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Abstract

Numerical integration of discontinuous functions is a longstanding problem explored
by numerous authors over time. This topic acquired even greater attention in fracture
mechanics, particularly in the eXtended finite element method (XFEM) context,
in which the exact integration of discontinuous functions is essential in order to
obtain precise and accurate results. In this scope, equivalent polynomials stand as an
efficient method to address the problem harnessing traditional Gauss quadrature rule
to exactly integrate polynomials times step function. Specific situations, however,
require polynomials times multiple step functions to be integrated (i.e., problems
involving crack branching, kinking, and junctions within a single finite element).

This Thesis focuses on the development of a method to exactly integrate polyno-
mials times multiple step functions over various 2D and 3D domain shapes using
standard Gauss quadrature, without splitting the integration domain. Traditional
integration methods adopted in the XFEM framework may struggle to handle step
functions, resulting in inaccurate numerical solutions or requiring multiple domain
subdivisions. To address this issue, the research explores the mathematical founda-
tions of equivalent polynomials for the integration of polynomials times step function
in the context of XFEM analysis. The concept is then extended to the case of multiple
step functions within the integration domain in order to deliver a formulation to
smooth the overall integration process.

As a first step towards the integration of an arbitrary number of discontinuities, a
closed form solution for the exact numerical integration of polynomials times double
step function over quadrilateral domains is proposed. A software implementation
of the proposed formulation, the Fortran library double discontinuity equivalent
polynomials (DD_EQP), is also presented, delivering a practical application of the
method and demonstrating its ease of implementation, precision and effectiveness.
The DD_EQP is used to validate the proposed solution by means of numerical testing,



v

providing exact results. The presented formulation is then extended to triangular,
tetrahedral and hexahedral domains, demonstrating its effectiveness and the accuracy
for each analysed element shape. Additionally, by means of isoparametric mapping,
the solution can be employed on 2D and 3D elements however defined in a global
coordinate system, bringing them back to a regular parent element geometry. The
effect on the results accuracy in the case of distorted elements is also discussed
and mitigation strategies are explored. The extension of the proposed method to an
arbitrary number of discontinuities is then addressed and a closed form solution for
standard bi-dimensional quadrilateral domains is presented. The results demonstrate
that the presented formulation offers an accurate and robust method for the exact
integration of polynomials times multiple step functions, which is crucial for the
stiffness matrix evaluation of enriched elements in XFEM simulations. The proposed
technique provides a mathematical framework which can be also used as a reliable
numerical tool to integrate polynomials over complex geometries and non-trivial
domain shapes by way of standard Gauss quadrature.

In conclusion, the proposed method provides new pathways for exactly numer-
ically integrate polynomials times multiple step functions, which is essential in
simulations of complex physical phenomena in engineering and scientific applica-
tions. Moreover, the proposed formulation, as well as the DD_EQP library, have
a wide application range, not limited to XFEM and fracture mechanics, but also
including computational mechanics, mathematical computing of complex geometric
regions, and computer graphics.
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Chapter 1

Introduction

1.1 Background and motivation

The problem of exactly integrating discontinuous functions by way of standard
quadrature rule is a challenging topic which has been explored by numerous authors
over the years [1–8]. This problem gained particular attention in the context of frac-
ture mechanics, in which modelling discontinuities by means of discontinuous and
singular functions caused the traditional finite element method (FEM) to be ill-suited
to handle such problems, being a piecewise differentiable polynomial approxima-
tion [9]. The finite element mesh, in fact, must be precisely defined in accordance
with the discontinuity interface in order to produce accurate results, the use of FEM
in such problems is dependent on an accurate and time-consuming discretisation
process [10, 9]. Additionally, to track the path of the discontinuity as it develops
(i.e., crack growth problems), the mesh must be regenerated at each step of the analy-
sis [10], which results in high computational costs [11]. Such problems required the
development and definition of specific numerical techniques for this scope, which
has been tackled by various authors. In this scope, partition of unity methods (PUM)
and element-free Galerkin-based formulations have been proposed by numerous
authors [12, 13]. PUM enables the definition of solution spaces with user-defined
local properties [14, 5]. Babuška and Melenk [14] developed the method specifically
to address issues where standard FEM fails or the solutions are prohibitively expen-
sive [11]. The PUM serves as the foundation for methods like GFEM and XFEM
that are specifically created to address issues involving discontinuities, singularities,
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localised deformations, and complex geometries [15]. GFEM, is a variant of the con-
ventional FEM used in numerical analysis and has been introduced by Strouboulis,
Babuška and Copps [16]. To better capture localised phenomena like singularities,
discontinuities, or highly variable solutions, it enables the incorporation of additional
enrichment functions or enrichment techniques. By enhancing the basis functions
used in the approximation, GFEM improves the capabilities of FEM and increases
the accuracy of the solution in the regions of interest [17]. The elements embedding
enrichment functions posses additional degrees of freedom associated with the en-
richment, in order to allow a more precise representation of the solution. Enrichment
functions are usually defined based on the solution local behaviour [11]. The use of
meshes that are partially or completely independent of the domain geometry and the
enrichment of the approximation by way of special functions of interest are the main
characteristics of this approach. On the other hand, XFEM is a particular kind of
GFEM, presented by Belytschko et al. [18, 7], for engineering problems involving
discontinuous and singular functions. In XFEM, additional degrees of freedom
and enrichment functions, such as the Heaviside step function, that can model the
displacement field around discontinuities avoiding meshing the crack surfaces [15],
are introduced [11]. This makes XFEM especially helpful for fracture mechanics
problems involving crack propagation or complex geometries. By simply including
more basis functions in the approximation, XFEM allows for the introduction of a
discontinuous displacement field along the crack surface. Additionally, the geome-
try and displacement field of a crack can be defined in terms of the original mesh
nodal values when XFEM and level sets are used together. These advantages are
especially important when the geometry changes, such as in the case of a growing
crack [15]. The application of XFEM and GFEM to analyse the mechanical be-
haviour of structures and solids embedding cracks in their continuum has made the
problem of exactly integrating discontinuous functions especially important in recent
times [19–21]. In fact, although such methods over standard FEM enable a regular
discretisation and not require remeshing [7], they introduce highly localised functions
and discontinuous functions (such as the Heaviside step function) in the solution
field [15]. These functions produce discontinuous terms in the finite element stiffness
matrix, resulting in a non-negligible computational error when integrating using a
traditional quadrature rule, due to the non-polynomial nature of the integrand [22].
In this context, it is common to achieve quadrature of terms embedding discontinu-
ous and singular functions by dividing the elements crossed by discontinuities into
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quadrature subdomains [7, 18, 15], though additional quadrature techniques, such as
adaptive quadrature [23], nonconvex polygons [24], and a regularised form of the
Heaviside step function, have also been proposed [25, 26]. Nonetheless, the elegance
of XFEM and its main benefit of not requiring remeshing fall apart as quadrature
subcells are introduced when the integration domain is divided into subdomains. In
this context, an effective solution has been presented by Ventura in [22, 27], in which
the concept of equivalent polynomials has been introduced, which has demonstrated
its effectiveness in exact numerical integration of polynomials times step functions
over a variety of domain shapes [22, 27, 28, 11].

1.2 Main objectives

The current research explores the problem of integrating multiple discontinuities
without splitting the integration domain, with reference to the discussed above
contexts of XFEM and fracture mechanics, by means of equivalent polynomials. To
summarise, the equivalent polynomials concept has been explored in order to define
an integration technique to exactly integrate two (or more) discontinuous functions
over various domain shapes, without the need for defining subdomains.

Firstly, the formulation presented in [22, 27] has been thoroughly analysed and a
Fortran library, EQP, has been developed as a practical application for the integration
of polynomials times step function by means of equivalent polynomials. The precise
results delivered by the library for various finite element shapes, however defined in
a global coordinate system, have been the stepping stone for extending the use of
equivalent polynomials also to multiple discontinuities.

The case of a standard 2×2 bilinear quadrilateral element crossed by two dis-
continuities in the XFEM context has been explored. In such scenario, the problem
of integrating a double step function over the element domain arises when the el-
ement stiffness matrix has to be computed. This situation is not uncommon and
can be encountered when scenarios such as crack branching, kinking or junction
occur [29, 21, 30–36, 11]. A closed form solution by means of equivalent polynomi-
als has been defined and an exact numerical integration technique for this specific
element shape has been proposed. The presented method has been developed to
address the integration problems that occur when more than one discontinuity is
present within a single enriched finite element of an XFEM discretisation, delivering
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an exact numerical solution without splitting the domain. The significance of this
work, however, goes much deeper; it aims to provide a technique that could be
incredibly helpful not only in XFEM/GFEM fracture mechanic problems, but also
in computational geometry and as a mathematical tool to easily solve integrals over
complex shape domains. Moreover, the proposed formulation has been embedded
in a Fortran library double discontinuity equivalent polynomials (DD_EQP), which
is a a double discontinuity version of the EQP library. The library has been used
to carry out numerical tests on the proposed method and prove its efficiency on
exactly integrating polynomials times double step function on quadrilateral domains,
however defined in a global coordinate system. The proposed formulation has also
been extended to the standard linear triangular element and to three-dimensional
elements such as linear tetrahedron and trilinear hexahedron. Numerical tests have
been performed for each element and the validity of the presented method has been
proven. The results provided by the proposed formulation have been demonstrated
to be exact as long as the determinant of the Jacobian matrix is constant. Approxi-
mations in the results or non-negligible computational errors are introduced in the
case of distorted quadrilateral and hexahedral elements.

Finally, an extension for the presented formulation to the case of an arbitrary num-
ber of discontinuities within a bilinear quadrilateral element has been investigated
and a general solution has been proposed. As for the case of two discontinuities,
the extension of the proposed solution for an arbitrary number of discontinuities to
triangular elements, as well as tetrahedral and hexahedral elements is straightforward.

1.3 Organisation of the thesis

This dissertation consists of six chapters, organised as follows:

Chapter 2: The problem of discontinuities and singularities in the finite element
method (FEM) is introduced. A literature review of the the existing methods to
address the problem is presented, as well as an overview of various applications of
the extended finite element method (XFEM).

Chapter 3: The XFEM is presented and its formulation is discussed in detail.
Moreover, the use of the Heaviside step function as enrichment function in the case
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of strong discontinuities and the numerical integration strategies and possible issues
in the XFEM are also analysed.

Chapter 4: The integration of XFEM elements containing a single discontinuity
by means of equivalent polynomials over various domain shapes is analysed. The
Fortran equivalent polynomials library, EQP, is presented as a practical implementa-
tion of the aforesaid formulation and some numerical tests are carried out in order
to prove the exactness of the results. An extension of the equivalent polynomials
formulation to non-polygonal elements is also briefly discussed.

Chapter 5: A formulation to exactly integrate polynomials times double step
function over various 2D and 3D domain shapes is presented. The integration
technique is discussed in detail and some numerical tests to validate it are carried out.
Moreover, a software implementation of the proposed method, the Fortran double
discontinuity equivalent polynomials library (DD_EQP), is introduced as a handy
tool for the integration of polynomials times double step function over quadrilateral
domains. Finally, an analysis about the loss of precision in the results in the case of
distorted elements and the extension of the formulation to an arbitrary number of
discontinuities are also discussed.

Chapter 6: The conclusions of the presented work are outlined and possible
further applications and research are explored.



Chapter 2

Discontinuities in the Finite Element
Method: a literature review

2.1 Introduction

The purpose of this Chapter is to introduce the Finite Element Method (FEM), its
applications in the context of fracture mechanics and the formulations proposed
to handle the problem of discontinuities and singularities within finite elements in
various contexts. FEM is one of the most popular numerical methods for obtaining
the approximate solutions of partial differential equations [9]. It has been effectively
used to analyse, simulate, and forecast the behaviour of structures in many fields of
engineering sciences. Instead of using differential equations to operate, the FEM
rewrites starting value and continuous boundary problems into analogous variational
forms [9]. The domain must be partitioned into non-overlaying areas known as
elements in order to use the FEM. In the FEM, individual elements are linked to one
another creating a mesh, and the fields within each element are represented using
a local polynomial [37]. The quality of the mesh has a role in the outcome, and
it is a vital necessity that the mesh adhere to the geometry. FEM primary benefit
is that it handles complicated boundaries with relative ease, but there are several
problems with FEM. The FEM places limitations on how well the technique may be
applied in a variety of situations. Because the FEM depends on the approximation
characteristics of polynomials, smooth solutions are frequently necessary to achieve
the highest level of accuracy [9]. Nevertheless, the FEM becomes computationally
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expensive to optimally converge if the solution involves non-smooth behaviour,
such as high gradients or singularities in the stress and strain fields, or severe
discontinuities in the displacement field, as in the case of cracked structures [38].
The modelling of fracture and damage phenomena is one of the issues in solid

Fig. 2.1 Buildings destroyed by a 7.8 magnitude earthquake on April 16, 2016
in Ecuador. (Source: J. Lance (European Union/ECHO) [CC BY-NC-ND 2.0
(http://creativecommons.org/licenses/by-nc-nd/2.0/)], via Flickr; http://www.flickr.
com/photos/eu_echo/26571713861)

mechanics that has attracted the greatest attention (Fig. 2.1). When engineering
constructions are subjected to heavy loads, the body may experience stresses that are
greater than the material tensile strength, leading to progressive failure. During the
last several decades, there has been an increase in interest in the correct modelling
and evolution of smeared and discrete discontinuities, and there have been some
important advancements in computational methods in recent years [9]. In early
numerical methods for modelling discontinuities in finite elements [39, 40], using a
multi-field variational concept, the shear band localisation has been characterised
as a weak (strain) discontinuity that might pass through the finite element mesh [9].
The notion of virtual work statement has been thereafter modified [41] to consider
strong discontinuities. A unified approach for modelling strong discontinuities by
accounting for the interface traction-displacement connection and the softening
constitutive rule has been subsequently proposed [42]. The displacement in the

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://www.flickr.com/photos/eu_echo/26571713861
http://www.flickr.com/photos/eu_echo/26571713861
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strong discontinuity method is made up of regular and enhanced components, where
the enhanced component results in a leap over the surface of the discontinuity [38].
The enriched degrees of freedom (DOF) are statically condensed on an element level
using an assumed improved strain variational formulation to produce the element
tangent stiffness matrix [9]. The non-smooth displacement close to the fracture tip
is essentially captured in the FEM by locally tightening the mesh. Particularly in
three-dimensional applications, the DOF count may dramatically rise. Moreover,
repeated remesh operations are required for the incremental calculation of fracture
development [38]. Re-evaluating the solution onto the revised mesh is an expensive
process that also runs the risk of lowering the quality of the final outcome. The
traditional FEM has reached the limits of its capacity to address fracture mechanics
issues. A novel solution to the problem involves taking into consideration the
a priori knowledge of the precise answer in order to avoid these computational
issues [9]. With the definition of a partition of unity (PU) based enrichment approach
for discontinuous fields [43], also known as the eXtended Finite Element Method
(XFEM), a substantial advancement in crack modelling was demonstrated [9, 8].
The finite element approximation in the XFEM is enhanced with specific functions
utilising the PU framework. Two-dimensional linear-elastic asymptotic crack tip
displacement fields and discontinuous functions like the Heaviside step function are
utilised to represent cracks. This makes it possible to use finite elements to describe
the domain without directly meshing the fracture surfaces [38, 9]. One especially
interesting aspect is that the discrete equations are obtained using the single-field
(displacement) variational approach while maintaining the finite element framework
and associated features, such as sparsity and symmetry [9]. This method offers a
precise and reliable numerical approach to simulate strong discontinuities [18, 7]. By
adding the discontinuous enrichment functions to the finite element approximation
in order to account for the crack existence, a minimum remeshing FEM for crack
growth is provided. The fundamental concept was to enhance the approximation
space, which already contained a discontinuous displacement field [38, 8]. As
a result, the approach enables the fracture to be positioned anywhere inside the
mesh. The technique takes advantage of the observation that the sum of the shape
functions for finite components must be one [5], known as the PU property. This
characteristic is well-known because it relates to the shape functions capacity to
replicate a constant that stands in for translation and is essential for convergence [9].
A strong tool for adding details from asymptotic solutions and other physics-related
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information to solution spaces is the XFEM. This has shown to be especially helpful
for fractures and dislocations where the PU technique may integrate near-field
solutions to significantly improve the accuracy of reasonably coarse meshes [8]. The
method has potential applications in the treatment of phenomena including void
evolution, and models of interface behaviour, among others. As a result, the XFEM
significantly increased the FEM power for many problems of interest in materials
mechanics [9]. This chapter objective is to present an XFEM overview with a focus
on modelling issues and applications of the method.

2.2 Methods and Formulations

2.2.1 Enriched FEM

Unquestionably, FEM has emerged as the most well-liked and effective analytical
tool for analysing the behaviour of a variety of engineering and physical problems:
from simple mechanical problems through fracture mechanics, fluid dynamics, civil
engineering, material science, and so on. Also, several software programmes based
on FEM methodologies have been created [9]. The study of fracture mechanics has
shown to be a very good fit for the FEM. Yet, due to the altered mesh topology, it
is challenging to represent fracture propagation using a finite element mesh. It is
essential to fit the discretisation to the discontinuity in order to correctly simulate dis-
continuities with FEM. When addressing the problems with growing discontinuities,
where the mesh must be generated at each step, this poses a significant challenge.
Re-evaluating the solution onto the revised mesh is an expensive process that also
has the potential of lowering the quality of the final outcome [9, 8]. Because the
mesh must fit the discontinuity surfaces, modelling moving discontinuities with the
traditional FEM is rather laborious and mesh generation of complicated geometries
can be extremely time-consuming. The mesh must adhere to physical surfaces, which
presents the biggest challenge. Voids, fractures, and material interface discontinuities
may not intersect mesh elements. Moreover, it might be challenging to follow the
geometrical and topological variation in fracture propagation problems and to modify
the mesh close to discontinuities [9, 38]. Furthermore, reliable ways to transfer the
solution to the new mesh are required when geometries change and history-dependent
models are used [9]. This problem is crucial since the fields that are defined on
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such discontinuities are frequently the most relevant ones. The generalised finite
element method (GFEM) [44–46] and the XFEM have been developed to simplify
the modelling of arbitrary moving discontinuities by the partition of unity method
(PUM) [47], whose main idea is to extend a classical approximate solution basis by
a set of enrichment functions that carry information about the nature of the solution
(such as singularities or discontinuities) in order to overcome mesh-dependent diffi-
culties [9]. The PUM offers flexibility in modelling moving discontinuities without
altering the base mesh, while the enrichment functions evolve with the interface
geometry. This is because it allows arbitrary functions to be locally embedded in
the FEM or the meshfree approximation [38]. By permitting the incorporation of
arbitrary functions in its basis, enrichment not only makes it easier to describe mov-
ing discontinuities but also improves the local approximation quality of the solution
space. For problems involving boundary layers or singularities, this is very help-
ful [9]. The GFEM and the XFEM are effectively flexible instruments for the study
of problems that are characterised by discontinuities, singularities, and complicated
geometries. Several material modelling problems, such as the spread of fractures,
and the development of dislocations may be resolved much more easily using these
techniques [9, 8]. These approaches have the benefit that the structure of these
entities can be fully independent of the finite element mesh. The traditional Finite
Element approximation with the PUM is combined with the analytically known or
numerically evaluated handbook functions within some scope of their applicability in
the GFEM and the XFEM to improve the local and global accuracy of the computed
solution [9]. Most of the theoretical and numerical advancements in Finite Elements
may be easily expanded and used since the FEM is employed as the basic component
in the XFEM and the GFEM. Moreover, the XFEM and GFEM enable the precise
resolution of engineering problems in complicated domains that may be very hard
to resolve using the traditional FE (Finite Element) approach [8]. The XFEM was
designed for discontinuities, such as cracks, and employed local enrichments; the
GFEM, on the other hand, was initially concerned with global enrichments of the
approximation space. Nonetheless, the two techniques are essentially equivalent [9].
One can utilise both unstructured and structured meshes with the XFEM and GFEM.
Many materials science investigations find structured meshes to be more appealing
to evaluate the characteristics of a material unit cell. However, because it is fre-
quently desirable to conform the mesh to the external boundaries of the component,
unstructured meshes are frequently used for the analysis of engineering structures
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and components, even though some methods currently being developed can handle
even complex geometries with structured meshes [15]. By adding the analytically
or numerically produced solution to a particular boundary value problem to the FE
space, the GFEM offers precise numerical solutions with coarse meshes. On the other
hand, the XFEM focuses primarily on the necessary node enrichment to simulate the
internal boundary (inclusion or fracture) of interest. As a result, the XFEM offers
more flexibility and is less reliant on established closed form solutions [9].

2.2.2 eXtended FEM

The benefits of the XFEM in reproducing the discontinuity of the displacement field
throughout the crack surface and singularity at the crack tip without the requirement
for remeshing have attracted a lot of interest in the last 20 years. With the help
of the XFEM, fields containing jumps, kinks, singularities, and other non-smooth
characteristics inside the elements may be approximated accurately [48]. This
is accomplished by including extra terms (enrichments) into the traditional FE
approximations. These terms provide the approximation the ability to capture non-
smooth characteristics regardless of the mesh. Fracture mechanics has utilised the
XFEM to the fullest extent possible [8]: such applications include discontinuities
over the surface of the fracture and singularities at the fracture tip [9]. An appropriate
mesh that takes these properties into account must be created and maintained in
the traditional FEM; this is particularly challenging for crack growth, especially
in three dimensions. Nevertheless, the XFEM can handle these problems on fixed
meshes and takes crack propagation into account by dynamic enrichment of the
approximation [9]. Belytschko and Black [18] initially described crack propagation
using an enhanced FEM approach, which covers three key areas: the discretised
formulation, the crack description, and the crack update criteria. By employing the
PUM to take into consideration the crack presence, the meshing process is simplified
in this technique by enriching the elements close to the crack tip and along its edges
with the leading singular crack tip asymptotic displacement fields [38]. A mapping
technique is utilised to match the discontinuities with the crack geometry when it
is necessary to enrich numerous crack segments utilising the near-tip fields [9]. By
adapting the generalised Heaviside function, Moës, Dolbow, and Belytschko [7]
presented a much more elegant method to introduce a discontinuous field across
the fracture faces away from the crack-tip and created straightforward rules for the
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introduction of discontinuous and crack tip enrichments. As the XFEM does not use
a mesh that adapts to fractures, voids, or inhomogeneities like the standard FEM does,
it is a practical alternative. In XFEM, the conventional FE mesh for the problem
is first built without taking the geometric object into consideration. By adding
more functions to the basic displacement approximation, the existence of fractures,
voids, or inhomogeneities is then described independently of the mesh [9]. For
crack modelling, the displacement-based FE approximation is supplemented through
the PUM with both discontinuous displacement fields along the fracture faces and
the leading singular crack tip asymptotic displacement fields [38]. Furthermore,
the XFEM offers a smooth way to incorporate specific finite elements or higher
order elements without substantially altering the formulation. The XFEM enhances
accuracy in cases where appropriate enrichment functions may be applied and some
elements of the functional behaviour of the solution field are known a priori [9,
8]. Several approaches employed in the XFEM have direct connections to earlier
methods created for mesh-free technologies [9].

2.3 XFEM Applications Overview

2.3.1 The Level-Set Method

The Level-set Method (LSM) is frequently used in the context of the XFEM to
define implicitly where non-smooth features are located [49, 9]. The LSM is a
perfect companion to the XFEM since it indicates where and how to enhance. The
extension of the LSM to the description of crack paths in two dimensions has been
proposed by Storlaska [50, 51]; other Authors [52–54] described crack surfaces
in three dimensions. While both kinds of information, including crack surface as
well as the crack front, may be directly derived from the level set functions, for
crack problems, one enrichment is often required at the crack surface and further
enrichments are needed at the fracture front. The level set function that saves the
signed distance to the surface immediately affects the discontinuous enrichment
function that catches the jump in the displacement field throughout the fracture
surface [9]. The level-set functions, which imply a coordinate system whereby the
enrichment functions are assessed, are indirectly responsible for the enrichment
functions ability to capture the strong gradients at the crack front. As a result, it is
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clear that the LSM offers significant benefits when used with XFEM. The XFEM, on
the other hand, is just one stage in the modelling of crack propagation that results in an
accurate estimate of the displacement, stress, and strain fields. The state at the crack
tip is described in the next phase, whereby the crack increment is inferred [9]. In fact,
the direction and length of the increment at the tip of the crack in two dimensions,
or at specific points on the crack front in three dimensions, can be modelled using
fracture parameter information such as stress intensity factors (SIFs), configurational
forces, the J-integral, threshold stress and strain measures, etc. The third and last
stage is updating the crack description in order to ensure that increments are taken
into consideration properly [55]. Under the extended FE framework, Stolarska
demonstrated the first use of LSM for simulating crack propagation, in which the
LSM effectively handled interface evolution [50]. According to Sukumar [56],
the level set function was utilised to describe the local enrichment for material
interfaces while modelling holes and inclusions using the LSM [9]. For the three-
dimensional study of crack issues, Moës, Gravouil, and Belytschko [53, 52] used the
XFEM with the LSM to create arbitrary discontinuities. In the element-free Galerkin
approach, Ventura, Xu, and Belytschko [57] developed the vector LSM for modeling
of propagating cracks. For two-phase flow with surface tension effects, Chessa and
Belytschko [58, 59] developed a combined XFEM and LSM, where the velocity was
enhanced by the signed distance function. Moreover, the same Authors [60] used the
LSM and the XFEM to simulate arbitrary space-time discontinuities along a moving
hypersurface. Legay, Chessa, and Belytschko [61] suggested an Eulerian-Lagrangian
technique for fluid-structure interaction based on the LSM, where the formulation
of the fluid-structure interaction issue is derived from the level set description of
the interface. Sethian [62] presented an expansion of the LSM based on the rapid
marching technique. This strategy eliminates the requirement to describe the interface
topology during its evolution; it is computationally appealing for fronts that advance
monotonically [9]. In Sukumar, Chopp, and Moran [54] implementation of the
mixed XFEM and fast marching approach, the fast marching method was employed
to manage the development of the planar three-dimensional fatigue crack under
fatigue growth circumstances. Chopp and Sukumar [63] used a method based on
combining the XFEM with the fast marching approach to describe the fatigue crack
propagation of numerous coplanar cracks. Sukumar [64] suggested a numerical
method based on a linked XFEM and the fast marching method for non-planar
three-dimensional linear elastic crack development simulation.
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2.3.2 Linear Elastic Fracture Mechanics

FEM modelling of fracture propagation is laborious because the mesh must be up-
dated to match the geometry of the crack surface [9]. Various FE approaches have
been developed to describe cracks and fracture propagation. One of the most potent
methods created using an enrichment approach for finite elements on the basis of a
PU is the XFEM. In order to account for the existence of the crack, discontinuous
enrichment functions were initially included to the FE approximation by Belytschko
and Black [18], who also presented a minimum remeshing FEM for crack growth [9].
The traditional displacement-based approximation was enriched close to a crack by
using both discontinuous fields and near-tip asymptotic fields through a PUM [7].
This was done to describe crack growth over the crack sides away from the fracture
tip. The XFEM was improved by other Authors to represent crack problems with
several branches, holes, and cracks originating from holes [34], and also to describe
three-dimensional fracture mechanics problems through the PU concept, adding a
discontinuous function and the two-dimensional asymptotic crack tip displacement
fields to the FE approximation [6, 9]. The LSM was utilised to represent the crack
position, including the location of crack-tips, in Stolarska method [50], which links
the LSM with the XFEM to simulate crack growth. By describing the crack geometry
in terms of two signed distance functions, Moës, Gravouil, and Belytschko [53]
extended the XFEM to handle arbitrary non-planar cracks in three dimensions. This
allowed them to create a near tip asymptotic field with a discontinuity that con-
forms to the crack, even when it is curved or kinked near a tip [9]. For deriving
the SIFs for common three-dimensional fracture situations, Ayhan and Nied [65]
developed an enhanced FE technique. Using enhanced quadratic interpolations,
Stazi [66] provided a technique for Linear Elastic Fracture Mechanics (LEFM) in
which the geometry of the crack was described by a level set function interpolated
on the same quadratic FE discretization. A combination of the XFEM and the
mesh superposition method was proposed by Lee [67], whereby the near-tip field
was modelled by superimposed quarter point elements on an overlaid mesh and the
remaining portion of the discontinuity was implicitly described by a step function on
the PU, in which the two displacement fields were paired through a transition region.
This method was used for modelling stationary and growing cracks [9]. In order
to account for the junction of fractures in both homogeneous and inhomogeneous
brittle materials, Budyn [68] proposed the XFEM for multiple crack growth, which
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does not need remeshing as the cracks expand. Zi [69] suggested a similar strategy
for simulating the development and coalescence of fractures in a quasi-brittle cell
with numerous cracks. Researchers have undertaken more current investigations
on complex LEFM challenges. In order to apply the Dirichlet boundary conditions
within the XFEM, Moës, Béchet, and Tourbier [70] proposed building a corrected
Lagrange multiplier space on the border that retains the best rate of convergence.
Employing discontinuous/non-differentiable enrichment functions in the XFEM,
Ventura [22] proposed a technique for preventing the introduction of quadrature sub-
cells by substituting the discontinuous/non-differentiable functions with equivalent
polynomials. An XFEM for simulating cracks in orthotropic media was proposed by
Asadpoure, Mohammadi, and Vafai [71]. It is based on a discontinuous function and
two-dimensional asymptotic fracture tip displacement fields. In order to replicate
orthotropic cracked materials, Asadpoure and Mohammadi [72] updated their prior
model by introducing additional enrichment functions [9]. The necessary near tip
enrichment functions were produced by extracting fundamental terms from complex
solutions close to the crack tip. The impact of crack shielding and amplification of
several configurations of microcracks, including many randomly aligned microc-
racks, on the SIFs of a macro-crack was examined by Loehnert and Belytschko [73]
using the XFEM [9]. By integrating the XFEM with the fast marching approach,
Sukumar [64] presented a computational method for non-planar three-dimensional
elastic crack development simulations. For two-dimensional crack development
modelling, Tabarraei and Sukumar [74] used the XFEM on polygonal and quadtree
finite element meshes. For convex polygonal meshes, basis functions were built using
the Laplace interpolant, while mean value coordinates were used for non-convex
elements [9]. The blending elements, which are established between enriched and
standard elements and are frequently essential for a successful local partition of
unity enrichments, are one of the key problems with the XFEM approach. To boost
the effectiveness of local PU enrichments, Chessa and Belytschko [75] used the
enhanced strain method in blending elements. By enriching an entire defined region
surrounding the crack tip, Laborde [76] changed the conventional XFEM to get past
issues with blending elements for the occurrence of crack problems. For address-
ing arbitrary discontinuities in a finite element context, Fries and Belytschko [77]
proposed an intrinsic XFEM technique without blending elements, where no new
unknowns were added at the nodes whose supports are crossed by discontinuities.
Based on a linearly decreasing weight function for enrichment in the blending ele-
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ments, Fries [78] developed a corrected XFEM technique without blending elements
problems [9]. Gracie [79] proposed a discontinuous Galerkin formulation that di-
vides the domain into enriched and unenriched sub-domains, with the continuity
being enforced via an internal penalty technique, avoiding blending elements. For
the transition from continuous to discontinuous displacements, Benvenuti, Tralli,
and Ventura [25] proposed a regularised XFEM model, where the developing strain
and stress fields were handled separately using certain constitutive assumptions. In
order to address the issue of blending elements, Shibanuma and Utsunomiya [80]
proposed an alternate formulation for the XFEM based on the idea of the PU FEM,
which ensures numerical correctness over the whole domain. The original corrected
XFEM approach introduced by Fries was generalised to finite deformation theory
and used to the three-dimensional scenario by Loehnert, Mueller-Hoeppe, and Wrig-
gers [81]. The use of the XFEM in dynamic fracture has mainly been concentrated
on estimating the dynamic SIFs for arbitrary two- and three-dimensional cracks and
modelling of dynamic crack propagation. In order to describe dynamic fracture and
time-dependent problems that provide evidence of stability of the numerical scheme
in linear fracture mechanics, Réthoré, Gravouil, and Combescure [82] suggested
an energy-conserving scheme inside the framework of the XFEM [9]. Menouil-
lard [83, 84] presented an explicit time-stepping method for enriched elements based
on a mass matrix lumping technique, and showed that the critical time step for an
enriched element is of the same order as the critical time step for the corresponding
element without extended DOF. Elguedj, Gravouil, and Maigre [85] developed a tra-
ditional element-by-element approach that links the conventional central difference
scheme with the unconditionally stable-explicit scheme to offer a generic explicit
time integration technique for XFEM dynamic simulations with a standard critical
time step. In the context of the XFEM for moving interfaces, Fries and Zilian [86]
investigated the convergence characteristics of several time integration approaches,
including one-step time-stepping schemes, the implicit Euler method, the trape-
zoidal rule, and the implicit midpoint rule. The meshless approximation was utilised
by Menouillard and Belytschko [87] to enhance the XFEM for dynamic fracture
problems by smoothing the stress state around the crack tip during propagation and
reducing oscillations in the stress caused by the propagation of the discontinuity. The
same Authors later presented a technique based on ensuring the continuity of forces
corresponding to the richer DOF to gradually release the tip element as the crack tip
passes through it [88]. In the scope of the XFEM, Menouillard [89] introduced a new



