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A B S T R A C T

Self-propelled jumping of two polymeric droplets on superhydrophobic surfaces is investigated by three-
dimensional direct numerical simulations. Two identical droplets of a viscoelastic fluid slide, meet and coalesce
on a surface with contact angle 180 degrees. The droplets are modelled by the Giesekus constitutive equation,
introducing both viscoelasticity and a shear-thinning effects. The Cahn–Hilliard Phase-Field method is used to
capture the droplet interface. The simulations capture the spontaneous coalescence and jumping of the droplets.
The effect of elasticity and shear-thinning on the coalescence and jumping is investigated at capillary-inertial
and viscous regimes. The results reveal that the elasticity of the droplet changes the known capillary-inertial
velocity scaling of the Newtonian drops at large Ohnesorge numbers; the resulting viscoelastic droplet jumps
from the surface at larger Ohnesorge numbers than a Newtonian drop, when elasticity amplifies visible shape
oscillations of the merged droplet. The numerical results show that polymer chains are stretched during the
coalescence and prior to the departure of two drops, and the resulting elastic stresses at the interface induce
the jumping of the liquid out of the surface. This study shows that viscoelasticity, typical of many biological
and industrial applications, affects the droplet behaviour on superhydrophobic and self-cleaning surfaces.
. Introduction

When two droplets coalesce, the total surface area decreases. Hence,
urface energy is released during this process. If the two droplets
re far from a wall, the new bigger drop oscillates symmetrically
ntil the released surface energy has been dissipated by viscosity.
owever, when two drops of micro- or nanometer size coalesce on a

uperhydrophobic surface, the presence of a repellent wall breaks the
ertical symmetry and the resulting droplet propels in the direction
erpendicular to the wall [1]. Coalescence-induced jumping has been
eported on a variety of natural repellent surfaces such as cicada,
acewings [2] and gecko skin [3], and can be exploited in a variety of
pplications such as anti-icing [4] and self-cleaning surfaces [2,3], and
o control heat transfer [5]. Several researchers have studied the dif-
erent aspects of the coalescence-induced droplet jumping numerically
nd experimentally, including the basic mechanism of the two equal-
ized drop self-propelled jumping [6], and the effects of droplet size
ismatch [7,8], droplet initial velocity [9,10], surface topology [11–
5], surrounding gas properties [16–18], and surface wettability [19].
few main results are outlined in the following.
When two equal-sized static drops coalesce on a superhydrophobic

urface, their total surface area decreases. This implies that surface

∗ Corresponding author.
E-mail address: kazemba@mech.kth.se (K. Bazesefidpar).

energy is released and converted into viscous dissipation and kinetic
energy, in a proportion determined by the Ohnesorge number, which
represents the ratio between viscous and capillary-inertial forces. At
large Ohnesorge numbers, corresponding to the viscous regime, the
kinetic energy is completely absorbed by viscous forces, preventing the
jumping of the merged droplet [6]. Even at small Ohnesorge numbers,
corresponding to the capillary-inertial regime, only less than 4% of
the released surface energy converts to vertical translational kinetic
energy, which nevertheless causes the jumping of the merged droplet.
The conversion rate of surface energy into kinetic energy reduces
when the droplets are of unequal sizes, due to the strong asymmetric
flow [7,8]. The merged droplet attains an asymmetric shape and jumps
with an oblique angle when one of the two droplets has an initial ve-
locity; moreover, the jumping velocity of the merged droplet increases
significantly above a critical initial velocity [10].

In addition, macrostructures on the surface affect the jumping ve-
locity and energy transfer rates significantly. The jumping velocity and
the conversion efficiency of surface energy to kinetic energy decrease
if the lower contour of the merging drop falls between the gap of
two rectangular grooves, whereas both jumping velocity and energy
conversion increase when the liquid bridge expands on a triangular
vailable online 5 July 2022
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prism structure [11]. The critical Ohnesorge number for droplet jump-
ing depends on both the surface wettability and the ambient fluid
properties such as density and viscosity; in particular, a larger density
contrast between the ambient and drops will cause the merged droplet
to jump higher [16].

A moving contact line forms when the interface of two immiscible
fluids intersects a solid wall, and the elasticity of the drop speeds up
the contact line motion [20–22]. The viscoelastic drops coalesce faster
than the Newtonian drops, and the elasticity of the drops expedite
the film drainage [23,24]. In very recent experiments, the effect of
the drops’ elasticity on the coalescence process was studied for both
freely suspended drops and sessile drops with radius 𝑂(1) micrometer
on the hydrophobic surfaces [25]. They found that elasticity enhances
the curvature of connecting bridge between two merging drops, and
polymer stresses remain confined in a small region around the liquid
bridge between the coalescing drops. However, the induced elastic
stresses were found to be insufficient to alter the temporal evolution
of the bridge in the capillary-inertial regime, and hence elasticity did
not change the flow regime.

In the present work, we perform numerical simulations to study the
effects of the non-Newtonian viscoelastic properties of two equal-sized
static droplets on the coalescence-induced droplet jumping at large
Ohnesorge numbers. Our studies extend from the viscous–capillary to
the inertial-capillary regime, and in the former case we do observe
prominent changes due to elasticity. We use the Cahn–Hilliard Phase-
Field method for capturing the interface between the two phases, and
the Giesekus constitutive equation to model both the viscoelasticity and
shear-thinning of the drops. First, the role of elasticity is investigated
by comparing the vertical velocity and different components of energy
for a Newtonian and Oldroyd-B droplet at the same Ohnesorge number
based on the same zero shear viscosity, while the influence of the liquid
shear-thinning rheology is examined by using Giesekus model.

