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Abstract—In the last decade, the expansion of the Terrestrial
Service Volume (TSV) of Global Navigation Satellite Systems
(GNSS) toward Medium-Earth Orbits (MEO) is gaining momen-
tum. Low-Earth orbit (LEO) missions have investigated the qual-
ity of the GNSS observables, thus demonstrating its availability in
near-Earth space. A timely case study is investigated in this work,
where a CubeSat is expected to dock a LEO spacecraft while
accurately tracking its baseline vector from the object. The mis-
sion scenario constitutes a unique chance for the characterization
of differential GNSS measurements and the assessment of low-
complexity relative GNSS algorithms oriented to collaborative
navigation and Positioning, Navigation, and Timing autonomy
in space. The paper analyses the simulation results for GNSS-
based inter-spacecraft ranging (ISR) measurements leveraging
differential, GPS, and Galileo measurements exchanged between
the chaser and its mothership. Parametric results analyze the
usability of ISRs in rendezvous and docking manoeuvres at
LEO altitudes, by comparing their accuracy to pre-defined
mission requirements. Output accuracy and precision bounds
are eventually provided for the potential integration of ISR into
hybrid navigation algorithms.

Index Terms—Global Navigation Satellite Systems (GNSS),
Low Earth Orbit (LEO), Differential GNSS, Guidance Navigation
and Control

I. INTRODUCTION

Nowadays, a growing effort is paid to extend the use of
Global Navigation Satellite System (GNSS) to the Space
Service Volume (SSV) as a way to provide positioning and
timing services beyond the Terrestrial Service Volume (TSV)
[1]. TSV already includes low Medium-Earth Orbits (MEO)
and with this transient, modern GNSS have already proved
to be usable in near-Earth space where Low-Earth Orbit
(LEO) missions have contextually assessed the quality of
GNSS measurements [2]. Currently, an increasing number of
LEO missions successfully exploit GNSS to perform Orbit
Determination and Time Synchronization (ODTS), while mod-
ern Guidance, Navigation, and Control (GNC) solutions aim
at supporting increased autonomy within and beyond LEO
altitudes [3]–[5]. In this paper, we address the application of
GNSS-based ranging for automated spacecraft manoeuvres,
in particular focusing on Rendezvous and Docking (RVD)

The study was conducted under ESA contract no. 4000136625/21/NL/MG
in the GSTP framework supported by ASI. The authors wish to thank all
the members of the SROC team at Politecnico di Torino, Tyvak International
and Università di Padova who contributed to the development of the study,
together with the experts of the ESA’s team that supported the activity.

phases that are required in most space operations involving
multiple probes [5], [6]. Besides direct optical and radiofre-
quency can cope with this task [7], GNSS-based relative
navigation was assessed for the Gravity Recovery and Climate
Experiment (GRACE) mission and other programmes up to
millimeter-level accuracy through phase ambiguity resolution
and advanced Bayesian estimation algorithms [2], [8]–[10].
However, Differential GNSS (DGNSS) techniques may repre-
sent a valuable and lower-complexity tool to autonomously
navigate the chaser towards the target during the phases
of a space rendezvous. In the context of RVD manouvers,
DGNSS methods can provide relative state estimates to be
integrated with complementary sources of relative navigation
data (i.e., relative attitude and angular velocity). In such a
context, this contribution proposes a parametric performance
analysis for the Inter-Spacecraft Ranging (ISR) performed by a
pair of approaching LEO spacecrafts, leveraging fundamental
GNSS-based relative navigation techniques. The study aims at
assessing the theoretical feasibility of such an approach and
to characterize ISRs statistical properties. This aims in turn at
supporting ISR integrations in the core Guidance, Navigation
and Control (GNC) algorihms for the relative navigation of the
CubeSat, under the realistic Absolute Knowledge Error (AKE)
requirements. The simulated scenario is inspired by the Space
Rider Observer Cube (SROC) mission, which aims at demon-
strating the critical capabilities and technologies required for
successfully executing an RVD mission of a CubeSat in a
safety-sensitive context [11]. The study characterises differ-
ential GNSS measurements and assesses their applicability
to low-complexity, relative GNSS algorithms and onboard
sensor fusion solutions [12]. In particular, the investigated
algorithms leverage the maximum likelihood estimation of
the ISR using single or double differences of GNSS, carrier-
smoothed pseudorange measurements.

The remainder of this paper is structured as follows. Section
II introduces differential GNSS algorithms investigated in
the study. Section III presents the statistical results of the
ISR estimation across the rendezvous phases of the mission.
Eventually, conclusions are drawn in Section IV.

