)]2
. (15)

In this equation, BL and BR are, respectively, the optical
bandwidth at the left and right of the COI. The parameter a can
be estimated through a simple linear regression from a dataset
of results, similar to the procedure followed in [34]. To do
this, we built a dataset comprising 1 440 different scenarios,
by changing the number of 64-GBaud WDM channels from 3
to 45, and the number of SMF spans from 1 to 20. For each
span in each scenario, the length Ls, attenuation and dispersion
were randomly selected, assuming a Gaussian distribution with
a standard deviation of 5% relative to the nominal values of
Ls = 70 km, αdB = 0.2 dB/km and β2 = −22.77 ps2/km.

All scenarios were simulated using the CFM NLI model [5],
and the value ζ was extracted for each of them. After applying
a linear regression on (15), we obtained a ≈ −0.0475. We
remark that, although this is a quite rough approximation of
ζ, it is a simple linear expression that requires the minimum
amount possible of parameters. Moreover, its applicability
remains limited to C-band transmissions, since in UWB sce-
narios, such as C+L transmissions, the impact of inter-channel
stimulated Raman scattering (ISRS) cannot be neglected. Its
effectiveness will be discussed in Sec. III considering more
realistic simulation scenarios. As mentioned above, when a
more accurate estimation of ζ is required, standard NLI models
(assuming that the parameters are known or can be estimated)
can be used.

III. NUMERICAL SIMULATIONS

In this section, we provide a thorough numerical validation
of the proposed method across two different system con-
figurations. Specifically, we account for non-central WDM
channels, implement a more realistic fiber propagation model,
and consider a transmission distance that aligns more closely
with the typical reach of the employed modulation format.

A. Simulation Setup

The first configuration for the transmitted DP-16QAM
WDM signal consists of Nch = 30 channels at Rs = 64 Gbaud
spaced by ∆f = 100GHz, while the second one of Nch = 15
channels at Rs = 128 Gbaud spaced by ∆f = 200GHz. The
pulses are shaped with an SRRC filter with roll-off ρ = 0.1.
To test different values of SNRNL, the per-channel power
has been varied between −1 dBm and 5 dBm with a 2 dB
step. Note that this range includes the optimal power for both
configurations.

Fig. 4: Measurements of frequency-dependent power attenu-
ation coefficient αdB and chromatic dispersion coefficient β2

of the four SMF fibers used in the simulation setup.

Moreover, a laser phase noise characterized by a linewidth
of ∆ν = 50 kHz is introduced and modeled as a Wiener
process. The signal is then propagated over a 17 × 65-km
SMF optical link, where each span is terminated by an EDFA
with noise figure F = 5dB that fully recovers the span loss
and equalizes the per-channel power. We consider frequency-
dependent power attenuation αdB and dispersion β2, with
values derived from four experimentally characterized G.652
SMF fiber spans, as shown in Fig. 4. In the numerical setup,
these four fiber spans are repeatedly alternated, thus emulating
a recirculating loop. ISRS is also considered, even though its
effect is almost negligible, given the relatively small optical
bandwidth (i.e., 3THz). The received signal is resampled at a
rate of 2 samples-per-symbol and processed by a standard DSP.
This includes CDC, least-mean-square (LMS)-based adaptive
equalization and blind phase search (BPS) CPR. The output
of this last stage is extracted and used as input for LPM and
the subsequent NLI estimation algorithm. Approximately 217

samples are used for LPM with spatial steps set to ∆z = 2km
and ∆z = 1km for the two configurations. SNRNL is
estimated leveraging (12) and (15) from a subset of 7 and
6 channels, respectively. Since all the parameters are known,
a GN-model [41] is run to compare the estimated SNRNL

values with those obtained with an accurate NLI model.

B. Results and Discussion

The results for the 64-Gbaud and 128-Gbaud configurations
are presented in Fig. 5(a) and Fig. 5(b), respectively. In
both cases, the estimated SNRNL values are consistent with
those obtained with the GN-model, used as a reference. Some
oscillations are present, probably due to the more challenging
environment in which the LPM algorithm is applied. The
power profiles used to compute (9) are extremely noisy due
to the large amount of ASE noise that is cumulated during
propagation. In addition, other impairments contribute to the
degradation of such profiles, such as the presence of phase
noise. However, the deteriorated performance of LPM does
not seem to degrade too much the accuracy of the proposed
method. In fact, the mean absolute error with respect to the
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a) b)

