
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

End-to-End Deployment of Winograd-Based DNNs on Edge GPU / Mori', Pierpaolo; Shanur Rahman, Mohammad;
Frickenstein, Lukas; Balamuthu Sampath, Shambhavi; Thoma, Moritz; Fasfous, Nael; Rohit Vemparala, Manoj;
Frickenstein, Alexander; Stechele, Walter; Passerone, Claudio. - In: ELECTRONICS. - ISSN 2079-9292. -
ELETTRONICO. - (2024). [10.3390/electronics13224538]

Original

End-to-End Deployment of Winograd-Based DNNs on Edge GPU

Publisher:

Published
DOI:10.3390/electronics13224538

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994871 since: 2024-11-28T16:12:11Z

MDPI

Citation: Mori, P.; Rahman, M.S.;

Frickenstein, L.; Sampath, S.B.;

Thoma, M.; Fasfous, N.; Vemparala,

M.R.; Frickenstein, A.; Stechele, W.;

Passerone, C. End-to-End

Deployment of Winograd-Based

DNNs on Edge GPU. Electronics 2024,

1, 0. https://doi.org/

Received: 16 October 2024

Revised: 16 November 2024

Accepted: 17 November 2024

Published:

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

End-to-End Deployment of Winograd-Based DNNs on
Edge GPU †

Pierpaolo Mori 1,2,* , Mohammad Shanur Rahman 1, Lukas Frickenstein 1, Shambhavi Balamuthu Sampath 1,
Moritz Thoma 1, Nael Fasfous 1, Manoj Rohit Vemparala 1, Alexander Frickenstein 1, Walter Stechele 3

and Claudio Passerone 2,*

1 BMW AG, 80809 Munich, Germany; mohammad-shanur.rahman@bmw.de (M.S.R.);
lukas.frickenstein@bmw.de (L.F.); shambhavi-balamuthu.sampath@bmw.de (S.B.S.);
moritz.thoma@bmw.de (M.T.); nael.fasfous@bmw.de (N.F.); manoj-rohit.vemparala@bmw.de (M.R.V.);
alexander.frickenstein@bmw.de (A.F.)

2 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
3 Chair of Integrated Systems, Technical University of Munich, 80333 Munich, Germany;

walter.stechele@tum.de (W.S.
* Correspondence: pierpaolo.mori@polito.it (P.M.); claudio.passerone@polito.it (C.P.)
† This paper is an extension of our paper published at the Winter Conference on Applications of Computer

Vision (WACV) 2024 with the title “Wino Vidi Vici: Conquering Numerical Instability of 8-Bit Winograd
Convolution for Accurate Inference Acceleration on Edge”.

Abstract: The Winograd algorithm reduces the computational complexity of convolutional neural
networks (CNNs) by minimizing the number of multiplications required for convolutions, making
it particularly suitable for resource-constrained edge devices. Concurrently, most edge hardware
accelerators utilize 8-bit integer arithmetic to enhance energy efficiency and reduce inference latency,
requiring the quantization of CNNs before deployment. Combining Winograd-based convolution
with quantization offers the potential for both performance acceleration and reduced energy consump-
tion. However, prior research has identified significant challenges in this combination, particularly
due to numerical instability and substantial accuracy degradation caused by the transformations
required in the Winograd domain, making the two techniques incompatible on edge hardware. In
this work, we describe our latest training scheme, which addresses these challenges, enabling the
successful integration of Winograd-accelerated convolution with low-precision quantization while
maintaining high task-related accuracy. Our approach mitigates the numerical instability typically
introduced during the transformation, ensuring compatibility between the two techniques. Addition-
ally, we extend our work by presenting a custom-optimized CUDA implementation of quantized
Winograd convolution for NVIDIA edge GPUs. This implementation takes full advantage of the
proposed training scheme, achieving both high computational efficiency and accuracy, making it a
compelling solution for edge-based AI applications. Our training approach enables significant MAC
reduction with minimal impact on prediction quality. Furthermore, our hardware results demonstrate
up to a 3.4× latency reduction for specific layers, and a 1.44× overall reduction in latency for the entire
DeepLabV3 model, compared to the standard implementation.

