
12 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hardware architecture for CRYSTALS-Kyber post-quantum cryptographic SHA-3 primitives / Dolmeta, Alessandra;
Martina, Maurizio; Masera, Guido. - ELETTRONICO. - (2023), pp. 209-212. (Intervento presentato al convegno 2023
18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Valencia, Spain nel 18-21
June 2023) [10.1109/PRIME58259.2023.10161780].

Original

Hardware architecture for CRYSTALS-Kyber post-quantum cryptographic SHA-3 primitives

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PRIME58259.2023.10161780

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983965 since: 2023-11-24T09:02:07Z

IEEE

Hardware architecture for CRYSTALS-Kyber
post-quantum cryptographic SHA-3 primitives

Alessandra Dolmeta†∗,Graduate Student Member, IEEE, Maurizio Martina† and Guido Masera†

Abstract—Once powerful enough quantum computers become
feasible, many of the regularly used cryptosystems will be
completely useless. Thus, designing quantum-safe cryptosystems
to replace current algorithms is more crucial than ever. This
paper presents the hardware implementation of one of the
fundamental building blocks of all post-quantum cryptographic
(PQC) algorithms, which are PQC-primitives, having NIST-PQC-
finalists CRYSTALS-Kyber algorithm as a target. This work
analyzes Keccak sponge function and the four SHA-3 algorithms
used in CRYSTALS-Kyber, realizing the correct processing and
handling of input information and integrating the four standards
into one implementation for Kyber-III level of security. The
synthesis results are provided for 65-nm technology, while Artix-
7 XC7A75-3 is chosen as the implementation platform. The
efficiency and the performance of the proposed architecture are
compared in terms of area, frequency, clock cycles, and efficiency
with the state-of-the-art.

Index Terms—Hardware Design, FPGA, ASIC, PQC,
CRYSTALS-Kyber, Cryptography

I. INTRODUCTION

In the modern era, cryptography is essential for online
communication security. Cryptographic algorithms are based
on hard mathematical and computationally infeasible prob-
lems. However, quantum computer development represents
a significant threat to current cryptosystems. This is why
researchers and scientists are working on building and ap-
plying quantum-resistant cryptographic algorithms, exploiting
problems that are invulnerable to quantum computer attacks.
Unlike quantum cryptography, which relies on quantum com-
puting and quantum communication environments, PQC-based
cryptosystems run on a classical computer, providing sufficient
security. In 2012, the National Institute of Standards and
Technology (NIST) launched a public evaluation process to
standardize quantum-resistant public key algorithms. After
three rounds of solicitations, lattice-based cryptographic algo-
rithms result to be more interesting than others. In fact, among
the four Key Encapsulation Mechanism (KEM) finalists, in
2022 CRYSTALS-Kyber has been the first algorithm to be
selected for standardization [1].
Contributions: This paper deals with the hardware design of
dedicated architectures implementing CRYSTALS-Kyber-768

†Department of Electronics and Telecommunications, Politecnico di Torino,
Torino, Italy

∗ corresponding author e-mail: alessandra.dolmeta@polito.it

SHA3 primitives. Two main contributions are provided: (I). we
present the ASIC synthesis results derived for a 65 nm CMOS
technology, and (II) we compare the FPGA implementation
against available literature results in terms of complexity,
latency, and efficiency. The rest of the paper is organized
as follows: Sec II illustrates CRYSTALS-Kyber algorithms
and introduces the theoretical basis of SHA-3 (Sec II-A).
Sec III reports the hardware design process and Sec IV
compares results with other implementations and Sec V gives
suggestions for future improvement and work. 1

II. THEORETICAL BASIS

CRYSTALS-Kyber is a lattice-based cryptosystem based
on the hardness of solving the Module Learning-with-Error
(Module-LWE) problem. It implements a KEM, a probabilistic
algorithm that produces a random symmetric key and an
encryption of that key. Traditional protocols encrypt a message
using the public key of the sender, which is then decrypted by
the receiver using the private key. However, they have proven
to be not very resistant to quantum attacks. KEM adds a shared
secret to the process, encapsulating and decapsulating it using
the public and the secret keys [5].
In principle, KEM is a triplet of algorithms:

• a key generation algorithm, which generates public and
secret keys (pk, sk);

• an encapsulation algorithm, that takes as input pk and
returns an output key w and an encapsulated key ck,
obtained thought the encapsulation of pk;

• a decapsulation algorithm, that takes in ck and sk, and
recovers the key w.