2.3 XFEM Applications Overview 17

enrichment approach with a time-dependent enrichment function and investigated
the impact of several directional criteria on the crack path [9]. By assessing the
dynamic SIFs utilising the domain separation integral approach, Motamedi and
Mohammadi [90, 91] developed a dynamic crack analysis for composites based on
the orthotropic enrichment functions in the XFEM context. Several academics have
examined at the significance of error estimation in the XFEM numerical analysis. By
utilising a cut-off function to localise the singular enrichment region in a convergence
investigation for a variation of the XFEM on cracked domains, Chahine, Laborde,
and Renard [92] showed that the suggested variant convergence error is of order h
for a linear FEM [9]. Based on the superconvergent patch recovery (SPR) method
for the XFEM framework, Ródenas [93] proposed a stress recovery strategy that
offers precise estimates of the discretisation error for LEFM problems. By assessing
the discretisation error for quantities of interest computed in the XFEM using the
idea of constitutive relation error, Panetier, Ladeveze, and Chamoin [94] developed a
technique to find the local error boundaries in the context of fracture mechanics. For
LEFM issues, Ródenas [95] proposed a recovery-type error estimator that uses the
XFEM to produce local equilibrium and upper limits on the error in energy norm. For
problems involving fracture mechanics, Shen and Lew [96, 97] developed an opti-
mally convergent discontinuous Galerkin-based XFEM, in which an optimal order of
convergence was observed in comparison to existing XFEM variations. In the XFEM
study of crack problems, Prange, Loehnert, and Wriggers [98] provided a straight-
forward recovery-based error estimator for the discretisation error [9]. The XFEM
analysis of linear elastic fracture mechanics has been investigated by researchers in
more innovative concepts. For two-dimensional and three-dimensional problems, as
well as those involving arbitrarily shaped triangles and tetrahedra, Park [99] devised
a mapping technique for integrating weak singularities that arise from enrichment
functions in the GFEM/XFEM. In order to establish the Gauss quadrature rule over
components of any shape in two dimensions without the necessity for partitioning,
Mousavi [100] provided an alternative Gaussian integration scheme. This method
proved effective and precise in evaluating weak form integrals. By applying strain
smoothing to higher order elements, Bordas [101] examined at the accuracy and con-
vergence of enriched finite element approximations. He concluded that polynomial
enrichment functions are the best type of enrichment function for strain smoothing in
enriched approximations. In addition to introducing a straightforward and adaptable
quadrature rule based on the same geometric methodology, Richardson [102] offered
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a technique for modelling quasi-static crack growth that combines the XFEM with a
broad strategy for cutting triangulated domains [9]. By combining the benefits of
explicit and implicit crack descriptions, Fries and Baydoun [103, 104] presented a
method for two-dimensional and three-dimensional crack propagation. They also
described a propagation criterion for three-dimensional fracture mechanics using
the proposed hybrid explicit-implicit approach [9]. Using the interaction integral ap-
proach created by the XFEM in LEFM, Minnebo [105] proposed a three-dimensional
integral strategy for numerical integration of singular functions in the computation of
stiffness matrix and SIFs. In the three-dimensional XFEM analysis of regularised in-
terfaces, Benvenuti [26] proposed the Gauss quadrature of integrals of discontinuous
and singular functions [9].

2.3.3 Cohesive Fracture Mechanics

LEFM is effective only when the fracture process zone (FPZ) at the crack tip is small
compared to the size of the crack and the size of the specimen LEFM useful [106].
In order to account for the FPZ, other models must be chosen [9]. A traction-
displacement relation across the fracture faces near the tip can be used to depict the
cohesive crack model, one of the simplest ones. By incorporating the idea of fracture
energy into the cohesive crack model and defining a variety of traction-displacement
equations for concrete, Hillerborg, Modéer, and Petersson [107] further refined the
model that Dugdale and Barenblatt [108] introduced in the early 1960s for metals.
By incorporating the displacement jump into the conventional FEM and using the
jump function as an enrichment function for the entire cohesive crack, Wells and
Sluys [109] proposed the first application of an enriched FEM into cohesive fracture
mechanics [9]. In this case, the path of the discontinuity was completely independent
of the mesh structure. For simulating the formation of arbitrary cohesive cracks,
Moës and Belytschko [110] designed the cohesive crack model within the XFEM
framework. This model required the SIFs at the cohesive zone’s tip to disappear in
order for the cohesive zone to grow. In order to avoid the need for local PU blending,
Zi and Belytschko [111] introduced an XFEM for the cohesive crack model with a
new formulation for elements containing crack tips. In this formulation, the entire
crack was modelled with just one type of enrichment function, namely the signed
distance function, including the elements containing the crack tip. The crack was
modelled as a group of cohesive segments with a finite length, and the segments
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were added to finite elements by using the partition of unity property of the finite ele-
ment shape functions [9]. Remmers, de Borst, and Needleman [112] presented this
method for modelling crack nucleation and discontinuous crack growth regardless of
the structure of the finite element mesh. Using a cubic displacement discontinuity,
Mariani and Perego [113] described a method for simulating the propagation of
quasi-static cohesive cracks in quasi-brittle materials. The process zone at the tip of a
cohesive fracture was modelled to have a cusp-like appearance [9]. Belytschko [114]
proposed the XFEM for modelling dynamic crack propagation based on switching
from a continuum to a discrete discontinuity, where the loss of hyperbolicity was
modelled by a hyperbolicity indicator that allows determining both the crack speed
and crack direction for a given material model [9]. A theoretical and computational
framework for linear and nonlinear fracture behaviours was published by Larsson
and Fagerström [115]. It was based on the inverse deformation issue and employed
discontinuous deformation that was separated from continuous deformation using
the XFEM approach. There is a connection between fracture mechanics and strain
softening. The fact that strain softening results from damage and frequently precedes
fracture is one reason for this interest. In actuality, it is a symptom of energy release
that occurs gradually during microscopic decohesion before a macroscopic break
becomes visible [9]. Areias and Belytschko [116] presented a numerical method
for the quasi-static analysis of three-dimensional crack propagation in brittle and
quasi-brittle solids. This method coupled an XFEM formulation with a regularised
"crack-band" version of the XFEM with a viscosity-regularized continuum damage
constitutive model [9]. An incremental-secant modulus iteration method employing
the XFEM/GFEM was presented by Xiao, Karihaloo and Liu [117] to model the
cracking process in quasi-brittle materials defined by cohesive crack models whose
softening law was composed of linear segments. Based on additional enrichment of
the cracked elements with the capabilities to model variations in the discontinuous
displacement field on both sides of the discontinuity to obtain a better stress distribu-
tion on crack faces, Asferg, Poulsen, and Nielsen [118] developed a partially cracked
XFEM element for cohesive crack growth. For the transition from continuous to dis-
continuous displacements, Benvenuti [119] and Benvenuti, Tralli, and Ventura [25]
introduced a regularised XFEM model, in which the emerging strain and stress fields
were modelled separately using particular constitutive assumptions that can address
cohesive interfaces with vanishing and finite thickness in a unified manner. In a thor-
ough investigation, Zamani, Gracie, and Eslami [120] employed the SIF criterion and
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the stress criterion with both linear and nonlinear cohesive laws to use higher-order
terms of the crack tip asymptotic fields as enrichment functions of the XFEM for
cohesive and traction-free cracks. By including the constitutive conditions in front of
the crack tip as direct unknowns in the FEM equations along with the crack growth
parameters in an incremental form of the virtual work, Mougaard, Poulsen, and
Nielsen [121] presented a complete tangent stiffness for modelling crack growth in
the XFEM [9]. XFEM has been widely utilised in cases where failure is followed by
the development of discrete cracks and localised damage zones, such as in concrete
structures and rock mechanics problems, to simulate crack growth. For a discrete
crack simulation of concrete utilising an adaptive crack growth method, Unger,
Eckardt, and Könke [122] used the XFEM [9]. Several criteria were used to forecast
the direction of the expansion of a cohesive fracture. Deb and Das [123] presented
the XFEM for simulating cohesive discontinuities in rock masses. The displacement
discontinuities were simulated by modelling using three- and six-nodded triangular
elements. To examine the impacts of fracture criteria in cohesive zone models for
mixed-mode fractures, Xu and Yuan [124] presented a cohesive zone model with
a threshold in conjunction with the XFEM. Benvenuti and Tralli [125] proposed
a regularised XFEM approach that can simulate the formation of a process zone
with finite width and its subsequent collapse into a macro-crack in concrete-like
materials [9]. This approach can deal with the entire process from strain localization
to crack inception and propagation in a unified and smooth manner. A numerical
method based on the XFEM was published by Zhang, Wang, and Yu [126] with
particular reference to the dynamic study of the Koyna Dam during the 1967 Koyna
earthquake. The method was designed for a seismic analysis of crack development
in concrete gravity dams [9].

2.4 Conclusions

The present chapter has provided a comprehensive overview of XFEM, outlining its
theoretical foundations and practical implementation, as well as highlighting some
of its key advantages and limitations. By examining a number of representative
examples from the literature, we have demonstrated how XFEM can be used to
solve challenging problems that would be difficult or even impossible to tackle with
traditional FEM. Overall, it is clear that the XFEM method represents a significant
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advance in the field of numerical simulation, and has the potential to revolutionise
the way in which a variety of engineering problems are approached. There are still
some challenges to be addressed, particularly in terms of computational efficiency
and robustness, that will be further discussed in this Thesis. In conclusion, XFEM
represents a powerful numerical tool that allows for the efficient and accurate simu-
lation of complex engineering problems involving discontinuities and singularities.
Through its ability to seamlessly incorporate the effects of such features into the
underlying mesh, XFEM provides a flexible and versatile framework that is well-
suited for a wide range of applications, including fracture mechanics, fluid-structure
interaction, and contact problems, among others.



Chapter 3

eXtended Finite Element Method:
Formulation and Challenges

3.1 Introduction

As a piecewise differentiable polynomial approximation, the FEM approximation
is unsuitable to describe problems including discontinuities (either in the unknown
field or its gradient), singularities, and boundary layers [9]. It is required to adapt the
discretisation to the line or surface of the discontinuity in order to properly model
discontinuities using the FEM. When addressing problems with growing discontinu-
ities, where the mesh needs to be re-generated at each step, this poses a significant
challenge. The standard FEM requires extensive mesh refinement in the areas where
the field gradients are high in order to resolve singularities or boundary layers. In
fact, updating the mesh topology to adhere to the discontinuity geometry makes mod-
elling discontinuities using the FEM troublesome (Figure 3.1) [9]. The existence of
fractures, shear bands, and inclusions in structural problems are prominent examples
of the discontinuity in a system field variables. Discontinuous fields can also exist
between two distinct fluids in fluid mechanics problems. Discontinuities are usually
grouped into two categories: strong discontinuities and weak discontinuities. The
former refers to discontinuities in the field variables of a model, while the latter
represents discontinuities in the field variables gradients. Cracks and interfaces
between different materials represent strong and weak discontinuities in structural
problems. An adequate management of the interface in the approximation of the
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(a) Crack propagation in a
plate containing a hole and
subjected to a tensile stress.

(b) Example of standard
FEM mesh following the in-
terfaces geometry.

(c) Example of XFEM mesh.
Yellow elements are en-
riched.

Fig. 3.1 Comparison between standard FEM and XFEM modelling of a plate con-
taining a crack and a hole and subjected to a tensile stress. (Source: Extended Finite
Element Method: theory and applications (p. 32) by A. R. Khoei, 2015, John Wiley
& Sons. [Copyright (2015) by title of publisher]. Used with permission.)

discontinuous field is required for good convergence of the solution. As shown in
the crack tip area, the solution may, for instance, have a particular behaviour at the
interface, such as strong discontinuities or singular derivatives [9]. In such cases,
the numerical method involved in the approximation may be enhanced to represent
these characteristics of the solution. The essential feature is the incorporation of
enrichment functions that contain a discontinuous field. The standard FEM relies on
the local approximation properties of polynomials [5]. However, for jumps, kinks, or
singularities in the solution within elements, polynomials have poor approximation
properties [127]. Consequently, the accuracy of a standard finite element analysis
is, in general, quite poor for problems involving arbitrary discontinuities [128]. Var-
ious formulations have been developed with the capability to introduce particular
solution characteristics into the approximation space, such as the partition of unity
finite element method (PU-FEM) [14], the GFEM [45, 46], and the XFEM [18, 7].
These techniques include the PUM, which adds unique enrichment functions to the
conventional approximation space. In this Chapter the mathematical formulation for
the XFEM will be introduced with reference to solid mechanics problems and its
robustness as well as its potential flaws will be discussed. It includes the definition of
PUM, enrichment elements and enrichment functions, as well as XFEM formulation
numerical integration. In particular, in Section 3.7, the quadrature problems that
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arise due to the introduction of discontinuous enrichment functions will be anal-
ysed and the existing methods to circumvent the issue, with their advantages and
disadvantages, will be examined.

3.2 The Partition of Unity Method and Enriched Fi-
nite Elements

A partition of unity in a domain Ω is a set of functions such that

N

∑
i

φi(xxx) = 1,∀xxx ∈ Ω (3.1)

The basis for the definition of the PU is the notion of clouds, which are overlapping
open sets Ωi of arbitrary shape centred in xxxi and covering the solution domain Ω of
a boundary value problem with Ω ⊂ ∪N

i=1Ωi [129]. A PU is an ensemble of global
functions φi(xxx) whose support is contained in a cloud and whose values add up to
one at each point xxx in the solution domain (Eq. (3.1)). By means of an arbitrary
function ψ(xxx) defined on Ω, Eq. (3.1) becomes

N

∑
i

φi(xxx)ψ(xxxi) = ψ(xxx) (3.2)

Since in the FE approach the shape function collection is generally a PU, by taking
φi(xxx)≡ Ni(xxx), the solution field uuu(xxx) can be written as

uuu(xxx) =
N

∑
i

Ni(xxx)ūuui (3.3)

where N represents the number of each finite element nodal points and Ni are the
standard shape functions. Nonetheless, the interpolation field can be enhanced by
expressions that adhere to the analytical solution [9]. A mathematical framework
for generating an enriched solution can be developed using the notion of PU. The
enrichment is the process of enhancing the discretisation approximation depending
on the characteristics of the problem. In this approach, the behaviour of the analysed
phenomena is added to the approximation space used to solve the problem. The main
method for obtaining the enriched solution is to increase the order of completeness,
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which leads to a greater approximation accuracy by including the information ac-
quired from the analytical solution [9]. Enrichment can be characterised by knowing
the particular behaviour of the solution (e.g. in case of singularities, discontinuities,
etc.), embedding this information into the FE space, in opposition to standard FEM,
where singular solution behaviour are generally resolved refining the mesh. Several
interpolation functions set can be employed to better estimate the problem solution
than polynomial spaces. The PU concept introduction for the enrichment of solution
spaces of numerical solutions to partial differential equation is generally credited
to Melenk and Babuška [5], who introduced the PUM: the precursor of XFEM and
GFEM [15], and defined some interpolation functions used for the solution of the
Laplace equation, Helmholtz equation, and the elasticity equation. The key feature
is based on the multiplication of enrichment functions by nodal shape functions.
Limiting the enrichment to the nodes of a region of interest, the enrichment can
acquire a local form [9]. Therefore, the FE approximation of the enriched domain
can be written as

uuu(xxx) =
N

∑
i

Ni(xxx)ūuui︸ ︷︷ ︸
standard interpolation

+
N

∑
i

Ni(xxx)(
M

∑
j

p j(xxx)āaai j)︸ ︷︷ ︸
enriched interpolation

(3.4)

where ūuui are the standard nodal DOF associated to the basis Ni(xxx) and āaai j are the
DOF associated to the basis p j(xxx). M represents the enrichment functions number
for the i-th node. In Eq. (3.4) the standard FE interpolation field indicates the base
field upon the enriched interpolation field is overlapped to improve the displacement
field interpolation uuu(xxx) by means of the enriched terms. In the mathematical literature
the enriched part of the interpolation is usually called the ansatz. As the enrichment
is adjusted to best reproduce the current solution (p j(xxx) is frequently based on
asymptotic solutions, which are not perfect solutions), the nodal values āaai j are
unknown parameters. Therefore, the ansatz need not be a precise local solution
for the issue at hand [15]. Another benefit of this approximation structure is that
the discrete equations for the system will be sparse if the functions φi(xxx) have
compact support (e.g. are only nonzero across a tiny subdomain of the problem).
In contrast, if an enrichment function were simply added to the approximation,
non-sparse discrete equations would result, which are far more computationally
burdensome. Notice that the approximation in Eq. (3.4) reproduces the function
p j(xxx) identically when āaai j = 1 and ūuui, according to the partition of unity condition.
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It should be highlighted that, despite what was stated above, the shape functions for
the conventional approximation and enrichment do not necessarily need to be the
same functions. Instead, usually speaking, φi(xxx) = Ni(xxx) is employed [15]. Since the
partition of unity criteria enables a FE approximation to accurately represent rigid
body translation, all Lagrangian FE shape functions possess this property, which is
required for convergence and passing the patch test. Many meshfree approximations
also meet this requirement [15].

3.3 Enriched Elements

The core concept of the standard FEM is the approximation properties of polyno-
mials [37, 19]. Standard FEM may perform quite poorly if the solution exhibits
noticeable non-polynomial behaviour, such as weak or strong discontinuities. In
fact, the discontinuity or singularity, for instance at the crack tip location, cannot be
accurately represented by the standard FEM in an adequate way. Numerous strate-
gies have been proposed in order to get over these problems, but one of the most
effective ones to utilise to capture weak or strong discontinuities is the enrichment
of approximation space [9]. The degree of consistency of the approximation or the
versatility of the approximation to recreate a certain complex field of interest may
be attributed to the enrichment. Enhancing the order of completeness is essentially
the same as the enrichment principle. However, the enrichment aims to improve
the approximation accuracy by including information from the analytical solution.
In the case of PUM (Section 3.2) and XFEM/GFEM, the approximation space is
enhanced through "extrinsic enrichment" of the approximation by adding enrichment
functions to standard approximation (Eq. (3.4)) [9]. While enrichment functions are
defined over the entire domain in standard PUM, a local extrinsic enrichment of the
approximation is used by the XFEM. Since discontinuities usually have local effects,
enrichment can be restricted to certain zones rather than enriching the whole solu-
tion domain, dramatically reducing the computational time and the memory usage.
XFEM enrichment gives elements the capability to replicate the internal interfaces
of both strong and weak discontinuities [9]. The former refers to discontinuities that
primarily affect the main variables, such as displacement in crack surfaces, while the
latter refers to discontinuities in gradients, such as displacement gradient, or strain,
in the boundaries of material changes (bimaterial problems). The solution field in
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XFEM can be described as

uuu(xxx) =
N

∑
i=1

Ni(xxx)ūuui +
P

∑
k=1

Mk

∑
j=1

N̄ j(xxx)ψk(xxx)āaak j (3.5)

where Mk ⊆ N are the set of nodal points enriched by ψk(xxx). Given the fact that

∑
Mk
j=1 N̄ j(xxx) is only a PU in the elements where all nodes are enriched, this technique

must be acknowledged as not being entirely compatible with the standard PU notion.
In fact, the enriched approximation is capable of exactly define the ψk(xxx) functions
only in these elements. However, issues can occasionally arise for enrichment
functions in elements for which only some of the nodes are enriched, also known
as blending elements [75, 76]. The local extrinsic enrichment of the XFEM in fact
produce a systematic error in partly enriched elements.

3.4 XFEM Approximation

One of the most employed enriched PUM approaches for numerical modelling of
discontinuous problems is the XFEM [9]. It is a potent and precise method used
to model both weak and strong discontinuities without taking into account their
geometries. This approach incorporates specific functions that rely on the nature of
discontinuity into the finite element approximation without considering them during
the mesh generation procedure. The technique goal is to model weak and strong
discontinuities minimising the enrichment. Fractures, voids, contact surfaces, and
so on, have no impact on mesh configurations in XFEM [9]. Problems involving
moving discontinuities, such as changing of phase, fracture propagation, and shear
banding, are well suited for this approach. To introduce the notion of discontinuous
enrichment, let us consider a body Ω containing a discontinuity Γd (as shown in
Figure 3.2). The objective is to build a discontinuous FE approximation of the field
uuu ∈ Ω along the discontinuity Γd . The standard FEM approach is to create a mesh
in which the elements conform and align to the discontinuity (Figure 3.1b). This
technique is clearly burdensome and computationally expansive, especially in the
case of a growing discontinuity or if multiple discontinuities have to be modelled. In
XFEM the discontinuity Γd is modelled by means of enrichment functions, so that
the uniform mesh in Figure 3.1c can reproduce the discontinuity in uuu ∈ Ω within the
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(a) Internal interfaces definition for the
discontinuities.

(b) Uniform mesh with enriched nodes
(with additional DOF) and enriched ele-
ments highlighted.

Fig. 3.2 Enriched-FEM technique to model weak and strong discontinuities. (Source:
Extended Finite Element Method: theory and applications (p. 38) by A. R. Khoei,
2015, John Wiley & Sons. [Copyright (2015) by title of publisher]. Used with
permission.)

enriched elements [9]. The approximation for a single interface Γd can be written as

uuu(xxx) =
N

∑
i=1

Ni(xxx)ūuui +
M

∑
j=1

N̄ j(xxx)ψ(xxx)āaa j (3.6)

where the enriched component N̄ j(xxx) shape functions are selected similar to the FE
shape functions Ni(xxx). In this equation, psi(xxx) is the enrichment function, N(xxx) is
the standard shape function, ūuui is the standard nodal displacement, and āaa j is the
nodal DOF corresponding to the enrichment function. N is the set of all nodal
points of the domain in Eq. (3.6), and M is the set of all the elements nodes on
the discontinuity Γd . The PUM and the enrichment of displacement field are two
methods that are simultaneously used in the XFEM to treat elements containing
discontinuities. PUM is employed to improve the approximation, including the
enrichment functions to the standard approximation. By adding discontinuous fields
using a PUM, the displacement field enrichment is used to correct the conventional
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displacement-based approximation. As an application of the PU principle, it must be
highlighted that the enrichment differs from node to node and that many do not need
enrichment [9]. The variety of problem types in XFEM require the identification
of suitable enrichment functions. The enrichment function can be defined using
a variety of methods; these methods depend on the type of discontinuity and how
it affects the solution form. These approaches are based on several mathematical
functions, including the signed distance function, level set function, branch function,
Heaviside jump function, and others [9]. The problem conditions affect the choice of
enrichment functions in displacement approximation. The level set function can be
suggested as an enrichment function if the discontinuity results from various kinds
of material properties (Figure 3.3a); however, the Heaviside function is appropriate
if the discontinuity is caused by different displacement fields on each side of the
discontinuity (Figure 3.3b). The Heaviside step function is well suited for crack

(a) Weak discontinuity mod-
elling.

(b) Strong discontinuity mod-
elling.

Fig. 3.3 XFEM discontinuity modelling. (Source: Extended Finite Element Method:
theory and applications (p. 39) by A. R. Khoei, 2015, John Wiley & Sons. [Copyright
(2015) by title of publisher]. Used with permission.)

problems discontinuous across the crack line [33]. The crack tip singularity can
be modelled in linear fracture mechanics by means of branch functions that extend
the near tip asymptotic solution for a crack tip [33]. The interface motion can be
tracked by means of the level set method, where the interface is described as a zero
level set of a function of one higher dimension [130]. This technique for predicting
boundary geometry stands out as a viable choice for inhomogeneous fields, and
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it finds significant effectiveness in enriching the domains where the strain field is
discontinuous [9].

3.5 Heaviside Step Function

The term strong discontinuity refers to a jump in the displacement field that is
frequently seen in fracture problems. When the displacement fields on the two sides
of a fracture are completely different from one another, there is a discontinuity in the
displacement. In such instances, the Heaviside function can be used to characterise
the kinematics of the strong discontinuity [9]. Commonly, there are two ways to
define the Heaviside function, one as

H(xxx) = ϕ(xxx) =

{
1 i f ϕ(xxx)> 0
0 i f ϕ(xxx)< 0

(3.7)

and the other as

H(xxx) = ϕ(xxx) =

{
1 i f ϕ(xxx)> 0

−1 i f ϕ(xxx)< 0
(3.8)

where ϕ(xxx) is the signed distance function, defined as

ϕ(xxx) = ∥xxx− xxx∗∥sign(nnnΓd(xxx− xxx∗)) (3.9)

in which (as shown in Figure 3.4) xxx∗ is the projection of xxx onto the discontinuity Γd ,
nnnΓd is the normal to the interface at point xxx∗, and ∥ ∥ denotes the Euclidean norm.
The definition in Eq. (3.7) is known as the original Heaviside step function, while
the one in Eq. (3.8) is known as the Heaviside sign function. Heaviside enrichment
function is discontinuous at the interface. It ought to be noted that smoothed functions
could be required to prevent numerical problems such instabilities in the numerical
solution. This aspect will be discussed more in detail in Section 3.7. Moreover, the
proposed numerical implementation of the equivalent polynomials method presented
by Ventura [22, 27] in the case of domains containing a single discontinuity, and the
proposed formulation to overcome numerical problems in quadrangular domains
containing double discontinuities will be presented in Chapters 4 and 5. Using the
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Fig. 3.4 Signed distance function definition. (Source: Extended Finite Element
Method: theory and applications (p. 40) by A. R. Khoei, 2015, John Wiley & Sons.
[Copyright (2015) by title of publisher]. Used with permission.)

Heaviside function H(xxx) as enrichment function, Eq. (3.6) becomes

uuu(xxx) =
N

∑
i=1

Ni(xxx)ūuui +
M

∑
j=1

N̄ j(xxx)H(xxx)āaa j (3.10)

The consequences of Heaviside enrichment function in the approximation field
(Eq. (3.10)) are illustrated in Figure 3.5 in the context of a monodimensional body
embedding a strong discontinuity at point xc. In Figure 3.5 a monodimensional
body (i.e. a bar) containing a strong discontinuity at an arbitrary location xc between
nodes 2 and 3 is considered. The shape function for each finite element are defined
referring to a monodimensional two-nodes parent element in a parent coordinate
system (ξ ) as {

Ni(ξ ) = (1−ξ )

N f (ξ ) = ξ
(3.11)

where i is the starting node of the parent element and f is its end node. The
correspondence between the parent coordinate system (ξ ) and the global coordinate
system (x) is definied by means of isoparametric mapping [9]. In the middle
(enriched) element it is ϕ(xc) = 0. The Heaviside definition in Eq. (3.8) is considered
in order to enrich nodes 2 and 3, thus it will be{

H(ϕ(x2)) = −1
H(ϕ(x3)) = 1

(3.12)
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(a) Enrichment without shifting N j(x)H(x). (b) Enrichment with shifting N j(x)(H(x)−
H(x j)).

Fig. 3.5 XFEM enrichment applied on a monodimensional body containing a strong
discontinuity at point xc. Enriched nodes are in red.

The enriched Heaviside shape functions N j(x)H(x) are shown in Figure 3.5a for
nodes 2 and 3. The displacement value at an enriched node k can be deducted from
Eq. (3.10) as

u(xk) = ūk +H(ϕ(xk))āk (3.13)

As H(ϕ(xk)) is not zero by definition, Eq. (3.13) is not equal to the real nodal value
ūk [9]. The enriched displacement field in Eq. (3.10) can be revised as

uuu(xxx) =
N

∑
i=1

Ni(xxx)ūuui +
M

∑
j=1

N̄ j(xxx)(H(xxx)−H(xxx j))āaa j (3.14)

in which the term H(xxx)−H(xxx j) in Eq. (3.14) guarantees the expected u(xk) = ūk.
The approximation in Eq. (3.14) is known as shifting [33] and the enriched field
of the shifted Heaviside function N j(x)(H(x)−H(x j)) are shown in Fig. 3.5b for
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nodes 2 and 3 [9]. Clearly, a jump in the displacement field arises when using the
Heaviside enrichment function.