Fig. 5: Numerical results of SNRNL estimation with (12) over a 17 × 65-km SMF link under two system configurations: a)
Nch = 30, Rs = 64 Gbaud and ∆f = 100GHz; b) Nch = 15, Rs = 128 Gbaud and ∆f = 200GHz. In both configurations,
Pch ∈ {−1, +1, +3, +5} dBm.

reference curves is around 0.3 dB in both conditions, whereas
the maximum absolute errors are 0.97 dB and 0.88 dB, respec-
tively. Moreover, the estimated values manage to follow the
correct evolution of NLI across all the tested conditions and
for all COIs. This is also a validation of (15) which proves
effective in correcting the different XCI contributions for the
non-central channels, which generally experience a weaker
XCI impact due to the lower number of neighboring channels.
A further validation is provided in Section IV-B where a setup
with the same characteristics is used to test the proposed
method in an experimental scenario.

To conclude, we emphasize that the required accuracy of the
XCI correction term becomes less critical as the symbol rate
increases. In this section, the results presented were obtained
with symbol rates of 64 and 128 GBaud, corresponding to 30
and 15 WDM channels, respectively. For the central channels,
which are the most affected by XCI, the values of ζ are
3.7 dB and 2.9 dB for these two cases. This indicates that
the relative intensity of XCI in comparison to SCI decreases
as the symbol rate increases (or equivalently, as the number
of channels decreases) [48]. Considering the current industrial
trend to increase the symbol rate (e.g., see [49] for the case of
200-GBaud transceivers), the ratio of XCI to SCI, represented
by ζ, is expected to further decrease. These considerations
are based on the analyzed simulation scenario, in which the
total WDM bandwidth is approximately ∼ 3THz, but can be
extended to full C-band transmissions using (15).

IV. EXPERIMENTAL VALIDATION

After validating the algorithm with numerical simulations,
we test its accuracy over two different experimental scenarios.
The first experiment was conducted over a link designed to
work in a condition where LPM algorithms – in general – work
well [29] (i.e., short distance, high transmit power and small

optical bandwidth). In the second experiment, we explored
a more realistic scenario, where the transmission distance
approaches the maximum reach of the employed modulation
format.

In both scenarios, the experiments were performed using
commercial coherent transceivers over two different straight
transmission lines. Although the proposed algorithm was im-
plemented off-line, its predictions are compared with the SNR
provided by the receiver’s real-time DSP, offering a realistic
estimate of the actual SNR achievable in deployed networks.

A. Transmission over a 300-km Link

The setup displayed in Fig. 6(a) is used to experimentally
validate the proposed method. The COI is a DP-QPSK 64-
Gbaud signal, shaped by an SRRC filter with roll-off 0.1 and
centered at f = 193.3THz. A WaveShaper (WS) is placed
after an ASE source to generate the interfering WDM channels
[50], producing a WDM comb with 18 channels spaced by
100GHz across the C band. The signal is amplified with a
first EDFA acting as booster (BST) and propagated through
an optical link consisting of N = 5 standard single-mode fiber
(SSMF) spans with a nominal length of Ls = 60 km. An in-
line EDFA (ILA), working in automatic gain control mode
and compensating for the previous span loss, terminates each
span. To monitor the PSD evolution of the propagating WDM
signal, the monitoring ports of the EDFAs and the 90/10
splitters placed at the end of each span are connected to an
OSA. At the receiver side, the COI is filtered by a tunable
optical filter (TOF) centered at the COI center frequency and
attenuated by a VOA to adjust its power before entering the
commercial transceiver. It is then sampled at 96 GSa/s by
the transceiver’s analog-to-digital converter (ADC) and the
acquired samples are downloaded for offline processing. After
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Fig. 6: a) Experimental setup. WS: wave shaper; VOA: variable optical attenuator; BST: booster; OSA: optical spectrum
analyzer; ILA: in-line amplifier; TOF: tunable optical filter. b) Measured GSNR, OSNR and SNRNL for each tested per-
channel power Pch. c) Comparison between measured (dashed black) and estimated (blue circles) SNRNL with corresponding
absolute estimation error (green squares).

front-end corrections and resampling at a rate of 2 sample-
per-symbol, the signal samples enter the coherent DSP, where
CDC, frequency offset compensation (FOC), LMS-based 2×2
MIMO fractionally-spaced equalization and Viterbi-Viterbi (4-
th power) CPR are performed. The output of the CPR stage
is then extracted, CD is reloaded and the signal is fed to the
LPM algorithm. The number of samples used as input is 217

and the spatial resolution is set to ∆z = 2km.