II. METHODOLOGY

The aim of relative GNSS in the investigated scenario is
to estimate the Euclidean distance between the approaching
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Fig. 1: Geometrical scheme for differential measurements and ISR estimation (left) and agents block scheme for the
implementation of the proposed DGNSS ranging paradigm (right).

TABLE I: RVD phases with associated distances and AKEs.

Phase Name Distance AKE

Far Rendezvous 10000m 5%
Inspection 1000m 2%
Close Rendezvous 100m 1%
Final Approach 50m 0.02%

spacecrafts by relying on their independent observations of
the GNSS pseudorange measurements. These measurements
are assumed to be retrieved for the same set of visible
satellites throughout the rendezvous phases of the mission.
By assuming the CubeSat as reference, we refer to chaser
and target pseudorange measurements to distinguish between
those observables retrieved at the CubeSat and at the mother-
ship receivers, respectively. In the context of space missions,
we also refer to the estimated Euclidean distance as Inter-
Spacecraft Range (ISR) to distinguish this study from similar
approaches investigated in terrestrial applications [13]–[15].
RVD phases foreseen by the mission plan are provided in Table
I along with the pre-defined AKE. The requirements becomes
more and more stringent as the the distance between the
spacecrafts decreases. Pseudorange measurements are assumed
to be estimated at the mothership’s GNSS receiver and trans-
mitted through a dedicated telemetry/data link to the CubeSat.
Modern inter-satellite link (ISL) may be used for line-of-
sight transmission but any indirect link that can guarantee
a sufficiently-low latency is also suitable, as demonstrated
for terrestrial applications [15], [16]. Such a communication
channel, referred to as COM in Figure 1, is hence assumed
available to estimate ISRs and is fundamental for the feasibility
of the presented approach. Furthermore, both the spacecraft are
assumed carrying multi-constellation, multi-frequency GNSS
receivers capable to provide output GNSS measurements with
comparable precision (i.e., the same receiver module is as-
sumed). Time synchronization between the spacecraft is left to
the standalone GNSS time synchronization of the independent
receivers [17], i.e. ∆t ≤ 50 ns RMS, and the measurement
output rate is assumed to be Ro ≥ 1Hz.

A. ISR algorithms

For the sake of simplicity, letters A and B are attributed
to the CubeSat and the mothership respectively, and the
combination of chaser and target measurements is foreseen
at the CubeSat location (A). Figure 1 shows the high-level
diagram of the problem geometry for the combination of
multiple GNSS pseudorange measurements, and the associated
block diagram on the right highlights the required input data.

1) Single Differences: By assuming to compensate for their
time offset according to [18], a pair of chaser and target
measurements, i.e., ρsA (tk) and ρsB (tk), referred to the same
s-th satellite, can be linearly combined via Single Difference
(SD) at a given time instant, as

Ss
AB (tk) = ρsA (tk)− ρsB (tk)

= ∆rAB (tk) + ∆bAB(tk) + ∆ξAB(tk)
(1)

where ∆rAB is a projection of the true distance between the
receivers, ∆bAB (in meters) is the difference between the clock
biases at the receivers clocks, and ∆ξAB is the residual error
due to the sum of all the undifferenced error terms in the
pseudorange measurements. By extending the computation to
the whole set of available pseudoranges and adopting a matrix
notation, the set of single differences can be obtained as in (2)
where the left term and constitutes the set of SDs. The middle
term is referred to as combination matrix, and the right term is
composed by the pseudorange pairs retrieved by the receivers
w.r.t. to a common s-th satellite, namely

ρs
AB(tk) =

[
ρsA (tk)
ρsB (tk)

]
. (3)

The single-differences range estimation problem can be for-
malized through

S1
AB(tk)

S2
AB(tk)

...
SS
AB(tk)

 ≃


h1
A (tk) 1

h2
A (tk) 1

... 1
hS
A (tk) 1


[
dAB (tk)
∆bAB (tk)

]
(4)

where hs
u (tk) denotes the unitary steering vector directed to-

wards the s-th satellite from the u-th user location. Since user
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S2
AB (tk)

...
SS
AB (tk)

 =


−1 1 0 0 · · · · · · 0 0

0 0 −1 1
...

... 0 0
...

... · · · · · ·
. . . . . .

...
...