3.6 XFEM Governing Equation Discretisation

In order to obtain the XFEM formulation for a continuum body embedding a dis-
continuity, let us consider a body Ω = ΩA +ΩB containing an internal discontinuous
boundary Γd (Figure 3.6). The static equilibrium equation for the body in Figure 3.6

Fig. 3.6 A body Ω = ΩA +ΩB containing an internal discontinuous boundary Γd .
(Source: Extended Finite Element Method: theory and applications (p. 40) by A.
R. Khoei, 2015, John Wiley & Sons. [Copyright (2015) by title of publisher]. Used
with permission.)

is
∇ ·σσσ +bbb = 000 in Ω (3.15)

where ∇ indicates the gradient operator, σσσ is the Cauchy stress tensor and bbb is the
body force vector [9]. Assuming that the material behaviour is linear-elastic, its
constitutive relation can be written as

σσσ = DDDεεε (3.16)

with DDD being the tangential constitutive matrix and εεε being the strain tensor. The
problem boundary conditions are

σσσ ·nnnΓ = t̄tt on Γt

uuu = ūuu on Γu

σσσ ·nnnΓd = t̄ttd on Γd

(3.17)
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where ūuu = (ūuux, ūuuy)
T is the prescribed displacement on the boundary Γu, t̄tt = (t̄ttx, t̄tty)

T

is the prescribed traction vector on the boundary Γt , and nnnΓ is the outward normal
vector to the external boundary Γ. In the case of weak discontinuities t̄ttd indicates the
transferred traction across the discontinuity Γd . In the case of strong discontinuities,
the traction-free condition is σσσ · nnnΓd = 000. The Galerkin discretisation method is
utilised to derive the weak form of equilibrium equation in Eq. (3.15), integrating
the product of the equilibrium equation multipied by admissible test function over
the domain [9]. The trial function uuu(xxx, t) must satisfy the boundary conditions in
Eq. (3.17) and be smooth enough to define the equations derivatives. Moreover,
δuuu(xxx, t) have the same properties of trial function, since it is defined in the same
approximation space [9]. Let us define a continuous function GGG. By means of the
Divergence theorem the integral of GGG over the domain Ω can be set equal to the
integration over the boundary Γ as∫

Ω

divGGGdΩ =
∫

Γ

GGG ·nnnΓ dΓ (3.18)

In order to adapt Eq. (3.18) to discontinuous problems, let us consider the domain
Ω as in Figure 3.6, which it is divided into two distinct parts ΩA and ΩB by the
discontinuity Γd , so that∫

Ω

divGGGdΩ =
∫

ΩA

divGGGdΩ+
∫

ΩB

divGGGdΩ (3.19)

By applying the Divergence theorem on the two subdomains in Eq. (3.19) it is∫
Ω

divGGGdΩ =
∫

Γ

GGG ·nnnΓ dΓ−
∫

ΓdA

GGG ·nnnΓd dΓ+
∫

ΓdB

GGG ·nnnΓd dΓ (3.20)

where the value of GGG over ΓdA and ΓdB can be denoted by GGGA and GGGB. Moreover,
defining as [[[GGG]]] = GGGA −GGGB Eq. (3.20) becomes∫

Ω

divGGGdΩ =
∫

Γ

GGG ·nnnΓ dΓ−
∫

Γd

[[[GGG]]] ·nnnΓd dΓ (3.21)

which is the Divergence theorem expression for discontinuous problems[9].
Multiplying Eq. (3.15) by uuu(xxx, t) and integrating over the entire domain Ω it is∫

Ω

δuuu(xxx, t)(∇ ·σσσ +bbb)dΩ = 0 (3.22)
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By applying the expression of the Divergence theorem for discontinuous problems
in Eq. (3.21), Eq. (3.22) becomes∫

Ω

∇δuuu : σσσ dΩ+
∫

Γd

[[[δuuu ·σσσ ]]]nnnΓd dΓ−
∫

Γt

δuuu · t̄tt dΓ−
∫

Ω

δuuu ·bbbdΩ = 0 (3.23)

which can be generally simplified in the case of weak and strong discontinuities [9]
as ∫

Ω

∇δuuu : σσσ dΩ−
∫

Γt

δuuu · t̄tt dΓ−
∫

Ω

δuuu ·bbbdΩ = 0 (3.24)

To discretise Eq. (3.24), the XFEM discretisation is applied using the approximation
field described in Eq. (3.6). The displacement field of an enrichment element can be
written as

uuu(xxx, t) =
N

∑
i=1

Ni(xxx)ūuui +
M

∑
j=1

N j(xxx)(ψ(xxx)−ψ(xxx j))āaa j

≡ NNNstd(xxx)ūuu+NNNenr(xxx)āaa

(3.25)

where the shifted enrichment function ψ((xxx)) and the notation Nstd
i (xxx)≡ Ni(xxx) and

Nenr
j (xxx) ≡ N j(xxx)(ψ(xxx)−ψ(xxx j)) have been used. It is possible to define the test

function δuuu(xxx, t) as

δuuu(xxx, t) =
N

∑
i=1

Ni(xxx)δ ūuui +
M

∑
j=1

N j(xxx)(ψ(xxx)−ψ(xxx j))δ āaa j

≡ NNNstd(xxx)δ ūuu+NNNenr(xxx)δ āaa

(3.26)

From Eq. (3.25) it is possible to define the strain vector εεε(xxx, t) as

εεε(xxx, t) =
N

∑
i=1

δNi(xxx)
δxxx

ūuui

+
M

∑
j=1

[
δN j(xxx)

δxxx
(ψ(xxx)−ψ(xxx j))+N j(xxx)

δ

δxxx
(ψ(xxx)−ψ(xxx j))

]
āaa j

≡ BBBstd(xxx)ūuu+BBBenr(xxx)āaa

(3.27)
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The strain field variation δεεε(xxx, t) can be obtained as

δεεε(xxx, t) =
N

∑
i=1

δNi(xxx)
δxxx

δ ūuui

+
M

∑
j=1

[
δN j(xxx)

δxxx
(ψ(xxx)−ψ(xxx j))+N j(xxx)

δ

δxxx
(ψ(xxx)−ψ(xxx j))

]
δ āaa j

≡ BBBstd(xxx)δ ūuu+BBBenr(xxx)δ āaa

(3.28)

Substituting the test functions δuuu(xxx, t) and δεεε(xxx, t) from eqs. (3.26) and (3.28) into
Eq. (3.24) it is ∫

Ω

(BBBstd(xxx)δ ūuu+BBBenr(xxx)δ āaa)T
σσσ dΩ

−
∫

Γt

(NNNstd(xxx)δ ūuu+NNNenr(xxx)δ āaa)T t̄tt dΓ

−
∫

Ω

(NNNstd(xxx)δ ūuu+NNNenr(xxx)δ āaa)T bbbdΩ = 0

(3.29)

which can be rearranged as

δ ūuuT
{∫

Ω

(BBBstd)T
σσσ dΩ−

∫
Γt

(NNNstd)T t̄tt dΓ−
∫

Ω

(NNNstd)T bbbdΩ

}
+δ āaaT

{∫
Ω

(BBBenr)T
σσσ dΩ−

∫
Γt

(NNNenr)T t̄tt dΓ−
∫

Ω

(NNNenr)T bbbdΩ

}
= 0

(3.30)

Defining ŪUUT
= [ūuuT , āaaT ] as the unknowns vector at the nodal points, from Eq. (3.30)

it is possible to obtain the discrete system of XFEM equations as

KKKŪUU −FFF = 000 (3.31)

where KKK is the total stiffness matrix and FFF is the external force vector [9]. The
system of equations in Eq. (3.31) can be written as[

KKKuu KKKua

KKKau KKKaa

]{
ūuu
āaa

}
=

{
FFFu

FFFa

}
(3.32)
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where

KKK =


∫

Ω

(BBBstd)T DDDBBBstd dΩ

∫
Ω

(BBBstd)T DDDBBBenr dΩ∫
Ω

(BBBenr)T DDDBBBstd dΩ

∫
Ω

(BBBenr)T DDDBBBenr dΩ

 (3.33)

and

FFF =


∫

Γt

(NNNstd)T t̄tt dΓ+
∫

Ω

(NNNstd)T bbbdΩ∫
Γt

(NNNenr)T t̄tt dΓ+
∫

Ω

(NNNenr)T bbbdΩ

 (3.34)

3.7 Numerical Integration in XFEM

The Gauss quadrature rule can be effectively utilised to calculate the stiffness matrix
integral in the conventional FEM since the standard shape functions are expressed in
terms of polynomial order. The enriched shape functions in the XFEM, however, may
be expressed in terms of non-polynomial order. Additionally, because an enriched
element may have a weak or strong discontinuity, the enrichment functions over the
element may not be smooth. Therefore, if the element is split by a discontinuity,
the conventional Gauss quadrature rule cannot be applied, and essential changes
are required for numerical integration over an enriched element [9]. The main
strategy, based on the increased number of Gauss integration points, as shown in
Figure 3.7a, may be proposed; nevertheless, this technique may cause a significant
loss in accuracy. Two methods: the triangular/quadrilateral partitioning approach
and the rectangular sub-grids method, are developed for the numerical integration of
an enriched element in order to get around these problems. The element bisected
by the interface is separated into triangle and quadrilateral sub-elements using the
triangular/quadrilateral partitioning technique, as illustrated in Figure 2.14b, and
the Gauss integration rule is applied to each sub-polygon. This decomposition does
not introduce any new unknowns or require the sub-polygons to be compliant. The
zero level set is defined by ϕ(xxx) = ∑

N
i=1 Ni(xxx)ϕi = 0 because the interface is often

specified by a discretised level set function that is interpolated by the common FE
shape functions. The interface, which is ϕ(xxx) zero-level, is often curved and is
defined by finding the roots in the reference element and projecting those points
onto the geometry of the real element [9]. In actuality, only linear interpolants with
3-noded triangular elements have an interface that is planar within the elements. For
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(a) Standard Gauss integra-
tion points.

(b) Triangular/quadrilateral
partitioning method.

(c) Rectangular sub-grids
method.

Fig. 3.7 Numerical integration of enriched XFEM element. (Source: Extended Finite
Element Method: theory and applications (p. 58) by A. R. Khoei, 2015, John Wiley
& Sons. [Copyright (2015) by title of publisher]. Used with permission.)

quadrilateral elements, it is acceptable to substitute a straight line for the curved
interface based on where the interface intersects the edges of the element. Because
they represent a constraint in this situation, it is challenging to design the precise
interpolation functions of ϕ(xxx) [9]. Since the interface is therefore always piecewise
straight and triangular sub-elements for integration purposes are easily obtained, it
is frequently preferred to breakdown the cut quadrilateral reference elements into
sub-triangles and utilise linear interpolation in each sub-triangle. But when a level
set function is used to discretise a curved interface that cuts through an element
with linear shape functions, the level set function is unable to accurately capture the
curvature of the interface. To expand the number of sub-polygons and preserve the
accuracy of the integration in such a situation, additional points can be added along
the interface [9]. Let us consider a body B defined in a global coordinate system (xxx).
Let us assume that B is discretised by means of isoparametric elements and let us
consider an element Ω of its mesh. To compute the Ω stiffness matrix in Eq. (3.33)
it is convenient to refer to a parent coordinate system (ξξξ ) in which parent element
P is defined and a correspondence between the global coordinate system and the
parent coordinate system is ensured by means of isoparametric mapping such as

xxx =
N

∑
i=1

Ni(ξξξ )xxxi (3.35)
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where N is the number of nodes of the isoparametric element. Since the derivatives
of both standard and enriched shape functions (BBBstd and BBBenr respectively) are defined
in the global coordinate system, a relation between the derivatives in the global and
parent coordinate system have to be defined. This can be accomplished by means of
Jacobian matrix JJJ for the mapping function in Eq. (3.35) as

δNNN
δξξξ

= JJJ
δNNN
δxxx

=
δxxx
δξξξ

δNNN
δxxx

(3.36)

Finally, from eqs. (3.35) and (3.36), the total stiffness matrix in Eq. (3.33) is

KKKαβ

i j (xxx) =
∫

Ω

(
BBBα

i(xxx)

)T
DDDBBBβ

j (xxx) dΩ =
∫
P

(
BBBα

i(ξξξ )

)T
DDDBBBβ

j (ξξξ )detJJJ dP (3.37)

Let us suppose that Ω split in two parts, Ω+ and Ω−, by a discontinuity Γd as shown
in Figure 3.7. The numerical integration of the stiffness matrix in Eq. (3.37) can be
performed decomposing the domains into quadrilateral and triangles (Figure 3.7b),
in order to employ the Gauss quadrature rule over each sub-element as

KKKαβ

i j (xxx) =
N +

sub

∑
l=1

N +
GP

∑
k=1

(
BBBα

i(ξξξ )

)T
DDDBBBβ

j (ξξξ )wk


l

+
N −

sub

∑
l=1

N −
GP

∑
k=1

(
BBBα

i(ξξξ )

)T
DDDBBBβ

j (ξξξ )wk


l

(3.38)

where N +
sub and N −

sub are the sub-polygons number in Ω+ and Ω− respectively, N +
GP

and N −
GP are the Gauss points for each sub-polygon in Ω+ and Ω− respectively, and

wk is the quadrature point weight. Although the integration of polynomials (up to
a certain order) is mathematically exact for the triangular sub-elements, this prop-
erty cannot be always guaranteed for quadrilaterals sub-elements. In fact, distorted
quadrilateral sub-elements may arise when the element partitioning is performed
(Figure 3.7b), which may lead to a loss of precision in the integral computation,
therefore the exact integration property can be lost [131, 132, 9]. An alternative
method is dividing the element by the interface into rectangular sub-grids, illustrated
in Figure 3.7c. In this method, it is not required to conform the sub-quadrilaterals
to the interface geometry, but there must be enough subdivisions to lessen the nu-
merical integration error. The natural coordinates of the Gauss quadrature points are
independent at each sub-quadrilateral based on the rectangular sub-grids integration.
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An exact solution may be obtained by increasing the number of sub-quadrilaterals.
It should be noted that since the interface does not correspond with the rectangular
edges, it may create some approximation in the numerical simulation [133, 134, 9].
Both methods have benefits and weaknesses, but they are both very accurate and
often employed in the extended FE framework. Since the domain is divided into
smooth sub-domains in the triangular-partitioning approach, the integration might
be considerably more precise; nevertheless, developing partitioning for different
interface configurations would be extremely laborious. Additionally, the likelihood
of updating the interface as a result of its temporal development, particularly ow-
ing to crack propagation, may result in the position of the Gauss points changing
throughout the solution, necessitating transferring information between the old and
new Gauss points. Contrarily, the rectangular sub-grids technique does not need to
transfer information since the sub-grids are independent of the interface configura-
tion. Rectangular sub-grid integration is obviously more simpler to construct than the
triangle partitioning approach, but accuracy cannot be guaranteed in those sub-grids
that are divided by the interface. The finer sub-grids may often be used to limit such
events in order to eliminate the inaccuracies associated with this strategy. Practical
observations show that the rectangular sub-grids system produces a sufficient level
of precision [134, 9]. Another numerical integration method to be mentioned is
adaptive quadrature. It is a numerical technique that dynamically adjusts the inte-
gration mesh based on local error estimations. It aims to improve the accuracy of
numerical integration by refining the mesh in regions where the integrand exhibits
significant variations or irregularities. This adaptive refinement process allows for
a more efficient allocation of computational resources. Adaptive quadrature in the
context of XFEM has been discussed by various Authors [8, 7, 135], highlighting its
importance for accurately integrating singular terms arising from cracks, improving
the accuracy and efficiency of the numerical integration process. However, it is
worth noting that adaptive quadrature, like any numerical method, does have certain
limitations and challenges. Some potential disadvantages of adaptive quadrature in
XFEM may include:

• Computational Cost: Adaptive quadrature requires additional computational
effort compared to fixed or uniform quadrature schemes. The adaptive refine-
ment process involves dynamically adjusting the integration mesh based on
error estimations, which can increase the computational overhead.
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• Implementation Complexity: Implementing adaptive quadrature algorithms
can be more complex compared to simpler integration techniques. Developing
efficient error estimation strategies and managing the refinement process may
require advanced programming and algorithmic considerations.

• Mesh Sensitivity: Adaptive quadrature relies on accurately identifying regions
that require refinement based on error estimations. In some cases, the algorithm
may struggle to effectively capture localised irregularities or rapidly varying
integrands, leading to potential inaccuracies.

Although a high precision in the numerical integration result can be met when
using those techniques to integrate the expression in Eq. (3.37), an exact numerical
integration is not always guaranteed, or it comes at a highly computational cost. To
overcome these issues, a solution that allow to integrate exactly Eq. (3.37) without
partitioning the integration domain has been proposed by Ventura [22, 27] by means
of equivalent polynomials and will be discussed in detail in Chapter 4. A practical
application of this formulation has been carried out in the course of this PhD:
a software library, EQP library that allows to integrate exactly various 2D/3D
FE domains containing an arbitrary discontinuity, that will be also presented in
Chapter 4.

3.8 Conclusions

This Chapter has provided a comprehensive exploration of the XFEM approximation
and the numerical integration techniques in the context of the XFEM. Several
integration methods have been discussed and their advantages and disadvantages
have been examined. Various integration methods, such as the Gaussian quadrature,
composite quadrature, and adaptive quadrature, offer distinct benefits and limitations.
The Gaussian quadrature method demonstrated excellent accuracy and efficiency
for problems with smooth integrands and simple geometries. On the other hand,
composite quadrature methods showed better performance for complex geometries
by dividing the domain into smaller subdomains and applying numerical integration
techniques separately within each subdomain. Additionally, adaptive quadrature
methods exhibited the ability to adaptively refine the integration mesh based on local
error estimations, resulting in improved accuracy while minimising computational
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cost. However, the adaptive quadrature methods may be more computationally
demanding and complex to implement compared to other techniques. Moreover, a
numerical integration technique based on equivalent polynomials that overcomes
some of the limits of these methods has been introduced and will be extensively
discussed in Chapter 4, together with its software implementation, specifically
tailored for XFEM applications to achieve improved accuracy and efficiency and to
provide a foundation for future developments in this field. Overall, the choice of
numerical integration method in XFEM should be carefully considered based on the
specific characteristics of the problem, such as geometry complexity, smoothness of
integrands, and desired precision.



Chapter 4

Integration of XFEM Elements
Containing a Single Discontinuity1

4.1 Introduction

The representation of discontinuities in the displacement or strain fields in conven-
tional finite-element studies necessitates mesh boundary alignment to the disconti-
nuity line or surface. Fracture problems or material interfaces, where the element
boundaries line up with the boundaries of the materials, are common examples
where the mesh is regenerated as the crack develops [22]. As seen in Chapter 3, the
numerical integration of the stiffness matrix in the elements crossed by a disconti-
nuity leads to well-known issues. Gauss quadrature implicitly adds a polynomial
approximation of the integrand function, making it impossible to apply it to elements
with non-differentiable or discontinuous functions since significant errors occur.
This is frequently resolved using the techniques discussed in Section 3.7, (i.e., by
dividing the elements into quadrature subcells with continuous and differentiable
integrands). In order to implement those methods, automated mesh generators or
tailored domain subdivision techniques usually have to be implemented to correctly
split the element domain into quadrature subcells. Although the quadrature subcells
generation neither adds new nodal variables nor changes XFEM approximation
qualities, it somehow creates a "mesh" requirement that compromises the formal

1Part of the work described in this Chapter has been previously published in: G. Mariggiò, S.
Fichera, M. Corrado, G. Ventura. EQP - A 2D/3D library for integration of polynomials times step
function. SoftwareX 12:100636 (2020).
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beauty of the local PU method [22]. In this Chapter, the problem of discontinuous or
non-differentiable function quadrature in enriched elements is investigated and the
methodology proposed by Ventura [22, 27] to avoid the quadrature subcell genera-
tion is explored. The method is based on the investigation of the element stiffness
integrand. Let the level set function be the signed distance from the discontinuity
surface. It is shown that an equivalent polynomial function, whose integral reveals
the precise values of the discontinuous/non-differentiable function integrated on
subcells, exists based on the nodal values of the level set. Since the polynomial is
specified over the whole element domain, Gauss quadrature can be used to easily
integrate it without the need to create any quadrature subdomains. In this case, the
polynomial is supplied in closed form and takes the role of the enrichment function
in the element stiffness evaluation [22]. In this context, a software library (EQP
Library) to integrate various 2D and 3D FE domains containing an arbitrary linear
discontinuity has been developed as part of the research work in this PhD Thesis
and it is presented in Section 4.4. Its functionalities, precision and easiness of imple-
mentation are reported and some practical example are carried out to demonstrate
its effectiveness in solving numerical integration problems on domains embedding
discontinuities. This Chapter is structured as follows. In Section 4.2 the problem
of the integration of polynomials times Heaviside step function is presented. The
formulation proposed in [22, 27] by means of equivalent polynomials is introduced
in Section 4.3, with proper mathematical demonstrations for each analysed domain
shape. Finally the software library implementation for this formulation is presented
in Section 4.4, along with some numerical examples to prove its effectiveness.

4.2 Problem definition

Let us consider a body B, let δB be its boundary, and let uuu be the displacement field.
Let us define the boundary partition δBu where the displacements are prescribed, so
that uuu = ūuu, and the partition δBq where the traction qqq is given, so that δBu∩δBq =

/0 [22]. The local PU approximation for the displacement field defined in Eq. (3.6)
thus becomes

uuu(xxx) =
N

∑
i=1

Ni(xxx)(uuui +aaaiψ(xxx)) (4.1)
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in which N are the FE mesh nodes, Ni are the FE shape functions and uuui and aaai

are to be determined by means of the application of a variational principle or weak
form to the discrete displacement field in Eq. (4.1), as discussed in Section 3.6.
Supposing that Γ is a discontinuity surface and d(xxx) is the signed distance from Γ

to a point xxx, a discontinuity in the displacement field generated from a crack can
be described assuming the Heaviside step function H(xxx) as the enrichment function
ψ(xxx) (see eqs. (3.7) and (3.8)) [33].

Typically, the enrichment component is only applied to the nodes of the elements
that are affected by the discontinuity, leading to the term enriched elements for them.
Thus, at nodes of non-enriched elements, the coefficients aaai are not present. Using
traditional Gauss quadrature to obtain the element stiffness matrix is inappropriate
when the elements enriched through Eq. (4.1) contain the enrichment function
H(xxx) [22]. The common method is to divide the element domain into quadrature
subdomains following the discontinuity surface path, as extensively described in
Section 3.7. Let us analyse an enriched element Ω of the discretisation of body B.
Considering H(xxx) its enrichment function, from Eq. (3.33) its stiffness matrix KKK can
be written as

KKK =
∫

Ω


(

BBBstd
)T

EEEBBBstd H
(

BBBstd
)T

EEEBBBstd

H
(

BBBstd
)T

EEEBBBstd H2
(

BBBstd
)T

EEEBBBstd

 dΩ (4.2)

where
(
BBBstd)T

EEEBBBstd and H2 (BBBstd)T
EEEBBBstd are continuous and differentiable func-

tions (since H2 = 1 in Ω), and H
(
BBBstd)T

EEEBBBstd are piecewise continuous and differ-
entiable functions [22]. As a consequence, only the off-diagonal part of matrix KKK
in Eq. (4.2), H

(
BBBstd)T

EEEBBBstd , cannot be integrated using standard Gauss quadrature
over the entire domain Ω, that has to be split along the discontinuity surface Γ into
two subdomains, Ω+ and Ω− so that∫

Ω

H
(

BBBstd
)T

EEEBBBstd dΩ =
∫

Ω−
H
(

BBBstd
)T

EEEBBBstd dΩ

+
∫

Ω+
H
(

BBBstd
)T

EEEBBBstd dΩ

(4.3)

The solution proposed by Ventura [22] consists on substituting the two integrals over
Ω− and Ω+ at the right-hand side of Eq. (4.3) with one defined on Ω that yields the
same numerical result. To achieve this, let H̃ be a polynomial defined by the formal
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relation ∫
Ω

H̃
(

BBBstd
)T

EEEBBBstd dΩ =
∫

Ω−
H
(

BBBstd
)T

EEEBBBstd dΩ

+
∫

Ω+
H
(

BBBstd
)T

EEEBBBstd dΩ

(4.4)

If the aforesaid polynomial H̃ exits, it is

KKK =
∫

Ω


(

BBBstd
)T

EEEBBBstd H̃
(

BBBstd
)T

EEEBBBstd

H̃
(

BBBstd
)T

EEEBBBstd H2
(

BBBstd
)T

EEEBBBstd

 dΩ (4.5)

such that the integration may be carried out using standard Gauss quadrature on the
whole element domain Ω [22]. A closed form solution for the case of a straight line
discontinuity (for 2D integration domains) and a plane surface discontinuity (for 3D
integration domains) is discussed in Section 4.3.

4.3 Closed form solution for 2D/3D integration do-
mains

In this Section, the closed form solution [22] for the problem defined in Section 4.2
are analysed for the case of 2D integration domains crossed by a straight discontinuity
line and for 3D integration domains crossed by a plane discontinuity surface, as a
fundamental part in the EQP Library implementation.

4.3.1 2D case

The two-dimensional case depends on the element type and the point at which the
discontinuity surface intersects it. The closed form solution [22] is analysed for the
three-node triangle and the four-node quadrilateral elements. Since isoparametric
mapping may be used in the general situation, all calculations are done in the parent
reference system (ξ ,η). The discontinuity surface Γ is assumed as a line intersecting
the element at points PPP1 = (ξ1,η1) and PPP2 = (ξ2,η2), that can be easily determined
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by means of level set data, since the signed distance from each node of the element
to the discontinuity is known.

Linear triangular element

Let us consider a three-node triangular parent element, as in Figure 4.1a and let us
suppose it is intersected by a discontinuity surface Γ at points PPP1 = (ξ1,η1) and
PPP2 = (ξ2,η2) (Figure 4.1b). Its shape functions are

(a) Triangular FE in the parent domain. (b) Triangular FE in the parent domain inter-
sected by a discontinuity Γ.

Fig. 4.1 Triangular FE in the parent domain and its intersection with a discontinuity
Γ.

N1(ξ ,η) = ξ

N2(ξ ,η) = η

N3(ξ ,η) = 1−ξ −η

(4.6a)

(4.6b)

(4.6c)

so that, from the evaluation of
(
BBBstd)T

EEEBBBstd , each component is a constant [22].
Thus, only one independent equation may be derived from Eq. (4.4) in scalar form
(all the equations are linearly dependent). Since H̃ is considered to be a zero degree
polynomial, its value can be found by applying the specific form of Eq. (4.4) to the
current scenario ∫

Ω

H̃ dΩ =
∫

Ω−
H dΩ+

∫
Ω+

H dΩ (4.7)
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Considering H > 0 in Ω+, Eq. (4.7) becomes∫
Ω

H̃ dΩ =
∫

Ω−
(−1)dΩ+

∫
Ω+

(+1)dΩ (4.8)

thus H̃ is
H̃ = 2ξ1η2 −1 (4.9)

and the element stiffness matrix KKK can be evaluated from Eq. (4.2).

Bilinear quadrilateral element

Let us analyse a quadrilateral element defined in the parent reference system (ξ ,η),
as shown in Figure 4.2 and let us suppose it is intersected by a discontinuity surface
Γ at points PPP1 = (ξ1,η1) and PPP2 = (ξ2,η2). The two possible scenarios are shown
in Figure 4.2a and Figure 4.2b. The shape functions for the bilinear quadrilateral

(a) Quadrilateral FE in the parent domain
intersected by a discontinuity Γ on two ad-
jacent sides.

(b) Quadrilateral FE in the parent domain
intersected by a discontinuity Γ on two op-
posite sides.

Fig. 4.2 Quadrilateral FE in the parent domain and its intersection scenarios with a
discontinuity Γ.

element are

N1(ξ ,η) =
1
4
(1+ξ )(1−η)

N2(ξ ,η) =
1
4
(1+ξ )(1+η)

N3(ξ ,η) =
1
4
(1−ξ )(1+η)

N4(ξ ,η) =
1
4
(1−ξ )(1−η)

(4.10a)

(4.10b)

(4.10c)

(4.10d)
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so that, from the evaluation of
(
BBBstd)T

EEEBBBstd , each component can be represented by
a quadratic polynomial of the kind P = c0 + c1ξ + c2η + c3ξ η + c4ξ 2 + c5η2 [22].
Thus, from Eq. (4.4), the equivalent polynomial function H̃(ξ ,η) can be defined
through ∫

Ω

H̃ dΩ =
∫

Ω−
H dΩ+

∫
Ω+

H dΩ∫
Ω

H̃ξ dΩ =
∫

Ω−
Hξ dΩ+

∫
Ω+

Hξ dΩ∫
Ω

H̃η dΩ =
∫

Ω−
Hη dΩ+

∫
Ω+

Hη dΩ∫
Ω

H̃ξ η dΩ =
∫

Ω−
Hξ η dΩ+

∫
Ω+

Hξ η dΩ∫
Ω

H̃ξ
2 dΩ =

∫
Ω−

Hξ
2 dΩ+

∫
Ω+

Hξ
2 dΩ∫

Ω

H̃η
2 dΩ =

∫
Ω−

Hη
2 dΩ+

∫
Ω+

Hη
2 dΩ

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

(4.11f)

(4.11g)

It is crucial to emphasise the conceptual significance of Eq. (4.11): The discontinuous
function H can multiply any polynomial of type P when computing the element
stiffness matrix [22]. All of the independent single equations in Eq. (4.11) must hold
for the corresponding continuous and differentiable function H̃ to allow for linear
combination ∫

Ω

H̃P dΩ =
∫

Ω−
HP dΩ+

∫
Ω+

HP dΩ (4.12)

Assuming H̃(ξ ,η) = a + bξ + cη + dξ η + eξ 2 + f η2, equations (4.11) can be
considered a linear system in the six unknowns a,b,c,d,e, f , and they can be eval-
uated by means of the Gauss theorem, as described in detail in [22], finding a
closed form solution for both the case of discontinuity line intersecting two adja-
cent element sides and for the case of discontinuity line intersecting two opposite
element sides [22]. It has to be noted that the coefficients a,b,c,d,e, f defining
H̃(ξ ,η) = a+ bξ + cη + dξ η + eξ 2 + f η2, consent to evaluate eqs. (4.2), (4.4)
and (4.5), so that the integration is defined on the entire domain of the element and
its splitting into Ω− and Ω+ is no longer required. However, since the integrand
function in Eq. (4.2) has a higher polynomial degree than the one in Eq. (4.5) (H̃ is a
quadratic polynomial), a higher-order Gauss quadrature is needed [22].
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4.3.2 3D case

As seen in Subsection 4.3.1, the three-dimensional case depends on the element
type and the point at which the discontinuity surface intersects it. The closed
form solution is presented for the four-node tetrahedron [22] and the eight-node
hexahedron elements. Since isoparametric mapping may be used in the general
situation, all calculations are done in the parent reference system (ξ ,η ,ζ ). The
discontinuity surface Γ is assumed as a plane intersecting the element at points
PPPi = (ξi,ηi,ζi), where i = 1, ...,3 for the tetrahedron element and i = 1, ...,4 for the
hexahedron element. All intersection points PPPi can be easily determined by means
of level set data, since the signed distance from each node of the element to the
discontinuity is known.

Linear tetrahedral element

Let us consider a four-node tetrahedron parent element, as in Figure 4.3a and let
us suppose it is intersected by a discontinuity surface Γ at points PPP1 = (ξ1,η1,ζ1),
PPP2 = (ξ2,η2,ζ2) and PPP3 = (ξ3,η3,ζ3) (Figure 4.3b). Its shape functions are

(a) Tetrahedral FE in the parent domain. (b) Tetrahedral FE in the parent domain inter-
sected by a discontinuity Γ.

Fig. 4.3 Tetrahedral FE in the parent domain and its intersection with a discontinuity
Γ.
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N1(ξ ,η ,ζ ) = ξ

N2(ξ ,η ,ζ ) = η

N3(ξ ,η ,ζ ) = ζ

N4(ξ ,η ,ζ ) = 1−ξ −η

(4.13a)

(4.13b)

(4.13c)

(4.13d)

The same procedure seen in 4.3.1 is followed. From the evaluation of
(
BBBstd)T

EEEBBBstd ,
each component is a constant [22]. Thus, only one independent equation may be
derived from Eq. (4.4) in scalar form (all the equations are linearly dependent). Since
H̃ is considered to be a zero degree polynomial, its value can be found by applying
the specific form of Eq. (4.4) to the current scenario (Eq. (4.7)). Considering H > 0
in Ω+, Eq. (4.7) can be rewritten as in Eq. (4.8) thus H̃ is

H̃ = 2ξ1η2ζ3 −1 (4.14)

and the element stiffness matrix KKK can be evaluated from Eq. (4.2).