Keywords: CNN; Winograd convolution; hardware accelerator; quantization; NVIDIA; GPU

1. Introduction

Convolutional neural networks (CNNs) are widely used in computer vision tasks,
achieving state-of-the-art performance in a wide range of applications, such as image clas-
sification [1], object detection [2], and semantic segmentation [3]. Their superior prediction
quality made them the main choice for many real-world applications, from autonomous
vehicles to facial recognition and medical imaging. However, as CNN architectures have
evolved, their increasing complexity has led to an higher computational and memory

Electronics 2024, 1, 0. https://doi.org/10.3390/electronics1010000 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/article/10.3390/electronics1010000?type=check_update&version=1
https://doi.org/10.3390/electronics1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2739-4447
https://doi.org/10.3390/electronics1010000
https://www.mdpi.com/journal/electronics

Electronics 2024, 1, 0 2 of 18

demands. Edge hardware, which often comes with strict limitations in terms of power
consumption, memory, and computational capacity, struggles to accommodate large-scale
CNNs. The key challenge arises from the vast number of multiply–accumulate (MAC)
operations required by such models. Additionally, the memory required to store model
parameters, including activations and weights, further exacerbates the problem, partic-
ularly on devices with limited memory resources. To address these challenges, model
compression techniques, such as quantization and pruning, have become essential for
enabling efficient inference on edge devices. CNN models are often overparameterized
and present redundant weights that can be pruned, without affecting the prediction quality.
Quantization has gained significant traction in both industry and academia as a practical
solution for addressing the challenges associated with deploying convolutional neural
networks (CNNs) on edge devices [4]. By reducing the bit-width of weights and activations,
quantization allows CNNs to leverage low-precision arithmetic, significantly improving
efficiency on hardware platforms with limited computational and memory resources.

There are two primary methods for applying quantization to CNNs: Post-Training
Quantization (PTQ) and Quantization-Aware Training (QAT). In PTQ, a pre-trained model
in full-precision (usually 32-bit floating-point) is converted to a lower bit-width represen-
tation, typically after a brief calibration phase involving a small set of training data. PTQ
is a fast and straightforward approach, making it suitable for scenarios where access to
the original training data is limited or where retraining is not feasible. On the other hand,
Quantization-Aware Training (QAT) offers a more sophisticated solution by incorporating
the quantization process directly into the training phase. QAT simulates the effects of
quantization during training, allowing the model to learn how to adapt to the reduced
precision. This process results in a quantized CNN that experiences minimal degradation
in task-specific metrics, even at very low bit-widths (e.g., INT4 or INT8) [5,6].

With the ever-rising demand for fast inference, custom accelerators designed for
specific layer types (e.g., pooling [7]) and optimized to operate on efficient fixed-point
integers have garnered attention. Low-bit integer arithmetic is desirable as it is less complex
and results in faster computation than floating point arithmetic. Despite the benefits
brought by lower-bit quantization, when the hardware architecture used for the inference
does not take advantage of lower-bit data representation (e.g., 8-bit hardware and 4-bit
quantization), reduced bit width does not bring any further performance improvement
(NVIDIA Jatson Nano [8], Snapdragon 8 Gen 1 [9], Google Coral [10]).

For general-purpose hardware that does not support quantization below 8-bit, reduc-
ing the latency of convolutional neural networks (CNNs) requires alternative methods,
such as employing faster algorithms like the Winograd-based convolution. In a standard
convolution, a filter moves across the input activation map, performing a series of multiply-
accumulate (MAC) operations to generate a single output pixel at each position. In contrast,
the Winograd-based convolution algorithm [11] significantly improves efficiency by com-
puting multiple output pixels simultaneously. By leveraging mathematical transformations,
Winograd-based convolution reduces the number of required MAC operations, thereby
speeding up CNN inference on edge devices [12]. As an example, in the F(4, 3) variant of
the Winograd algorithm, a 4× reduction in the number of MAC operations can be achieved,
compared to standard convolution. Winograd convolution consists of three stages: (1)
input and weight transformation, (2) element-wise matrix multiplication (EWMM) of
the transformed matrices, and (3) inverse transformation to produce the spatial output
feature maps.