Description and parameters: CRYSTALS-Kyber includes
three parameter sets, corresponding to three security levels of
NIST: Kyber512 (I-level), Kyber768 (III-level) and Kyber1024
(V-level). Independently of which level is considered, Kyber
algorithm works on a polynomial ring Rq = Zq[X]/(Xn+1),
fixed dimension: q is the modulo parameter (q=3329) and n is
the degree of the polynomial (n=256). The difference between
each security level is given by the number of polynomial
vectors required: their size is specified by k parameter. [3]

Kyber C-code Analysis: To understand which are the most
costly parts of the algorithm, the C-code provided for CRYS-
TALS has been analyzed [14]. Since key dimensions increase

1This work is supported by TRISTAN project, nr.101095947, which
has received founding by the Key Digital Technologies Joint Undertaking
and its members. This work was partially supported by project SERICS
(PE00000014).979-8-3503-0320-9/23/$31.00 ©2023 IEEE

as k increases, it is surely predictable that the higher the level
of security, the higher the number of calls that are performed
for the different main functions.
Nevertheless, we analyze the percentages of the total execution
time of the program used by the most relevant functions. From
the profiling results, as Fig. 1 proves, Keccak permutation
ends up being one of the most expensive functions in terms
of execution time, despite the fact it is not the most frequently
called one. For instance, Kyber makes use of an extendable
output function (XOF), two hash functions (H and G), a
pseudo-random function (PRF), and a key-derivation function
(KDF).All these primitives are instantiated with functions
from the Federal Information Processing Standard (FIPS-202
standard), as specified in Table I.

Fig. 1. CRYSTALS-Kyber profiling

Being one of the most time-consuming functions of the
algorithm, together with NTT and INV-NTT, a specific and
efficient implementation of PQC primitives can be crucial
for a PQC algorithm. This is why a dedicated hardware of
CRYSTALS-Kyber SHA3 primitives has been implemented,
including a control part managing all the different functions.

A. Overview of SHA-3

The Secure Hash Algorithms (SHA) are a family of
cryptographic hash functions published by the NIST as a U.S.
FIPS. SHA-3 has been the latest standard released by NIST
in 2015, which uses the so-called sponge function.
A sponge function [11] is a framework for specifying functions
on binary data with arbitrary output length (d). The construc-
tion employs the following three components: a function on
fixed-length (b) strings (f), a parameter called the rate (r), and
a padding rule (pad), as shown in Fig. 2. The similarity to a
sponge is that an arbitrary number of input bits are “absorbed”
into the state of the function, and then an arbitrary number of
output bits are “squeezed” out of its state. Each time r-bits are
processed, in both phases, the execution is interleaved with
applications of the function f [10].

SHA-3 is a family of sponge functions with members
Keccak[r,c] [6], characterized by bit-rate r and capacity
c, as shown in Table I. Their sum determines the width (b) of
the Keccak-f permutation, which is 1600-bit.
For this application, the input message is padded such that the
resulting message M is byte aligned, i.e. len(M) = 8m. When
m has a lower length with respect to r, padding is added to

pad

0

0

r

c

f f f f

Truncd

absorbing squeezing

m

Z

Fig. 2. Sponge function block diagram

the first and only stream present (single-block message). On
the contrary, in the case of a multi-block message, all the
m/r streams before the last one are simply padded with zeros.
Independently of that, for each CRYSTALS-Kyber function in
which a primitive is called, the final padded message is:

• for hash function: m || 0x06 || 0x00 ... || 0x80
• for XOF function: m || 0x1F || 0x00 ... || 0x80

The notation 0x00... indicates the string that consists of q− 2
”zero” bytes, where : q = r

8 −
(
m mod r

8

)
TABLE I

FIPS 202 STANDARDS’ PARAMETERS

Kyber primitives SHA-3 primitives r c Output length
H SHA3-256 1088 512 256
G SHA3-512 576 1024 512
XOF SHAKE128 1344 256 unlimited
PRF, KDF SHAKE256 1088 512 unlimited

The 1600-bit state of Keccak-f consists of 5x5 matrix of
64-bit words. The permutation width determines the number
of rounds, nr, which is in this case 24. Each compression
round consists of five different steps. These steps are denoted
as θ, ρ, π, χ and ι. [6]. Fig. 3 shows a block diagram of the
hardware implementation described in Subsec. III-A.

θ ρ π χ ι

Simplified Round
Constant Generator

1

01600

mux02_control

N ROUND

reg

Fig. 3. Keccak Core

III. HARDWARE IMPLEMENTATION

In this section, we present the architecture and the main
characteristics of the implemented SHA3 module. It is an
hardware accelerator designed for the implementation of
hash and XOF functions compliant with SHA3-algorithm and
dedicated to CRYSTALS-Kyber application. Its aim is to
achieve the best trade-off between throughput and complexity.
It has been optimized for a single user at a time (multiple
requests are not possible) and it has been designed with a top-
down approach. The architecture was initially modeled using

VHDL language and has been designed considering paral-
lelisms required for the III level of security of CRYSTALS-
Kyber. Moreover, it has been simulated and verified for
accuracy and functionality with valid input samples provided
in [8] using ModelSim and Python code. Then, final testing
procedures have been performed considering random inputs.
Further details about the implementation can be found at [9].

A. SHA3 core

It can operate on both one-block and multi-block messages.
A multi-block message is an input whose length is higher with
respect to the maximum bit rate that can be processed by the
specific primitive (Table I).
The main blocks of the architecture are shown in Fig 4.

KECCAK CORE

CONTROL
UNIT

VSX
module

1

0
Zero-State

t
r
u
n
c

regA

regB

INPUT MESSAGE

READY

SHA3 MODE

round

output
management

OP
MODE

counter

= "24"

last block

OUT
output
divider

=

Fig. 4. SHA3 core

• Zero-state: it is a register full of zeros needed for the first
iteration. Then, for multi-block messages, the feedback
state is selected through the multiplexer instead.

• Version Selection and XORing (VSX): it is the module
in charge of constructing the proper state per primitive.
It is made up of 1344-XORs and four concatenation
components, one per primitive. [2]

• Keccak core: this is the transformation round. [6] One
register has been added before ρ round, to prevent the
VSX logic to increase the critical path, as shown in Fig. 3.
Keccak core iterations are handled by the counter output,
which also selects the proper RC constant for ι-iteration.
As in [9], the size of the round constant generator is
reduced from 64-bit to one-byte size, storing only the
non-zero bits in each of the round constant values. This
also simplifies the computation in ι, where the number
of logical XOR is reduced from 64 to 8.

• Counter and comparators: the counter is used both to
keep track of Keccak permutation cycles and to scan the
clock cycles needed for buffering the result. Therefore,
its output is connected to two different comparators.

• Truncation unit: it is used to re-organize properly the
hash value exiting from Keccak core. By analyzing the
Kyber768 primitives’ outputs, we found that some area
can be saved sending to regB only 1024 out of 1600.
Moreover, in order to save power, this last register is

enabled only at the end of all the permutations required
by the specific primitive, when the last stream has been
transformed by Keccak core.

• Output management and output divider units: they are
used to unpack the result into streams of 64 bits. A set
of multiplexers is then implemented to properly choose
among the different streams.