0 0 0 0 · · · · · · −1 1



ρ1
AB(tk)

ρ2
AB(tk)

...
ρs
AB(tk)

 (2)

location is typically unknown, such a matrix is computed w.r.t.
to an arbitrarily chosen approximation point that is iteratively
updated within the estimation algorithm. By applying a Least
Square (LS) algorithm, we can solve for (4) by

d
(SD)
AB (tk) ≃

(
HAH

T
A

)−1
HT

ASAB(tk) (5)

where dSD
AB (tk) denotes the estimated ISR by means of SD.

By assuming the availability at the receiver of the pseudorange
measurements variances, the measurements error covariance
can be considered to weight the computation of (5). The error
covariance of the input measurements, RSD, is diagonal if
the satellites are not repeated among the pairs used in single
differences. A generic element of the diagonal of RSD is
hence defined as [RSD ]ss = (σs

A)
2
+ (σs

B)
2. A weighted

geometrical matrix can be hence defined as

H̄A ≃
(
HT

AR
−1
SDHA

)−1
HT

AR
−1
SD (6)

and H̄A can be replaced in (5) to perform a weighted estimate
of d(SD)

AB (tk). When unweighted LS is considered, the output
covariance associated to the range estimate can be computed
as

R
(SD)
d =

(
HT

AHA

)−1
HT

ARSDHA

(
HT

AHA

)−1
. (7)

In case WLS is exploited and the weighting matrix is the in-
verse of the input error covariance, the output error covariance
simplifies to R

(SD)
d =

(
HT

AR
−1
SDHA

)−1
.

2) Double Differences: Regarding Double Differences
(DD), we can exploit the same steps as for SDs, by computing
each DD as a difference of SDs

Dij
AB (tk) = Sj

AB (tk)− Si
AB (tk) = ∆RAB (tk) + ΣAB(tk)

(8)
where ∆RAB is the actual difference between SDs, and
ΣAB(tk) collects all the non-mutual residual errors that cannot
cancel out. By extending the number of measurements through
a matrix notation, as in (4), we set up the linear combination
of all the available single differences, as

D12
AB(tk)

D13
AB(tk)

...
D1S

AB(tk)

 =


−1 1 0 · · · 0

−1 0 1 0
...

...
...

. . . . . . 0
−1 0 · · · 0 1



S1
AB(tk)

S2
AB(tk)

...
SS
AB(tk)

 (9)

where the left term collects all the DDs, the middle term
describe the algebraic combination matrix, and the right term

is computed through (4). The double difference range vector
estimation is hence achieved, by inverting

D12
AB(tk)

D13
AB(tk)

...
D1S

AB(tk)

 ≃


h2
A (tk)− h1

A (tk)
h2
A (tk)− h1

A (tk)
...

hS
A (tk)− h1

A (tk)

dAB (tk) . (10)

By propagating the single differences’ measurements error
covariance defined in (7) through the DD ranging derivation,
we obtain

H̄D ≃
(
HT

A

(
R

(SD)
d

)−1

HA

)−1

HT
A

(
R

(SD)
d

)−1

(11)

and eventually, the range vector estimate is obtained through
LMS estimation of

d
(DD)
AB (tk) ≃ H̄DDAB(tk) (12)

where d
(DD)
AB (tk) denotes the estimated ISR by means of DD.

In case of unweighted LS, the associated error covariance, is
hence

R
(DD)
d =

(
HT

DHD

)−1
HT

DR
(SD)
d H

(
HT

DHD

)−1
. (13)

In case WLS is exploited and the weighting matrix is the
inverse of the input error covariance, the output error co-

variance simplifies to R
(DD)
d =

(
HT

D

(
RSD

d

)−1
HD

)−1

. SD
(Al_01), DD (Al_02) and a variant of the latter (Al_03)
that was introduced in [19], were tested in the current analysis.
It is worth remarking that, under the assumptions of i.i.d.
input measurements with standard deviation σu, SDs are
characterized by a standard deviation equal to

√
2σu. DDs

(Al_02, Al_03) are in turn characterized by a standard
deviation of 2σu. Shortly, while common biases cancel out,
pseudorange/range measurements noise is increased by differ-
entiation. This may lead to a higher uncertainty in the relative
positioning when compared to absolute positions difference
but it keeps ISR estimates fully independent of any state
estimator. It is worth remarking that a standard deviation, σd,
of the output ISR estimate cannot be computed in closed form
from non-diagonal output covariance matrices [20], as in the
case of (7) and (13). Therefore, a simulation environment was
required for an exhaustive characterization of such an uncer-
tainty under different variances on the input measurements.