2. Governing equations and numerical methods

The numerical method used in this work has been described in
detail in Bazesefidpar et al. [26], so we only give a brief outline
here. We consider two immiscible fluids with different densities and
viscosities. The outer fluid is Newtonian with viscosity 𝜇𝑛, whereas the
droplets consist of a Giesekus fluid with solvent viscosity 𝜇𝑠, polymeric
viscosity 𝜇𝑝, and the other non-Newtonian rheological properties as
below. To distinguish between the phases, we introduce a phase-field
variable, where 𝜙 = ±1 in the bulk fluids and 𝜙 = 0 at the fluid/fluid
interface. This problem can be modelled with the following coupled
equations [27,28]:

𝜌( 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮) + 𝐉 ⋅ ∇𝐮 = −∇𝑝 + ∇ ⋅ 𝝉 + ∇ ⋅ 𝜇𝑠(∇𝐮 + ∇𝐮𝑇 ) + 𝐺∇𝜙, (1)

∇ ⋅ 𝐮 = 0, (2)

the Cahn–Hilliard model:
𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝐮𝜙) = ∇ ⋅ (𝑀∇𝐺), (3)

𝐺 = 𝜆(−∇2𝜙 + 1
𝜂2

𝜙(𝜙2 − 1)), (4)

and the Giesekus constitutive model:

𝝉𝑝 + 𝜆𝐻 (
𝜕𝝉𝑝
𝜕𝑡

+ 𝐮 ⋅ ∇𝝉𝐩 − 𝝉𝑝∇𝐮 − ∇𝐮𝑇 𝝉𝑝) +
𝛼𝜆𝐻
𝜇𝑝

(𝝉𝑝 ⋅ 𝝉𝑝) =

𝜇𝑝(∇𝐮 + ∇𝐮𝑇 ), (5)

𝝉 =
(1 + 𝜙)

2
𝝉𝑝, (6)

In the above equations, 𝐮(𝐱, 𝑡) is the velocity vector, 𝑝(𝐱, 𝑡) is the
pressure, and 𝝉(𝐱, 𝑡) is the extra stress due to the polymers, equal to
2

Fig. 1. Sketch of the chosen computational domain 𝛺1.

𝝉𝑝 inside the droplet and 0 outside (see Eq. (6)). In the Cahn–Hilliard
equation, 𝐺 is the chemical potential, 𝑀 is the mobility parameter, and
𝜂 is the capillary width of the interface. In the Giesekus model, 𝝉𝑝 is the
polymer stress, 𝜆𝐻 is the polymer relaxation time, 𝛼 is the Giesekus
mobility parameter, and the polymeric retardation time can be related
to the polymeric relaxation time by 𝜆𝑟 = 𝜇𝑠

𝜇𝑠+𝜇𝑝
𝜆𝐻 . In Eq. (4), 𝜆 is the

mixing energy density, and it is related to the surface tension in the
sharp-interface limit [27] by:

𝜎 =
2
√

2
3

𝜆
𝜂

(7)

Fluid 1 indicates the droplet phase and fluid 2 represents the surround-
ing fluid (air). The density 𝜌 and the dynamic viscosity 𝜇 fields are
expressed using the phase-field variable as:

𝜌 =
(1 + 𝜙)

2
𝜌1 +

(1 − 𝜙)
2

𝜌2, (8)

𝜇 =
(1 + 𝜙)

2
𝜇𝑠1 +

(1 − 𝜙)
2

𝜇𝑠2 , (9)

The total viscosity of the non-Newtonian phase is 𝜇𝑡 = 𝜇𝑠 + 𝜇𝑝. The
density satisfies the following relation [28]

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ 𝜌𝐮 = −∇ ⋅ 𝐉, (10)

where 𝐉 = − (𝜌1−𝜌2)
2 𝑀∇𝐺. Boundary conditions imposed on the sub-

strate are, following Jacqmin [29] and Qian et al. [30], the no-slip
boundary condition for the velocities:

𝒖 = 𝟎, (11)

and the static contact angle 𝜃𝑠 for the phase-field variable:

𝐧 ⋅ ∇𝜙 + 1
𝜆
𝑓 ′
𝑤(𝜙) = 0, (12)

𝑓𝑤(𝜙) = 𝜎 cos(𝜃𝑠)
𝜙(𝜙2 − 3)

4
+

(𝜎𝑤1
+ 𝜎𝑤2

)
2

, (13)

where 𝐧 is the outward pointing normal vector to the boundary, and
𝑓𝑤(𝜙) is a function describing the fluid–solid interfacial tension.

A second-order accurate scheme is employed for the temporal dis-
cretization of Eq. (3) and (1) while a semi-implicit splitting scheme is
used to treat the linear parts implicitly and the non-linear parts ex-
plicitly [31]. To avoid the High-Weissenberg number problem (HWNP),
the log-conformation reformulation (LCR) of equation Eq. (5) [32,33]
is used and advanced in time by a second-order total variation dimin-
ishing (TVD) Runge–Kutta method [34]. Finally, we use second-order
central differences to approximate spatial derivatives, except for the
advection terms in Eqs. (3) and (5), where the fifth-order WENO-Z is
used to improve stability and accuracy [35].
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Fig. 2. Average velocity integrated over the droplet volume in time, for the chosen
domain (stars) and a bigger domain 𝛺2 (solid line), to show independence of the
domain size. The parameters are 𝑂ℎ = 0.0076 and 𝐷𝑒 = 10.