B. Control Unit

The control unit shown in Fig. 5 within the whole ar-
chitecture has been developed to synchronize the flow of
data in the architecture and data communication between
input and output. In addition to the SHA3 core described in
Subsec. III-A, there are:

• Acquisition Unit: it is the first unit, which aim is to
properly handle the data in input. Output buffer paral-
lelism will be 1344. It has been designed in order to
work concurrently with the other units. Therefore, for
multi-block messages, the latency of input processing
is completely absorbed. In fact, accordingly to SHA3
permutation algorithm, we can process only r-bits at a
time. When one stream has been collected, this is sent to
the following unit in order to be saved or processed.

• Stream Control Unit: it is used in order to store the
data until the core is ready to process a new message
again. Therefore, it is exploited only in the case of a
multi-block message. When a function requires only one
permutation cycle, then the unit will simply process the
data through some multiplexers. On the other hand, when
a function requires more than one permutation cycle, the
machine absorbs and saves incoming data streams from
the acquisition unit. Each time the SHA3-core finishes
a computation, the unit checks whether there are still
streams to be sent or not, and in case selects and sends
the correct one to the padding unit. In the case of
CRYSTALS-Kyber functions, there are no SHAKE128
primitives which need more than one cycle of absorption.
Therefore, we can assume the maximum parallelism of
this unit to be 1088, saving some area.

• Padding Unit: it implements the padding operations,
accordingly to Sec. II-A.

SHA3 Core
Padding Unit

Stream Control Unit

Acquisition Unit
INPUT

64

OUTPUT

64
1344

1600

STARTROUND

1344

Fig. 5. Top level architecture block diagram

Each main unit adopts the classical Finite State Machine
with Data path (FSMD) model. There is a controller, which is
in charge of organizing the operations in each clock cycle, and
the data-path, which includes functional blocks and registers.
Different ROMs are present, mainly addressed by primitives
control signals. Their aim is to handle data acquisition and
maintenance all over the architecture, and they have been
specifically designed for CRYSTALS-Kyber-768 application.

IV. RESULTS AND ANALYSIS

In this section, we report implementation results and com-
pare them with the ones present in the literature. First,
Synopsys Design Compiler has been exploited to perform
logic synthesis on 65-nm technology of both the SHA3
core and the control unit described in Sec III, obtaining a
frequency of 312.5MHz and an area of 340048 µm2. Then,
the proposed architecture has been implemented with Xilinx
Vivado 2022.1 on Xilinx Artix XC7A75-3 device, obtaining
the results reported in Tab II. The other implementations
examined are all parts of larger architectures designed for
the execution of the complete CRYSTALS-Kyber algorithm.
Thus, for a general overview, in Tab II we have distinguished
area results related to SHA3-core only from the ones related
instead to the whole SHA-3 architecture (respectively in and
out of the round brackets), and the total time and the area-time
products (defined as the product between the number of LUTs
of Keccak-core and the total time) of the shortest (256-bit) and
longest (9472-bit) input messages present (respectively left and
right side of the slash).

TABLE II
COMPARISON OF KECCAK-CORE HARDWARE ARCHITECTURE IN

CRYSTALS-KYBER IMPLEMENTATION

Parameter [7] [13] [4]
Device Artix-7 Virtex-6 Artix-7
Method HW HW HW/SW
LUTs 4405 359 5784
FFs 1629 107 1605
Slices 1825 91 1716
Frequency (MHz) 115 311 25
Total time (µs) 0.208 5.35 0.96
Area × Time(LUTs×µs) 916 1920 5552
Parameter [12] [15] Our Work
Device Artix-7 Artix-7 Artix-7
Method HW SW/HW HW
LUTs 4026 6322 9651 (6841)
FFs 1625 6993 8697 (4279)
Slices 1056 - 3413 (1873)
Frequency (MHz) 159 229 250
Total time (µs) - 0.48 0.16/1.94
Area × Time (LUTs×µs) - 3034 1094/13271

Our frequency achieves a 48.9% improvement compared to
the average value of the others implementations. It is lower
with respect to [13], but a lower amount of clock cycles are
needed in the execution. Thus, referring to the definition given
in Sub. II-A, when single-block messages are required, there
is a latency improvement (almost 19% less compared to the
best time get in [7]). On the other hand, when multi-block
messages are required, depending on the number of streams to
be managed, latency results are in line with the state-of-the-art.