In the floating-point domain, the Winograd transformations introduce minimal nu-
merical error, which does not significantly affect the model’s prediction accuracy [13,14].
As a result, the floating-point Winograd algorithm has been widely adopted in the research
community and optimized for various scenarios. For example, researchers have extended
the algorithm to support additional layer types [15], introduced reuse schemes for greater
efficiency [16,17], and explored pruning techniques to further reduce computational com-
plexity [18,19]. However, when the Winograd algorithm is adopted in quantized domain,

Electronics 2024, 1, 0 3 of 18

the numerical instability is exacerbated and causes severe task metric degradation [20].
In particular, when quantizing all the three stages of the Winograd algorithm described
above, the limited bit width of all the operands cannot properly represent the wide ranges
in the Winograd domain, leading to overflow. For example, a 16-bit standard convolution
ResNet-18 achieving 92% accuracy on CIFAR-10 would degrade down to 19.25% when
using 16-bit Winograd F(4, 3) convolution [20].

Several research efforts have attempted to address these challenges and enable accurate
inference with quantized Winograd convolution. However, the solutions typically involve
selective quantization, where only certain stages of the algorithm are quantized, while
others remain at higher precision. While this approach helps preserve model accuracy, it
introduces additional computational and hardware overhead.

In this work, we summarize and extend our research [21] on efficient and accurate
quantized inference of CNNs adopting the Winograd algorithm. We tackle the challenges
of quantized Winograd with the following contributions:

• We model the numerical error of quantized Winograd at training time, making the
model aware of quantization errors and overflows in the Winograd domain.

• We introduced a trainable clipping factor for quantizing transformed parameters in
the Winograd domain, resulting in a MAC operation reduction of 2.45× for ResNet-
18-ImageNet with only ∼1 p.p. accuracy degradation.

• We designed an optimized 8-bit CUDA kernel for the F(4×4, 3×3) variant of the
Winograd algorithms on an edge GPU. We took advantage of the efficient Tensor
Cores to further speed-up the quantized algorithm, resulting in up to 3.41× latency
reduction compared to the standard convolutional algorithm.

2. Related Works
2.1. Post-Training Winograd-Based Quantized CNNs

Li et al. [22] resorted to the Winograd F(4, 3) algorithm to speed up inference time
on CPUs. Full-precision transformations to/from the Winograd domain are used to mini-
mize the accuracy degradation. Post-training quantization is then used to discretize the
transformed weights and activations to 8-bit, performing only EWMM on 8-bit multipliers.
The input and weights for all the convolutional layers are stored in 32-bit floating-point,
demanding expensive computations for transformations and high memory bandwidth
between two layers. Chikin et al. [23] propose to balance the data ranges of inputs and
filters by scaling them channel-wise with balancing coefficients in order to equalize channel
ranges to improve the quality of quantization. Furthermore, they also apply scaling factors
per pixel within the tile to better map the transformed inputs/weights from floating-point
to the quantized range. The channel balancing and channel-wise tile scaling factors increase
the computational complexity of the transformation. Additionally, the pixel-wise scaling
factors lead to the introduction of an expensive dequantization step before performing
inverse transformation. Only the element-wise multiplication is quantized, similar to
Li et al. [22], leading to huge hardware overhead.

Differently, this work implements CNNs with full 8-bit Winograd-based convolutions
and only needs one scaling factor for the transformations of one layer.