Fig. 3. The evaluation of average velocity of the merged viscoelastic droplet for
different 𝐶𝑛 numbers.

3. Physical model and computational domain

We consider two equal-sized initially static viscoelastic drops touch-
ing a homogeneous surface (Fig. 1) with a static contact angle of 180◦,
and we ignore the adhesion between the droplets and the wall. When
two adjacent droplets coalesce on a superhydrophobic surface, the
formed liquid bridge impinges on the substrate, and the merged droplet
may jump above the substrate. Here, gravity is neglected, because the
droplet radius is assumed to be much smaller than the capillary length
and therefore capillary forces are expected to dominate.

The capillary-inertial velocity is chosen as the velocity scale [1]
𝑢𝑐𝑖 =

√

𝜎∕
(

𝜌1𝑟0
)

, the droplets initial radius 𝑟0 as the length scale,

the inertial-capillary time 𝜏𝑐𝑖 =
√

(

𝜌1𝑟30
)

∕𝜎 as the time scale, the
droplet density 𝜌1 as the reference density, and the droplet viscosity
𝜇1 as the reference viscosity. This gives rise to seven nondimensional
numbers. Firstly, the Ohnesorge number 𝑂ℎ =

(

𝜇1∕
√

𝜌1𝜎𝑟0
)

represent-
ing the relative importance of viscous to capillary-inertial forces; the
Weissenberg number 𝑊 𝑖 =

(

𝜆𝐻𝑢𝑐𝑖∕𝑟0
)

representing the ratio between
elastic and viscous forces; the Peclet number 𝑃𝑒 =

(

2
√

2𝑢𝑐𝑖𝑟0𝜂
)

∕ (3𝑀𝜎)
representing the ratio between the advection and diffusion in the Cahn–
Hilliard equation. Furthermore, the Cahn number 𝐶𝑛 =

(

𝜂∕𝑟0
)

is
the ratio between the interface width and the characteristic length
scale; 𝛽 = 𝜇𝑠∕

(

𝜇𝑠 + 𝜇𝑝
)

is the ratio between the solvent viscosity and
total viscosity; 𝑘𝜇 =

(

𝜇2∕𝜇1
)

is the ratio between the ambient and
droplet viscosities; 𝑘𝜌 =

(

𝜌2∕𝜌1
)

between the ambient and droplet
densities. The different components of the energy are scaled by 𝜎𝑟20.
In what follows, all quantities will be nondimensional unless indicated
otherwise.

To quantify the role of the fluid elasticity on the droplet jumping,
we will measure the mass-averaged velocity of the droplet, defined as:

𝑣 =
∫𝛺

1
2 (1 + 𝜙)𝑣𝑧 𝑑𝛺

1
(14)
3

∫𝛺 2 (1 + 𝜙)𝑑𝛺
Table 1
Experimental fluid properties by Yan et al. [18] at 25 ◦C.
𝑟0 (μm) 𝜌1 ( kg

m3 ) 𝜇1 (Pa s) 𝜎 ( N
m ) 𝑘𝜌 𝑘𝜇 𝜃𝑎𝑝𝑝𝑎 𝜃𝑎𝑝𝑝𝑟 𝛥𝜃𝑎𝑝𝑝

290 998.2 0.001 0.072 1
839

1
58.8

170.3◦ 167.7◦ 2.6◦

where 𝛺 is the computational domain (see Fig. 1), and 𝑧 the direction
perpendicular to the solid substrate. We also analyse the different
components of the energy during the coalescence and jumping. The
total energy 𝐸𝑇 of an Oldroyd-B fluid excluding the solid–fluid surface
energy is the sum of the surface energy 𝐸𝑠, kinetic energy 𝐸𝑘, and
elastic energy 𝐸𝑒, defined in phase-field framework as [36,37]:

𝐸𝑠 = ∫𝛺
3𝐶𝑛

4
√

2

[

∣ ∇𝜙 ∣2 + 1
2𝐶𝑛2

(𝜙2 − 1)2
]

𝑑𝛺,

𝐸𝑘 = ∫𝛺
1
4
(1 + 𝜙)𝐮 ⋅ 𝐮 𝑑𝛺,

𝐸𝑒 = ∫𝛺
𝑂ℎ
2

(1 − 𝛽)
𝑊 𝑖

tr(𝒄 − ln 𝒄 − 𝑰) 𝑑𝛺,

𝐸𝑇 = 𝐸𝑠 + 𝐸𝑘 + 𝐸𝑒,

(15)

where the relationship between polymer stress 𝝉𝐩 and the conformation
tensor 𝒄 is

𝝉𝐩 =
(1 − 𝛽)
𝑊 𝑖

(𝒄 − 𝑰) , (16)

The part of the kinetic energy associated to the vertical velocity com-
ponent is most relevant here as it can be associated with the jumping
motion, while the rest is related to interface oscillatory motions [6].
We will therefore consider a translational kinetic energy, defined as,

𝐸𝑘,𝑡𝑟 = ∫𝛺
1
2
(1 + 𝜙)𝑣2 𝑑𝛺 (17)

where 𝑣 is the droplet mass-averaged velocity in 𝑧-direction, and 𝐸𝑘,𝑜𝑠 =
𝐸𝑘−𝐸𝑘,𝑡𝑟 is the part of the kinetic energy associated with the oscillatory
motion.