Trilinear hexahedral element

A hexahedral element defined in the parent reference system (ξ ,η ,ζ ), as shown
in Figure 4.4 has been analysed. To evaluate the equivalent polynomial for the

(a) Hexahedral FE in the parent domain. (b) Hexahedral FE in the parent domain in-
tersected by a discontinuity Γ.

Fig. 4.4 Hexahedral FE in the parent domain and its intersection with a discontinuity
Γ.

hexahedral element, a regularised expression of the Heaviside function (4.15) has
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been taken into account [27].

Hρ =
2

e−ρx +1
−1 (4.15)

where e is the Euler number and ρ is a regularisation parameter, such that as ρ →+∞

the Heaviside function H is reproduced by Hρ→∞ (Figure 4.5). Therefore, it is

Fig. 4.5 Graphs of Hρ for various values of the parameter ρ . As ρ → +∞, the
function Hρ reproduces H

possible to evaluate the equivalent polynomials H̃ρ and Hρ from the relation∫
Ω

H̃ρm(i)dΩ =
∫

Ω

Hρm(i)dΩ i = 1, ...,n (4.16)

being m(i) a i-degree monomial. Thus, Eq. (4.16) is a system of n linear equations
in n unknowns, that are the coefficient of the equivalent polynomial H̃ [27]. In fact,
applying the limit for ρ →+∞ to Eq. (4.16), it is

lim
ρ→+∞

∫
Ω

H̃ρm(i)dΩ = lim
ρ→+∞

∫
Ω

Hρm(i)dΩ i = 1, ...,n (4.17)

and by applying the bounded convergence theorem it is∫
Ω

lim
ρ→+∞

H̃ρm(i)dΩ =
∫

Ω

lim
ρ→+∞

Hρm(i)dΩ i = 1, ...,n (4.18)
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where
lim

ρ→+∞
Hρm(i) = Hm(i) i = 1, ...,n (4.19)

and from eqs. (4.17) and (4.18)

H̃m(i) = lim
ρ→+∞

Hρm(i) i = 1, ...,n (4.20)

so that
H̃ = lim

ρ→+∞
Hρ (4.21)

Thus, equivalent polynomial H̃ can be obtained from limρ→+∞ H̃ρ [27]. Unlike the
2D elements and the linear tetrahedron presented in [22] and previously discussed,
where an explicit intersection with the element faces and edges is required, Eq. (4.15)
continuity and differentiability qualities allow for seamless integration throughout
the parent element domain [27]. In these hypotheses, the discontinuity Γ can be
defined as a plane of equation

Γ(ξ ,η ,ζ ) = aξ +bη + cζ +d (4.22)

where
√

a2 +b2 + c2 = 1. Thus, Eq. (4.15) becomes

Hρ =
2

e−ρΓ(ξ ,η ,ζ )+1
−1 (4.23)
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The shape functions for the trilinear hexahedron element are

N1(ξ ,η ,ζ ) =
1
8
(1+ξ )(1−η)(1−ζ )

N2(ξ ,η ,ζ ) =
1
8
(1+ξ )(1+η)(1−ζ )

N3(ξ ,η ,ζ ) =
1
8
(1−ξ )(1+η)(1−ζ )

N4(ξ ,η ,ζ ) =
1
8
(1−ξ )(1−η)(1−ζ )

N5(ξ ,η ,ζ ) =
1
8
(1+ξ )(1−η)(1+ζ )

N6(ξ ,η ,ζ ) =
1
8
(1+ξ )(1+η)(1+ζ )

N7(ξ ,η ,ζ ) =
1
8
(1−ξ )(1+η)(1+ζ )

N8(ξ ,η ,ζ ) =
1
8
(1−ξ )(1−η)(1+ζ )

(4.24a)

(4.24b)

(4.24c)

(4.24d)

(4.24e)

(4.24f)

(4.24g)

(4.24h)

thus its stiffness matrix contains the following monomials

mmm = (1,ξ ,η ,ζ ,ξ 2,η2,ζ 2,ξ η ,ξ ζ ,ηζ ,

ξ
2
η ,η2

ξ ,η2
ζ ,ζ 2

η ,ζ 2
ξ ,ξ ηζ ,

ξ
2
ηζ ,η2

ξ ζ ,ζ 2
ξ η ,ξ 2

η
2,ξ 2

ζ
2,η2

ζ
2)

(4.25)

which are assumed as the equivalent polynomial terms [27] in Eq. (4.16) [27]. It is
thus possible to obtain a closed form solution for the analysed problem and evaluate
the equivalent polynomial H̃ for the linear hexahedron parent element. Since the
equivalent polynomial coefficients expression are particularly long in this case, they
will not be reported here. However, the details about their evaluation are extensively
reported in [27]. It has to be stressed again that the coefficients defining H̃, consent
to evaluate eqs. (4.2), (4.4) and (4.5), so that the integration is defined on the entire
domain of the element and its splitting into Ω− and Ω+ is no longer required.
However, since the integrand function in Eq. (4.2) has a higher polynomial degree
than the one in Eq. (4.5), a higher-order Gauss quadrature is needed [22], requiring a
bigger computational effort.
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4.3.3 Non-polygonal elements: Circle and Sphere element case

The equivalent polynomials formulation hereby presented for the most common 2D
and 3D finite element shapes can also be extended to non-polygonal element domains.
The formulation has been, in fact, successfully implemented also to circular and
spherical elements, following the procedure seen in the previous subsections. For the
circle case, the parent element is a unit circle centred in (0,0) in the parent coordinate
system (ξ ,η) (Figure 4.6a). For the sphere case, the parent element is a unit sphere
centred in (0,0,0) in the parent coordinate system (ξ ,η ,ζ ) (Figure 4.6b). Let us
assume that the aforesaid elements are cut by a discontinuity Γ, as seen previously in
sections 4.3.1 and 4.3.2. For both elements, a coordinate translation has been defined,
so that it is possible to extend the solution to any circular (or spherical element),
however defined in a global coordinate system (x,y) (or (x,y,z)). In fact, knowing
the centre and the radius, allow to define any point of the circle (or sphere) parent
element, onto the global coordinate system by means of a simple transformation. Let
P(ξ ,η) = (ξi,ηi) a point of the parent circle element defined in the parent coordinate
system and having radius r = 1, and let P̄(x,y) = (xi,yi) a point of the circle element
defined in the global coordinate system having radius r̄, it is

P̄(x,y) = (xi,yi) = (r̄ ξi + xC̄, r̄ ηi + yC̄) (4.26)

where (xC̄,yC̄) are the coordinates of the centre of the circle element in the global
coordinate system. For the sphere element, the relation in Eq. (4.26) becomes

P̄(x,y) = (xi,yi,zi) = (r̄ ξi + xC̄, r̄ ηi + yC̄, r̄ ζi + zC̄) (4.27)

where (xC̄,yC̄,zC̄) are the coordinates of the centre of the sphere element in the global
coordinate system. As for the previous case, by means of the regularised expression
in Eq. (4.15), a seamless integration throughout the parent element domain is allowed.
Thus, defining the discontinuity Γ as in Eq. (4.22), it is straightforward to evaluate
the equivalent polynomial H̃ also in such cases.
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(a) Circle FE in the parent domain. (b) Sphere FE in the parent domain.

Fig. 4.6 Circle and sphere FE in the parent domain.

4.4 EQP Library: software implementation of equiva-
lent polynomials formulation

As discussed in the previous Sections, the use of equivalent polynomials can be useful
to overcome some of the limits of the conventional XFEM integration procedures
presented in Section 3.7. Moreover, in many scientific and technical domains, as well
as in computer graphics, it is necessary to numerically integrate polynomial functions
in order to solve physical models and calculate data. A few representative examples
are the computation of moments and products of inertia entering the inertia tensor
of geometric shapes required for physics-based rigid body animations [136, 137];
the computation of a mechanical system stiffness matrix within the framework of
the finite element method for the prediction of the mechanical behaviour of solids
and structures [19, 37, 20]; and the computation of mass, total energy, angular
momentum, and entropy to apply the conservation laws determining the atmosphere
dynamics and thermodynamics [138]. Effective numerical quadrature techniques are
available for polynomial integrands when the shape of the domain is an elementary
geometry (triangle, parallelogram, parallelepiped), or can be reshaped back to an
elementary geometry. A multiplying Heaviside step function is introduced when
the polynomial presents a jump discontinuity or is required to be integrated over
a subdomain (see Section 3.7). This might result in significant inaccuracies in the
computation of the integral since numerical quadrature methods such as Gauss-
Legendre implicitly embody a polynomial approximation of the integrand function.
This scenario can be found in computer graphics when computing the geometrical
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characteristics of complicated bodies, which may be considered as partition of a
regular geometric shape [28]. Let us analyse the body Ω+ in Figure 4.4b. This body
is obtained by splitting the cubic domain Ω (Figure 4.4a) in two subdomains (Ω−

and Ω+) using the discontinuity surface Γ. The integral in Eq. (4.28) may be used
to calculate the geometrical characteristics of Ω+, such as, for example, volume,
moments, and products of inertia.

I =
∫

Ω+
Pn(ξξξ )dΩ =

∫
Ω

H(ξξξ )Pn(ξξξ )dΩ (4.28)

where Pn(ξξξ ) is a n-degree polynomial function in the variables set ξξξ = (ξ ,η ,ζ )

required to compute the required geometrical properties of Ω+ (e.g. Pn(ξξξ ) = 1
to evaluate the volume, Pn(ξξξ ) = η2 + ζ 2 to evaluate the second area moment
with respect to the ξ -axis, etc.), and H(ξξξ ) is the standard Heaviside step function,
as defined in Eq. (3.7). The body Ω+ is defined by the normal vector nnn+ to the
discontinuity surface Γ, pointing inwards Ω+ (Figure 4.7). Vector nnn+ is orthogonal
to Γ and its components are expressed by the Γ equation coefficients (a,b,c), as in
Eq. (4.29).

Fig. 4.7 Hexahedral FE in the parent domain, its intersection with a discontinuity Γ

and the normal vector to the discontinuity nnn+.
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Γ : aξ +bη + cζ +d = 0 (4.29)

The numerical integration problem stated in Eq. (4.28) is normally solved by parti-
tioning the domain of integration to create quadrature subcells in which the integrals
are polynomials [28]. The identification and cataloguing of all potential integration
subdomain shapes, particularly for 3D geometries, is highly difficult. As discussed
in the previous Sections of this Chapter, and also as presented in [22, 27, 15, 18] in
the framework of the XFEM, an approach to avoid the subdivision of the quadrature
domain has been proposed. Although the technique has been created for polynomial
integrals, it could potentially be used to introduce discontinuities or trimmed domains
into the piecewise polynomial representation of splines [28]. As presented in 4.3.2,
the approach is based on substituting an equivalent polynomial function, H̃(ξξξ ), for
the Heaviside function H(ξξξ ), such that:∫

Ω

H̃(ξξξ )Pn(ξξξ )dΩ =
∫

Ω−
H(ξξξ )Pn(ξξξ )dΩ+

∫
Ω+

H(ξξξ )Pn(ξξξ )dΩ (4.30)

in which the equivalent polynomial H̃(ξξξ ) depends on Γ, is of the same degree of
Pn(ξξξ ) and can be written in vector notation as

H̃(ξξξ ) = ccc ·mmm(ξξξ ) (4.31)

where mmm(ξξξ ) is a collection of monomial basis (such as in Eq. (4.25)) and ccc is a vector
of coefficients. By means of Eq. (4.30), is it possible to write Eq. (4.28) as

I =
∫

Ω

H̃(ξξξ )Pn(ξξξ )dΩ (4.32)

Being H̃(ξξξ )Pn(ξξξ ) a polynomial function continuous over the entire domain Ω, it
is possible to exactly integrate it using an appropriate quadrature rule [139]. It has
to be noted that the integrand in Eq. (4.32) has doubled its degree, compared to the
one in Eq. (4.28), since H̃(ξξξ ) has the same degree as Pn(ξξξ ). The main advantage
of the equivalent polynomial approach is allowing the integration over the entire
standard domain Ω, instead of the non-standard partitioned subdomain Ω+ [28]. In
this Section the EQuivalent Polynomials (EQP) Library is presented. EQP has been
developed as a first part of this PhD Thesis work in order to create a practical mathe-
matical tool to easily evaluate the equivalent polynomial for various FE shapes, as
well as exactly computing integrals such as the one defined in Eq. (4.32). Although
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the main context for this Library is the XFEM and fracture mechanics in general, it
could potentially be applied to successfully solve many other problems in various
physical and engineering domains, such as computational geometry, computer graph-
ics, physics-based animation of rigid bodies, etc. As it is illustrated in the following
Subsections, the Library structure is straightforward. It is built in Fortran and it can
be easily coupled with other existing libraries, programs or frameworks. The details
for the mathematical procedure adopted to evaluate the expression of the equivalent
polynomial have been presented in sections 4.3.1 to 4.3.2, as well as in [22, 27].
Some practical application to demonstrate the potential, precison and effectiveness
of EQP are also carried out in this Section.

4.4.1 Software functionalities

As stated in Section 4.4, the main purpose of EQP is to provide the expression of
the equivalent polynomial function H̃(ξξξ ). However, for a practical use, the library
ought to be embedded in a algorithm that evaluates numerically the integral defined
in Eq. (4.32) (i.e. applying standard Gauss quadrature rule, or any other quadrature
algorithm to integrate polynomial functions non involving discontinuities). The
Library functionalities are presented through a generic example. Let us consider
a polynomial Pn(xxx) that is to be integrated over a subdomain Ω̄+, obtained by
dividing a parallelepiped domain Ω̄ with a plane Γ̄ (Figure 4.8). The problem is

(a) Configuration of the parallelepiped ele-
ment in the global coordinate system.

(b) Configuration of the parallelepiped ele-
ment in the parent coordinate system.

Fig. 4.8 Configuration of the parallelepiped element in the global and parent coordi-
nate system.

defined in the global reference system xxx = (x,y,z) and its solution can be obtained
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through Eq. (4.32), once the equivalent polynomial function H̃(ξξξ ) is known, so that

I =
∫

Ω̄+
Pn(xxx)dΩ̄ =

∫
Ω̄

H̃(xxx)Pn(xxx)dΩ̄ (4.33)

The problem is to be transformed to a quadrature on a standard domain in the first
place. Thus, a variables change from the global reference system (x,y,z) to the
parent reference system (ξ ,η ,ζ ) is employed, in order to compute the integral over
a standard regular geometrical shape (Figure 4.8). This transformation consent
to deal with a variety of different cases, utilising a single parent geometry. In
fact, parallelepipeds of any size and placed in any position in the global reference
system can be brought back to the cubic parent geometry defined in the parent
reference system (ξ ,η ,ζ ) ∈ [−1,+1], as shown in 4.8 [28]. The change of variables
is achieved by way of isoparametric mapping, which is normally used in FEM.
Let P(ξ ,η ,ζ ) ∈ Ω be a generic point defined in the parent coordinate system and
corresponding to the point P̄(x,y,z) ∈ Ω̄ in the global coordinate system [28]. The
isoparametric mapping of P(ξ ,η ,ζ ) ∈ Ω onto P̄(x,y,z) ∈ Ω̄ can be written as

x =
n

∑
i=1

Ni(ξ ,η ,ζ )xi

y =
n

∑
i=1

Ni(ξ ,η ,ζ )yi

z =
n

∑
i=1

Ni(ξ ,η ,ζ )zi

(4.34a)

(4.34b)

(4.34c)

in which n is the number of nodes of the element defined in the global coordinate
system, having coordinates (xi,yi,zi), and Ni(ξ ,η ,ζ ) is the shape function, defined
in terms of the parent coordinates for the i-th parent element node. As for the
discontinuity Γ̄(xxx) equation, defined in the global coordinate system, it has to be
mapped into Γ(ξξξ ), defined in the parent coordinate system. The procedure used in
the library follows these steps:

• evaluating the signed distances Di between Γ̄(xxx) and the integration domain
nodes in the global coordinate system [28];

• writing the coefficients of Γ̄(xxx) (a,b,c,d) in terms of Di, solving a system of
linear equations [28];



4.4 EQP Library: software implementation of equivalent polynomials formulation61

• replacing the variables of Γ̄(xxx) (x,y,z) by means of Eq. (4.34), obtaining Γ(ξξξ ),
defined by the coefficients (a′,b′,c′,d′), function of Di [28].

Once Γ̄(xxx) is mapped onto Γ(ξξξ ), the expression of the equivalent polynomial function
H̃(ξξξ ) can be evaluated by the library and it is provided in terms of the parent domain
coordinate system. Consequently, the Jacobian matrix, which contains the partial
derivatives of the interpolation functions Ni, differentiated with respect to the parent
system variables (ξ ,η ,ζ ), is then used to introduce the coordinate and integration
domain transformation into the quadrature rule [140], so that

I =
∫

Ω̄

H̃(xxx)Pn(xxx)dΩ̄ =
∫

Ω

H̃(ξξξ )Pn(ξξξ )|JJJ|dΩ

=
gp

∑
j=1

w jH̃(ξ j,η j,ζ j)Pn(ξ j,η j,ζ j)|JJJ(ξ j,η j,ζ j)|
(4.35)

where |JJJ| is the Jacobian matrix determinant, gp is the number of quadrature points,
and w j their weights. The integral in Eq. (4.33) is then computed in Eq. (4.35)
by means of standard Gauss-Legendre quadrature rule [141]. It is important to
emphasise once more that the library performs integral calculations over the entire
domain Ω̄ and produces the Ω̄+ subdomain integral result. In order to have the
unit vector nnn+ pointing in the desired subdomain direction, the equation of the
discontinuity must be properly defined. For instance, by simply changing the sign of
all the discontinuity coefficients, the evaluation over the domain Ω̄− can be carried
out. Also keep in mind that the discontinuity need not necessarily intersect Ω̄;
instead, the quadrature result could be either zero (if Ω̄+ = /0) or the integral over Ω̄

(if Ω̄+ = Ω̄) [28]. The degree and composition of the polynomial function that can be
precisely integrated with the suggested approach depend on some conditions imposed
to determine the equivalent polynomial, as can be deduced from [22, 27]. Table 4.1
lists the monomials that can make up the polynomial function to be integrated as
well as the parent geometrical shapes that are present in the current library version.
However, the Library can be extended to any polynomial degree in each of the listed
domains [28].
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Table 4.1 Integration domain, domain type, parent element domain and monomial
basis included in the library.

Domain of
Integration

etype Parent Domain Monomial Basis

Triangle 20 1

Parallelogram 21 1,ξ ,ξ 2,η ,ξ η ,η2

Circle 22 1,ξ ,ξ 2,η ,ξ η ,η2

Tetrahedron 30 1

Hexahedron 31

1,ξ ,ξ 2,η ,ξ η ,ξ 2
η ,

η
2,ξ η

2,ξ 2
η

2,ζ ,

ξ ζ ,ξ 2
ζ ,ηζ ,ξ ηζ ,

ξ
2
ηζ ,η2

ζ ,ξ η
2
ζ ,

ζ
2,ξ ζ

2,ξ 2
ζ

2,ηζ
2,

ξ ηζ
2,η2

ζ
2

Sphere 32

1,ξ ,ξ 2,η ,ξ η ,ξ 2
η ,

η
2,ξ η

2,ξ 2
η

2,ζ ,

ξ ζ ,ξ 2
ζ ,ηζ ,ξ ηζ ,

ξ
2
ηζ ,η2

ζ ,ξ η
2
ζ ,

ζ
2,ξ ζ

2,ξ 2
ζ

2,ηζ
2,

ξ ηζ
2,η2

ζ
2
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4.4.2 Software architecture

The design of the software library is simple. eqpol.f90 is the main library file. It
includes the algorithms to map the equation of the discontinuity from the global
to the parent coordinate system, to calculate the coefficients, and to compute the
equivalent polynomial function H̃(ξξξ ). Other files that contain the mathematical
expressions of the coefficients required to define the equivalent polynomial function
round out the system [28]. A main programme file, main.f90, and a module file,
mapping_module.f90, that are not strictly part of the library, but are added as an extra
for the purpose of use demonstration allow the user to exactly compute the integral
in Eq. (4.35) for the supported domain shapes. The following steps are required for
the practical use of the library:

1. primal data preparation:

• integration domain selection (as in Table 4.1);

• definition of the nodal coordinates of the domain in the global coordinate
system (or radius and centre for the circular and spherical domains);

• definition of the coefficients of the discontinuity plane in the global
coordinate system.

2. isoparametric mapping onto the parent element domain and computation of
the coefficient vector for the equivalent polynomial function, by way of the
subroutine Heqpol_coefficients;

3. quadrature by means of any chosen rule, as in Eq. (4.35). The values of the
equivalent polynomial at the quadrature points are obtained by means of the
function HeqPol, while the function det_J provides the determinant of the
Jacobian matrix of the coordinate transformation.

The exact quadrature result is computed by the library if:

• the determinant of the Jacobian matrix in Eq. (4.35) for the coordinate trans-
formation is constant (this is always true for triangular, circular, tetrahedral,
spherical and for non-distorted quadrangular and hexahedral domains);

• Pn is a linear combination of the monomial presented in Table 4.1.
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It should be noted that two calls must be planned in the event that users seek to
directly incorporate the core of the library into their own quadrature algorithm: one
call to the subroutine Heqpol_coefficients for each integration domain (step 2 above),
and another to the function HeqPol for each quadrature point (step 3 above). Since
the function det_J belongs in the quadrature algorithm, it is not a part of the library
core functionality [28].

4.4.3 Numerical examples

The library usage file main.f90 has been employed for the examples that follow. The
library yields accurate outcomes up to machine precision for the examples hereby
presented.

Parallelogram

A parallelogram is considered in this example (Figure 4.9). The dimensions are in

Fig. 4.9 Parallelogram split in two subdomains by a discontinuity Γ̄.
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meters and the element nodes in the global coordinate system are:

111 ≡ (7,2)

222 ≡ (12,7)

333 ≡ (8,9)

444 ≡ (3,4)

(4.36)

The element is split in two parts, Ω̄+ and Ω̄−, by the discontinuity line Γ̄ : − 39
250x+

y− 372
125 = 0. The aim of this example is to evaluate the inertia tensor and the area

of the subdomain Ω̄+. Once the library usage file main.f90 is launched and nodal
coordinates of the element and the discontinuity coefficients (a = 39

250 ,b =−1,c =
372
125) are inputted, the program maps the parallelogram onto the parent coordinate
system, in which the equivalent polynomial H̃(ξξξ ) is evaluated and the integration
is performed by means of standard Gauss quadrature, without splitting the domain.
The monomials to integrate are P = 1 to evaluate the area of Ω̄+, and x2,y2,xy to
compute its inertia tensor III. The results obtained by the program output are

Area = 24.207m2 (4.37)

III = ρs

[
1517.185 −1148.046
−1148.046 913.802

]
(units: kg m2) (4.38)

where ρs is the surface density of the material (kg/m2). To gauge the effectiveness
of the results provided by the library, the subdomain Ω̄+ has been defined and the
following definite integrals have been exactly evaluated

Ii =
∫

Ω̄+
Pi dΩ̄ (4.39)

where P = {1,x2,xy,y2}.

The exact analytical result obtained coincide up to machine precision to the
library output, demonstrating its exactness.

Parallelepiped

A 3D exemple is presented through a parallelepiped (Figure 4.10).
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Fig. 4.10 Parallelepiped split in two subdomains by a discontinuity Γ̄.

The dimensions are in meters and the element nodes in the global coordinate
system are:

111 ≡ (3,4,2) 555 ≡ (10,4,8)
222 ≡ (7,2,2) 666 ≡ (14,2,8)
333 ≡ (12,7,2) 777 ≡ (19,7,8)
444 ≡ (8,9,2) 888 ≡ (15,9,8)

(4.40)

The element is split in two parts, Ω̄+ and Ω̄−, by the discontinuity plane Γ̄ : 71
10x−

789
50 y+ 543

25 z− 8757
100 = 0. The aim of this example is to evaluate the inertia tensor and

the area of the subdomain Ω̄+. The procedure is the same followed in the previous
example and the results obtained by the program output are

Volume = 102.339m3 (4.41)
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III = ρs

 7118.221 −6852.748 −8062.194
−6852.748 20438.215 −3372.193
−8062.194 −3372.193 19388.499

(units: kg m3) (4.42)

where ρs is the volumetric density of the material (kg/m3). Once again the ef-
fectiveness of the results provided by the library has been proved evaluating the
same definite integrals computed by the library over the subdomain Ω̄+. The exact
analytical result obtained coincide up to machine precision to the library output,
demonstrating again its exactness.

4.5 Conclusions

In this chapter the integration of polynomials times step functions by means of equiv-
alent polynomials has been explored in the context of XFEM analysis. As discussed
in Section 4.2, the problem of integrating polynomials multiplied by Heaviside step
function arises commonly when the computation of the stiffness matrix of enriched
elements containing cracks is required. The problem is commonly solved in XFEM
analysis by defining integration subdomains in which the step function is continuous
and differentiable, thus the exact integration by means of standard quadrature can be
achieved. This technique results, though, in a discretisation requirement that some-
how disrupts the elegance of the XFEM method. In this scope, the use of equivalent
polynomials allow to perform the integration of polynomials times step function over
the entire integration domain, avoiding the subdomain definition requirement. By
leveraging the concept of equivalent polynomials presented in [22, 27], in fact, the
exact integration of polynomials multiplied by the Heaviside step function by way of
standard quadrature rules can be achieved. This approach ensures that the discontinu-
ity is properly captured during the numerical integration process, leading to accurate
results. The equivalent polynomial definition for standard 2D FE domains, such as a
linear 3-node triangle element and a bilinear 4-node quadrangular element have been
discussed and a closed form solution has been reported. The procedure has been
applied as well for 3D FE domains, such as a linear 4-node tethrahedral element and a
trilinear 8-node quadrangular element. A closed form solution has also been defined
for non-polygonal element shapes, such as a circle element domain and a sphere
element domain. Although these elements have very few practical applications in
FEM/XFEM analysis, the fact that the formulation investigated in this chapter could
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be extended also to non-canonical domain shapes has been considered an interesting
aspect to explore. Moreover, still in this scope, a software library (EQP) to compute
the equivalent polynomial for various 2D and 3D domain shapes has been developed
and presented in Section 4.4. The library also includes an isoparametric mapping
module in order to bring back the integration domain, defined by the user in the
global coordinate system, to an elementary standard geometry, defined in a parent
coordinate system where computations are made. An algorithm to map the disconti-
nuity onto the parent coordinate system is also embedded in the library. For the sake
of usage demonstration, the library is complemented by an executable programme
that allow users to compute integrals of polynomials times step function over the
domain shapes supported by the EQP library, however defined in a global coordinate
system. The efficiency and exactness of the library has been demonstrated by way of
practical usage examples carried out in section 4.4.3 and it can be considered a useful
tool to compute integrals of discontinuous functions by means of any quadrature
rule, without subdividing the domain of integration. Although the library main
scope is XFEM analysis, it can be extended to other contexts in which the numerical
integration of polynomial functions is a frequent problem, such as computational
geometry, computer graphics and simulations in which a dynamic change in shape
and position of object is involved. The proposed library could in fact be employed
to evaluate geometrical characteristics of complex figures, generated by a standard
shape cut by a plane or surface (as in the presented examples in section 4.4.3), or
used in brittle fracture analysis, in which an object breaks into various pieces. The
main advantage of the library, and the formulation behind it, is its versatility, the
capability of eliminating complicated subdomains, the speed of computation, and the
accuracy. The main limit is that this approach could manage only one discontinuity
for each integration domain. This problem has been addressed and, in Chapter 5, an
innovative approach for handling two discontinuities within an integration domain is
presented. This approach also enhances the potentiality of the proposed library and
it is a step towards the integration of an arbitrary number of discontinuities.



Chapter 5

Integration of XFEM Elements
Containing Multiple Discontinuities1

5.1 Introduction

As discussed in the previous Chapters, the exact numerical integration of discontinu-
ous functions using a common quadrature rule is a challenging subject that has been
explored by a number of authors over the years. In particular, in the XFEM context,
the problem is usually undertaken splitting the integration domain in subdomains in
which the discontinuous function is continuous and differentiable. In Chapter 4, an
efficient method by means of equivalent polynomials proposed by Ventura [22, 27]
to overcome the problem has been investigated and a software implementation of the
formulation has been carried out, delivering a library that is a practical tool to ex-
actly evaluate integrals of polynomials times step functions over various 2D and 3D
element shapes, without splitting the integration domain. The concept of equivalent
polynomials has been investigated, and as a first step towards the integration of any
number of discontinuities, it has been extended to the case of a double discontinuity
within a single finite element. This situation frequently occurs when events like crack
branching, kinking, or junction arise [11, 21, 29–32, 35, 36, 33, 34]. In this Chapter,
the problem of 2D and 3D finite elements containing more than one discontinuity
is investigated and an efficient formulation to exactly integrate polynomials times

1Part of the work described in this Chapter has been previously published in: S. Fichera, G.
Mariggiò, M. Corrado, G. Ventura. Integration of Polynomials Times Double Step Function in
Quadrilateral Domains for XFEM Analysis. Algorithms 16(6):290 (2023).
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double step function over 2D and 3D domains is presented. The extension of the
problem to an arbitrary number of discontinuities is also discussed and a closed form
solution for quadrilateral elements has been carried out. The proposed formulation
has been developed in order to address the integration problems involving more than
one discontinuity in an enriched XFEM element, such as crack branching or multi-
ple fractures, delivering an exact numerical solution without the need for domain
subdivision. The importance of this work is much deeper, however, as it aims to
provide a powerful integration technique that could be highly beneficial not just
for problems in the context of XFEM/GFEM and fracture mechanics, but also in
computational geometry and as a tool for easily and effortlessly solving integrals
over complex domain shapes. The organisation of this Chapter is herein presented.
In Section 5.2 the problem of the integration of double discontinuous functions in
2D quadrilateral elements is presented. The proposed formulation is introduced in
Section 5.3, with mathematical demonstration and proof for each analysed domain.
In order to practically employ the proposed formulation, as well as to prove its effec-
tiveness and validate it, the presented integration technique has been implemented
in a software library called double discontinuity equivalent polynomials (DD_EQP)
which is illustrated in Section 5.3.2, along with some numerical examples. The ex-
tension of the proposed formulation is then carried out also for triangular, hexahedral
and tetrahedral elements, respectively in sections 5.4 to 5.6, following the same
pattern defined for the 2D quadrilateral element. Moreover, the effect of distortion
on the accuracy of the results is analysed by means of numerical comparison with
other integration techniques in Section 5.7. Finally, the extension of the proposed
formulation for an arbitrary number of discontinuities is presented in Section 5.8 and
a general discussion on the outcomes is carried out in Section 5.9.

5.2 Problem definition

Problems involving multiple discontinuities are common in numerous domains [142–
154, 24, 155, 156]. In the context of fracture mechanics, such problems have
been investigated by numerous authors [33, 157, 35, 36, 156, 30, 32]. Comparable
problems arise also in other contexts, such as computer graphics, evaluation of
geometric region properties and computer simulation in general. In fact, similar
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integration problems have been recently addressed in different studies [158–160,
138, 161–165, 150, 166–169, 100, 170, 171, 156, 172–174, 11].