2.2. Winograd-Aware Training (WAT)

Marques et al. [20] first included the Winograd algorithm in the training loop, making
the model aware of the numerical instability problem. The authors made the Winograd
transformation matrices trainable to reduce the accuracy degradation caused by quanti-
zation overflow. They further proposed wiNAS to search for Winograd-aware quantized
networks by deciding the optimal Winograd tile size for each convolutional layer. However,
as transformation matrices are trainable and maintained in floating-point representation,
the computational cost in edge deployment gets expensive. Different Winograd tiles in
various layers demand additional hardware logic to implement required transformations.
Barabasz [24] resorts to Legendre polynomials to tackle numerical error for 8-bit Winograd

Electronics 2024, 1, 0 4 of 18

quantization. In this approach, additional floating-point matrix multiplications are added
along with standard Winograd transforms, increasing the complexity of the method. More-
over, the best accuracy values are achieved by making trainable Winograd transformation
matrices, increasing the complexity during CNN inference. Andri et al. [25] propose the use
of pixel-wise scaling factors per tile, similar to those presented in [23], as a means to prevent
quantization overflow in the Winograd-based convolutions. These scaling factors are effi-
ciently determined during training through the use of powers-of-two values. Furthermore,
they explore the different quantization levels at various stages of transformations and
implement an 8-bit WAT pipeline using knowledge distillation. However, the quantized
model still requires pixel-wise scaling factors, demanding additional dequantization to
perform inverse transformation.

This work also proposes a novel WAT to achieve 8-bit quantized CNNs with no
overhead in terms of hardware logic/storage, using only one scaling factor for all the
transformations in one layer.

2.3. Winograd Algorithm on GPU

Castro et al. [26] propose an open-source implementation of the F(2, 3) Winograd
algorithm on a GPU. The authors optimized the data layout in shared memory to improve
the efficiency of the memory access and to reduce the thread divergence. The computation
of each step is performed in single precision. However, the advantages of the Winograd
F(2, 3) algorithm are limited compared to the larger F(4, 3). Liu et al. [27] presented an
optimized Winograd kernel to accelerate the F(6, 3) algorithm on GPU, exploiting Tensor
Cores. Each step of the Winograd algorithm (input transformation, weight transformation,
EWMM, inverse transformation) is optimized to minimize the latency and enable the
acceleration on Tensor Cores. Moreover, mixed precision (FP16) computation is adopted
to minimize the numerical error introduced by the Winograd algorithm. However, the
authors focused on server-grade GPUs and do not tackle 8-bit quantization.

Differently, this work focuses on the F(4, 3) Winograd algorithm, providing an opti-
mized design to speed up the convolution on edge GPUs by exploiting Tensor Cores and
8-bit quantization.

3. Materials and Methods

This section presents the methodology for enhancing Winograd-based quantization
on edge hardware, focusing on two core innovations. After a brief overview of quantized
convolution and the Winograd convolution algorithm (Sections 3.1 and 3.2), Section 3.3
introduces the application of adaptive clipping factors in the Winograd domain. These
clipping factors are applied to both weights and activations after transformation, effectively
constraining the data range, reducing quantization error, and mitigating sources of numeri-
cal instability. Then, in Section 3.4, the design of a custom Winograd kernel optimized for a
widely used edge GPU is presented, demonstrating the practical benefits of this approach
in real-world edge applications. Together, these contributions showcase the feasibility and
effectiveness of deploying quantized Winograd algorithms on edge devices.

3.1. Quantized Convolutional Algorithm

Consider a convolutional layer l ∈ [1, . . . , L] in an L-layer CNN. The weights of the
layer, W l ∈ Rky×kx×Ci×Co , are applied to an input feature map Al−1 ∈ RHi×Wi×Ci , where
Hi, Wi and Ci are the spatial and channel dimension of the input. The kernel size is defined
by ky and kx, and Co is the number of output channels. The convolution between W l and
Al−1 generates the output feature map Al ∈ RHo×Wo×Co , with Ho, Wo, and Co representing
the output spatial and channel dimensions. The number of multiply and accumulate (MAC)
operations for each layer can be calculated as as:

#MAC = Ho × Wo × Co × kx × ky × Ci (1)