The numerical setup is as follows. The nondimensional domain size
is chosen of size 𝛺 = [0, 10] × [0, 10] × [0, 8]. Two adjacent droplets with
initial radius 1 are placed above the x–y plane at z = 0, see Fig. 1. We
impose no-slip and no-penetration conditions on the two boundaries in
the 𝑧-direction, with static contact angles 𝜃𝑠 = 180◦ at the bottom wall
and 𝜕𝜙

𝜕𝑛 = 0 at the top boundary.
Periodic boundary conditions are applied for all variables in the

x- and 𝑦-directions. We use 8 grid points across the nominal interface
in order to resolve the sharp gradients, and set the Peclet number to
𝑃𝑒 = 6

𝐶𝑛 , according to the guidelines in Magaletti et al. [38], Xu et al.
[39] and Yue et al. [40] to approach the sharp-interface limit.

To ensure that the chosen grid and domain size are sufficient, we
performed the following numerical tests. Firstly, we examined the effect
of the computational domain on the velocity of the merged droplet
by performing an additional simulation on a larger domain 𝛺2 =
[0, 15] × [0, 15] × [0, 9]; the results obtained on 𝛺1 match those obtained
on the larger domain 𝛺2, as shown in Fig. 2. We also tested the grid
dependency of the results by comparing the averaged velocity of the
merged viscoelastic droplet for four different resolutions corresponding
to different values of the Cahn number. For this test, the following
values of the dimensionless numbers introduced above were used:

𝑂ℎ = 0.0076, 𝑊 𝑖 = 10, 𝛽 = 0.1, 𝑘𝜇 = 0.017, 𝑘𝜌 = 0.00119.

Fig. 3 shows that the averaged velocity of the merged drop with 𝐶𝑛 =
0.025 is almost the same as that obtained with the finer grid 𝐶𝑛 =
0.02. Higher values of 𝐶𝑛 displays non-negligible differences when the
simulation time exceeds 2. Thus, we choose 𝐶𝑛 = 0.025, corresponding
to a grid with 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 760 × 760 × 608 grid points. This
satisfactory convergence is achieved adopting the scaling between the
Peclet number and Cn number suggested by [38,39].
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Fig. 4. The coalescence and jumping of two Newtonian droplets on a superhydrophobic
surface at 𝑂ℎ = 0.0076: (a) Numerical results from present work (𝑦𝑧 view) (b)
Experimental data of Yan et al. [18].

4. Results

For the results presented here, the density ratio and viscosity ratio
are kept constant ro 𝑘𝜌 =

1
839 and 𝑘𝜇 = 1

58.8 ., following the values from
the experiments in Yan et al. [18].

4.1. Newtonian droplets — comparison with experiments

The solver has been validated against several Newtonian and vis-
coelastic two-phase flow benchmarks in 2D and 3D [26]. Here, we
compare the spontaneous coalescence and jumping motion of a New-
tonian drop on a superhydrophobic surface with the experimental data
of Yan et al. [18]. We choose the same physical parameters as in the
experiment, see Table 1. The influence of the solid–liquid adhesion
on the self-propelled jumping is negligible when the contact angle
hysteresis (𝛥𝜃𝑎𝑝𝑝) is less than 10◦ [17,41], so we ignore the contact
angle hysteresis and impose a static contact angle 𝜃𝑠 = 180◦ on the
bottom wall. Fig. 4 presents the experimental data [18] for the coa-
lescence of two Newtonian drops on a superhydrophobic surface and
the corresponding numerical results; the visualization shows that the
numerical simulation is able to capture the coalescence and jumping
process accurately in time.

The jumping velocity of the merged water (Newtonian) drop on a
superhydrophobic surface is constant in the capillary-inertial region
(i.e., 𝑂ℎ ≲ 0.1); [1] reported 𝑣𝑗 ≈ 0.2 for the water drop at 19 ◦C
on a textured superhydrophobic surface. Later, [18] reduced the level
of undesired external disturbances and measured a velocity 𝑣𝑗 ≈ 0.26
for self-propelled jumping of water drops upon coalescence on a su-
perhydrophobic surface. Fig. 5(a) shows the averaged velocity of the
merged droplet in our simulation. The jumping velocity is measured
from the time the bottom of the merged drop leaves the surface. Liu
et al. [6] suggested that a sensible time for extracting the jumping
velocity is the first pseudo-equilibrium, which corresponds to the time
when the axial lengths of the merged droplet in 𝑥 and 𝑦-directions
become equal. These axial lengths are measured with respect to an
axis attached to the centre of mass of the merged drop, and density
ratio in their numerical simulation was 𝑘𝜌 = 0.02. Following this
criterion, the jumping velocity of the Newtonian drop at 𝑂ℎ = 0.0076
is 𝑣𝑗 ≈ 0.21 in our simulations. It should be noted that the criterion
of Liu et al. [6] may work less well at our high density ratios, since
the merged droplet’s average velocity decreases very rapidly after its
4

maximum, and this may lead us to underestimate the jumping velocity.
The dimensionless time corresponding to the first pseudo-equilibrium
is 𝑡 ≈ 3.32 (dimensional time 𝑡∗ ≈ 1.92 ms) with the droplet leaving the
surface at 𝑡 ≈ 2.71 (𝑡∗ ≈ 1.57 ms) in both simulation and experiment. The
averaged velocity at 𝑡 = 2.71 is 𝑣 ≈ 0.23, and the maximum averaged
velocity is 𝑣𝑚𝑎𝑥 ≈ 0.26, see Fig. 5(a).