In order to span over a wide range of SNRNL values, the
per-channel power Pch has been varied between 0 dBm and
+10dBm, with a step of 2 dB, by using a variable optical
attenuator (VOA) placed before the BST EDFA. For each
tested condition, 100 profiles have been estimated and used in
the computation of (9) and (12) for the estimation of SNRNL.
The resulting values are then averaged.

To validate the proposed method, the nonlinear SNR is also
measured experimentally. In particular, the overall SNR is re-
trieved from the real-time DSP of the commercial transceiver,
for each power level. The OSNR and the SNRTRX are instead
measured from the power spectral densities measured by the
OSA and a set of back-to-back data acquisitions, respectively.
Particularly, the procedure to estimate SNRTRX is the one
described in [51], yielding SNRTRX = 19.77 dB. Hence,
SNRNL is easily obtained from (1). The results are reported
in Fig. 6(b), where the generalized SNR (GSNR) [52] is
GSNR = (SNR−1 − SNRTRX

−1)−1. Please note that the
OSNR tends to saturate around the value of 26 dB at high

power levels, due to the internal noise added by the transceiver,
the BST and pre-amplifier EDFAs.

The measured values of SNRNL are finally compared to
those estimated by (12), as shown in Fig. 6(c). The corre-
sponding absolute estimation error is also reported. In general,
the results obtained with the proposed method are consistent
with the measured values. The absolute estimation error is
always below 0.6 dB and characterized by a root-mean-square
error (RMSE) of approximately ∼ 0.4 dB. Moreover, the
simple correction factor derived in (14) proves to be effective
in mitigating the estimation bias induced by XCI in the
considered transmission system.

B. Transmission over a 1100-km Link

The setup used for this experiment is very similar to
that shown in Fig. 6(a), with minor adjustments to the
system configuration. We transmit a DP-16QAM 64-Gbaud
WDM signal consisting of Nch = 30 channels spaced by
∆f = 100GHz. The per-channel power Pch is varied between
−1 dBm and 5 dBm with step 2 dB. In this experiment,
the proposed method is applied to three COIs, centered at
191.8THz, 193.2THz and 194.7THz, corresponding to one
of the center channels and those at the two extremes of the
WDM comb. This serves as an experimental validation of (15),
as these channels typically experience the most varied XCI
contributions to NLI during propagation. The signal is then
propagated over an optical link of N = 17 SSMF spans, each
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b) c)

a)

Fig. 7: a) Average relative power profiles γ′ for all tested per-channel power levels. b) Comparison between estimated SNRNL

(circles) and the CFM GN-model (dashed line) after propagation over the 17 × 65-km link. c) Distance from optimal per–
channel power Popt – computed starting from estimated SNRNL and considering the OSNR from (1), that provided by the
commercial transceiver and that measured from OSA – based on the 3-dB rule. In the inset, the real optimal power based on
the BER supplied by the commercial transceiver is reported.

with nominal length of Ls = 65 km. It is then processed as
in Section IV-A, with the only difference that the CPR stage
is implemented according to a BPS strategy. The number of
samples at the input of the LPM algorithm is approximately
217, with a spatial step of ∆z = 2km. For each tested channel
and power level, 100 profiles have been estimated and used
in the computation of SNRNL. The averaged power profiles
for the first WDM channel are displayed in Fig.7(a). The
final SNRNL estimate is given by the average of the resulting
values.

We used two approaches to validate the proposed method
in this scenario. The first involves a direct comparison of the
estimated values with those obtained from the CFM model
[5]. Note that this implementation, unlike the one used in
Section II-C and Section III-B, includes the contribution of
the modulation format. For this purpose, all the main fiber
parameters required by the NLI model, such as α, β2 and γ,
were measured for each of the 17 spans in the optical link;
while α and β2 were measured with the aid of an OTDR, γ was
measured with the method described in [51]. This approach
was chosen due to the higher measurement uncertainties in the
experimental setup, which made it difficult to reliably measure
the values of SNRNL, as done in Section IV-A. Therefore, we
opted to use a well-established NLI model, instead. The first

set of results, shown in Fig. 7(b), indicates a mean absolute
error of approximately ∼ 0.5 dB across all estimations, with
an RMSE value around 0.6 dB. In all cases, the maximum
error remains below 0.9 dB. Notably, the correction proposed
in (15) effectively captures the different NLI evolution of the
COIs also in this challenging scenario.