Electronics 2024, 1, 0 5 of 18

Modern CNNs typically contain a vast number of parameters, which are commonly rep-
resented as 32-bit floating-point values during the training phase. While floating-point
representation enables high precision, it poses significant challenges for inference on
resource-constrained hardware due to its computational demands and limited memory
bandwidth. To mitigate these issues, a common approach is to quantize the weights and ac-
tivations of the network to lower bit-width representations, such as 8, 4, 2, or even 1 bit. This
process enhances throughput, decreases memory usage, and significantly reduces power
consumption, making it more feasible to deploy complex CNN models in real-time applica-
tions. The quantization of a floating-point value x f is described in Equations (2) and (3).
For activation quantization, x f is clipped between [−c,+c], where c represents the train-
able clipping threshold value for each layer and it is determined by the task-specific loss
function of the CNN model [5]. Based on the determined c, a scaling factor SFa is computed
as SFa = c/(2N−1 − 1), where N represents the quantization bit width. When using the
ReLU activation function, the range is clipped to [0, c], with the scaling factor adjusted to
SFa = c/(2N − 1), representing the quantized value as an unsigned number.

xint = QC(x f) = Round(Clip(x f ,−c,+c)/SFa) (2)

Floating-point weights are quantized according to Equation (3), where the distribution is
constrained to the range [−1,+1] [6].

xint = Q(x f) = Round(x f /SFw) (3)

Here, the scaling factor for the weights is given by SFw = 1/(2N−1 − 1). In order to deal
with the discreteness of Equations (2) and (3) at training time, a straight-through estimator
(STE) is used to update full-precision weights during backpropagation, while quantized
values are used in the forward pass [28]. This paper focuses on 8-bit quantization, where
all operands are represented as 8-bit integers.

3.2. Winograd Algorithm

The Winograd algorithm reduces the number of multiply–accumulate (MAC) opera-
tions required for convolution, offering significant computational reduction for CNNs [11].
The 2D Winograd algorithms are denoted as F(mx × my, kx × ky), where the output tile size
is mx × my and the kernel size is kx × ky. Winograd convolution consists of three stages
(Figure 1): first (1), the input activation and weight tiles are transformed to the Winograd
domain. Then (2), the element-wise matrix multiplication (EWMM) is performed on the
transformed tiles. Finally (3), the inverse transformation is applied to the resulting tiles in
the Winograd domain, converting them back to the spatial domain to produce the output
feature maps.

The standard convolutional algorithm requires (mx × kx)× (my × ky) multiplications
to produce an mx × my output tile. In contrast, the 2D Winograd convolution requires only
(mx + kx − 1)× (my + ky − 1) multiplications. The mx × my output tile is obtained through
the algorithm flow shown in Figure 1 and Equation (4).

al = AT [(GwlGT)⊙ (BTal−1B)]A (4)

Here, al−1, wl , and al represent the 2D tiles of the input feature map Al−1, of the weight
tensor W l , and of the convolution output Al , respectively. The symbol ⊙ represents the
EWMM operator. B, G, A are the constant Winograd matrices responsible for transforming
al−1, wl and al to and from the Winograd domain [11]; the Winograd Matrices for the
F(4 × 4, 3 × 3) Winograd algorithm are reported in Equation (5).

Electronics 2024, 1, 0 6 of 18

BT =



4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 G =



1
4 0 0

− 1
6 − 1

6 − 1
6

− 1
6

1
6 − 1

6
1

24
1

12
1
6

1
24 − 1

12
1
6

0 0 1



AT =


1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 (5)

The transformed input tile BTal−1B and weights GwlGT are of dimensions rx × ry, where
rx = mx + kx − 1 and ry = my + ky − 1. For an entire convolutional layer, the number of
MAC operations required by the Winograd algorithm is expressed in Equation (6).

#MACwino =

⌈
Ho

my

⌉
× ry ×

⌈
Wo

mx

⌉
× rx × Co × Ci (6)

Therefore, MAC reductions achieved with the Winograd algorithm for a convolutional
layer can be computed as the ratio of Equations (1)–(6).