B. Simulation Environment

Input data from an STK mission simulation includes:
• GPS/Galileo Constellation STK reports: includes state

space and velocity of the GNSS satellites at the mission
time
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• CubeSat (chaser) and mothership (target) STK Reports:
include state space and velocity of the spacecrafts at the
mission time

• GPS/Galileo to mothership/CubeSat STK access report:
include the GNSS satellites visible in Line-of-Sight
(LoS) to the spacecrafts

Space state coordinates are intended in ICRF reference frame.
However, the choice of the ICRF frame does not imply a lack
of generality. ISR computation is invariant w.r.t. the selected
reference frame and the following simulation architecture
holds for any Cartesian system. Spacecraft’s sate space and
velocity data was provided by means of the STK report. The
time granularity for the generation of the report was set to
30 s. A file parser and a subroutine for the tracking of visible
GNSS satellites at each time instant was implemented and a
dedicated function was designed to inject the User Equivalent
Range Error (UERE) noise [21] to the exact satellite-user
ranges. A dedicated routine included the ranging algorithms
described in Section II-A and an Iterative Least Mean Square
(I-LMS) routine for the ML estimation of (5) and (12), for
SD and DD respectively. Both measurements simulation and
ISR estimation routines are embedded in a Monte Carlo envi-
ronment to support a statistical analysis of the estimated ISRs
by randomizing the noise generation. Parametric Monte Carlo
simulations were performed to characterize the output statistics
by varying the UERE variance of the input pseudorange
measurements. The Monte Carlo simulation environment was
configured according to the parameters reported in Table II.

III. RESULTS AND DISCUSSION

As a preliminary investigation, the actual mission trajecto-
ries and visibility constraints about GNSS satellites were not
considered to prevent unrealistic assumptions on the geomet-
rical dilution of precision [21].

A. Numerical analysis of the estimation bias

By setting the standard deviation of each input measure-
ments to σu = 0m (noiseless input measurements), and
observing the two spacecraft approaching from very large
distances, biased ISR estimates appear for all the three DGNSS
methods. Estimation biases decrease below the 0.001% of
the true baseline length for all the methods, e.g., returning
bias values lower than 50m at 50 km of distance and lower
than 5 cm at 5m. By only accounting for the algorithmic
bias, we assessed that, under ideal assumptions, the algorithms
can guarantee an error that is lower than the minimum AKE
imposed by the mission for the close rendezvous phase, i.e.,
< 0.02% of the true distance. Such an intrinsic bias has to
be attributed to unsuitable geometrical assumptions on the
parallelism of the steering vectors done for (4) and (10)
that looses validity with the distance between the spacecrafts
[19]. A complementary, statistical analysis in more realistic
conditions is presented hereafter.

(a) σu = 0.01m

(b) σu = 0.25m

Fig. 2: Statistical characterization of the estimated ISR for
different UERE standard deviations. UTC time is referred to
a simulated SROC mission trajectory.

B. ISR simulation considering actual GNSS visibility

A pair of sample results from the overall Monte Carlo
analysis are reported and discussed hereafter. ISR accuracy
and precision analysis for the selected ranging algorithms
are reported in form of box plots in Figures 2a and 2b for
σu = 0.01m and σu = 0.25m, respectively. The algorithms
are distinguished by upper (Al_01), middle (Al_02), and
lower (Al_03) subplots. Each subplot shows a box plot
describing a summary statistics of the ISR for the Monte
Carlo output observed every 240 s of the mission timespan
(time-decimated w.r.t. to the granularity of the STK reports).
The box plots show a summary statistics of the sample data.
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TABLE II: Configuration parameters of the MATLAB Simulation Environment

Parameter Value

User Equivalent Range Error Standard Deviation, σu [0.01, 0.10, 0.50, 2.00, 10.00]m
Number of Monte Carlo trials > 5000 (up to convergence)
Mission Time (and associated A-B distance) 10:05:00 – 12:57:00 UTCG (2 km – 0 km)
Iterative LMS (I-LMS) iterations 10