Fig. 5(b) presents the time-evolution of the total and surface energy
of the merging and jumping droplet. The total energy of the droplet
decreases over time due to the viscous dissipation, and this decrease is
larger in the merging process and prior to jumping, because there are
highly localized velocity gradients around the liquid bridge during its
impingement on the substrate. Fig. 5(c) depicts the total and transla-
tional kinetic energy of the merged droplet, confirming that a small
fraction of the released surface energy is converted into transitional
kinetic associated to the jumping motion.

4.2. Viscoelastic droplets — elasticity effect

Most of the existing studies are restricted to experiments with
water droplets and numerical simulation of Newtonian drops; [18]
newly investigated the effect of the liquid internal hydrodynamics by
conducting experiment for the self-propelled jumping upon coalescence
on a superhydrophobic surface with ethanol–water and ethylene-glycol
solutions. Their experiment shows that the properties of the droplet
affect the coalescence and jumping process significantly. A very recent
experimental study, however, addressed the effect of the drops’ elastic-
ity on the coalescence process [25], and their findings will be referred
to later in this section. In the following, we investigate numerically how
the droplet elasticity (Weissenberg number) influences the jumping
process for different values of the Ohnesorge number. One way to vary
the Ohnesorge number in experiments is to keep the physical properties
constant and vary the droplet radius, and we adopt this approach in our
simulation for the Newtonian drops. However, we change the polymeric
relaxation time 𝜆𝐻 in the simulation in addition to droplet radius
for the viscoelastic droplets in order to keep the Weissenberg number
constant, since it depends on the droplet radius. It should be noted that
other parameters change with the droplet radius; the parameters for
each case are summarized in Appendix.

4.2.1. Small ohnesorge numbers
To isolate the effect of the droplet elasticity on the coalescence and

jumping on a superhydrophobic surface in the inertial-capillary region,
𝑂ℎ ≲ 0.1, we set 𝛼 = 0 in the following simulations. This choice implies
that shear-thinning is eliminated, and the Giesekus model reduces to
the Oldroyd-B model. The average velocities of the merged Newtonian
and viscoelastic droplets are compared at two Ohnesorge numbers,
𝑂ℎ = 0.0076 and 𝑂ℎ = 0.0373. For Newtonian droplets, these values
represent the capillary-inertial regime. The two dimensionless numbers
defining the Oldroyd-B model are kept constant, 𝑊 𝑖 = 10 and 𝛽 = 0.1,
see Appendix.

Fig. 6(a) shows the time evolution of the average velocity of the
merged droplet for the Newtonian and viscoelastic cases, for both Ohne-
sorge numbers. The first observation is that both droplets jump from the
surface at these low Ohnesorge numbers. Let us now consider the blue
lines, corresponding to the smallest Ohnesorge number: Newtonian
(solid line) and viscoelastic (dashed line). We observe that the elasticity
of the drop has a negligible effect on the average velocity prior to and
during jumping. However, there is a small qualitative difference after
jumping, where the averaged velocity remains approximately constant
for the viscoelastic droplet, while the velocity of the Newtonian droplet
decreases in time. For the larger Ohnesorge number (green lines), we
observe that the droplet elasticity increases the maximum averaged
velocity. The total energy is dissipated more rapidly in the Newtonian
droplet after departure, while there is less dissipation in the merged
viscoelastic droplet, see Fig. 6(b). The droplet kinetic energy is pre-
sented in Fig. 6(c): the viscoelastic droplet has more kinetic energy so
that it undergoes larger shape oscillations than the Newtonian droplet.
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Fig. 5. Time-dependent quantities of the Newtonian merged drop on a superhydrophobic surface at 𝑂ℎ = 0.0076: (a) The average velocity, (b) Total and surface energies of the

merged drop (c) Kinetic and translational kinetic energies of the merged drop.
Fig. 6. Quantities of the merged Newtonian and Oldroyd-B drops at 𝑊 𝑖 = 10 and 𝛽 = 0.1. 𝑁 and V refer to Newtonian and Oldroyd-B drops respectively. (a) The averaged velocity

(b) Total and surface energies of the merged drop at 𝑂ℎ = 0.0076 (c) Kinetic and transitional kinetic energies of the merged drop at 𝑂ℎ = 0.0076.
The oscillations of the viscoelastic droplet are due to its elasticity and
independent of the surface tension, see [42]. The viscoelastic droplet
oscillates even at the large Ohnesorge numbers corresponding to a
highly viscous drop [42]. An extensional flow occurs when the two
viscoelastic drops are coalescing, so polymer chains stretch and store
elastic energy during the coalescence process, see Fig. 6(c).
5

Summarizing, the average and jumping velocity are not consider-
ably affected by the elasticity of the drops in the inertial-capillary
regime. This result is in line with the experiments of Dekker et al.
[25], where elasticity did not considerably influence the coalescence
process in the inertial-capillary regime. However, quantitatively we
found that the oscillations are promoted by elasticity, and that the
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Fig. 7. Quantities of the merged Newtonian and Oldroyd-B drops at 𝑊 𝑖 = 10 and 𝛽 = 0.1. 𝑁 and V refer to Newtonian and Oldroyd-B drops respectively. (a) The averaged velocity
(b) Total and surface energies of the merged drop at 𝑂ℎ = 0.118 (c) Kinetic and transitional kinetic energies of the merged drop at 𝑂ℎ = 0.118.
Fig. 8. The coalescence and jumping of Newtonian and Oldroyd-B drops on a superhydrophobic surface at 𝑂ℎ = 0.118, 𝑊 𝑖 = 10 and 𝛽 = 0.1 (a) Newtonian drops (b) Oldroyd-B
drops. The trace of the dimensionless polymeric stresses are visualized on the surface of the polymeric drop.
average velocity decays less rapidly after the droplet departure from
the superhydrophobic surface.