Figure 1. The three steps of the F(4, 3) Winograd algorithm: (1) input and weight transformation, (2)
element-wise matrix multiplication (EWMM) of the transformed matrices, and (3) inverse transfor-
mation to produce the spatial output feature maps. The numerical instability due to quantization
is highlighted.

While the Winograd algorithm can easily replace standard convolution in floating-
point representations with minimal accuracy loss, reducing the data precision introduces
numerical instability. This is especially evident with lower bit widths, where Winograd
transformations cause significant numerical errors that degrade prediction quality. For
instance, using a 16-bit integer variant of the Winograd algorithm F(4 × 4, 3 × 3) leads to a
75 percentage point accuracy drop for ResNet-18 on CIFAR-10 [20]. This numerical error is
caused by two main reasons: (1) numerical range enlargement after Winograd transform and
(2) rounding error exacerbated by underutilizing the quantized range, as visualized in Figure

Electronics 2024, 1, 0 7 of 18

2a. The non-integer coefficients in Winograd transformation matrices introduce quantiza-
tion errors when the transformations are performed in low-precision formats. Additionally,
the transformed input tile values (BTal−1B) are linear combinations of activations, causing
the numerical range to expand by a factor referred to as the enlargement factor γ.

(a) Standard quantized Winograd
transformation.

(b) Proposed Clipping in Winograd
transformation.

Figure 2. Comparison of the (a) standard Winograd quantized transformation against (b) the
Winograd quantized transformation that leverages trainable clipping factors to better exploit the
quantized range.

This work considers 2D Winograd algorithms for convolution kernels of size 3 × 3,
which are common in modern CNNs. Therefore, from now on, F(m, 3) will be used to refer
to the F(mx × my, 3 × 3) Winograd algorithm with kx = ky = 3. The operation reduction
ratio, S, is related to the output tile size m as shown in Equation (7). The larger the size of
m is, the more MAC reductions can be achieved with respect to standard convolution.

S =
m2 × 32

(m + 3 − 1)2 (7)

In Table 1, four different Winograd algorithms, namely F(2, 3), F(3, 3), F(4, 3), and
F(6, 3), are compared. For each Winograd variant, the table reports the theoretical reduction
in the number of operations (S) with respect to standard convolution and the maximum en-
largement factor (γ) computed considering the worst-case scenario. Moreover, according to
the SotA [23,24], this work considers that the weight transformation (GwlGT) is performed
offline, using floating-point representation to avoid unnecessary transform latency and
quantization error at run-time.

Table 1. Comparison of different Winograd algorithms against standard convolution in terms of
enlargement factor (γ), weight memory, theoretical and practical (ResNet-18) number of MAC savings
(#MAC).

Algorithm γ
Weight #MAC Reduction

Memory Theoretical (S) ResNet-18

F(2,3) 4× 1.78× 2.25× 1.76×
F(3,3) 36× 2.78× 3.24× 2.05×
F(4,3) 100× 4× 4× 2.45×
F(6,3) 156.25× 7.1× 5.06× 2.24×

3.3. Clipping Factors in the Winograd Domain

Our latest work [21] investigates the Winograd algorithms to fully understand the main
challenges that prevent their deployment on edge hardware. A key focus of the analysis is
the distribution of numerical values for quantized layers, specifically regarding weights

Electronics 2024, 1, 0 8 of 18

and activations, both before and after the application of the Winograd transformation.
One significant observation is that the data range for activations expands following the
transformation due to the enlargement factor discussed in Section 3.2. Upon analyzing
the distribution of transformed activations and weights, it is observed that 99.9% of the
data fall within a small portion of the total range, while the rest remain sparsely populated
(Figure 7). When quantizing this extensive floating-point range to an 8-bit format, it can
be noticed a notable underutilization of the available 28 discrete quantized values. This is
amplified by the fact that small magnitude values in the floating-point representation often
map to the same or very similar values in the quantized representation, leading to a high
incidence of rounding errors and further underutilization of the quantization range. This
phenomenon is depicted in Figure 2a. To address this issue, the concept of clipping factors
(αt) is introduced within the Winograd domain. The transformed range is clipped to αt
according to layer statistics; in particular, [−αt,+αt] is defined as the range that contains
99.9% of the available data distribution. Weights and activations have independent clipping
factors (i.e., αta and αtw).