A noteworthy approach in the context of XFEM has been presented by Daux
in [34], in which a method to model multiple branched cracks is carried out. A linear
combination of Heaviside step functions (one for each discontinuity) is used together
with a junction function that defines the solution behaviour on either side of the
junction point of the crack [11]. The junction function is defined as a discontinuous
step function dependent on the value of the Heaviside functions describing each
discontinuity. With reference to the set of variables xxx = (x,y), the displacement
approximation formulation for this method can be written as

uuuh(xxx) = ∑
I∈n

uuuIφI(xxx)+
Nc
∑

J=1
∑

I∈LJ

aaaI,JφI(xxx)HJ(xxx)

+
Nt
∑

J=1
∑

I∈KJ

φI(xxx)
(

4
∑

L=1
bbbL

I,JFL
J (xxx)

)
+

Nx
∑

J=1
∑

I∈JJ

cccI,JφI(xxx)JJ(xxx)
(5.1)

in which:

• LJ ⊂ I are the nodes to enrich for the j-th discontinuity, as such their support
does not contain the ends of the discontinuity, and aaaI,J are the respective
enriched degrees of freedom [34];

• KJ ⊂ I are the nodes to enrich for the j-th discontinuity extremity, as such
their support contains the ends of the discontinuity, and bbbL

I,J, L = 1, ...,4 are
the respective enriched degrees of freedom [34];

• JJ ⊂ I are the nodes to enrich for the j-th junction, as such their support
contains the j-th junction, and cccI,J are the respective enriched degrees of
freedom [34].

Although this technique allow to tackle the eventuality of an arbitrary number of
discontinuities within an enriched element without remeshing, a subdivision of the
integration domains is still required to evaluate the element stiffness matrix. In fact,
as defined in Eq. (5.1), multiple discontinuous functions are introduced in the solution
space of the enriched elements, affecting the reliability of the numerical integration
process. In [34] the issue is addressed by way of the formulation proposed in [7], in
which the integration domain Ω is subdivided into portions Ωs, where the junction
function and the enrichment functions are continuous and differentiable. Hence,
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partitioning the integration domain is still necessary for the quadrature process [34].
The formulation proposed in [34] is illustrated also in [33], in which numerical tests
are carried out. Although the approach presented in [34] offers an effective method
to tackle down problems involving two or more discontinuities within an enriched
element, the domain subdivision is needed in order to achieve exact integration
results. Other comparable integration approaches are also found in [35, 36]. In
this scope, the proposed formulation is an ideal fit, providing accurate results by
means of an efficient numerical integration technique, without the need for splitting
the domain. Moreover, the formulation can handle not only intersecting cracks but
also cracks that cross an element without intersecting each other. This allows for
various applications also in other domains such as computer graphics, computational
geometry, or as an effective method for the evaluation of integrals over complex
domain shapes, obtained by trimming a regular quadrilateral domain with one or two
discontinuities (as investigated in [150]).

Let us consider a body B and let uuu be the displacement field so that the local
partition of unity (PU) approximation field referred to the set of variables xxx = (x,y)
is

uuu(xxx) = ∑
I∈n

NI(xxx)(uuuI +aaaIΨ(xxx)) (5.2)

in which n is the number of nodes of the finite element mesh, NI(xxx) are the finite
elements shape functions, Ψ(xxx) is the enrichment function and uuuI and aaaI are the
standard and enriched nodal variables, respectively. Let us assume that ddd is an
ensemble of m discontinuity surfaces, and let si(xxx) be the signed distance of a point
xxx to the i-th discontinuity surface di. In the case of a strong discontinuity (e.g., a
crack), the discontinuity in the displacement field can be described considering the
standard Heaviside step function as the enrichment function Ψ [33]:

Ψ(xxx) = H(xxx) = sign(si(xxx)) =

{
1 ifsi(xxx)≥ 0
0 ifsi(xxx)< 0

(5.3)

As discussed in 3.3, the enrichment function is to be applied to the nodes of the
elements crossed by the discontinuity. Furthermore, the presence in the enriched
elements of the enrichment function in (5.3) by way of (5.2) affects the precision of
the standard Gauss quadrature method for calculating the element stiffness matrix,
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which results ill-suited for this scenario. As stated in Section 5.1, the standard
approach is to divide the element domain into quadrature subdomains, which are
defined by the i-th discontinuity surface di [22]. In the following Subsections,
the proposed formulation to circumvent the subdivision of the domain in the case
of a double discontinuity is presented. In 5.3, the problem of a quadrilateral finite
element cut by strong discontinuities will be illustrated. Starting from the assumption
presented in 4.3, the proposed formulation is firstly introduced and validated for a
2D quadrilateral element, and then extended for other 2D and 3D element domains
in the subsequent Sections.

5.3 Closed form solution for quadrilateral integration
domains

The eventuality of multiple discontinuities in the same finite element is not unusual
in the context of fracture mechanics [28], for instance when crack branching, kinking
or junction occurs, both in linear and nonlinear materials [29, 21, 30–32]. Let us
consider the body B defined in Section 5.2 and a quadrilateral element of its mesh,
Ω, supposing it is divided into four portions by the discontinuity lines q and r, as
showed in Figure 5.1. Let us define ΩA as the portion obtained when the normal to
each discontinuity points inwards. Starting from ΩA, the remaining partitions (ΩB,
ΩC and ΩD) are defined counterclockwise by convention.
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Fig. 5.1 A 2D quadrilateral domain Ω crossed by two discontinuity lines: q and r.
Reproduced with permission from Integration of Polynomials Times Double Step
Function in Quadrilateral Domains for XFEM Analysis, Fichera S., Mariggiò G.,
Corrado M., Ventura G., Algorithms; published by MDPI, 2023.

In the context of XFEM, the element stiffness matrix has to be evaluated on
each of the four subdomains ΩA, ΩB, ΩC or ΩD. As seen in (3.33), discontinuous
functions times polynomials that cannot be integrated using standard quadrature
rules over the entire domain Ω will be contained in such a matrix.

It has to be noted that the Heaviside step function (5.3) is defined so that the
integrand function is zeroed on the subdomains with negative signed distance, thus a
proper definition of the normal vector of the discontinuities allows to perform the
quadrature on each subdomain. This also grants a direct extension of the proposed
formulation to the generalised Heaviside function, having values +1 and −1 on the
two sides of the discontinuity instead of +1 and 0, as defined in (5.3).

Let us assume an nth-degree polynomial Pn(xxx) to be integrated across the
subdomains ΩA, ΩB, ΩC or ΩD obtained by partitioning a regular 2× 2 square
centred in (0,0) on the (x,y) reference system with two lines q and r, so it is

Ii =
∫

Ωi

Pn(xxx)dΩ (5.4)
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where: i = {A,B,C,D} and Pn(xxx) = k0 + k1x + k2x2 + k3xy + k4y + k5y2 + ...+

km−1xn + kmyn.

The definition of each integration subdomain Ωi is needed in order to evaluate
the integral in (5.4) for each value of i with standard quadrature rules. This is not
always a straightforward task due to the eventuality of rather complex polygonal
shapes generated by the integration domain, depending on the slope of the lines.

The main objective is to use the equivalent polynomials for the two discontinuities
q and r in order to allow, for each subdomain Ωi, the integration over the entire
element domain Ω by means of the standard Gauss-Legendre quadrature rule, i.e., to
compute (5.4) with integrations on the entire element domain Ω instead of Ωi.

Let H̃q+ and H̃r+ be the equivalent polynomials related to the normals nq+ and
nr+ , and H̃q− and H̃r− be the equivalent polynomials related to the reversed normals
−nq+ and −nr+ . With reference to Figure 5.1, we have:

IA + ID =
∫

ΩA
⋃

ΩD

Pn(xxx)dΩ =
∫

Ω

H̃r+(xxx)Pn(xxx)dΩ (5.5)

IA + IB =
∫

ΩA
⋃

ΩB

Pn(xxx)dΩ =
∫

Ω

H̃q+(xxx)Pn(xxx)dΩ (5.6)

IB + IC =
∫

ΩB
⋃

ΩC

Pn(xxx)dΩ =
∫

Ω

H̃r−(xxx)Pn(xxx)dΩ (5.7)

IC + ID =
∫

ΩC
⋃

ΩD

Pn(xxx)dΩ =
∫

Ω

H̃q−(xxx)Pn(xxx)dΩ (5.8)

Equations (5.5) to (5.8) give a system of four equations in the four unknowns
IA, IB, IC and ID that, in general, can be proved to be indeterminate. In particular, it
can be observed that if the intersection point between the two discontinuities q and
r is external to the element domain or is on its boundary, then the solution will be
unique. If the intersection point lies inside the element domain, the system will be
indeterminate, with the system coefficient matrix having rank three.

When the intersection point between the two discontinuities q and r is internal
to the element domain, the above observation suggests the introduction of an auxil-
iary integration limit s along the abscissa axis of the element domain to eliminate
indeterminacy. The line x = s contains the discontinuities intersection point P and
is parallel to the vertical axis of the reference system. It should be noted that the
introduction of the auxiliary integration limit s keeps the reduced integration domain
rectangular, so that standard quadrature rules can be applied.
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Let H̃(s)
q+ (xxx) and H̃(s)

r+ (xxx) be the equivalent polynomial functions for the discon-
tinuities q and r evaluated into the regular 2×2 square element (called the parent
element), with respect to the domain bounded by s (Figure 5.2). Combining them
together, it is possible to find the equivalent polynomial H̃i(xxx):

Ii =
∫

Ωi

Pn(xxx)dΩ =
∫

Ω

H̃i(xxx)Pn(xxx)dΩ (5.9)

(a) (b)

Fig. 5.2 Use of the auxiliary integration limit s to evaluate the equivalent polynomials
H̃i(xxx). In the figure H̃B(xxx) = H̃(s)

q+ (xxx)− H̃(s)
r+ (xxx). (a) Integration domain evaluated by

means of H̃q+(xxx) with respect to the discontinuity q and the auxiliary integration
limit s. (b) Integration domain evaluated by means of H̃r+(xxx) with respect to the dis-
continuity r and the auxiliary integration limit s. Reproduced with permission from
Integration of Polynomials Times Double Step Function in Quadrilateral Domains
for XFEM Analysis, Fichera S., Mariggiò G., Corrado M., Ventura G., Algorithms;
published by MDPI, 2023.

With reference to Figure 5.2, the equivalent polynomial functions to perform the
integration on each of the four areas in (5.9) are

H̃A(xxx) = H̃q+(xxx)− H̃B(xxx) (5.10)

H̃B(xxx) = H̃(s)
q+ (xxx)− H̃(s)

r+ (xxx) (5.11)

H̃C(xxx) = H̃r−(xxx)− H̃B(xxx) (5.12)

H̃D(xxx) = H̃r+(xxx)− H̃q+(xxx)+ H̃B(xxx) (5.13)
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with the equivalent polynomial functions H̃A(xxx) . . . H̃D(xxx) representing linear combi-
nations of equivalent polynomials for the single discontinuity lines q and r, they will
depend on the equations of the two discontinuities and, according to [22, 27], will
have the same degree of Pn(xxx) and the algebraic polynomial form:

H̃i(xxx) = ccc ·mmm(xxx) (5.14)

where the vector mmm(xxx) gather a monomial basis, i.e., mmm(xxx) = (1,x,y,x2, ...), and ccc
is a vector of coefficients [28]. Since H̃i(xxx)Pn(xxx) is a polynomial function that is
continuous over the entire domain, Ω, it can be exactly integrated with a proper
quadrature rule. It has to be noted that the integrand in (5.9) has doubled its degree,
compared to the one in (5.4), thus slightly increasing the computational effort. The
main advantage of this approach is that it allows integration over the standard domain
Ω or its rectangular restriction defined by the line s, rather than the non-standard
partitioned subdomains ΩA . . .ΩD.

Analytical expressions of the equivalent polynomials H̃i(xxx) are excessively long
and are not reported in this text. However, the analytical procedure to obtain the
exact expressions by means of the software Wolfram Mathematica is reported in the
Appendix (A.1.1).

5.3.1 Integration algorithm for quadrilateral domains

The purpose of the proposed integration technique is to deliver the expression
for the equivalent polynomial function H̃i(xxx), in order to compute the integral in
Equation (5.9) without splitting the integration domain. The usefulness of the
proposed algorithm is presented by way of a generic example. Let us consider a
polynomial Pn(xxx) to be integrated over a subdomain Ω̄A, generated by dividing a
parallelogram Ω̄ with two lines q̄ and r̄, as shown in Figure 5.3a. The problem is
defined in the global coordinate system xxx = (x,y). Applying Equation (5.9) after the
equivalent polynomial function H̃A(xxx) determines:

I =
∫

Ω̄A

Pn(xxx)dΩ̄ =
∫

Ω̄

H̃A(xxx)Pn(xxx)dΩ̄ (5.15)

Beforehand, the problem has to be mapped to a standard quadrature domain.
Therefore, a change in variables from the (x,y) coordinate system to the parent
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coordinate system (ξ ,η) is employed in order to compute the integral over a standard
and regular domain (see eq. (4.10)), as illustrated in Figure 5.3b. By means of such a
procedure, single parent geometry can be used to address various scenarios. Thus,
parallelograms having any position and size in the global coordinate system can
be mapped to the square parent geometry in the local coordinate system (ξ ,η) ∈
[−1,+1] illustrated in Figure 5.3b.

(a) (b)

Fig. 5.3 Isoparametric mapping of a quadrilateral element. (a) Element configuration
in the global coordinate system. (b) Element configuration in the parent coordinate
system. Reproduced with permission from Integration of Polynomials Times Double
Step Function in Quadrilateral Domains for XFEM Analysis, Fichera S., Mariggiò
G., Corrado M., Ventura G., Algorithms; published by MDPI, 2023.

The mathematical concept used in the proposed algorithm (as well as in the
DD_EQP library) for this purpose is isoparametric mapping, which is commonly
employed in the FEM [37, 19]. Let P(ξ ,η) ∈ Ω be a generic point in the parent
reference system, corresponding to the point P̄(x,y) ∈ Ω̄ in the global reference
system. The mapping of P(ξ ,η) onto P̄(x,y) is described by:

x =
v

∑
i=1

Ni(ξ ,η)xi (5.16a)

y =
v

∑
i=1

Ni(ξ ,η)yi (5.16b)
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where v is the number of nodes of the geometric element denoted by coordinates
(xi,yi) in the global reference system, and Ni(ξ ,η) is the shape function in terms of
local coordinates for the parent element i-th node [28].

Likewise, the discontinuities q̄(xxx) and r̄(xxx) equations, defined in the global
reference system, have to be mapped onto q(ξξξ ) and r(ξξξ ), defined in the parent
coordinate system (Figure 5.3). This is achieved, for each discontinuity, by:

• Calculating the signed distances (Di) in the global coordinate system between
each discontinuity and each node of the integration domain;

• Writing the discontinuity coefficients (a, b and c) in the parent coordinate
system as a function of Di by solving a linear equations system;

• Substituting the variables x and y in q̄(xxx) and r̄(xxx) by means of Equation (5.16),
so that q(ξξξ ) and r(ξξξ ) are obtained in terms of the coefficients a′, b′ and c′

dependent on Di.

For a 2D square parent element, the coefficients are:

a′ =
D2 −D1

2
(5.17a)

b′ =
D3 −D1

2
(5.17b)

c′ =
D2 +D3

2
(5.17c)

After q̄(xxx) and r̄(xxx) are transformed into q(ξξξ ) and r(ξξξ ), the correct expression
for the equivalent polynomial function H̃i(xxx) with respect to the parent domain
coordinate system can be generated. The coordinates and integration domain trans-
formation in the quadrature are then introduced using the Jacobian matrix, which
contains the partial derivatives of the interpolation functions Ni that are differentiated
with respect to the parent system variables (ξ ,η) [140].

I =
∫

Ω̄

H̃i(xxx)Pn(xxx)dΩ̄ =
∫

Ω

H̃i(ξξξ )Pn(ξξξ )|JJJ|dΩ =

=
gp

∑
j=1

w jH̃i(ξ j,η j)Pn(ξ j,η j)|JJJ(ξ j,η j)|
(5.18)
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where |JJJ| is the Jacobian matrix determinant. The integral in Equation (5.15) is
calculated in (5.18), applying the standard scheme of the Gauss–Legendre numerical
quadrature [175]. In (5.18), gp stands for the number of Gauss-Legendre quadrature
points and w j stands for each point weight. It needs to be emphasised that the
proposed algorithm is intended for integration over the entire domain Ω̄ yielding
the result of the integral over the subdomains Ω̄A, Ω̄B, Ω̄C and Ω̄D. Thus, the
discontinuities equations have to be accurately defined, so that the unit vectors
nnniii

+ point inwards. Additionally, it has to be noted that the discontinuities do not
necessarily have to intersect Ω̄ or one another (the proposed algorithm can handle
all possible scenarios). The composition and the degree of the polynomials that can
be precisely integrated using the suggested technique rely on specific requirements
necessary to find the equivalent polynomial, as can be deduced from Refs. [22, 27].

The presented algorithm has been implemented into a Fortran library called dou-
ble discontinuity EQP, DD_EQP, which provides the expressions of the equivalent
polynomial functions H̃i(xxx) for 2D quadrilateral integration domains as a function of
the position of two discontinuity lines. In this Section, the library is used to validate
the proposed algorithm and prove its robustness by means of numerical testing. The
equivalent polynomial functions H̃i(xxx) are evaluated into a regular square parent
element. More details about the mathematical formulation employed to compute the
equivalent polynomial H̃i(xxx) for each discontinuity have been presented in Chapter 4,
and can be found in [22, 27]. It has to be noted that the proposed integration tech-
nique can be extended to a standard triangular parent element (which is described
in Subsection 5.4.1), as well as to 3D parent elements, such as tetrahedrons and
hexahedrons (wich is discussed in Section 5.5 and 5.6).

In the following subsections, the library architecture is presented and two numeri-
cal tests are carried out. The results obtained by means of the proposed algorithm are
then compared with other integration methods and validated, in order to demonstrate
the effectiveness and precision of the proposed formulation, as well as the usefulness
of the library implementing it.

5.3.2 DD_EQP library architecture

The library source code is freely available and usable. The fundamental file of the
library is dd_eqpol.f90, in which the algorithm to map the discontinuities from the
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global coordinate system to the parent coordinate system (retrieving their coefficients)
and the algorithm to evaluate the equivalent polynomial functions H̃i(xxx) are contained.
Other files that include the coefficients’ analytical expressions, required to evaluate
the equivalent polynomial functions, complete the system. Table 4.1 contains a
list of the monomials that the integrand polynomial function can be made up of.
Nevertheless, in each of the analysed domains, the library may be extended to any
polynomial degree. Note that the method provides exact results for constant Jacobian
and approximate results for non-constant Jacobian [22, 27].

Table 5.1 Integration domain, domain type, parent element domain and monomial
basis included in the library. Reproduced with permission from Integration of
Polynomials Times Double Step Function in Quadrilateral Domains for XFEM
Analysis, Fichera S., Mariggiò G., Corrado M., Ventura G., Algorithms; published
by MDPI, 2023.

Domain of
Integration

etype Parent Domain Monomial Basis

Parallelogram 21 1,ξ ,ξ 2,η ,ξ η ,η2

The library is completed by the module file class_Quad.f90, which contains
the 2D square finite element Class and all the methods needed to perform the
element isoparametric mapping and to evaluate the integral in (5.18). The module
file i_functions.f90, containing the methods to handle the data input via text file, is
also provided. A main program file, main.f90, which implements both the library
and the 2D square element Class is provided for the purpose of usage demonstration.
The practical use of the library follows these steps:

1. Primary data preparation:

• Individuation of the domain nodal coordinates in the global coordinate
system;

• Individuation of the discontinuities coefficients in the global coordinate
system;
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• Selection of the domain portions to be evaluated.

2. Isoparametric mapping onto the parent element domain and computation of the
coefficient vector of the equivalent polynomial by means of the DD_Heqpol_coefficients
subroutine.

3. Quadrature by way of any chosen rule (i.e., (5.18)) in which the equivalent
polynomial values at the quadrature points are provided by the function HeqPol
and the Jacobian matrix determinant is given by the function detJ.

In order to obtain exact quadrature results by means of the current version of the
library, the following conditions have to be met:

• The Jacobian of the transformation in (5.18) has to be constant;

• The polynomial Pn in (5.15) is a linear combination of the monomials pre-
sented in Table 4.1.

It should be noted that two calls are needed if users seek to directly incorporate
the core of the library into their own quadrature algorithm: one call to the subroutine
Heqpol_coefficients for each integration domain (step 2, mentioned previously), and
one to the function HeqPol for each quadrature point (step 3, mentioned previously).
Notice that users can add their own quadrature algorithm directly into the element
Class. In this case, a new method has to be defined within the element Class and a
call to this method in the EvalQuad and EvalQuadFromFile subroutines has to be
foreseen.

5.3.3 Numerical testing and validation

In this Subsection the DD_EQP library has been used to test and validate the proposed
formulation for 2D quadrilateral integration domains by means of two numerical
examples. The results produced by the library are exact with machine precision.

Parallelogram partitioned by two discontinuities intersecting within the element

The parallelogram element Ω̄ shown in Figure 5.4a as a part of a bigger body
discretisation is examined in the first example. All dimensions are in meters. The
element nodal coordinates, with respect to the global reference system (x,y), are:
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• 111 ≡ (0.5,3.0);

• 222 ≡ (2.0,1.5);

• 333 ≡ (6.0,2.5);

• 444 ≡ (4.5,4.0).

and it is crossed by two discontinuities, described by means of the lines q and r:

• q : 7
4x− y− 7

2 = 0;

• r : 7
4x+ y− 21

2 = 0.

and split into the subdomains Ω̄A, Ω̄B, Ω̄C and Ω̄D. The objective is to evaluate the
inertia tensor and the area of Ω̄B, namely solving the integral in (5.19) by means of
the proposed formulation without subdividing the integration domain Ω̄.∫

Ω̄

mmm(xxx)Hq(xxx)Hr(xxx)dΩ (5.19)

where vector mmm(xxx) contains the monomial basis for the examined finite element
(listed in Table 4.1) and Hq(xxx) and Hr(xxx) are the step functions for each discon-
tinuity line (see (5.3)). Note that the normal to each discontinuity line has to be
accurately defined for the sake of obtaining the targeted domain portion (as discussed
in Section 5.2).

The software maps the parallelogram Ω̄ onto the parent coordinate system, which
is used to compute H̃B(xxx) and carry out the integration.
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(a) (b)

Fig. 5.4 DD_EQP illustrative examples. (a) Example 1: parallelogram domain cut
by two discontinuities intersecting inside the domain. (b) Example 2: parallelogram
domain cut by two discontinuities intersecting outside the domain. Reproduced
with permission from Integration of Polynomials Times Double Step Function in
Quadrilateral Domains for XFEM Analysis, Fichera S., Mariggiò G., Corrado M.,
Ventura G., Algorithms; published by MDPI, 2023.

After launching the library example program, the user has to choose whether to
input the data manually as the program executes or select an input data file.

Input from file? (y/n): y
example_1.txt

For the first example, the input data is provided by the text file example_1.txt.

\\ DOUBLE DISCONTINUITY EQP LIBRARY
\\ EXAMPLE 1: DISCONTINUITIES INTERSECTING INSIDE THE DOMAIN
$ElementType
\\ 21 : Quad
21
$Coords
\\ Set the coordinates for the element
\\ 1st col : x
\\ 2nd col : y
\\ Coordinates Scheme :
\\ Quad Element :
\\ 4-------------3
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\\ | |
\\ | |
\\ | |
\\ | |
\\ | |
\\ 1-------------2
2.0 1.5
6.0 2.5
4.5 4.0
0.5 3.0
$NumOfDiscont
\\ Number of discontinuities crossing the element (1 or 2)
2
$DiscontCoefficients
\\ a,b,c coefficients for each discontinuity
\\ coefficients are separated by a blank
1.75 -1.0 -3.5
1.75 1.0 -10.5
$ElementPart
\\ In case of 2 discontinuities choose the element portion
\\ to integrate
\\ Part : A, B, C, D, all
\\ 3-----4
\\ | \A /|
\\ |B \/D|
\\ | / \ |
\\ |/ C \|
\\ 1-----2
B

where ’\\’ identifies a comment in the input section, while ’$’ identifies an input
command.

The program creates an output file containing the integration results for all the
monomials listed in Table 4.1, referred to as the selected domain part. The integration
result for the monomial Pn = 1 corresponds to the area of the selected domain part,
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while the results for the monomials y2, x2 and xy correspond to the elements of the
inertia tensor I. The results produced by the library for the area A and the inertia
tensor I of Ω̄B, evaluated with respect to the global coordinate system (x,y), are:

A = 4.371 m2 (5.20)

I = ρs

[
33.200 −28.814
−28.814 27.670

]
(units: kg m2) (5.21)

where ρs is the material surface density (kg/m2).

In order to estimate the performance and robustness of the proposed algorithm,
the integration problem has been addressed by means of the method proposed in [34]
(via the integration procedure defined in [7]). The domain Ω̄ has been split into
i = 4 subdomains (Ω̄A,Ω̄B,Ω̄C,Ω̄D), in which the functions Hq(x) and Hr(x) are
continuous and the integral for the portion of interest Ω̄B has been evaluated by
means of Gauss quadrature. The integral in (5.19), computed above by way of the
DD_EQP library, has also been evaluated numerically using the adaptive integration
method “NIntegrate” of the software Wolfram Mathematica. Finally, the integration
subdomain Ω̄B has been defined in the global reference system (x,y) by way of the
intersections between the discontinuity lines q and r and the parallelogram domain
Ω̄, and the definite integral at the left-hand side of Equation (5.9) has been exactly
computed. The obtained results coincide up to machine precision for all evaluation
methods. The error has been estimated as in Eq. (5.22) and the results are shown in
Table 5.2.

err =

∣∣rescomparison − resproposed
∣∣

rescomparison
(5.22)
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Table 5.2 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄B ([34, 7])
Adaptive

integration
Definite integral

over Ω̄B (5.9)

1 0.00% 0.00% 0.00%
xy 0.00% 0.00% 0.00%
x2 0.00% 0.00% 0.00%
y2 0.00% 0.00% 0.00%

Parallelogram partitioned by two discontinuities intersecting outside the ele-
ment

The parallelogram element Ω̄ shown in Figure 5.4b as a part of a bigger body
discretisation is examined in the second example. As before, all dimensions are in
meters. The element nodal coordinates, with respect to the global reference system
(x,y), are:

• 111 ≡ (0.5,3.0);

• 222 ≡ (2.0,1.5);

• 333 ≡ (6.0,2.5);

• 444 ≡ (4.5,4.0).

and it is crossed by two discontinuities, described by means of the lines q and r:

• q : 2
9x+ y− 9

2 = 0;

• r : y−2 = 0.

and split into three subdomains: Ω̄A, Ω̄B and Ω̄C. The aim is to evaluate the inertia
tensor and the area of Ω̄C, namely solving the integral in (5.19) by means of the
proposed formulation, without subdividing the integration domain Ω̄.

The input is analogous to the previous example in Figure 5.4a.
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The results produced by the library for the area A and the inertia tensor I of Ω̄C,
evaluated with respect to the global coordinate system (x,y), are:

A = 6.450 m2 (5.23)

I = ρs

[
50.817 −58.396
−58.396 78.392

]
(units: kg m2) (5.24)

where ρs is the material surface density (kg/m2). As in the example in Figure 5.4a,
the integral in (5.19), computed above by means of the DD_EQP library, has also
been evaluated numerically by means of the method proposed in [34], via the adaptive
integration strategy NIntegrate of the software Wolfram Mathematica, and by way
of definite integral computation after defining the integration subdomain Ω̄C. Once
again, the obtained results coincide to the level of machine precision for all evaluation
methods. The error has been estimated as in Eq. (5.22) and the results are shown in
Table 5.3.

Table 5.3 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄C ([34, 7])
Adaptive

integration
Definite integral

over Ω̄C (5.9)

1 0.00% 0.00% 0.00%
xy 0.00% 0.00% 0.00%
x2 0.00% 0.00% 0.00%
y2 0.00% 0.00% 0.00%

Outcomes

The outcomes of the examples presented in section 5.3.3 and section 5.3.3 validate
both the algorithm and the DD_EQP library itself, demonstrating the precision,
robustness and versatility of the proposed formulation. It has to be noted that,
when equivalent polynomials are used, the integrand function doubles its degree,
thus requiring a higher computational effort compared to other methods (such as
in [34, 33, 7]) [22, 27]. On the other hand, the proposed formulation removes the
necessity of defining subdomains, smoothing the overall integration process.
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5.4 Closed form solution extension to triangular inte-
gration domains

The solution presented in Section 5.3 can be easily extended also to triangular
elements. Let us consider the body B defined in Section 5.2 and a triangular element
of its mesh, Ω, supposing it is divided into four portions by the discontinuity lines
q and r, as showed in Figure 5.5. Let us define ΩA as the portion obtained when
the normal to each discontinuity points inwards. Starting from ΩA, the remaining
partitions (ΩB, ΩC and ΩD) are defined counterclockwise by convention.

Fig. 5.5 A 2D triangular domain Ω crossed by two discontinuity lines: q and r.

As discussed before, in the XFEM context the element stiffness matrix has to
be evaluated on each of the four subdomains ΩA, ΩB, ΩC or ΩD. As seen in (3.33),
discontinuous functions times polynomials that cannot be integrated using standard
quadrature rules over the entire domain Ω will be contained in such a matrix.

It has to be stressed again that the Heaviside step function (5.3) is defined so that
the integrand function is zeroed on the subdomains with negative signed distance,
thus a proper definition of the normal vector of the discontinuities allows to perform
the quadrature on each subdomain. This also grants a direct extension of the proposed
formulation to the generalised Heaviside function, having values +1 and −1 on the
two sides of the discontinuity instead of +1 and 0, as defined in (5.3).
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Let us assume an nth-degree polynomial Pn(xxx) to be integrated across the
subdomains ΩA, ΩB, ΩC or ΩD obtained by partitioning a regular triangle element
defined by the vertices {(0,0),(1,0),(0,1)} on the (x,y) reference system with two
lines q and r, as in Eq. (5.4).

The definition of each integration subdomain Ωi is needed in order to evaluate
the integral in (5.4) for each value of i with standard quadrature rules. This is not
always a straightforward task due to the eventuality of rather complex polygonal
shapes generated by the integration domain, depending on the slope of the lines.

The main objective is to use the equivalent polynomials for the two discontinuities
q and r in order to allow, for each subdomain Ωi, the integration over the entire
element domain Ω by means of the standard Gauss-Legendre quadrature rule, i.e., to
compute (5.4) with integrations on the entire element domain Ω instead of Ωi.

As before, let H̃q+ and H̃r+ be the equivalent polynomials related to the normals
nq+ and nr+ , and H̃q− and H̃r− be the equivalent polynomials related to the reversed
normals −nq+ and −nr+ . With reference to Figure 5.5, is it possible to define
again the equations (5.5) to (5.8), which give a system of four equations in the
four unknowns IA, IB, IC and ID that, in general, can be proved to be indeterminate.
In particular, it can be observed that if the intersection point between the two
discontinuities q and r is external to the element domain or is on its boundary, then
the solution will be unique. If the intersection point lies inside the element domain,
the system will be indeterminate, with the system coefficient matrix having rank
three.