4.2.2. Large ohnesorge numbers
For Newtonian drops, viscous forces become the dominant at larger

Ohnesorge numbers (𝑂ℎ ≳ 0.1), known as the viscous regime: both
jumping and averaged velocities decrease rapidly with increasing Ohne-
sorge number due to the strong viscous dissipation. Let us now examine
whether and how this behaviour changes for viscoelastic droplets at
𝑂ℎ ≳ 0.1.

The results from the simulations are reported in Fig. 7. First, we
note that the merged viscoelastic droplet gains much larger average
velocity than the Newtonian one during the coalescence process, as
6

seen by comparing the solid (Newtonian) and dashed (viscoelastic)
lines of the same colour in panel (a). Panel (b) of the same figure shows
that the released energy is soon damped at 𝑂ℎ = 0.118 (𝑡∗ ≈ 4), and the
total energy (blue solid line) reaches its equilibrium value 𝐸∗

𝑇 = 2
2
3 4𝜋

consisting of surface energy only (green solid line). The Newtonian drop
resulting from the coalescence reaches a spherical shape corresponding
to its equilibrium, and stays on the surface without jumping, as shown
in Fig. 8.

Let us now consider the polymeric drop (dashed blue and green
lines). This merged polymeric drop has energy available to oscillate
and move upwards. The kinetic energies of the Newtonian (solid) and
Oldroyd-B droplets (dashed) are depicted in Fig. 7(c), and both total
kinetic and translational kinetic energies of the polymeric drop are
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larger than for the Newtonian drop. The Oldroyd-B drop also has the
additional elastic energy due to the presence of the polymer molecules,
see the black dashed line. These are stretched during the coalescence
and prior to jumping, so that extra elastic energy is stored and available
for the polymeric drop.

A visualization of the coalescence and jumping of both droplets
at 𝑂ℎ = 0.118 is provided in Fig. 8. The polymeric drops merge
aster than the Newtonian drops, and the bridge formed due to the
oalescence reaches the substrate sooner. The interface (given by 𝜙 = 0)
f the Oldroyd-B drops is coloured using the trace of the conformation
ensor which indicates the intensity of polymer stretching. As reported
n experiments of [25], the polymeric stresses are seen to be very
oncentrated around the merging interface and the capillary bridge. At
he present flow regime, however, we observe significant changes due
o elasticity in both the liquid bridge formation and in the merging and
oalescence processes. The merged polymeric drop undergoes a large
eformation in all three directions and jumps out of the surface; this
scillatory motion and jumping is characteristic of the inertial-capillary
egion and is maintained at high 𝑂ℎ when elasticity is present. Indeed,

the Newtonian drop goes rapidly towards its equilibrium condition
without noticeable oscillations, and remains on the surface, as expected
in the viscous region.

To gain a better understanding on the effect of elasticity on the
self-propelled jumping, the flow field is visualized on the central 𝑋𝑍
and 𝑌 𝑍 planes inside the merging drops, see Fig. 9(a). As concern the
𝑌 𝑍 plane, shown in the top row, we depict the interface, identified by
the 𝜙 = 0 value of the order parameter (red contour), velocity field
(arrows), and trace of conformation tensor (colourmap) for merging
viscoelastic drop at three times, together with the interface of merging
Newtonian drop (white contour). This illustrates how the shape of
Newtonian and viscoelastic droplets differ, and confirms the localiza-
tion of polymeric stresses at the merging cross-section. Moreover, the
bottom row of the same figure displays contours of the trace of the
conformation tensor for the viscoelastic drops on the 𝑋𝑍 plane at
the same dimensionless times as in Fig. 9(b). The data indicate that
polymers are most elongated prior to jumping, near the bottom wall.

A possible physical explanation for the polymer effect can be as
follows. When the two initially static drops start to merge, the liquid
moves driven by the capillary pressure towards the centre of the
expanding bridge. Then, due to the conservation of mass, the liquid
is forced to move in the transverse 𝑋𝑍 plane, see the velocity field
of the merging viscoelastic drops in Fig. 9(b) at 𝑡 = 0.24. This flow
causes the polymer molecules to stretch in the 𝑋𝑍 plane and produce
extra elastic stresses, which push the liquid bridge connecting the two
polymeric drops to move faster. When the liquid bridge interacts with
the substrate at 𝑡 ≈ 1, the liquid is induced to move upwards due to the
impermeability of the surface. This upward flow converges towards the
𝑋𝑍 plane and causes the polymers to stretch mainly in the vicinity of
the substrate, as shown by the trace of conformation tensor at 𝑡 = 1.96
in Fig. 9(b). The stretched polymers exert extra elastic stresses on the
interface near the substrate, so the merged polymeric drop jumps out
of the surface. The newly-formed larger drop leaves the surface at
𝑡 ≳ 3, when the trace of the conformation tensor decreases. Later, the
polymers are mainly stretched at the bottom of the merged drop, and
two small vortices appear in that region so that the polymer molecules
remain stretched. Thus, these extra polymer stresses at the bottom
of the drop push the drop to move upward. The polymers are also
significantly stretched in the 𝑋𝑍 plane around the interface, and these
extra polymer stresses push the interface to oscillate in the 𝑥-direction,
see Fig. 9(b).