However, as the other works do not specify the maximum input
length, the comparison could be not completely fair. The same
holds true for resource utilization results. Finally, as it can be
observed, our best result is slightly worse than [7] in terms
of area delay product (16%), but it achieves an improvement
in terms of latency of the 30%. No BRAMs are used in the
implementation since the Keccak state is stored using LUTs.

V. CONCLUSION

In this work, we present an efficient hardware architec-
ture of cryptographic primitives required by CRYSTALS-
Kyber. Our architecture has been implemented for Kyber-
768 cryptographic primitives but it can be easily extended
to the other levels of security, modifying properly memories
discussed in Subsec. III-B and by changing consequently some
components in the control unit. Our future work will focus on
the development of the other CRYSTALS-Kyber main blocks,
and their integration into a RISC-V environment, to be part
of the evolution, integration, and migration of cryptography
systems toward quantum-safe security protocols.

REFERENCES

[1] NIST. https://www.nist.gov/h. [Online; accessed 19-July-2022].
[2] George S. Athanasiou, George-Paris Makkas, and Georgios Theodoridis.

High throughput pipelined FPGA implementation of the new SHA-3
cryptographic hash algorithm. In 2014 6th International Symposium
on Communications, Control and Signal Processing (ISCCSP), pages
538–541, 2014.

[3] Roberto Maria Avanzi, Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Kyber algorithm specifications
and supporting documentation. 2017.

[4] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan.
Sapphire: A configurable crypto-processor for post-quantum lattice-
based protocols (extended version). Cryptology ePrint Archive, Paper
2019/1140, 2019. https://eprint.iacr.org/2019/1140.

[5] Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri.
NIST post-quantum cryptography- a hardware evaluation study. Cryp-
tology ePrint Archive, Report 2019/047, 2019. https://ia.cr/2019/047.

[6] G. Bertoni, J. Daemen, M. Peeters, G.V Assche, and R.Van Keer. Keccak
in VHDL. https://keccak.team/hardware.html.

[7] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-
Kermani. Instruction-set accelerated implementation of CRYSTALS-
Kyber. IEEE Transactions on Circuits and Systems I: Regular Papers,
68(11):4648–4659, 2021.

[8] NIST I.T.L. Computer Security Division. Example values - cryp-
tographic standards and guidelines. https://csrc.nist.gov/projects/
cryptographic-standards-and-guidelines/example-values. [Online; ac-
cessed 19-July-2022].

[9] Alessandra Dolmeta. Hardware architecture for CRYSTALS-Kyber
cryptographic primitives. Master’s thesis, Politecnico di Torino, 2022.

[10] Morris Dworkin. Sha-3 standard: Permutation-based hash and
extendable-output functions, 2015-08-04 2015.

[11] B Guido, D Joan, and P Michaël. Cryptographic sponge functions. 2011.
[12] Wenbo Guo, Shuguo Li, and Liang Kong. An efficient implementation

of KYBER. IEEE Transactions on Circuits and Systems II: Express
Briefs, 69(3):1562–1566, 2022.

[13] Bernhard Jungk and Marc Stöttinger. Hobbit — smaller but faster than a
dwarf: Revisiting lightweight SHA-3 FPGA implementations. In 2016
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–7, 2016.

[14] Peter Schwabe. PQ-CRYSTALS Kyber c-code. https://pq-crystals.org/
kyber/index.shtml, 2017.

[15] Deepraj Soni and Ramesh Karri. Efficient hardware implementation of
PQC primitives and PQC algorithms using high-level synthesis. In 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
296–301, 2021.