The bottom and top of each blue box are the 25th and 75th
percentiles of the sample, respectively. The distance between
the bottom and top of each box is the interquartile range.
The black square inside the box identifies the sample mean.
The whiskers are lines extending above and below each box
going from the end of the interquartile range to the furthest
observation within the whisker length. Observations beyond
the whisker length are identified as outliers and marked with
red markers. Outliers are significant to a conservative analysis
on the observed uncertainties. The box plot statistics is referred
to the left y-axis (range error). The overlapping orange curve is
the true distance between mothership and CubeSat according
to the STK simulation environment. The curve is referred to
the right y-axis and spans in the range 2-0 km. Overall, it can
be observed that Al_01 and Al_02 have similar statistical
behaviours, with a lower sensitivity to the ISR variations along
the mission trajectory and RVD phases. A strong correla-
tion between bias and true distance is instead notable for
Al_02 in 2a that is hidden by larger error statistics in the
experiments of Figure 2b. A remarkable correlation between
standard deviation and ISR variations is similarly visible for
Al_02 as tracked by whiskers and outliers of the middle
subplots in Figure 2b. Al_02 provides estimation errors with
a less stable behaviour of their statistical distribution that has
not be attributable to the variable geometry of the observed
GNSS constellations. Al_02 is hence not appropriate to be
considered for the integration of ISR in fused GNC solutions
for relative navigation.

C. Time-aggregated metrics for ISR error modelling
To provide a suitable model for the integration of the ISR

measurements into a relative navigation filter, the following
tables provide time-aggregated metrics affecting the ISR error
for an extended range of values of σu. Minimum, maximum
and mean estimation bias and standard deviation experienced
along the mission trajectories are provided in Figures 3a and
3b, respectively. Statistics have been obtained through sample
mean and variance evaluated through the whole output sample
space of the Monte Carlo trials. In Figure 3a, the error bias is
always lower than 1m and it can be assumed lower than 0.1m
when carrier-smoothed pseudorange are considered. Output
standard deviation in Figure 3b shows a linear relationship
with the input σu (i.e., logarithmic relationship into logarith-
mic scale).

D. Uncertainty bound for ISR integration in navigation filters
Both mothership and CubeSat are supposed to host a

NOVATEL OEM719 GNSS space-born receiver for multi-

TABLE III: Summary of worst case statistics observed for
the different DGNSS methods, considering σu = 0.01m and
including conservative 3σ-bound, Σd .

Algorithm 3σd (std. dev. [m]) µd (bias [m]) Σd [m]

Al_01 0.0801 0.01 0.10

Al_02 0.036 0.0082 0.06

Al_03 0.00279 0.0082 0.05

constellation, multi-frequency GNSS navigation in space ap-
plications. It hosts 555 channels, providing measurements at a
maximum output rate of 100Hz, and a declared time RMS ac-
curacy of 20 ns. The receiver can provide code measurements
with a maximum precision of 0.08m and carrier-smoothed
measurements with a worst-case precision of 0.001m [22]–
[24]. As a conservative approach w.r.t. to the commercial
datasheet provided by the manufacturer, we bounded the
overall UERE standard deviation, σu, to 0.01m by assuming a
margin of one order of magnitude for the input measurements
error. The values of bias and standard deviation included in
Figures 3a and 3b can be used to retrieve ISR measurements
statistics for the selected input UERE (i.e., 0.01m) and to iden-
tify an overall conservative bound for their further integration.
Worst case statistics are shown in second and third column
of Table III for all the three proposed DGNSS methods. The
fourth column provides a conservative 3σ-bound that treats
intrinsic biases as isotropic uncertainties and sum them up to
worst case standard deviation, according to

Σd = α(3σd + µd) (14)

where α = 1.3 provides an additional guard uncertainty of the
30% that is designed and applied to the combined boundary
statistics to include unmodelled error sources.

This approach enlarges the uncertainty for any dimension of
a three-dimensional reference frame thus producing a highly-
conservative, direction-independent bound of the measurement
uncertainty. The recommended σ+

d can be used to initialize
input error covariance matrices in Bayesian estimation filters
such as Extended Kalman Filter.

IV. CONCLUSIONS

Fundamental DGNSS techniques such as single and double
differences can complement other ranging solutions for small-
scale satellites such as CubeSat. This paper investigates the
usability of such fundamental techniques in RVD manoeuvres
between GNSS-equipped LEO chaser and target. According
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Fig. 3: Mean values of ISRs bias (a) and standard deviation (b) shown in logarithmic scale with maximum and minimum
(whiskers) as observed throughout the full mission timespan by varying the input UERE with σu ∈ (0.1, 10)m.

to the declared performance of the reference GNSS receiver
selected for this study (i.e., Novatel OEM917) and to the STK
mission simulation, the recommended, conservative standard
deviation values are 0.10 m for algorithm Al_01 (SD) and
0.05 m for Al_03 (DD). Such boundaries are determined by
assuming input measurements noise with σu = 0.001m that is
compatible with carrier-smoothed pseudorange measurements.
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