These results reveal that the elasticity of the drop plays an impor-
tant role at large Ohnesorge numbers in the coalescence and jump-
ing process of two initially static equal-sized polymer drops on a
superhydrophobic surface; elasticity also affects the merged droplet
motion after its departure as demonstrated by the oscillatory motion
7

in highly-viscous yet viscoelastic drops. v
4.3. Viscoelastic droplets — effects of polymeric viscosity ratio and shear-
thinning

The effect of the shear thinning on the self-propelled jumping
of two equal-sized polymeric drops has been studied by performing
simulations at 𝑂ℎ = 0.118, 𝐷𝑒 = 10, 𝛽 = 0.1 and varying 𝛼; the results
show that the effect of shear thinning is minor and negligible for the
self-propelled jumping of two equal-sized polymeric drops even at large
Ohnesorge numbers, see Fig. 10. This can be explained by the fact that
the velocity gradients are mainly localized around the liquid bridge so
that the effect of shear-thinning is negligible.

In addition, we have investigated the effect of the polymeric viscos-
ity ratio 𝛽 on the self-propelled jumping at 𝑂ℎ = 0.118 and 𝑊 𝑖 = 10.
Fig. 11 depicts the variation of the averaged velocity of the droplet
for 𝛽 = 0.1 − 0.8. The Newtonian droplet velocity is also shown for
comparison. Two regimes can be distinguished: as long as 𝛽 ≲ 0.5,
we note a minor influence on the averaged velocity; for 𝛽 ≳ 0.6,
conversely, the velocity rapidly converges towards the Newtonian one,
so that elasticity effects become negligible. This can be explained by
considering the retardation time, i.e. the relative time it takes for
polymer molecules to be stretched. The retardation time can be related
to the polymeric viscosity ratio by 𝜆𝑟 = 𝛽𝜆𝐻 , while the flow time scale
time is constant in our simulations since the droplet radius 𝑟0, velocity
scale 𝑢𝑟𝑒𝑓 =

√

𝜎
𝜌1𝑟0

, and Weissenberg number 𝑊 𝑖 are kept constant.
Since the retardation time is increasing by increasing 𝛽, the polymers do
not have time to stretch and store elastic energy during the coalescence
and jumping when 𝛽 ≳ 0.6. Thus, the polymeric drops behave like
Newtonian drops at large polymeric viscosity ratios.

Finally, the average velocities of two merged Newtonian drops at
two Ohnesorge numbers, 𝑂ℎ = 0.1668 and 𝑂ℎ = 0.01668, and an
Oldroyd-B drop with dimensionless numbers, 𝑂ℎ = 0.1668 and 𝑊 𝑖 = 10
are compared to investigate the effect of polymers on top of the solvent,
see Fig. 12. In the case of 𝑂ℎ = 0.01668, all the parameters are the
same as the Newtonian case with 𝑂ℎ = 0.1668 except that the viscosity
of the droplets has been chosen to be ten times smaller, the same as
solvent viscosity of viscoelastic drops. The average velocity of merging
Newtonian droplets at 𝑂ℎ = 0.01668 and viscoelastic droplets at 𝑂ℎ =
0.1668 are approximately the same for 𝑡 ≲ 1.5 since the polymer stresses
are still building up and are not yet able to store visible amounts of
elastic energy. Two curves deviate from each other for 𝑡 ≳ 1.5, and
the average velocity of the merging viscoelastic drops increases due to
the presence of stretched polymer molecules. As expected, the average
velocity of merging Newtonian drops at 𝑂ℎ = 0.1668 decays very
rapidly due to viscous dissipation.

5. Conclusions and outlook

In the present study, three-dimensional direct numerical simulations
have been performed to study the self-propelled jumping of two equal-
sized polymeric drops on a superhydrophobic surface with contact
angle of 180◦. The results demonstrate that the viscoelastic properties of
the droplets have a significant impact on the coalescence and jumping.

At small Ohnesorge numbers (inertial-capillary region), the elastic-
ity effect is weak before the jumping; however, the averaged velocity of
the coalesced drop does not decay as rapidly as for a Newtonian liquid.
Drop shape oscillations are promoted by the presence of the polymers.

At large Ohnesorge numbers (𝑂ℎ ≳ 0.1) however, profound differ-
nces between polymeric and Newtonian drops are observed during the
oalescence and jumping process. The polymeric drops merge faster
han the Newtonian drops, and the merged drop jumps out of the
urface in contrast to their Newtonian counterparts, which remains on
he substrate due to the large viscous dissipation. Our investigation
eveals that the polymers are highly stretched at the cross-section of
he merging droplets during coalescence, and these stretched chains
xert extra elastic stresses on the interface of the merging drops in the

icinity of the wall, hence helping the polymeric drop to jump from the
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Fig. 9. Time evolution of viscoelastic drops coalescence on 𝑋𝑍 and 𝑌 𝑍 planes on a superhydrophobic surface at 𝑂ℎ = 0.118, 𝑊 𝑖 = 10 and 𝛽 = 0.1. The interface 𝜙 = 0 of the
merging Newtonian drops are depicted at 𝑂ℎ = 0.118 on 𝑌 𝑍 plane for the comparison : (a) 𝑋𝑍 and 𝑌 𝑍 planes used for the visualization of the flow field (b) The interface of
both Newtonian and viscoelastic drops on 𝑌 𝑍 plane at three different times 𝑡 along with the velocity field and trace of conformation tensor belong to the viscoelastic drops. The
trace of conformation tensor is visualized on 𝑋𝑍 for the viscoelastic drops.
Fig. 10. The effect of drop shear-thinning 𝛼 on the averaged velocity at 𝑂ℎ = 0.118,
𝑊 𝑖 = 10, and 𝛽 = 0.1.

surface. These results are obtained with a typical value in the literature
for the polymeric viscosity ratio, i.e. 𝛽 = 0.1; here, we also observe
that the merged viscoelastic drop behaves like a Newtonian drop when
𝛽 ≳ 0.7. The larger 𝛽 corresponds to larger retardation times in our
simulation, so that the polymer molecules do not have enough time
to stretch. Finally, the shear-thinning effect is found to be negligible
in the coalescence and jumping process of two equal-sized drops on a
superhydrophobic surface.