The same mathematical approach presented in Section 5.3 is followed. In the
case of intersection point between the two discontinuities q and r being internal to
the element domain, the above observation suggests the introduction of an auxil-
iary integration limit s along the abscissa axis of the element domain to eliminate
indeterminacy. As in the case of a qudrilateral domain, the line s = x contains the
discontinuities intersection point P and is parallel to the vertical axis of the reference
system.

Let H̃(s)
q+ (xxx) and H̃(s)

r+ (xxx) be the equivalent polynomial functions for the disconti-
nuities q and r evaluated into the regular triangular parent element, with respect to
the domain bounded by s (Figure 5.6). Combining them together, it is possible to
find the equivalent polynomial H̃i(xxx) (as defined in Eq. (5.9)).
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(a) (b)

Fig. 5.6 Use of the auxiliary integration limit s to evaluate the equivalent polynomials
H̃i(xxx). In the figure H̃B(xxx) = H̃(s)

q+ (xxx)− H̃(s)
r+ (xxx). (a) Integration domain evaluated by

means of H̃q+(xxx) with respect to the discontinuity q and the auxiliary integration
limit s. (b) Integration domain evaluated by means of H̃r+(xxx) with respect to the
discontinuity r and the auxiliary integration limit s.

As for the quadrilateral element case, with reference to Figure 5.6, it is possible to
define the equivalent polynomial functions to perform the integration on each of the
four areas in (5.9), which coincide to the ones described in Eq. (5.10). Once again, the
equivalent polynomial functions H̃A(xxx) . . . H̃D(xxx) representing linear combinations
of equivalent polynomials for the single discontinuity lines q and r, they will depend
on the equations of the two discontinuities and, according to [22, 27], will have the
same degree of Pn(xxx) and their algebraic polynomial form is the one described in
Eq. (5.14).

Since the same considerations made for the linear triangular parent element
discussed in section 4.3.1 can be extended also to the current scenario, the monomial
basis constituting the equivalent polynomial for such element is mmm(xxx) = (1).

As before, the polynomial function H̃i(xxx)Pn(xxx) is continuous over the entire
domain, Ω, thus can be exactly integrated with a proper quadrature rule. It is stressed
again that the integrand in (5.9) has doubled its degree, compared to the one in (5.4).
The principal advantage of this approach is allowing the exact integration over the
standard domain Ω, rather than non-standard partitioned subdomains (ΩA . . .ΩD).

Analytical expressions of the equivalent polynomials H̃i(xxx) are excessively long
and are not reported in this text. However, the analytical procedure to obtain the
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exact expressions by means of the software Wolfram Mathematica is reported in the
Appendix (A.1.2).

5.4.1 Integration algorithm for triangular domains

As for the single discontinuity case illustrated in Chapter 4, the proposed integration
technique, presented and validated for quadrilateral domains in section 5.3.1, can
be easily and directly extended to a triangular parent element. Once again, the
demonstration is carried out by means of a generic example. Let us consider a
polynomial Pn(xxx) to be integrated over a subdomain Ω̄A, generated by dividing a
generic triangle Ω̄ with two lines q̄ and r̄, as shown in Figure 5.7a. The problem is
defined in the global coordinate system xxx = (x,y). The integration problem to be
solved is obtained applying Equation (5.9) after the equivalent polynomial function
H̃A(xxx) (Eq. (5.15)).

First, the problem has to be mapped to a standard quadrature domain. Therefore,
a change in variables from the (x,y) coordinate system to the parent coordinate
system (ξ ,η) by way of isoparametric mapping is employed in order to compute
the integral over a standard and regular domain (see eq. (4.6)), as illustrated in
Figure 5.7b. By means of such a procedure, single parent geometry can be used
to address various scenarios. Thus, triangles having any position and size in the
global coordinate system can be mapped to the square parent geometry in the local
coordinate system (ξ ,η) illustrated in Figure 5.7b.

(a) (b)

Fig. 5.7 Isoparametric mapping of a triangular element. (a) Element configuration
in the global coordinate system. (b) Element configuration in the parent coordinate
system.



5.4 Closed form solution extension to triangular integration domains 93

Let P(ξ ,η) ∈ Ω be a generic point in the parent reference system, corresponding
to the point P̄(x,y) ∈ Ω̄ in the global reference system. The mapping of P(ξ ,η) onto
P̄(x,y), as before, is described by Eq. (5.16).

Likewise, the discontinuities q̄(xxx) and r̄(xxx) equations, defined in the global
reference system, have to be mapped onto q(ξξξ ) and r(ξξξ ), defined in the parent
coordinate system (Figure 5.7). This is achieved by:

• Calculating the signed distances (Di) in the global coordinate system between
each discontinuity and each node of the integration domain;

• Writing the discontinuity coefficients (a, b and c) in the parent coordinate
system as a function of Di by solving a linear equations system;

• Substituting the variables x and y in q̄(xxx) and r̄(xxx) by means of Equation (5.16),
so that q(ξξξ ) and r(ξξξ ) are obtained in terms of the coefficients a′, b′ and c′

dependent on Di.

For a 2D triangular parent element, the coefficients are:

a′ = D2 −D1 (5.25a)

b′ = D3 −D1 (5.25b)

c′ = D1 (5.25c)

As in section 5.3.1, q̄(xxx) and r̄(xxx) are transformed into q(ξξξ ) and r(ξξξ ), the correct
expression for the equivalent polynomial function H̃i(xxx) with respect to the parent
domain coordinate system can be generated. The coordinates and integration domain
transformation in the quadrature are then introduced using the Jacobian matrix, which
contains the partial derivatives of the interpolation functions Ni that are differentiated
with respect to the parent system variables (ξ ,η) [140].

The integral in Equation (5.15) is calculated by means of the standard Gauss-
Legendre numerical quadrature rule defined in (5.18) [175]. It has to be highlighted
once more that the proposed formulation is intended for integration over the entire
domain Ω̄ yielding the result of the integral over the subdomains Ω̄A, Ω̄B, Ω̄C and
Ω̄D. Thus, the discontinuities equations have to be accurately defined, so that the unit
vectors nnniii

+ point inwards. Additionally, it has to be noted that the discontinuities
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do not necessarily have to intersect Ω̄ or one another (the presented formulation can
handle all possible scenarios). The composition and the degree of the polynomials
that can be precisely integrated using the suggested technique rely on specific
requirements necessary to find the equivalent polynomial, as already discussed in 4
and as can be deduced from Refs. [22, 27].

In the following subsection, some numerical tests are performed in order to
demonstrate the precision and efficacy of the presented formulation. The results are
compared to other integration methods to validate the proposed technique.

5.4.2 Numerical testing and validation

The formulation presented in section 5.4 for 2D triangular domains has been tested
and validated by way of two numerical examples. The results obtained by means of
the proposed formulation are exact with machine precision.

Triangle partitioned by two discontinuities intersecting within the element

The triangular element Ω̄ shown in Figure 5.8a as a part of a bigger body dis-
cretisation is herein examined. All dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y), are:

• 111 ≡ (0.195,1.910);

• 222 ≡ (0.739,0.599);

• 333 ≡ (2.007,1.092).

and it is crossed by two discontinuities, described by way of the lines q and r:

• q : − 887
1000x− y+ 1891

1000 = 0;

• r : 297
100x− y− 128

125 = 0.

and split into the subdomains Ω̄A, Ω̄B, Ω̄C and Ω̄D. The objective is to evaluate
the area of Ω̄D, namely solving the integral in Eq. 5.19 by means of the proposed
formulation without subdividing the integration domain Ω̄, in which the monomial
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basis vector is mmm(xxx) = (1), and Hq(xxx) and Hr(xxx) are the step functions for each
discontinuity line (see (5.3)). Note that the normal to each discontinuity line has to
be accurately defined in order to obtain the desired domain portion (as discussed in
Section 5.3.1).

In order to set up the proposed integration technique, as described in section 5.4.1,
the triangle Ω̄ has to be mapped onto the parent coordinate system, which is used
to compute H̃B(xxx) and carry out the integration. This is performed by means of the
shape functions defined in eq. (4.6), while the coefficients for the two discontinuities
are brought back to the parent coordinate system by way of the expressions defined
in eq. (5.25).

(a) (b)

Fig. 5.8 Proposed formulation testing on triangular domains. (a) Example 1: triangle
domain cut by two discontinuities intersecting inside the domain. (b) Example 2:
triangle domain cut by two discontinuities intersecting outside the domain.

Since the equivalent polynomials H̃i(xxx) only depends on the values of the discon-
tinuities coefficients, the exact computation is straightforward. It is then possible to
move forward by applying the quadrature rule in eq. (5.18), in which the monomial
Pn = 1 corresponds to the area of the selected domain part. The results evaluated
with respect to the global coordinate system (x,y), are:

A = 0.481 m2 (5.26)

In order to estimate the performance and robustness of the proposed algorithm,
the integration problem has been addressed by means of the method proposed in [34]
(via the integration procedure defined in [7]). The domain Ω̄ has been split into
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i = 4 subdomains (Ω̄A,Ω̄B,Ω̄C,Ω̄D), in which the functions Hq(x) and Hr(x) are
continuous and the integral for the portion of interest Ω̄B has been evaluated by
means of Gauss quadrature. The integral for the portion of interest has also been
evaluated numerically using the adaptive integration method “NIntegrate” of the
software Wolfram Mathematica. Finally, the integration subdomain Ω̄B has been
defined in the global reference system (x,y) by way of the intersections between the
discontinuity lines q and r and the parallelogram domain Ω̄, and the definite integral
at the left-hand side of Equation (5.9) has been exactly computed. The obtained
results coincide up to machine precision for all evaluation methods. The error has
been estimated as in Eq. (5.22) and the results are reported in Table 5.4.

Table 5.4 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄B ([34, 7])
Adaptive

integration
Definite integral

over Ω̄B (5.9)

1 0.00% 0.00% 0.00%

Triangle partitioned by two discontinuities intersecting outside the element

The triangle element Ω̄ shown in Figure 5.8b as a part of a bigger body discretisation
is herein examined. As before, all dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y), are:

• 111 ≡ (0.637,1.487);

• 222 ≡ (2.695,1.106);

• 333 ≡ (3.109,1.901).

and it is crossed by two discontinuities, described by means of the lines q and r:

• q : −9147
500 x− y+ 24227

1000 = 0;

• r : −169
500x− y− 2463

1000 = 0.
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and split into three subdomains: Ω̄B, Ω̄C and Ω̄D. The aim is to evaluate the inertia
tensor and the area of Ω̄C, namely solving the integral in (5.19) by means of the
proposed formulation, without subdividing the integration domain Ω̄.

The procedure is analogous to the previous case in Figure 5.8a.

The results obtained by means of the proposed formulation for the area of Ω̄C,
evaluated with respect to the global coordinate system (x,y), are:

A = 0.650 m2 (5.27)

As in the example in Figure 5.4a, the integral in (5.19), computed above by
means of the proposed formulation, has also been evaluated numerically by means of
the method proposed in [34], via the adaptive integration strategy NIntegrate of the
software Wolfram Mathematica, and by way of definite integral computation after
defining the integration subdomain Ω̄C. Once again, the obtained results coincide
to the level of machine precision for all evaluation methods. The error has been
estimated as in Eq. (5.22) and the results are shown in Table 5.5.

Table 5.5 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄C ([34, 7])
Adaptive

integration
Definite integral

over Ω̄C (5.9)

1 0.00% 0.00% 0.00%

Outcomes

The outcomes for the tests presented in section 5.4.2 and section 5.4.2 validate
proposed formulation, demonstrating its precision, robustness and versatility. As
discussed in section 5.3.3, when equivalent polynomials are used, the integrand
function doubles its degree, thus requiring a higher computational effort compared
to other methods (such as in [34, 33, 7]) [22, 27]. On the other hand, the proposed
formulation removes the necessity of defining subdomains, smoothing the overall
integration process.
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5.5 Closed form solution for hexahedral integration
domains

In sections 5.3 and 5.4, a closed form solution for the problem of exactly integrating
polynomials times double step function over quadrilateral and triangular domains by
way of standard quadrature rules, without defining subdomains, has been presented.
In this Section, the extension of the proposed formulation to three-dimensional
hexahedral elements is demonstrated. The presence of multiple discontinuities in
three-dimensional finite elements is common in certain fracture mechanics applica-
tions, for instance in problems involving hydraulic fracture and fracture analysis in
rocks [176–181].

Let us consider a body B and let uuu be the displacement field so that the local
partition of unity (PU) approximation field referred to the set of variables xxx = (x,y,z)
is defined by Eq. (5.2). Let us consider a hexahedral element of its mesh, Ω,
supposing it is divided into four portions by the discontinuity planes Q and R, as
showed in Figure 5.9. Let us define ΩA as the portion obtained when the normal to
each discontinuity points inwards. Starting from ΩA, the remaining partitions (ΩB,
ΩC and ΩD) are defined counterclockwise by convention.

Fig. 5.9 A 3D hexahedral domain Ω crossed by two discontinuity planes: Q and R.

In the context of XFEM, the element stiffness matrix has to be evaluated on
each of the four subdomains ΩA, ΩB, ΩC or ΩD. As seen in (3.33), discontinuous
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functions times polynomials that cannot be integrated using standard quadrature
rules over the entire domain Ω will be contained in such a matrix.

It has to be noted that the Heaviside step function (5.3) is defined so that the
integrand function is zeroed on the subdomains with negative signed distance, thus a
proper definition of the normal vector of the discontinuities allows to perform the
quadrature on each subdomain. This also grants a direct extension of the proposed
formulation to the generalised Heaviside function, having values +1 and −1 on the
two sides of the discontinuity instead of +1 and 0, as defined in (5.3).

Let us assume an nth-degree polynomial Pn(xxx) to be integrated across the sub-
domains ΩA, ΩB, ΩC or ΩD obtained by partitioning a regular 2×2×2 hexahedron
centred in (0,0,0) on the (x,y,z) reference system with two planes Q and R, so it is

Ii =
∫

Ωi

Pn(xxx)dΩ (5.28)

where: i = {A,B,C,D} and Pn(xxx) = k0 + k1x + k2x2 + k3xy + k4y + k5y2 + ...+

km−2xn + km−1yn + kmzn.

The definition of each integration subdomain Ωi is needed in order to evaluate
the integral in (5.28) for each value of i with standard quadrature rules. This is
not always a straightforward task due to the eventuality of rather complex three-
dimensional shapes generated by the integration domain, depending on the slope of
the discontinuity planes.

The main objective is to use the equivalent polynomials for the two discontinuity
planes Q and R in order to allow, for each subdomain Ωi, the integration over the
entire element domain Ω by means of the standard Gauss-Legendre quadrature rule,
i.e., to compute (5.28) with integrations on the entire element domain Ω instead of
Ωi.

Let H̃Q+ and H̃R+ be the equivalent polynomials related to the normals nQ+ and
nR+ , and H̃Q− and H̃R− be the equivalent polynomials related to the reversed normals
−nQ+ and −nR+ . With reference to Figure 5.9, we have:
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IA + ID =
∫

ΩA
⋃

ΩD

Pn(xxx)dΩ =
∫

Ω

H̃R+(xxx)Pn(xxx)dΩ (5.29)

IA + IB =
∫

ΩA
⋃

ΩB

Pn(xxx)dΩ =
∫

Ω

H̃Q+(xxx)Pn(xxx)dΩ (5.30)

IB + IC =
∫

ΩB
⋃

ΩC

Pn(xxx)dΩ =
∫

Ω

H̃R−(xxx)Pn(xxx)dΩ (5.31)

IC + ID =
∫

ΩC
⋃

ΩD

Pn(xxx)dΩ =
∫

Ω

H̃Q−(xxx)Pn(xxx)dΩ (5.32)

Equations (5.29) to (5.32) give a system of four equations in the four unknowns
IA, IB, IC and ID that, in general, can be proved to be indeterminate. In particular, it
can be observed that if the intersection line between the two discontinuities Q and R
is external to the element domain or is contained on its boundary, then the solution
will be unique. If the intersection line lies inside the element domain, the system
will be indeterminate, with the system coefficient matrix having rank three.

When the intersection line between the two discontinuities Q and R is internal to
the element domain, the above observation suggests the introduction of an auxiliary
integration limit S to eliminate indeterminacy.

The plane S : x = mz+n is obtained such that it belongs to the sheaf of planes
generated by the intersection line between Q and R and that its normal has null
component with respect to the y-axis of the reference system. Being a1,b1,c1,d1 the
coefficients for the plane Q, and a2,b2,c2,d2 the coefficients for the plane R, with
respect to the (x,y,z) coordinate system, it is

m =
c1 +

(
−b1

b2

)
c2

a1 +
(
−b1

b2

)
a2

n =
d1 +

(
−b1

b2

)
d2

a1 +
(
−b1

b2

)
a2

(5.33)

In order to properly define the equivalent polynomials for all the integration
portions, the auxiliary integration limit defined by means of the plane S should be
coupled by integration limits also in the z-axis direction. In particular, the domain
in which the equivalent polynomial functions for the discontinuities Q and R are
evaluated has also to be bounded by planes Z1 and Z2. These planes have null
components with respect to the x-axis and y-axis of the reference system and contain
the intersection line between the plane S and the parent hexaheral domain limits
along the x-axis: planes x = −1 and x = 1. Trivially, integration limits along the
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z-axis will coincide to the actual parent domain limits in that direction if plane S
intersects these bounds (as in the case shown in Figure 5.9).

It should be noted that the introduction of the auxiliary integration limit S (and
also Z1 and Z2, when needed) keeps the reduced integration domain hexahedral, so
that standard quadrature rules can be applied.

Let H̃(S)
Q+(xxx) and H̃(S)

R+ (xxx) be the equivalent polynomial functions for the disconti-
nuities Q and R evaluated into the regular 2×2×2 hexahedral element (called the
parent element), with respect to the domain bounded by S (Figure 5.10). Combining
them together, it is possible to find the equivalent polynomial H̃i(xxx):

Ii =
∫

Ωi

Pn(xxx)dΩ =
∫

Ω

H̃i(xxx)Pn(xxx)dΩ (5.34)

(a) (b)

Fig. 5.10 Use of the auxiliary integration limit S to evaluate the equivalent polynomi-
als H̃i(xxx). In the figure H̃B(xxx) = H̃(S)

Q+(xxx)− H̃(S)
R+ (xxx). (a) Integration domain evaluated

by means of H̃Q+(xxx) with respect to the discontinuity Q and the auxiliary integration
limit S. (b) Integration domain evaluated by means of H̃R+(xxx) with respect to the
discontinuity R and the auxiliary integration limit S.

With reference to Figure 5.10, the equivalent polynomial functions to perform
the integration on each of the four areas in (5.34) are
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H̃A(xxx) = H̃Q+(xxx)− H̃B(xxx) (5.35)

H̃B(xxx) = H̃(S)
Q+(xxx)− H̃(S)

R+ (xxx) (5.36)

H̃C(xxx) = H̃R−(xxx)− H̃B(xxx) (5.37)

H̃D(xxx) = H̃R+(xxx)− H̃Q+(xxx)+ H̃B(xxx) (5.38)

with the equivalent polynomial functions H̃A(xxx) . . . H̃D(xxx) representing linear combi-
nations of equivalent polynomials for the single discontinuity planes Q and R, they
will depend on the equations of the two discontinuities and, according to [22, 27],
will have the same degree of Pn(xxx) and the algebraic polynomial form:

H̃i(xxx) = ccc ·mmm(xxx) (5.39)

where the vector mmm(xxx) gather a monomial basis, i.e., mmm(xxx) = (1,x,y,x2, ...), and ccc
is a vector of coefficients [28]. Since H̃i(xxx)Pn(xxx) is a polynomial function that is
continuous over the entire domain, Ω, it can be exactly integrated with a proper
quadrature rule. It has to be noted that the integrand in (5.34) has doubled its degree,
compared to the one in (5.28), thus slightly increasing the computational effort.
The main advantage of this approach is that it allows integration over the standard
domain Ω or its hexahedral restriction defined by the auxiliary plane S, rather than
the non-standard partitioned subdomains ΩA . . .ΩD.

Analytical expressions of the equivalent polynomials H̃i(xxx) are excessively long
and are not reported in this text. However, the analytical procedure to obtain the
exact expressions by means of the software Wolfram Mathematica is reported in the
Appendix (A.1.3).

5.5.1 Integration algorithm for hexahedral domains

The purpose of the proposed integration technique is to deliver the expression
for the equivalent polynomial function H̃i(xxx), in order to compute the integral in
Equation (5.34) without splitting the integration domain. The usefulness of the
proposed algorithm is presented by way of a generic example. Let us consider a
polynomial Pn(xxx) to be integrated over a subdomain Ω̄A, generated by dividing a
hexahedron Ω̄ with two planes Q̄ and R̄, as shown in Figure 5.11a. The problem is
defined in the global coordinate system xxx = (x,y,z). Applying Equation (5.34) after
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the equivalent polynomial function H̃A(xxx) determines:

I =
∫

Ω̄A

Pn(xxx)dΩ̄ =
∫

Ω̄

H̃A(xxx)Pn(xxx)dΩ̄ (5.40)

Beforehand, the problem has to be mapped to a standard quadrature domain.
Therefore, a change in variables from the (x,y,z) coordinate system to the parent
coordinate system (ξ ,η ,ζ ) is employed in order to compute the integral over a
standard and regular domain (see eq. (4.24)), as illustrated in Figure 5.11b. By means
of such a procedure, single parent geometry can be used to address various scenarios.
Thus, hexahedrons having any position and size in the global coordinate system
can be mapped to the hexahedral parent geometry in the local coordinate system
(ξ ,η ,ζ ) ∈ [−1,+1] illustrated in Figure 5.11b.

(a) (b)

Fig. 5.11 Isoparametric mapping of a hexahedral element. (a) Element configuration
in the global coordinate system. (b) Element configuration in the parent coordinate
system.

The mathematical concept used in the proposed technique for this purpose is
isoparametric mapping, which is commonly employed in the FEM [37, 19]. Let
P(ξ ,η ,ζ ) ∈ Ω be a generic point in the parent reference system, corresponding to
the point P̄(x,y,z) ∈ Ω̄ in the global reference system. The mapping of P(ξ ,η ,ζ )

onto P̄(x,y,z) is described by:

x =
v

∑
i=1

Ni(ξ ,η ,ζ )xi (5.41a)
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y =
v

∑
i=1

Ni(ξ ,η ,ζ )yi (5.41b)

z =
v

∑
i=1

Ni(ξ ,η ,ζ )zi (5.41c)

where v is the number of nodes of the geometric element denoted by coordinates
(xi,yi,zi) in the global reference system, and Ni(ξ ,η ,ζ ) is the shape function in
terms of local coordinates for the parent element i-th node [28].

Similarly, the discontinuities Q̄(xxx) and R̄(xxx) equations, defined in the global
reference system, have to be mapped onto Q(ξξξ ) and R(ξξξ ), defined in the parent
coordinate system (Figure 5.11). This is achieved, for each discontinuity, by:

• Calculating the signed distances (Di) in the global coordinate system between
each discontinuity and each node of the integration domain;

• Writing the discontinuity coefficients (a, b, c, and d) in the parent coordinate
system as a function of Di by solving a linear equations system;

• Substituting the variables x, y, and z in Q̄(xxx) and R̄(xxx) by means of Equa-
tion (5.41), so that Q(ξξξ ) and R(ξξξ ) are obtained in terms of the coefficients a′,
b′, c′, and d′ dependent on Di.

For a 3D hexahedral parent element, the coefficients are:

a′ =
D2 −D1

2
(5.42a)

b′ =
D3 −D1

2
(5.42b)

c′ =
D4 −D1

2
(5.42c)

d′ =
D4 +D3 +D2 −D1

2
(5.42d)

After Q̄(xxx) and R̄(xxx) are transformed into Q(ξξξ ) and R(ξξξ ), the correct expression
for the equivalent polynomial function H̃i(xxx) with respect to the parent domain
coordinate system can be generated. The coordinates and integration domain trans-
formation in the quadrature are then introduced using the Jacobian matrix, which
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contains the partial derivatives of the interpolation functions Ni that are differentiated
with respect to the parent system variables (ξ ,η ,ζ ) [140].

I =
∫

Ω̄

H̃i(xxx)Pn(xxx)dΩ̄ =
∫

Ω

H̃i(ξξξ )Pn(ξξξ )|JJJ|dΩ =

=
gp

∑
j=1

w jH̃i(ξ j,η j,ζ j)Pn(ξ j,η j,ζ j)|JJJ(ξ j,η j,ζ j)|
(5.43)

where |JJJ| is the Jacobian matrix determinant. The integral in Equation (5.40) is
calculated in (5.43), applying the standard scheme of the Gauss–Legendre numerical
quadrature [175]. In (5.43), gp stands for the number of Gauss-Legendre quadrature
points and w j stands for each point weight. It needs to be emphasised that the
proposed algorithm is intended for integration over the entire domain Ω̄ yielding
the result of the integral over the subdomains Ω̄A, Ω̄B, Ω̄C and Ω̄D. Thus, the
discontinuities equations have to be accurately defined, so that the unit vectors
nnniii

+ point inwards. Additionally, it has to be noted that the discontinuities do not
necessarily have to intersect Ω̄ or one another (the proposed algorithm can handle
all possible scenarios). The composition and the degree of the polynomials that can
be precisely integrated using the suggested technique rely on specific requirements
necessary to find the equivalent polynomial, as can be deduced from Refs. [22, 27].

The equivalent polynomial functions H̃i(xxx) are evaluated into a regular hexahedral
parent element. As for the previous Sections, more details about the mathematical
formulation employed to compute the equivalent polynomial H̃i(xxx) for each dis-
continuity have been presented in Chapter 4, and can be found in [22, 27]. It has
to be noted that the proposed integration technique can be extended to a standard
tetrahedral parent element (which is described in Subsection 5.6.1).

In the following subsection, some numerical tests are performed in order to
demonstrate the precision and efficacy of the proposed formulation. The results are
then compared to other integration methods to validate the presented technique.

5.5.2 Numerical testing and validation

The formulation presented in section 5.5 for 3D hexahedral domains has been tested
and validated by way of two numerical examples. The results obtained by means of
the proposed formulation are exact with machine precision.
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Hexahedron partitioned by two discontinuities intersecting within the element

The hexahedral element Ω̄ shown in Figure 5.12a as a part of a bigger body dis-
cretisation is herein examined. All dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y,z), are:

• 111 ≡ (−1.0,−1.0,0.0);

• 222 ≡ (1.0,−1.0,0.0);

• 333 ≡ (−1.0,1.0,0.0);

• 444 ≡ (1.0,1.0,0.0).

• 555 ≡ (−1.0,1.0,5.0)

• 666 ≡ (1.0,1.0,5.0)

• 777 ≡ (−1.0,3.0,5.0)

• 888 ≡ (1.0,3.0,5.0)

and it is crossed by two discontinuities, described by way of the planes Q̄ and R̄:

• Q̄ : −109
20 x− 47

20y+ 247
50 z− 113

10 = 0;

• R̄ : −11
5 x+ 11

5 y+ 33
25z+ 507

100 = 0;

and split into four subdomains. The objective is to evaluate the inertia tensor and
the volume of the highlighted portion Ω̄A, namely solving the integral in Eq. 5.44 by
means of the proposed formulation without subdividing the integration domain Ω̄.∫

Ω̄

mmm(xxx)HQ(xxx)HR(xxx)dΩ (5.44)

where vector mmm(xxx) contains the monomial basis for the examined finite element
(listed in Eq. (4.25)) and HQ(xxx) and HR(xxx) are the step functions for each discon-
tinuity line (see (5.3)). Note that the normal to each discontinuity plane has to be
accurately defined for the sake of obtaining the targeted domain portion (as discussed
in Section 5.3).
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In order to set up the proposed integration technique, as described in section 5.5.1,
the hexahedron Ω̄ has to be mapped onto the parent coordinate system, which is used
to compute H̃A(xxx) and carry out the integration. This is performed by means of the
shape functions defined in eq. (4.24), while the coefficients for the two discontinuities
are brought back to the parent coordinate system by way of the expressions defined
in eq. (5.42).

(a) (b)

Fig. 5.12 Proposed formulation testing on hexahedral domains. (a) Example 1:
hexahedron element cut by two discontinuities intersecting inside the domain. (b)
Example 2: hexahedron element cut by two discontinuities intersecting outside the
domain.

Since the equivalent polynomials H̃i(xxx) only depends on the values of the discon-
tinuities coefficients, the exact computation is straightforward. It is then possible to
apply the quadrature rule in eq. (5.43), in which the monomial Pn = 1 corresponds
to the volume of the selected domain part, while the monomials constituting the
inertia tensor III are defined in Eq. (5.45).

I = ρs

y2 + z2 −xy −xz
−yx x2 + z2 −yz
−zx −zy x2 + y2

 (5.45)

where ρs is the material volumetric density (kg/m3).

The results evaluated with respect to the global coordinate system (x,y,z) are

Volume = 7.947 m3 (5.46)
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I = ρs

144.820 2.110 5.010
2.110 125.962 −48.480
5.010 −48.480 24.141

 (units: kg m3) (5.47)

In order to estimate the performance and robustness of the proposed algorithm,
the integration problem has been addressed by means of the method proposed in [34]
(via the integration procedure defined in [7]). The domain Ω̄ has been split into i = 4
subdomains, knowing the exact equations for the discontinuity planes Q̄ and R̄, in
which the functions HQ̄(x) and HR̄(x) are continuous. The portion of interest, Ω̄A,
can thus be analytically defined and the integral has been evaluated by means of
Gauss quadrature. The integral for the portion of interest has also been evaluated
numerically using the adaptive integration method “NIntegrate” of the software
Wolfram Mathematica. Finally, the integration subdomain Ω̄A has been analytically
defined in the global reference system (x,y,z) by way of the intersections between
the discontinuity planes Q̄ and R̄ and the hexahedral domain Ω̄, and the definite
integral at the left-hand side of Eq. (5.34) has been computed. Results coincide, in
general, up to the third decimal. The error in the computations of each integrand has
been estimated as in Eq. (5.22) and the results are reported in Table 5.6.

Table 5.6 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄A ([34, 7])
Adaptive

integration
Definite integral
over Ω̄A (5.34)

1 2.34% 0.24% 2.34%
y2 + z2 1.40% 0.26% 1.40%

xy 1.53% 0.09% 1.53%
xz 6.26% 0.16% 6.26%

x2 + z2 1.68% 0.28% 1.68%
yz 0.41% 0.25% 0.41%

x2 + y2 0.28% 0.21% 0.28%

Although a slight error is present in this case, this is mainly due to the difficulty
of exactly defining the integration region. In particular, this is more evident for the
integration procedure defined in [7], and for the definite integral over the portion Ω̄A,
in which the partitioned domain has to be described thoroughly in order to obtain
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precise results. In fact, being Ω̄A a complex and irregular polyhedron, its exact
definition as an integration domain is not trivial. In the case analysed in this example,
the integration subdomain Ω̄A has been defined by means of a Delaunay triangulation,
once obtained the polyhedron vertices (Figure 5.13). Despite the Delaunay mesh
being properly refined in order to maximise the accuracy, a small error still persists
(Table 5.6).