With this approach, the transformed inputs and weights better exploit the available
discrete, quantized values (Figure 2b).

The algorithm in Equation (4) can be reformulated as in Equation (8), where QCw
denotes the clipping in the Winograd domain.

al = AT[QCw(GQ(wl)GT)⊙ QCw(BTQC(al−1)B)
]
A (8)

3.3.1. Trainable Clipping Factors αta, αtw

While the introduction of clipping factors represents a significant step toward more
effectively utilizing the quantized range, relying on static and manually defined values for
these factors is inherently suboptimal. To address this limitation, a more adaptive strategy
is proposed, allowing the clipping factors, αta for activations and αtw for weights, to be
dynamically adjusted during training through gradient descent with the aim of minimizing
the numerical error brought by Winograd transformations and quantization. Firstly, the
clipping function is applied to each value x f belonging to the floating point range, limiting
the distribution range to [−αt,+αt]:

xc = 0.5(|x f + αt| − |x f − αt|) =


−αt, x f ∈ (−∞,−αt)

x f , x f ∈ [−αt,+αt)

+αt, x f ∈ [+αt,+∞)

(9)

Then, xc is quantized linearly on the available 8-bits quantized range, obtaining the discrete
value xq:

xq = Round

(
xc ·

2(8−1) − 1
αt

)
(10)

During backpropagation, the gradient δxq
δαt

is evaluated using STE [28] to approximate
δxq
δx f

= 1:

δxq

δαt
=

δxq

δx f

δx f

δαt
=


−1, x f ∈ (−∞,−αt)

0, x f ∈ [−α,+αt)

+1, x f ∈ [+αt,+∞)

(11)

In summary, each layer of a convolutional neural network (CNN) model utilizes
three distinct scalar clipping factors: c, which is employed for clipping input activations
as described in [5]; αta, which is utilized for clipping transformed activations within the
Winograd domain; and αtw, which serves to limit the range of transformed weights in
the Winograd domain, as illustrated in Figure 3. In terms of hardware, the approach
requires only two scalar scaling factors per layer: one for the activation transform and

Electronics 2024, 1, 0 9 of 18

one for standard output quantization (since weights are quantized offline), resulting in a
negligible computation overhead. Initialization of clipping factors is a crucial operation
that affects the prediction quality during training. During the warm-up phase of training,
the data distribution is carefully assessed to select initial α values such that 99.9% of
the transformed data values (transformed weights and activations) fall within the range
[−αt,+αt]. Additionally, L2 regulatization is not used, since it tends to penalize high-
magnitude values indiscriminately, rather than focusing on their impact on accuracy.

Figure 3. Overview of the proposed Winograd aware quantized training. Straight-through estimator
(STE) is used to approximate the gradient of the quantization function. Trainable clipping factors c,
αta, and αtw are highlighted in red.

3.4. Winograd F(4,3) Convolution on GPU

In this section, the CUDA kernels designed to implement the 8-bit quantized Winograd
F(4,3) convolutional algorithm with clipping factor presented in the previous section are
described. A dedicated kernel has been designed for each step of the Winograd algorithm
(input transformation, EWMM and output transformation), ensuring synchronization
by having each kernel wait for the previous one to complete before starting (non-fused
approach). This approach takes advantage of the large memory bandwidth and maximizes
resource utilization for each kernel while maintaining correct execution order across the
steps. Each kernel is organized in thread blocks and within each block the computation is
parallelized over the input channel dimension (Pic < Ci), the output channel dimension
(Poc < Co), and the spatial dimension of the tile. Differently from other approaches, the
design proposed in this work is optimized for batch size 1, targeting edge scenarios. Weight
transformation is performed offline in floating-point precision; the resulting weights in the
Winograd domain are then quantized on 8-bit Ww, minimizing the quantization error.