The second validation approach adopts a more practical
perspective, which consists in assessing the accuracy of launch
power optimization based on noise segregation, utilizing the
SNRNL values estimated with the proposed method. A com-
prehensive noise segregation is performed on the first channel
of the WDM comb, utilizing the constellation SNR provided
by the transceiver, the SNRTRX estimated through the proce-
dure outlined in Sec. IV-A (measured as SNRTRX = 19.59 dB
in this experiment), the nonlinear SNRNL derived from (12),
and the corresponding OSNR calculated by properly inverting
(1). It is important to note that the OSNR obtained from (1)
represents an indirect measure, meaning that its accuracy is
influenced by errors in the other estimated parameters.

To specifically validate the estimated SNRNL, the same
procedure is also repeated using OSNR values obtained from
both an optical spectrum analyzer (OSA) and the commercial
transceiver. In fact, the specific commercial transceiver em-
ployed in the experiment is capable of providing a direct esti-



JOURNAL OF LIGHTWAVE TECHNOLOGY 10

mate of the OSNR after transmission [18]. This enables launch
power optimization based on direct OSNR measurements,
which are typically more accurate than indirect ones. The
proposed methodology allows for a more robust validation of
the estimated SNRNL values and their practical applicability,
showing how the result of the power optimization is affected
by different accuracy levels in the terms involved.

Leveraging these measures and the so-called “3-dB rule”1

[53]–[55], it is possible to get an estimate of how far, in terms
of optical transmit power, the current working point is from the
optimum, here denoted as Popt. The expression for Popt−Pch,
in dB units, can be written as:

Popt − Pch =
1

3
(SNRNL −OSNR− 3) . (16)

This expression offers two important advantages. First, it
is straightforward to evaluate in this scenario since all the
required quantities are provided by the transceiver and the
NLI estimation method. Moreover, the factor 1/3 acts as a
mitigation factor for errors in the estimation of OSNR and
SNRNL [10, Sec. IV-A]. This is clearly illustrated in Fig. 7(c),
where (16) is evaluated using the OSNR from (1), the com-
mercial transceiver and the OSA. An inset displaying the BER
curve retrieved from the transceiver is also included. Here,
BER serves as a performance metric to identify the optimal
working point, located around Popt ≃ +1dBm. At this point,
(16) estimates a distance of ∼ 0 dB from Popt, confirming the
reliability of the SNRNL values estimated by the proposed
method. It is to be noted that the accuracy of (16) slightly
degrades when the OSNR is computed from (1), in agreement
with the previous considerations on indirect measurements.
This suggests that direct estimates of the two quantities are
preferable to accurately perform noise segregation. In any case,
this analysis is of practical use, since it gives an example of
how these results can be applied to optimize the transmission
parameters.

V. CONCLUSIONS

In this work, we introduced a novel method to estimate the
power of Kerr-induced NLI in live coherent optical transmis-
sions. This method leverages only the data already available at
the receiver’s DSP and is intrinsically linked to the LLS-based
LPM algorithm. Not only does it deliver precise NLI estimates
but also tracks the power evolution of the WDM channel,
offering valuable information for network optimization at
higher layers.

This method was tested through extensive numerical simu-
lations and two distinct experimental scenarios involving 300-
km and 1100-km transmissions. In all cases, the proposed
approach provided accurate NLI estimates across various
power levels, including the optimal ones and those typically

1Formally, the 3-dB rule is optimal only when applied to a single span, or
to the end-to-end system in the case of all identical, equally-spaced channels,
and identical spans [53], [54]. However, it proved to work relatively well and
be quasi-optimal also under more general conditions, including standard C-
band transmissions and more recently UWB transmissions (e.g., C+L+S+E
systems) [55]. Given its simplicity, it will be the launch power optimization
strategy employed in this work.

challenging for LPM. The accuracy of the method was bench-
marked against predictions of analytical NLI models and direct
experimental measurements, demonstrating its effectiveness in
the tested scenarios. Moreover, it was successfully tested in the
prediction of the optimal launch power, a crucial parameter for
network optimization.

However, the method has two primary limitations. First, it
only estimates the portion of NLI originating from SCI. To
estimate the total NLI, we derived simple analytical expres-
sions that require limited knowledge of the system parameters.
Second, a large amount of data is required, especially at low
launch power levels. Nonetheless, we anticipate that, in a live
network, both NLI power and launch power remain relatively
stable. Therefore, the algorithm can be executed offline by
periodically extracting data from the real-time receiver DSP.

Future work should focus on a more comprehensive analysis
of the accuracy of this method across various scenarios and
explore its potential for network optimization, particularly in
ultra-wide band (UWB) contexts, where optimizing optical
launch power remains an active area of research [55]–[57].
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