Fig. 5.13 Ω̄A integration domain discretised by way of Delaunay triangulation.

The numerical integral computation by means of the adaptive integration method
“NIntegrate” of the software Wolfram Mathematica, however, produces an output
that is closer to the proposed formulation.

Hexahedron partitioned by two discontinuities intersecting outside the element

The hexahedral element Ω̄ shown in Figure 5.12b as a part of a bigger body dis-
cretisation is herein examined. All dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y,z), are:

• 111 ≡ (0.0,1.0,1.0);

• 222 ≡ (1.0,1.0,1.0);

• 333 ≡ (0.0,3.0,1.0);
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• 444 ≡ (1.0,3.0,1.0).

• 555 ≡ (0.0,1.0,4.0)

• 666 ≡ (1.0,1.0,4.0)

• 777 ≡ (0.0,3.0,4.0)

• 888 ≡ (1.0,3.0,4.0)

and it is crossed by two discontinuities, described by way of the planes Q̄ and R̄:

• Q̄ : −11
50x+3y− 41

100z− 159
25 = 0;

• R̄ : 1
5x+3y+ 13

50z− 26
5 = 0;

and split into three subdomains. The objective is to evaluate the inertia tensor and
the volume of the highlighted portion Ω̄C, namely solving the integral in Eq. 5.44 by
means of the proposed formulation without subdividing the integration domain Ω̄.
Note that the normal to each discontinuity plane has to be accurately defined for the
sake of obtaining the targeted domain portion (as discussed in Section 5.3).

As in the previous example, the hexahedron Ω̄ and the discontinuities have to
be mapped onto the parent coordinate system (by way of eqs. (4.24) and (5.42)) in
order to set up the proposed integration technique to compute H̃C(xxx) and carry out
the integration.

Since the equivalent polynomials H̃i(xxx) only depends on the values of the discon-
tinuities coefficients, the exact computation is straightforward. It is then possible to
apply the quadrature rule in eq. (5.43), in which the monomial Pn = 1 corresponds
to the volume of the selected domain part, while the monomials constituting the
inertia tensor III are defined in Eq. (5.45).

The results evaluated with respect to the global coordinate system (x,y,z) are

Volume = 3.045 m3 (5.48)

I = ρs

36.239 −3.108 −4.145
−3.108 24.878 −16.245
−4.145 −16.245 13.462

 (units: kg m3) (5.49)
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where ρs is the material volumetric density (kg/m3).

As before, in order to estimate the performance and robustness of the proposed
algorithm, the integration problem has been addressed by means of the method
proposed in [34] (via the integration procedure defined in [7]). The domain Ω̄ has
been split into i = 3 subdomains, knowing the exact equations for the discontinuity
planes Q̄ and R̄, in which the functions HQ̄(x) and HR̄(x) are continuous. The portion
of interest, Ω̄C, can thus be analytically defined and the integral has been evaluated
by means of Gauss quadrature. The integral for the portion of interest has also been
evaluated numerically using the adaptive integration method “NIntegrate” of the
software Wolfram Mathematica. Finally, the integration subdomain Ω̄C has been
analytically defined in the global reference system (x,y,z) by way of the intersections
between the discontinuity planes Q̄ and R̄ and the hexahedral domain Ω̄, and the
definite integral at the left-hand side of Eq. (5.34) has been computed. The obtained
results are almost coincident. The error in the computations of each integrand has
been estimated as in Eq. (5.22) and the results are reported in Table 5.7.

Table 5.7 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄C ([34, 7])
Adaptive

integration
Definite integral
over Ω̄C (5.34)

1 0.33% 0.00% 0.33%
y2 + z2 0.44% 0.04% 0.44%

xy 0.49% 0.00% 0.49%
xz 0.34% 0.00% 0.34%

x2 + z2 0.30% 0.00% 0.30%
yz 0.51% 0.00% 0.51%

x2 + y2 0.67% 0.12% 0.67%

The slight error present in this case is even smaller compared to the results
obtained in the previous example. In this case, in fact, the integration domain has a
much regular shape and its analytical definition is amply easier. This leads to almost
identical results for all the integration methods.
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Outcomes

In general, the outcomes for the tests presented in section 5.5.2 and section 5.5.2
validate the proposed formulation, demonstrating its potential, precision, robustness
and versatility also for three-dimensional elements. Moreover, it has to be noted that
the solution evaluated by way of the presented formulation should be considered
exact, due to the methodology employed to compute the equivalent polynomials
H̃i(xxx) (see section 4.3.2 and [22, 27]). It has still to be stressed that, when equivalent
polynomials are used, the integrand function in (5.28) doubles its degree, thus
requiring a higher computational effort compared to other methods (such as in [34,
33, 7]) [22, 27]. On the other hand, the proposed formulation removes the necessity
of defining complex three-dimensional subdomains, smoothing the overall integration
process.

5.6 Closed form solution for tetrahedral integration
domains

In this Section, the extension of the proposed formulation for 3D hexahedral elements
(discussed in 5.5) to 3D tetrahedral elements is carried out.

Let us consider a body B and let uuu be the displacement field so that the local
partition of unity (PU) approximation field referred to the set of variables xxx =

(x,y,z) is defined by Eq. (5.2). Let us consider a tetrahedral element of its mesh, Ω,
supposing it is divided into four portions by the discontinuity planes Q and R, as
showed in Figure 5.14. Let us define ΩA as the portion obtained when the normal to
each discontinuity points inwards. Starting from ΩA, the remaining partitions (ΩB,
ΩC and ΩD) are defined counterclockwise by convention.
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Fig. 5.14 A 3D tetrahedral domain Ω crossed by two discontinuity planes: Q and R.

In the context of XFEM, the element stiffness matrix has to be evaluated on
each of the four subdomains ΩA, ΩB, ΩC or ΩD. As seen in (3.33), discontinuous
functions times polynomials that cannot be integrated using standard quadrature
rules over the entire domain Ω will be contained in such a matrix.

It has to be noted once again that the Heaviside step function (5.3) is defined
so that the integrand function is zeroed on the subdomains with negative signed
distance, thus a proper definition of the normal vector of the discontinuities allows
to perform the quadrature on each subdomain. This also grants a direct extension of
the proposed formulation to the generalised Heaviside function, having values +1
and −1 on the two sides of the discontinuity instead of +1 and 0, as defined in (5.3).

Let us assume an nth-degree polynomial Pn(xxx) to be integrated across the
subdomains ΩA, ΩB, ΩC or ΩD obtained by partitioning a regular tetrahedron centred
in (0,0,0) on the (x,y,z) reference system with two planes Q and R (Eq. (5.28)).

The definition of each integration subdomain Ωi is needed in order to evaluate
the integral in (5.28) for each value of i with standard quadrature rules. This is
not always a straightforward task due to the eventuality of rather complex three-
dimensional shapes generated by the integration domain, depending on the slope of
the discontinuity planes.
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The main objective is to use the equivalent polynomials for the two discontinuity
planes Q and R in order to allow, for each subdomain Ωi, the integration over the
entire element domain Ω by means of the standard Gauss-Legendre quadrature rule,
i.e., to compute (5.28) with integrations on the entire element domain Ω instead of
Ωi.

Let H̃Q+ and H̃R+ be the equivalent polynomials related to the normals nQ+ and
nR+ , and H̃Q− and H̃R− be the equivalent polynomials related to the reversed normals
−nQ+ and −nR+ . With reference to Figure 5.14, equations (5.29) to (5.32) give a
system of four equations in the four unknowns IA, IB, IC and ID that, in general, can
be proved to be indeterminate. In particular, it can be observed that if the intersection
line between the two discontinuities Q and R is external to the element domain or is
contained on its boundary, then the solution will be unique. If the intersection line
lies inside the element domain, the system will be indeterminate, with the system
coefficient matrix having rank three.

When the intersection line between the two discontinuities Q and R is internal to
the element domain, the above observation suggests the introduction of an auxiliary
integration limit S to eliminate indeterminacy.

The plane S : x = mz+n (defined in Eq. (5.33)) is obtained such that it belongs
to the sheaf of planes generated by the intersection line between Q and R and that its
normal has null component with respect to the y-axis of the reference system.

In order to properly define the equivalent polynomials for all the integration
portions, the auxiliary integration limit defined by means of the plane S should be
coupled by integration limits also in the z-axis direction. In particular, the domain
in which the equivalent polynomial functions for the discontinuities Q and R are
evaluated has also to be bounded by planes Z1 and Z2. These planes have null
components with respect to the x-axis and y-axis of the reference system and contain
the intersection line between the plane S and the parent tetrahedral domain limits
along the x-axis: planes x = 0 and y = 0.

Let H̃(S)
Q+(xxx) and H̃(S)

R+ (xxx) be the equivalent polynomial functions for the discon-
tinuities Q and R evaluated into the regular tetrahedral element (called the parent
element), with respect to the domain bounded by S (Figure 5.15). Combining them
together, it is possible to find the equivalent polynomial H̃i(xxx) (see Eq. (5.28)).
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(a) (b)

Fig. 5.15 Use of the auxiliary integration limit S to evaluate the equivalent polynomi-
als H̃i(xxx). In the figure H̃B(xxx) = H̃(S)

Q+(xxx)− H̃(S)
R+ (xxx). (a) Integration domain evaluated

by means of H̃Q+(xxx) with respect to the discontinuity Q and the auxiliary integration
limit S. (b) Integration domain evaluated by means of H̃R+(xxx) with respect to the
discontinuity R and the auxiliary integration limit S.

With reference to Figure 5.15, the equivalent polynomial functions to perform
the integration on each of the four areas in (5.34) are described in Eq. (5.35).

The equivalent polynomial functions H̃A(xxx) . . . H̃D(xxx), being linear combinations
of equivalent polynomials for the single discontinuity planes Q and R, will depend
on the equations of the two discontinuities and, according to [22, 27], will have the
same degree of Pn(xxx) and the algebraic polynomial form defined in Eq. (5.39).

Since H̃i(xxx)Pn(xxx) is a polynomial function that is continuous over the entire
domain, Ω, it can be exactly integrated with a proper quadrature rule. It has to
be noted that the integrand in (5.34) has doubled its degree, compared to the one
in (5.28), thus slightly increasing the computational effort. The main advantage of
this approach is that it allows integration over the standard domain Ω rather than the
non-standard partitioned subdomains ΩA . . .ΩD.

The analytical procedure to obtain the exact expressions of the equivalent poly-
nomials H̃i(xxx) by means of the software Wolfram Mathematica is reported in the
Appendix (A.1.4).
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5.6.1 Integration algorithm for tetrahedral domains

The purpose of the proposed integration technique is to deliver the expression
for the equivalent polynomial function H̃i(xxx), in order to compute the integral in
Equation (5.34) without splitting the integration domain. The usefulness of the
proposed algorithm is again presented by way of a generic example. Let us consider
a polynomial Pn(xxx) to be integrated over a subdomain Ω̄A, generated by dividing a
tetrahedron Ω̄ with two planes Q̄ and R̄, as shown in Figure 5.16a. The problem is
defined in the global coordinate system xxx = (x,y,z). Applying Equation (5.34) after
the equivalent polynomial function H̃A(xxx) let us define Eq. (5.40).

Beforehand, the problem has to be mapped to a standard quadrature domain.
Therefore, a change in variables from the (x,y,z) coordinate system to the parent
coordinate system (ξ ,η ,ζ ) is employed in order to compute the integral over a
standard and regular domain (see eq. (4.13)), as illustrated in Figure 5.16b. By means
of such a procedure, single parent geometry can be used to address various scenarios.
Thus, tetrahedrons having any position and size in the global coordinate system can
be mapped to the tetrahedral parent geometry in the local coordinate system (ξ ,η ,ζ )

illustrated in Figure 5.16b.

(a) (b)

Fig. 5.16 Isoparametric mapping of a tetrahedral element. (a) Element configuration
in the global coordinate system. (b) Element configuration in the parent coordinate
system.

The mathematical concept used in the proposed technique for this purpose is
isoparametric mapping, which is commonly employed in the FEM [37, 19]. Let
P(ξ ,η ,ζ ) ∈ Ω be a generic point in the parent reference system, corresponding to
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the point P̄(x,y,z) ∈ Ω̄ in the global reference system. The mapping of P(ξ ,η ,ζ )

onto P̄(x,y,z) is described by Eq. (5.41).

Similarly, the discontinuities Q̄(xxx) and R̄(xxx) equations, defined in the global
reference system, have to be mapped onto Q(ξξξ ) and R(ξξξ ), defined in the parent
coordinate system (Figure 5.16). This is achieved, for each discontinuity, by:

• Calculating the signed distances (Di) in the global coordinate system between
each discontinuity and each node of the integration domain;

• Writing the discontinuity coefficients (a, b, c, and d) in the parent coordinate
system as a function of Di by solving a linear equations system;

• Substituting the variables x, y, and z in Q̄(xxx) and R̄(xxx) by means of Equa-
tion (5.41), so that Q(ξξξ ) and R(ξξξ ) are obtained in terms of the coefficients a′,
b′, c′, and d′ dependent on Di.

For a 3D tetrahedral parent element, the coefficients are:

a′ = D2 −D1 (5.50a)

b′ = D3 −D1 (5.50b)

c′ = D4 −D1 (5.50c)

d′ = D1 (5.50d)

After Q̄(xxx) and R̄(xxx) are transformed into Q(ξξξ ) and R(ξξξ ), the correct expression
for the equivalent polynomial function H̃i(xxx) with respect to the parent domain
coordinate system can be generated. The coordinates and integration domain trans-
formation in the quadrature are then introduced using the Jacobian matrix, which
contains the partial derivatives of the interpolation functions Ni that are differentiated
with respect to the parent system variables (ξ ,η ,ζ ) [140].

The integral in Eq. (5.40) is evaluated in (5.43), applying the standard scheme of
the Gauss-Legendre numerical quadrature [175].

It needs to be emphasised that the proposed algorithm is intended for integration
over the entire domain Ω̄ yielding the result of the integral over the subdomains Ω̄A,
Ω̄B, Ω̄C and Ω̄D. Thus, the discontinuities equations have to be accurately defined,
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so that the unit vectors nnniii
+ point inwards. Additionally, it has to be noted that the

discontinuities do not necessarily have to intersect Ω̄ or one another (the proposed
algorithm can handle all possible scenarios). The composition and the degree of the
polynomials that can be precisely integrated using the suggested technique rely on
specific requirements necessary to find the equivalent polynomial, as can be deduced
from Refs. [22, 27].

The equivalent polynomial functions H̃i(xxx) are evaluated into a regular tetrahedral
parent element. As for the previous Sections, more details about the mathematical
formulation employed to compute the equivalent polynomial H̃i(xxx) for each dis-
continuity have been presented in Chapter 4, and can be found in [22, 27]. It has
to be noted that the proposed integration technique can be extended to a standard
tetrahedral parent element (which is described in Subsection 5.6.1).

In the following subsection, some numerical tests are performed in order to
demonstrate the precision and efficacy of the proposed formulation. The results are
then compared to other integration methods to validate the presented technique.

5.6.2 Numerical testing and validation

The formulation presented in section 5.6 for 3D tetrahedral domains has been tested
and validated by way of two numerical examples. The results obtained by means of
the proposed formulation are exact with machine precision.

Tetrahedron partitioned by two discontinuities intersecting within the element

The tetrahedral element Ω̄ shown in Figure 5.17a as a part of a bigger body dis-
cretisation is herein examined. All dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y,z), are

• 111 ≡ (1.0,1.0,0.0);

• 222 ≡ (4.0,2.0,0.0);

• 333 ≡ (1.0,5.0,0.0);

• 444 ≡ (0.0,0.0,3.0).
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and it is crossed by two discontinuities, described by way of the planes Q̄ and R̄:

• Q̄ : 8
5x− 33

100y+ 19
50z− 189

100 = 0;

• R̄ : −91
50x− 189

100y− 89
100z+ 167

20 = 0;

and split into four subdomains. The objective is to evaluate the volume of the
highlighted portion Ω̄A, namely solving the integral in Eq. 5.44 by means of the
proposed formulation without subdividing the integration domain Ω̄.

Note that the normal to each discontinuity plane has to be accurately defined for
the sake of obtaining the targeted domain portion (as discussed in Section 5.3).

In order to set up the proposed integration technique, as described in section 5.6.1,
the tetrahedron Ω̄ has to be mapped onto the parent coordinate system, which is used
to compute H̃B(xxx) and carry out the integration. This is performed by means of the
shape functions defined in eq. (4.13), while the coefficients for the two discontinuities
are brought back to the parent coordinate system by way of the expressions defined
in eq. (5.50).

(a) (b)

Fig. 5.17 Proposed formulation testing on tetrahedral domains. (a) Example 1:
tetrahedron element cut by two discontinuities intersecting inside the domain. (b)
Example 2: tetrahedron element cut by two discontinuities intersecting outside the
domain.

Since the equivalent polynomials H̃i(xxx) only depends on the values of the discon-
tinuities coefficients, the exact computation is straightforward. It is then possible to
apply the quadrature rule in eq. (5.43), in which the monomial Pn = 1 corresponds
to the volume of the selected domain part.
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The results evaluated with respect to the global coordinate system (x,y,z) for the
subdomain Ω̄B are

Volume = 2.446 m3 (5.51)

In order to estimate the performance and robustness of the proposed algorithm,
the integration problem has been addressed by means of the method proposed in [34]
(via the integration procedure defined in [7]). The domain Ω̄ has been split into i = 4
subdomains, knowing the exact equations for the discontinuity planes Q̄ and R̄, in
which the functions HQ̄(x) and HR̄(x) are continuous. The portion of interest, Ω̄B,
can thus be analytically defined and the integral has been evaluated by means of
Gauss quadrature. The integral for the portion of interest has also been evaluated
numerically using the adaptive integration method “NIntegrate” of the software
Wolfram Mathematica. Finally, the integration subdomain Ω̄B has been analytically
defined in the global reference system (x,y,z) by way of the intersections between
the discontinuity planes Q̄ and R̄ and the tetrahedral domain Ω̄, and the definite
integral at the left-hand side of Eq. (5.34) has been computed. Results coincide, in
general, up to the third decimal. The error in the computations of each integrand has
been estimated as in Eq. (5.22) and the results are reported in Table 5.8.

Table 5.8 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄B ([34, 7])
Adaptive

integration
Definite integral
over Ω̄B (5.34)

1 0.42% 0.50% 0.42%

As reported in table 5.8, the proposed formulation delivers very precise results
and the error compared to the other integration methods is almost null. Moreover,
it has to be noted that the slight difference in the comparative results using the
standard integration techniques in table 5.8 is mostly due to the irregular shape of
the targeted integration region, Ω̄B, and to the rounding introduced while defining its
boundaries. The results obtained by means of equivalent polynomials, in fact, should
be considered exact by definition, as highlighted in 4.3.
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Tetrahedron partitioned by two discontinuities intersecting outside the element

The tetrahedral element Ω̄ shown in Figure 5.17b as a part of a bigger body dis-
cretisation is herein examined. All dimensions are in meters. The element nodal
coordinates, with respect to the global reference system (x,y,z), are:

• 111 ≡ (0.0,0.0,0.0);

• 222 ≡ (3.0,0.0,0.0);

• 333 ≡ (0.0,3.0,0.0);

• 444 ≡ (0.0,0.0,3.0).

and it is crossed by two discontinuities, described by way of the planes Q̄ and R̄:

• Q̄ : 119
20 x− 77

20y− 3
100z− 23

4 = 0;

• R̄ : 401
100x+ 97

100y+ 21
100z− 36

25 = 0;

and split into three subdomains. The objective is to evaluate the inertia tensor and
the volume of the highlighted portion Ω̄C, namely solving the integral in Eq. 5.44 by
means of the proposed formulation without subdividing the integration domain Ω̄.
Note that the normal to each discontinuity plane has to be accurately defined for the
sake of obtaining the targeted domain portion (as discussed in Section 5.3).

As in the previous example, the tetrahedron Ω̄ and the discontinuities have to
be mapped onto the parent coordinate system (by way of eqs. (4.24) and (5.42)) in
order to set up the proposed integration technique to compute H̃C(xxx) and carry out
the integration.

Since the equivalent polynomials H̃i(xxx) only depends on the values of the discon-
tinuities coefficients, the exact computation is straightforward. It is then possible to
apply the quadrature rule in eq. (5.43), in which the monomial Pn = 1 corresponds
to the volume of the selected domain part.

The results evaluated with respect to the global coordinate system (x,y,z) are

Volume = 3.150 m3 (5.52)
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As before, in order to estimate the performance and robustness of the proposed
algorithm, the integration problem has been addressed by means of the method
proposed in [34] (via the integration procedure defined in [7]). The domain Ω̄ has
been split into i = 3 subdomains, knowing the exact equations for the discontinuity
planes Q̄ and R̄, in which the functions HQ̄(x) and HR̄(x) are continuous. The portion
of interest, Ω̄C, can thus be analytically defined and the integral has been evaluated
by means of Gauss quadrature. The integral for the portion of interest has also been
evaluated numerically using the adaptive integration method “NIntegrate” of the
software Wolfram Mathematica. Finally, the integration subdomain Ω̄C has been
analytically defined in the global reference system (x,y,z) by way of the intersections
between the discontinuity planes Q̄ and R̄ and the tetrahedral domain Ω̄, and the
definite integral at the left-hand side of Eq. (5.34) has been computed. The obtained
results are almost coincident. The error in the computations of each integrand has
been estimated as in Eq. (5.22) and the results are reported in Table 5.9.

Table 5.9 Proposed formulation error (percentage) for each computed term compared
to other integration methods.

Integrand
Quadrature over

Ω̄C ([34, 7])
Adaptive

integration
Definite integral
over Ω̄C (5.34)

1 1.56% 0.55% 1.56%

Fig. 5.18 Ω̄C integration domain discretised by way of Delaunay triangulation.
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Once again, as reported in table 5.9, the results obtained by means of the pro-
posed formulation are accurate, whith a almost null error compared to the standard
integration methods. The slight error in table 5.9 is, again, mostly due to the irregular
shape of the targeted integration region, Ω̄C, and to the rounding introduced while
defining its boundaries (a definition for Ω̄C by means of Delaunay triangulation is
illustrated in Figure 5.18).

However, the results for all the integration methods are almost identical.

Outcomes

As in the previous cases, the results for the tests presented in section 5.6.2 validate the
proposed formulation, demonstrating its precision, robustness and versatility also for
tetrahedral finite elements. It has to be stressed again that the solution evaluated by
way of the presented formulation should be considered exact, due to the methodology
employed to compute the equivalent polynomials H̃i(xxx) (see section 4.3.2 and [22,
27]). It should be also noted that the integrand function in (5.28) doubles its degree
when equivalent polynomials are employed, thus requiring a higher computational
effort compared to other methods (such as in [34, 33, 7]) [22, 27]. On the other
hand, the proposed formulation removes the necessity of defining complex three-
dimensional subdomains, easing the overall integration process.

5.7 Distorted element domains and loss of accuracy

Distortions in the finite element mesh can arise due to various reasons, such as
geometric complexities, element distortion during deformation, and sub-optimal
mesh generation strategies. These distortions can significantly compromise the
accuracy of the stiffness matrix, leading to unreliable numerical results. In this
Section, the impact of distortions on the accuracy of the results obtained by means
of the proposed formulation is discussed.

5.7.1 Distorted elements

The parent domain of the elements served as the foundation for all of the earlier
results discussed in this Chapter. The correspondence between the parent domain
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and the global domain is guaranteed by the isoparametric mapping process, in which
the derivatives of the element shape function are multiplied by the inverse of the
Jacobian matrix, and the integrand function is multiplied by the determinant of the
Jacobian matrix. The Jacobian matrix for a quadrilateral element can be defined as

JJJ =

δN1
δξ

δN2
δξ

δN3
δξ

δN4
δξ

δN1
δη

δN2
δη

δN3
δη

δN4
δη

 (5.53)

in which, N1...N4 are the element shape functions (see Eq. (4.10)).

Therefore, only when the Jacobian matrix, JJJ, contains constant terms the equiva-
lent polynomials strategy is accurate [22]. Since the terms in the Jacobian matrix
are the derivatives of the shape functions, this is always true for elements with linear
shape functions (i.e. the triangular and tetrahedral elements presented in sections 5.4
and 5.6). As for the bilinear quadrilateral element and the trilinear hexahedral ele-
ment, the entries of the Jacobian matrix are constant only when the element opposite
sides are parallel [22]. In the general case, however, both the determinant of JJJ
and its elements are linear functions, leading to a rational integrand function when
evaluating the element stiffness matrix. This brings to approximate results when
using the standard Gauss quadrature, due to the additional polynomial degree intro-
duced by the non-constant determinant of JJJ and by the rational integrand function.
Approximate results are, however, generally allowed im such situations [22, 19].

When dealing with PU finite elements containing discontinuities, on the other
hand, a new source of approximation is introduced. The element distortion, in fact,
makes discontinuity lines in the parent element domain map onto curves in the
global reference system (as shown in Figure 5.19) and vice versa [22]. This not only
makes the standard Gauss quadrature ill-suited for an exact computation, but also
the proposed formulation generates approximations in the results that are dependent
on the magnitude of the distortion. In the next subsection, numerical tests has been
conducted in order to estimate the error produced by the proposed formulation when
it is employed on distorted elements.
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Fig. 5.19 Mapping of a standard parent element into a distorted element on the
global reference system (x,y). The line discontinuities contained into the parent

element are mapped onto curves on the distorted element (and vice versa).

5.7.2 Accuracy testing

A comparative study on quadrature errors in distorted elements containing a single
linear discontinuity has been conducted in [22], demonstrating that the error in
the results computed by means of equivalent polynomials are of the same order
of magnitude of other standard quadrature methods commonly used in XFEM
analysis (such as the domain splitting into quadrature subcells) [22]. This analysis
has been replicated for the proposed formulation, in order to estimate the size of
the error introduced in such situations. For this purpose, a distorted quadrilateral
element containing two discontinuities is herein considered (Figure 5.20a) and the
discontinuous part of its stiffnesss matrix, I =

∫
Ω

HBBBT EEEBBBdΩ, (see Eq. (4.2)) is
computed by means of the proposed formulation and using the standard Gauss
quadrature over integration subdomains. The nodal coordinates for the considered
quadrilateral element are

111 ≡ (1,1)

222 ≡ (3,1)

333 ≡ (6,5)

444 ≡ (1,4)

(5.54)

and it is cut by two discontinuity lines, q and r, at points PPP111qqq,PPP222qqq and PPP111rrr,PPP222rrr

respectively.
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(a) (b)

Fig. 5.20 Proposed formulation testing on distorted domains. (a) Distorted quadrilat-
eral element cut by two discontinuities intersecting inside the domain. (b) Distorted
quadrilateral domain splitting in two triangular domains (Ω1 and Ω2) to improve the
solution accuracy.

err =

∣∣Iadaptive − Inumerical
∣∣

Iadaptive
(5.55)

The outcomes are then compared to the results obtained by way of the adaptive
integration method “NIntegrate” of the software Wolfram Mathematica. The error is
evaluated as in Eq. (5.55) and the results are reported in Table 5.10.

Table 5.10 Error (percentage) for distorted quadrilateral elements containing double
discontinuities.

Integral
Proposed formulation

error
Quadrature over each

subdomain error

I =
∫

Ω
HBBBT EEEBBBdΩ 97.17% 97.16%

Although it is not negligible, the error introduced by way of the proposed formu-
lation is of the same order of magnitude of the standard technique of splitting the
domain into quadrature subcells, thus confirming the trend highlighted in [22].

The more effective and rapid strategy to null the error when using the proposed
formulation on quadrilateral distorted elements is to diagonally split the distorted
element Ω into two triangular subdomains (Ω1 and Ω2), which, by definition, are
not affected by the distortion (Figure 5.20b). The proposed formulation is thus to
be employed on each triangular subdomain separately, and then sum the obtained
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results. This technique, however, involves a loss of information on the element
domain, since a transition from a bilinear element to a linear element is made, thus
could not be a perfect fit for every scenario.

The use of alternative techniques such as subparametric mapping, in which the
number of nodes used for defining the element geometry is less than the number of
nodes used for defining the element displacements, or the definition of a specific
equivalent polynomial for distorted geometries (such as trapezoid elements) have
been explored, but an extensive solution was not yet defined. Thus, this could
be a subject to study and analyse in further researches in this context, in order to
contribute to the advancement of computational analysis methods by enabling more
accurate and reliable simulations, with broad applications in fracture mechanics, and
other fields reliant on XFEM analysis.

5.8 A closed form solution for an arbitrary number
of discontinuities

The effectiveness of the solution discussed in this Chapter has been demonstrated
by way of numerical testing on various 2D and 3D finite elements. Although the
case of two discontinuities within a single finite element has been explored, in order
to simplify the analysed scenarios, the proposed formulation could be scaled and
extended towards an arbitrary number of discontinuities.

5.8.1 Multiple discontinuities intersecting at a single point

Let us analyse the quadrilateral finite element shown in Figure 5.21a, in which a
plurality of discontinuities stems from the same intersection point. This is a com-
mon scenario in fracture mechanics problems involving rock masses and hydraulic
fracture [177, 179, 178, 180], and also in simulations concerning impacts on brittle
objects that shatter into n multiple pieces. The standard XFEM integration procedure
would require the definition of each integration subdomain, which in such cases could
be rather laborious. However, the overall integration process could be smoothed by
way of the proposed formulation.
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As demonstrated in Section 5.3, a closed form solution by means of equivalent
polynomials providing exact integration results over quadrilateral domains containing
two discontinuities exists. Thus, the idea is to recursively employ the proposed
formulation on a different couple of discontinuities at each step, in order to evaluate
the equivalent polynomials H̃i(xxx) (where i = 1, ...,n+ 1) for each portion of the
domain Ω.

The solution provided in Section 5.3, in fact, can be straightforwardly extended
to an arbitrary number of discontinuities. Let us define a regular 2×2 quadrilateral
element Ω, centred in (0,0), and crossed by n discontinuities intersecting a point
PPP ∈ Ω. Let s be the abscissa of PPP, so that n+1 domain portions (Ω1, ...,Ωn+1) are
defined in the Ω domain restriction from x =−1 to x = s, as well as in the domain
restriction from x = s to x = 1, as shown in Figure 5.21.

Let us define n−1 sets of two discontinuity lines of equation di : y = mix+ni,
which are ordered depending on the value of their first derivative with respect
to x, (namely the line slope, mi). For the domain restriction to the left of s, the
discontinuities are arranged starting from the lowest value of δdi

δx to the highest.
Meanwhile, for the domain restriction to the right of s, the discontinuities are
numbered starting from the highest value of δdi

δx to lowest.

It is then possible to define, for each rectangular restriction of Ω (namely [−1,s]
∨ [s,1]), a linear system of equations (Eq. (5.56) to Eq. (5.60)), whose solution is
the equivalent polynomials equations, H̃i(xxx), for the domain portions bounded by
the considered discontinuities.

I1 =
∫

Ω1

PN(xxx)dΩ =
∫

Ω

H̃d+
1
PN(xxx)dΩ (5.56)

I1 + I2 =
∫

Ω1
⋃

Ω2

PN(xxx)dΩ =
∫

Ω

H̃d+
2
PN(xxx)dΩ (5.57)

...