Our results indicate that the elasticity of the droplet can change
the viscous cutoff radius (for example 30 μm for water) for the self-
propelled jumping of drops on superhydrophobic surfaces. Thus, it is
8

Fig. 11. The effect of polymeric viscosity ratio 𝛽 on the averaged velocity at 𝑂ℎ = 0.118
and 𝑊 𝑖 = 10.

expected that polymeric drops jump from a superhydrophobic surface
upon their coalescence with radii below the viscous cutoff radius
for Newtonian drops at the same Ohnesorge number. Moreover, the
merged polymeric drop oscillatory motion is promoted by the elasticity
of the drop in both inertial-capillary and viscous–capillary regimes.

In this study, we have neglected the contact angle hysteresis, as-
suming it to be smaller than 10◦; however, superhydrophobic surfaces
may have large contact angle hysteresis [43–45], which might play an
important role in the case of polymeric drops. The effect of the droplet
adhesion with wall also has been neglected in our study. Studying the
effect of the contact angle hysteresis and adhesion between droplet and
superhydrophobic surfaces are of the possible extensions of this work.
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Fig. 12. The effect of polymer on top of the solvent at 𝑊 𝑖 = 10 and 𝛽 = 0.1.

Table A.1
Dimensionless numbers used in the simulations at small Ohnesorge numbers, see
Section 4.2.1.
𝐶𝑎𝑠𝑒 Droplets 𝑂ℎ 𝑊 𝑖 𝛽 𝛼 𝜃𝑏𝑠 𝑘𝜌 𝑘𝜇

1 Viscoelastic 0.0076 10 0.1 0 180◦ 1
839

1
58.8

2 Newtonian 0.0076 0 1 0 180◦ 1
839

1
58.8

3 Viscoelastic 0.0373 10 0.1 0 180◦ 1
839

1
58.8

4 Newtonian 0.0373 0 1 0 180◦ 1
839

1
58.8

Table A.2
Dimensionless numbers used in the simulations at large Ohnesorge numbers, see
Section 4.2.2.
𝐶𝑎𝑠𝑒 Droplets 𝑂ℎ 𝑊 𝑖 𝛽 𝛼 𝜃𝑏𝑠 𝑘𝜌 𝑘𝜇

1 Viscoelastic 0.118 10 0.1 0 180◦ 1
839

1
58.8

2 Newtonian 0.118 0 1 0 180◦ 1
839

1
58.8

3 Viscoelastic 0.1668 10 0.1 0 180◦ 1
839

1
58.8

4 Newtonian 0.1668 0 1 0 180◦ 1
839

1
58.8

5 Viscoelastic 0.3 10 0.1 0 180◦ 1
839

1
58.8

6 Newtonian 0.3 0 1 0 180◦ 1
839

1
58.8
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Appendix

See Tables A.1–A.5
In this Appendix, we report the values of the non-dimensional

numbers used in the simulations.
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Table A.3
Dimensionless numbers used in the simulations focusing on the role of shear thinning,
see Section 4.3.
𝐶𝑎𝑠𝑒 Droplets 𝑂ℎ 𝑊 𝑖 𝛽 𝛼 𝜃𝑏𝑠 𝑘𝜌 𝑘𝜇

1 Viscoelastic 0.118 10 0.1 0 180◦ 1
839

1
58.8

2 Viscoelastic 0.118 10 0.1 0.2 180◦ 1
839

1
58.8

3 Viscoelastic 0.118 10 0.1 0.5 180◦ 1
839

1
58.8

Table A.4
Dimensionless numbers used in the simulations focusing on the role of the polymer
viscosity ratio, see Section 4.3.
𝐶𝑎𝑠𝑒 Droplets 𝑂ℎ 𝑊 𝑖 𝛽 𝛼 𝜃𝑏𝑠 𝑘𝜌 𝑘𝜇

1 Newtonian 0.118 0 1 0 180◦ 1
839

1
58.8

2 Viscoelastic 0.118 10 0.1 0 180◦ 1
839

1
58.8

3 Viscoelastic 0.118 10 0.5 0 180◦ 1
839

1
58.8

4 Viscoelastic 0.118 10 0.6 0 180◦ 1
839

1
58.8

5 Viscoelastic 0.118 10 0.7 0 180◦ 1
839

1
58.8

6 Viscoelastic 0.118 10 0.8 0 180◦ 1
839

1
58.8

Table A.5
Dimensionless numbers used in the simulations focusing on the effect of polymer on
top of the solvent, see Section 4.3.
𝐶𝑎𝑠𝑒 Droplets 𝑂ℎ 𝑊 𝑖 𝛽 𝛼 𝜃𝑏𝑠 𝑘𝜌 𝑘𝜇

1 Newtonian 0.1668 0 1 0 180◦ 1
839

1
58.8

2 Newtonian 0.01668 0 1 0 180◦ 1
839

1
5.88

3 Viscoelastic 0.1668 10 0.1 0 180◦ 1
839

1
58.8
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