Ii−1 + Ii =
∫

Ωi−1
⋃

Ωi

PN(xxx)dΩ =
∫

Ω

H̃d+
i
PN(xxx)dΩ (5.58)

...

In−1 + In=
∫

Ωn−1
⋃

Ωn

PN(xxx)dΩ=
∫

Ω

H̃d+
n
PN(xxx)dΩ (5.59)

In+1 =
∫

Ωn+1

PN(xxx)dΩ =
∫

Ω

H̃d−
n
PN(xxx)dΩ (5.60)
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in which PN(xxx) is a N-th degree polynomial (see eq. (5.4)).

Such linear system of n+1 equations in n+1 unknowns has a unique solution
only if the intersection point between the n discontinuities is external to the element
domain or is on its boundary.

The extension of the proposed formulation to an arbitrary number, n, of disconti-
nuities can then be analytically defined as

H̃(α)
1 (xxx)=H̃(s)

d+
1
(xxx) (5.61)

H̃2(xxx) =H̃(s)
d+

2
(xxx)− H̃(s)

d+
1
(xxx) (5.62)

...

H̃i(xxx) =H̃(s)
d+

i
(xxx)− H̃(s)

d+
i−1
(xxx) (5.63)

...

H̃n(xxx) =H̃(s)
d+

n
(xxx)− H̃(s)

d+
n−1

(xxx) (5.64)

H̃(α)
n+1(xxx)=H̃(s)

d−
n
(xxx) (5.65)

where α = le f t,right and the superscript sign (+ or −) indicates the direction
pointed the normal, nnn = (a,b), to the discontinuity: + if its b component is positive;
− if its b component is negative (see Figure 5.21).

For the domain restriction [−1,s], the discontinuities are grouped so that δd1
δx <

...δdi
δx ... <

δdn
δx . Meanwhile, for the domain restriction [s,1], the discontinuities are

grouped so that δd1
δx > ...δdi

δx ... >
δdn
δx .

It has to be noted that, in the case of PPP ∈Ω, the values of the equivalent polynomi-
als for the first domain portion, H̃(le f t)

1 (xxx) and for the last domain portion, H̃(le f t)
n+1 (xxx),

obtained with respect to Ω restriction [−1,s], have to be summed, respectively, to
the values obtained for H̃(right)

1 (xxx) and H̃(right)
n+1 (xxx) with respect to Ω restriction [s,1].

In the case of the intersection point PPP /∈ Ω, or if PPP abscissa, s, is equal to ±1,
the auxiliary bound x = s is to be adjusted to x = sign(s), so that equations (5.61) to
(5.65) remain valid. Clearly, in this last scenario, no domain restriction exists, since
[−1,s] ≡ Ω ∨ [s,1] ≡ Ω. This also implies that equations (5.61) to (5.65) can be
directly evaluated over the entire domain Ω, obtaining all the equivalent polynomials
values, H̃i(xxx) i = 1, ...,n+1.
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(a) (b)

Fig. 5.21 Extension of the proposed formulation for an arbitrary number n of dis-
continuities intersecting on a point PPP. (a) Definition of the discontinuities and the
portions of Ω for the domain restriction [−1,s]. (b) Definition of the discontinuities
and the portions of Ω for the domain restriction [s,1].

In Table 5.11, the proposed formulation has been employed on a standard 2×2
quadrilateral parent element domain Ω, centred in (0,0) and cut by n = 5 discontinu-
ities (as in Figure 5.21) to compute the integral in Eq. (5.4) in which P = x2 + y2.
(The data used for this example is reported in the Appendix A.3.1). For each domain
portion the integral results obtained by means of the proposed formulation are com-
pared to the results obtained by way of the adaptive integration method “NIntegrate”
of the software Wolfram Mathematica, as well as the numerical results by means of
the method proposed in [34] and by way of definite integral computation over each
subdomain. The error is evaluated as in Eq. (5.55).

Table 5.11 Proposed formulation error (percentage) for a quadrilateral element
crossed by n = 5 discontinuities compared to other integration methods.

i-th portion
Quadrature over

Ωi ([34, 7])
Adaptive

integration
Definite integral

over Ωi (5.9)

1 0.00% 0.00% 0.00%
2 0.00% 0.00% 0.00%
3 0.00% 0.00% 0.00%
4 0.00% 0.00% 0.00%
5 0.00% 0.00% 0.00%
6 0.00% 0.00% 0.00%
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5.8.2 Multiple discontinuities intersecting at different points

As for a more generic scenario, in which the discontinuities are not stemming from a
single point, but instead have multiple intersection points (both inside and/or outside
the element domain), the problem of defining the equivalent polynomials, H̃i(xxx), for
all the domain partitions is, unquestionably, more complex.

A solution by means of the proposed formulation can be set off using the defi-
nition of junction points presented by Daux in [34]. Let us suppose that the same
2×2 regular quadrilateral element Ω, centred in (0,0), previously described, is now
crossed by an arbitrary number n of discontinuities, which intersects each other in
M different points PPPi, both inside and outside the domain Ω, defining N domain
partitions(see Figure 5.22).

(a) (b)

Fig. 5.22 Extension of the proposed formulation for an arbitrary number n of discon-
tinuities intersecting on multiple junction points PPPi. (a) Definition of the disconti-
nuities and the portions of Ω in the case of junction points within the domain. (b)
Definition of the discontinuities and the portions of Ω in the case of junction points
both inside and outside the domain.

As in [34], let us define the junction points, PPPi, as the points at which two (or
more) discontinuities intersect each other and let si the abscissa of each junction
point PPPi. It is then possible to describe M domain bounds, x = si, in order to define
M+1 domain restrictions: [−1,s1], [s1,s2], ..., [si−1,si], ..., [sM,1].

The idea is to recursively employ, at each domain restriction, the proposed
formulation for an arbitrary number of discontinuities stemming from a single point
(equations (5.61) to (5.65)). In this scenario, in fact, the i-th junction point will stand
on the boundary x = si of the i-th domain restriction, satisfying the conditions to
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apply equations (5.61) to (5.65) over the entire i-th restriction, in order to obtain the
expressions of the equivalent polynomials for all the domain portions contained in
the i-th restriction.

Simply iterating the proposed technique M +1 times, will allow to obtain the
equivalent polynomials expressions for all the N domain portions contained in Ω.

Note that, in section 5.3, the proposed formulation has been initially defined for
rectangular restrictions of Ω, in which only one arbitrary bound, x = s, has been
defined, due to the presence of a single intersection point. The proposed formulation,
however, maintains its validity also for rectangular restrictions of Ω defined by two
successive arbitrary bounds, x = s1 and x = s2, namely any Ω restriction between
two consecutive intersection points. The absence of intersection points within the
domain restriction is, in fact, the necessary condition in order for the linear system
in equations (5.56) to (5.60) to have a unique solution (defined in equations (5.61)
to (5.65)).

It should be pointed out that the formulation presented in section 5.8.1 can be
employed not only when the discontinuities stem from a unique point, but also in the
case of arbitrary discontinuities not sharing the same intersection point, as long as
none of their intersection points are contained in Ω, or in its restriction bounded by
si. This leads to the possibility of employing the proposed formulation also in cases
that require special attention, such as the presence of junction points both inside and
outside the domain (see Figure 5.22b). Such scenario, in fact, can still be solved by
means of the presented formulation (equations (5.61) to (5.65)) employed recursively
at each domain restriction, as already described at the beginning of this Subsection
for the case in Figure 5.22a. In order to better visualise this, in Figure 5.22b, the
normals to the discontinuities crossing the central domain restriction between the
bounds x = si and x = si+1 have been highlighted, together with the domain portions
defined by these discontinuities. Employing the proposed formulation by means
of equations (5.61) to (5.65), it is possible to define the equivalent polynomials
equations for each portion.

The general procedure to exactly integrate an arbitrary number of discontinuities
over an element domain Ω by means of equivalent polynomials is outlined in the
following steps:

1. Problem definition:
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• Definition of the element nodal coordinates in the global coordinates
system;

• Definition of the number of discontinuities crossing the element;

• Definition of the discontinuities coefficients in the global coordinates
system;

2. Isoparametric mapping onto the parent element domain and definition of the
discontinuities coefficients in the parent coordinates system;

3. Identification of all the junction points as the intersections of two, or more,
discontinuities;

4. Definition of the Ω domain restrictions in the x ∈ [−1,1] range ([−1,s1], ...,
[si−1,si], ..., [sM,1]);

5. Employing the proposed formulation recursively, by way of equations (5.61)
to (5.65), on each domain restriction in order to evaluate the coefficient vectors
of the equivalent polynomials for each Ω domain portion defined by the
discontinuities;

6. Quadrature by way of any chosen rule (i.e., eq. (5.18)).

As a test, the proposed formulation described above has been employed on a
standard 2×2 quadrilateral parent element domain Ω, centred in (0,0) and cut by
n = 3 discontinuities not sharing the same intersection point (as in Figure 5.21) to
compute the integral in Eq. (5.4) in which P = xy and the targeted domain portion is
Ω1. (The data used for this example is reported in the Appendix A.3.2). The integral
results obtained by means of the proposed formulation are compared to the results
obtained by way of the adaptive integration method “NIntegrate” of the software
Wolfram Mathematica, as well as the numerical results by means of the method
proposed in [34] and by way of definite integral computation over each subdomain.
The error is evaluated as in Eq. (5.55) and results are reported in Table 5.12.
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Table 5.12 Proposed formulation error (percentage) for a quadrilateral element
crossed by n = 3 discontinuities not sharing the same intersection point compared to
other integration methods.

P
Quadrature over

Ω1 ([34, 7])
Adaptive

integration
Definite integral

over Ω1 (5.9)

xy 0.00% 0.00% 0.00%

As outlined in section 5.7, in order to obtain exact quadrature results by means
of the proposed formulation the following requirements must be satisfied:

• The determinant of the Jacobian transformation matrix has to be constant;

• The N-th degree polynomial PN to be integrated (see eq. (5.4)) has to be a
linear combination of the monomials in Table 5.1.

As discussed in sections 5.3 and 5.4, the formulation herein presented for a
standard 2×2 quadrilateral parent element, can be directly extended to a standard
triangular parent element. The formulation can also be applied to 3-dimensional
tetrahedral and hexahedral parent elements, as demonstrated in sections 5.5 and 5.6.
Moreover, by means of isoparametric mapping, the proposed formulation can be
employed on any 2D or 3D element in a global coordinates system, which can be
brought back to a regular geometry in a parent coordinate system.

Thus, the proposed formulation delivers a direct yet simple approach for integrat-
ing multiple discontinuities within a single finite element by means of equivalent
polynomials. The main problem in this approach could be the partition definition
in the case of multiple discontinuities crossing in various points, both inside and
outside the element domain (see Figure 5.22b).

Even though obtaining the equivalent polynomials equation for each partition
defined within each restriction of the domain by means of the proposed formulation is
straightforward, coupling equivalent polynomials values for a single partition which
lies across multiple restrictions can be challenging (see partition Ω1 in Figure 5.22b,
bounded by x =−1 and x = s3).

Although various methodologies have been explored, an efficient solution for this
issue is yet to be defined and could be set as the objective of a future work aiming to
improve the proposed formulation and extend its usefulness.
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5.9 Outcomes and Discussion

The integration technique presented in Chapter, is a useful tool to evaluate the
integral of multiple discontinuous functions by means of any numerical quadrature
strategy, removing the need for dividing the domain of integration. The scope for
the proposed formulation is mainly XFEM analysis of cracked bodies, in which
scenarios involving crossing discontinuities are common [157, 35, 36, 181–183].
Additionally, the existing methods for dealing with problems involving multiple
discontinuities rely on integration strategies that necessitate domain partitioning. In
this situation, the proposed formulation is an ideal fit because it provides a resolution
for the problem at hand and does not require domain splitting. Thus, it may be
used in a variety of real-world XFEM applications where multiple discontinuities
cross the domain, such as hydraulic fractures and multiple cracking in rocks [179,
178, 180, 177], brittle cracking and fracture propagation in brittle and quasi brittle
materials [184, 102, 185], and also fracture behaviour in bones and bones-inspired
bio-materials [186, 187], where crack branching, junction and kinking is frequent.
However, the presented method can be expanded to a variety of fields, such as
computational geometry, where it is possible to use the method to compute the
geometrical properties of complex figures created by repeatedly cutting a simple
shape (such as a parallelogram) with multiple lines. The suggested approach could
fit problems brought up by different authors in this field such in [188, 189, 167, 190–
192, 171]. The proposed formulation can be employed in simulations where the
objects shapes and locations vary dynamically, such, for instance, an object that
shatters into fragments or computer graphics in general [193–196]. Since numerical
integration of polynomial functions with jump discontinuities is a common issue
in various fields, the effectiveness of the proposed method, its ease of use, and the
simplicity of implementation into any computational framework make it a well-suited
mean for a broad variety of potential applications [142–154, 24, 155, 156, 174, 11].
However, it has to be noted that the use of equivalent polynomials lead to a higher
computational effort during quadrature than splitting the integration domain, since
the integrand function doubles its degree [22, 27]. This aspect can be especially
onerous in analyses with a multitude of enriched elements. A possible enhancement
could be accelerate and optimise the computation process. Future developments for
the proposed formulation may include the improvement of the general solution for
the case of an arbitrary number of discontinuities and junction points, as well as
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the implementation of the proposed method into computational frameworks for a
more widespread application in the context of computational geometry and fracture
mechanics.

5.10 Conclusions

A formulation to exactly integrate multiple discontinuities in 2D and 3D finite el-
ement domains using equivalent polynomials has been presented in this Chapter.
The integration of multiple discontinuities represents an arduous work, principally
because of the the piecewise nature of the Heaviside step functions, which are com-
monly employed to reproduce discontinuities in XFEM analysis. The Chapter has
been focused on investigating the behaviour and properties of integrals of discontinu-
ous functions and their applications in fracture mechanics and XFEM analysis. An
integration technique to efficiently and exactly perform these computations by way
of equivalent polynomials without subdividing the integration domain has been de-
veloped. The concept of equivalent polynomials allowed for the seamless transition
across discontinuities and preserved the continuity of the solution, while effectively
capturing the physics of the problem. The proposed formulation represents also a
useful tool for the numerical computation of integrals of polynomial functions across
generic subdomains generated by two, or more, discontinuities partitioning a regular
integration domain. In this Chapter, the implementation of the proposed integration
technique for various 2D and 3D finite element shapes (such as triangle, quadrilat-
eral, tetrahedral and hexahedral) cut by two discontinuities has been carried out and
its accuracy and ease of calculation have been demonstrated by means of various
practical examples. Moreover, a comparison with other integration methods has been
performed in order to validate the proposed formulation. Additionally, a software
implementation of the proposed formulation (DD_EQP Library) for quadrilateral
domains crossed by two discontinuities has been developed and some numerical tests
have been performed in order to demonstrate the precision in the results, the ease of
implementation for the presented technique, as well as the extensibility and gener-
ality of the mathematical framework that underlies the proposed method. Also, an
analysis on the accuracy of the results obtained by means of the proposed formulation
in the case of distorted elements, and an extension for the presented methodology
to an arbitrary number of discontinuities has been carried out. The integration of
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polynomials times multiple step functions in 2D and 3D domains exhibited promis-
ing applications in various fields, such as numerical simulations, computational
geometry and engineering problems that involve modelling phenomena with sharp
transitions or abrupt changes. Overall, the presented method can be considered as a
significant contributions to the field of numerical analysis by providing a technique
for integrating multiple discontinuities in 2D and 3D finite element, without defining
subdomains. The capability to accurately integrate discontinuities within various
domain shapes without splitting the integration domain could define pathways for
more precise calculations in various contexts. Future research can further explore
optimisation approaches and advanced numerical techniques to enhance the accuracy
and effectiveness, as well as to optimise the general solution for handling an arbitrary
number of discontinuities.



Chapter 6

Conclusions and further research

6.1 Main conclusions

The integration of multiple discontinuities over various 2D and 3D domain shapes
using equivalent polynomials has been explored in this PhD Thesis, and a technique
to exactly integrate polynomials times multiple step functions without the need for
splitting the integration domain has been proposed. The outcomes of the present work
demonstrated that the use of equivalent polynomials offers a promising approach for
the exact integration of multiple discontinuities by means of standard quadrature rules.
This eliminates the necessity for complex numerical techniques and significantly
simplifies the integration procedure.

The formulation has been firstly defined for a standard 2×2 bilinear quadrilateral
parent element crossed by two discontinuities (namely as a closed form solution
for the problem of numerically integrating polynomials times double step function
over quadrilateral domains), describing the precision and rigour of the mathematical
methods underlying the proposed solution. Moreover, a software implementation
of the presented technique into a Fortran library, DD_EQP, has been carried out in
order to prove the ease of implementation of the proposed method and to deliver a
practical application of it. The library implements the closed form solution for a
standard 2×2 bilinear quadrilateral parent element crossed by two discontinuities,
as well as isoparametric mapping methods to extend the solution to any quadrilateral
element, however defined in a global reference system. DD_EQP has been used
to perform numerical tests on the proposed formulation comparing the results with
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standard integration methods, demonstrating its accuracy, being the outcomes exact
up to machine precision. The presented formulation has then been extended to
a standard linear triangular parent element, demonstrating the adaptability of the
proposed method.

The problem of defining an integration technique for three-dimensional parent
elements crossed by multiple discontinuities has also been tackled. The case of
a standard trilinear hexahedral parent element crossed by two discontinuities has
been explored and a closed form solution for the exact integration of polynomials
times double step function in hexahedral domains has been proposed, demonstrating
once again its precision and the rigour of the mathematical methods underlying
it. The presented method has been extended also to a linear tetrahedral parent
element, showing the versatility of the proposed formulation. Moreover, by means
of isoparametric mapping, the proposed formulation can be extended to elements,
however defined in a global coordinate system, which can be brought back to a
regular parent geometry. Numerical tests have been performed for each analysed
element. The outcomes have been compared with the results obtained by way
of standard integration methods, which validated the proposed formulation also
for three-dimensional elements. Still in the isoparametric mapping context, the
effect of distorted elements on the accuracy of the results obtained by means of
the proposed formulation has been explored and numerical tests pointed out a non-
negligible loss of precision in the case of distorted quadrilateral and hexahedral
elements. The order of magnitude of the error, however, is comparable to the one
obtained by way of standard integration techniques, such as splitting the domain of
integration. On the other hand, triangular and tetrahedral elements are not affected
by the distortion due to their linearity, always delivering precise results. Strategies to
mitigate the problem exploiting this feature of linear elements, (i.e., the subdivision
of a distorted quadrilateral domain by means of triangular elements) have been
analysed. However, the transition from bilinear (or trilinear) elements to linear ones
involves a loss of information in the results. Finally, the extension of the proposed
formulation to problems involving an arbitrary number of discontinuities has been
presented, demonstrating the scalability of the method. The presented technique
has a straightforward adaptability to problems in which an arbitrary number of
discontinuities stems from a single intersection point (inside or outside the element).
Issues may arise in the case of discontinuities intersecting in various points, both
inside and outside the element. These problems are mainly related to the complexity,
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in some cases, to correctly identify element portions defined by the discontinuities
when evaluating the equivalent polynomials equations. Particularly when a portion
lies over multiple domain restrictions. The formulation has been proposed for
quadrilateral domains, however, its extension to other bi-dimensional and three-
dimensional domain shapes is straightforward.

In conclusion, the proposed formulation offers a method to exactly integrate
polynomials times multiple discontinuities, handling diverse domain shapes. By
employing equivalent polynomials, the behaviour of integrand functions embedding
discontinuities can be accurately captured, allowing to precisely evaluate the overall
integration result. The ability to handle multiple discontinuities simultaneously is
a significant advantage, as it allows for a more comprehensive analysis of complex
problems involving diverse physical phenomena. This feature is particularly valuable
in various scientific and engineering applications where irregular domain shapes
are common, especially in fracture mechanics and in the XFEM analysis context.
The proposed formulation provides, however, an integration technique that could be
exceptionally useful not only in the context of XFEM and fracture mechanics, but
also in the field of computational geometry and as a mathematical tool to easily solve
integrals over domains of non-trivial shape. Nonetheless, potential issues associated
with the integration of multiple discontinuities using equivalent polynomials have
been highlighted, such as the non-negligible effect of distortions on the results, and
the complexity on correctly defining the domain portions in the case of disconti-
nuities intersecting on various points, both inside and outside the element domain.
Additionally, it must be noted that the introduction of equivalent polynomials into the
integrand function increases its degree, thus requiring a higher computational effort.
Despite the issues, the proposed formulation is a useful method for the integration
of multiple discontinuities over various 2D and 3D domain shapes, which offers
a promising alternative to traditional methods that rely on domain splitting. This
approach allows for seamless integration by means of standard quadrature rules
without sacrificing accuracy.

Further research is advised below to address the unresolved issues regarding
some aspects of the proposed formulation since the presented results are undoubtedly
not exhaustive.
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6.2 Further research

On the basis of the unresolved issues for the proposed formulation, the following
study directions are recommended:

Higher computational effort: While the use of equivalent polynomials ensures
a seamless integration for problems involving discontinuities, it also involves the
increment of the integrand function degree, thus leading to a higher computational
demand (see [22, 27, 11]). Although the issue could be irrelevant when analysing
a single element crossed by two (or more) discontinuities, it may become burden-
some in the case of analysis in which numerous elements contains discontinuities
(i.e., XFEM analysis on multi-fractured bodies or fracture branching problems).
Exploring advanced numerical techniques and optimisation approaches to improve
the efficiency of the proposed formulation, thus, is among the key aspect to address
in further research.

Distorted elements: Integration results accuracy may be heavily affected when
using the proposed formulation on distorted domains, particularly in the case of
bilinear and trilinear parent elements. The non-constant determinant of the Jacobian
matrix in such scenarios, as well as the effect of the distortion on the discontinuities
(see section 5.7), are the main causes of unreliable results in the case of distorted
elements. Possible workarounds to this problem, such as splitting the distorted
element by means of linear elements, which are not affected by distortions, have
been proposed. However, a general solution that ensures adequate accuracy on
results, avoiding loss of information due to the use of different element types, has
yet to be explored and should be tackled in further research.

Arbitrary number of intersection points: As analysed in section 5.8, the
definition of the equivalent polynomials H̃i(xxx) for all the domain portions in the
case of an indefinite number of discontinuities intersecting in various points, both
inside and outside the element domain, could be challenging. A general procedure
based on the technique presented in this Thesis, applying some concepts proposed
in [34], has been illustrated, although criticalities may arise if a domain portion lies
over several domain restrictions (see section 5.8.2). In fact, in such situations (see
portion Ω1 in Figure 5.22b), special attention is required on defining the normals
of each discontinuity, in order to correct identify all the quantities that define the
equivalent polynomials for the i-th portion. This process may result burdensome and
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require additional computational effort in the case of domains containing numerous
intersection points. Further research should address this issue, exploring a general
(yet computational unheavy) method to precisely define domain portions that lies over
various restrictions, in order to unambiguously determine the equivalent polynomial
equation for the entire partition.
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Appendix A

A.1 Equivalent polynomials computation in Wolfram
Mathematica

Formal Wolfram Mathematica scripts to compute the equivalent polynomials for the
domain shapes presented in chapter 5 crossed by two discontinuities is reported in
the following.

In order to improve numerical efficiency and to obtain more compact results, the
notation introduced in [27] is used in the computations, so that

H̃ρ =CCC ·mmm (A.1)

in which mmm is the vector collecting the monomials (see section 4.3.2) and CCC is the
vector containing the equivalent polynomial coefficients. It is then possible to write
eq. (4.16) as ∫

Ω

mmm mmmT dΩ CCC =
∫

Ω

HρmmmdΩ (A.2)

being

AAA =
∫

Ω

mmm mmmT dΩ

bbb =
∫

Ω

HρmmmdΩ

(A.3)

so that
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CCC = AAA−1bbb (A.4)

and finally

H̃ρ = mmmT AAA−1bbb (A.5)

A.1.1 Equivalent polynomials computation for quadrilateral do-
mains

(* Define discontinuity equation and the regularised Heaviside function *)

d = aξ +bη + c;

H =
2

1+ e−ρd −1;

(* Monomial basis definition in the parent element domain and matrix A computation
*)

M = {1,ξ ,η ,ξ η ,ξ 2,η2};

A = [Integrate [Outer [Times,M M] ,{ξ ,−1,1},{η ,−1,1}]] ;

(* b vector analytic definition *)

Hξ = Integrate [H M,ξ ] ;

T = Simplify
[
Hξ [s]−Hξ [−1]

]
;

Hη = Integrate [T,η ] ;

BV = Simplify [Hη [1]−Hη [−1]] ;

(* b vector has to be computed for each discontinuity substituting the coefficients
(a1,b1,c1) and (a2,b2,c2) *)

(* s is the abscissa of the discontinuities intersection point *)

(* Resultant b vector for the targeted portion is given by b1 −b2 and depends on the
direction pointed by the discontinuities normals *)
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(* Heqv: Equivalent Polynomial computation *)

BV res = BV 1−BV 2;

CV = Inverse[A] . BV res;

Heqv =CV . M;

A.1.2 Equivalent polynomials computation for triangular do-
mains

(* Define discontinuity equation and the regularised Heaviside function *)

d = aξ +bη + c;

H =
2

1+ e−ρd −1;

(* Monomial basis definition in the parent element domain and matrix A computation
*)

M = {1};

A = [Integrate [Outer [Times,M M] ,{ξ ,0,1},{η ,0,1−ξ}]] ;

(* b vector analytic definition *)

Hη = Integrate [H M,η ] ;

T = Simplify [Hη [1−ξ ]−Hη [0]] ;

Hξ = Integrate [T,ξ ] ;

BV = Simplify
[
Hξ [s]−Hξ [0]

]
;

(* b vector has to be computed for each discontinuity substituting the coefficients
(a1,b1,c1) and (a2,b2,c2) *)

(* s is the abscissa of the discontinuities intersection point *)

(* Resultant b vector for the targeted portion is given by b1 −b2 and depends on the
direction pointed by the discontinuities normals *)
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(* Heqv: Equivalent Polynomial computation *)

BV res = BV 1−BV 2;

CV = Inverse[A] . BV res;

Heqv =CV . M;

A.1.3 Equivalent polynomials computation for hexahedral do-
mains

(* Define discontinuity equation and the regularised Heaviside function *)

d = aξ +bη + cζ +d;

H =
2

1+ e−ρd −1;

(* Monomial basis definition in the parent element domain and matrix A computation
*)

M = {1,ξ ,ξ 2,η ,ξ η ,ξ 2
η ,η2,ξ η

2,ξ 2
η

2,ζ ,ξ ζ ,ξ 2
ζ ,ηζ ,

ξ ηζ ,ξ 2
ηζ ,η2

ζ ,ξ η
2
ζ ,ζ 2,ξ ζ

2,ξ 2
ζ

2,ηζ
2,ξ ηζ

2,η2
ζ

2};

A = [Integrate [Outer [Times,M M] ,{ξ ,−1,1},{η ,−1,1},{ζ ,−1,1}]] ;

(* b vector analytic definition *)

s = m ζ +n;

Hξ = Integrate [H M,ξ ] ;

T = Simplify
[
Hξ [s]−Hξ [−1]

]
;

Hη = Integrate [T,η ] ;

T = Simplify [Hη [1]−Hη [−1]] ;

Hζ = Integrate [T,ζ ] ;

BV = Simplify
[
Hζ [ζ2]−Hζ [ζ1]

]
;

(* b vector has to be computed for each discontinuity substituting the coefficients
(a1,b1,c1,d1) and (a2,b2,c2,d2) *)
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(* s is the plane containing the discontinuities intersection line and with null normal
wrt y-axis *)

(* ζ1 and ζ2 are the intersection between the discontinuities intersection line and
ξ =−1 and ξ = 1 respectively *)

(* Resultant b vector for the targeted portion is given by b1 −b2 and depends on the
direction pointed by the discontinuities normals *)

(* Heqv: Equivalent Polynomial computation *)

BV res = BV 1−BV 2;

CV = Inverse[A] . BV res;

Heqv =CV . M;

A.1.4 Equivalent polynomials computation for tetrahedral do-
mains

(* Define discontinuity equation and the regularised Heaviside function *)

d = aξ +bη + cζ +d;

H =
2

1+ e−ρd −1;

(* Monomial basis definition in the parent element domain and matrix A computation
*)

M = {1};

A = [Integrate [Outer [Times,M M] ,{ξ ,0,1−η −ζ},{η ,0,1−ζ},{ζ ,0,1}]] ;

(* b vector analytic definition *)
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s = m ζ +n;

Hξ = Integrate [H M ∗ Boole[ξ ≤ s],ξ ] ;

T = Simplify
[
Hξ [1−η −ζ ]−Hξ [0]

]
;

Hη = Integrate [T,η ] ;

T = Simplify [Hη [1−ζ ]−Hη [0]] ;

Hζ = Integrate [T,ζ ] ;

BV = Simplify
[
Hζ [1]−Hζ [0]

]
;

(* b vector has to be computed for each discontinuity substituting the coefficients
(a1,b1,c1,d1) and (a2,b2,c2,d2) *)

(* s is the plane containing the discontinuities intersection line and with null normal
wrt y-axis *)

(* Resultant b vector for the targeted portion is given by b1 −b2 and depends on the
direction pointed by the discontinuities normals *)

(* Heqv: Equivalent Polynomial computation *)

BV res = BV 1−BV 2;

CV = Inverse[A] . BV res;

Heqv =CV . M;

A.2 Fortran libraries source code

As discussed in chapters 4 and 5, a Fortran library for the integration of polynomials
times step function over various domain shapes (EQP), and a Fortran library for the
integration of polynomials times double step function over quadrilateral domains
(DD_EQP) have been developed as a part of this PhD Thesis work.

The source code for both libraries, as well as some test files, are freely available
at http://www.equivalent-polynomials.net/.

http://www.equivalent-polynomials.net/
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A.3 Section 5.8 numerical tests data

Detailed data used for the numerical tests reported in section 5.8 are reported in the
following.

A.3.1 Data for test in section 5.8.1

Ω domain coordinates:

111 ≡ (−1,−1);

222 ≡ (1,−1);

333 ≡ (1,1);

444 ≡ (−1,1);

Intersection point coordinates:

PPP ≡ (−0.40,0.35);

Discontinuities equations:

d1 : 1.87x+ y+0.40 = 0;

d2 : 0.63x+ y−0.10 = 0;

d3 : −0.07x+ y−0.38 = 0;

d4 : −0.84x+ y−0.70 = 0;

d5 : −2.68x+ y−1.44 = 0;
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A.3.2 Data for test in section 5.8.2

Ω domain coordinates:

111 ≡ (−1,−1);

222 ≡ (1,−1);

333 ≡ (1,1);

444 ≡ (−1,1);

Intersection point coordinates:

PPP111 ≡ (−0.74,−0.14);

PPP222 ≡ (−0.18,0.69);

PPP333 ≡ (0.40,−0.29);

Discontinuities equations:

d1 : 0.13x+ y+0.23 = 0;

d2 : −1.46x+ y−0.94 = 0;

d3 : 1.69x+ y−0.39 = 0;
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