3.4.1. Input Transform

The input transformation kernel takes care of transforming the 8-bit quantized input
tensor Al−1 ∈ RHi×Wi×Ci to the Winograd domain and applying the quantization QCw of
Equation (8). The thread blocks are arranged in a 2D array (Ntiles × Ctiles) as depicted in
Figure 4, where Ntiles represents the number of tiles needed to produce the output spatial
dimension and Ctiles refers to the number of tiles needed to transform all the Ci channels, Pic
at a time, computed as reported in Equation (12) and Equation (13), respectively. First, each
thread block (TBi,j) fetches the 8-bit pixels belonging to the corresponding tile obtaining a

Electronics 2024, 1, 0 10 of 18

6 × 6 × Pic sub-volume (Tin). At this point, zero-padding (p) is added to the tiles belonging
to the edges of the input feature map to match the expected output feature size. In some
cases, extra padding is applied to the right and bottom edges to guarantee an integer
number of 6 × 6 tiles in the spatial dimensions (yellow tile in Figure 4). Then, Tin is
transformed to the Winograd domain throughout the matrix multiplications BTTinB that
are fully unrolled and performed on integer arithmetic. The resulting 16-bit, transformed
tile (TinW) is clipped to the desired range ([−αt,+αt]), quantized on 8-bit (Section 3.3.1), and
stored back in DRAM.

Ntiles =

⌈
Ho

4

⌉
∗
⌈

Wo

4

⌉
(12)

Ctiles =

⌈
Ci
Pic

⌉
(13)

Figure 4. Input transformation kernel overview. The input volume is divided in sub-volumes and
each thread block is responsible for the transformation of a sub-volume.

3.4.2. Element-Wise Matrix Multiplication

The core computation of the Winograd algorithm is represented by the element-wise
matrix multiplication (EWMM). Here, the transformed weights (Ww) and transformed
activations (TinW) are multiplied point-wise to compute the convolutional result in the
Winograd domain. In Section 3.2, the 2D Winograd algorithm for a 2D input al−1 a 2D
weight wl is described. In CNN layers, the resulting tiles after the inverse transformation
(AT(·)A) are accumulated over the input channel dimension (Ci) to produce the convolu-
tional output in the spatial domain (al). However, the accumulation can be moved to the
Winograd domain, right after the EWMM in order to reduce the computation of the inverse
transformation. The F(4, 3) Winograd convolutional algorithm for a 4 × 4 output tile al can
be reformulated as in Equation (14).

al =
Ci

∑
i=0

AT [(Gwl
i G

T)⊙ (BTal−1
i B)]A = AT

[
Ci

∑
i=0

[(Gwl
i G

T)⊙ (BTal−1
i B)]

]
A (14)

Therefore, the EWMM kernel performs the point-wise multiplication of transformed
weights and activation and accumulate results over the channel dimension Ci. The EWMM
has been reformulated as a 6 × 6 GEMMs array (Figure 5). The kernel receives as inputs
the 8-bit transformed input tiles TinW ∈ RNtiles×Ci×6×6 and the 8-bit transformed weights
Ww ∈ RCo×Ci×6×6 and produces the output tiles Tewmm ∈ RNtiles×Co×6×6 that will be fed to
the inverse transform kernel. Each GEMM (GEMMi,j) in the 6 × 6 grid is responsible for all

Electronics 2024, 1, 0 11 of 18

the computation involving the spatial tile coordinates (i, j) of all the input TinW and all the
weights Ww tiles. In detail, the GEMMi,j performs the matrix multiplication of the activation
matrix MatA of size Ntiles × Ci and the weight matrix MatW of the dimension in Ci × Co
resulting in the output matrix MatO of the dimension in Ntiles × Co. Moreover, the highly
optimized GEMM kernel (cublasGemmEx()) from cuBLAS [29] has been adopted in order to
enforce the 8-bit quantized EMWW to run on the fast and efficient Tensor Cores [30]. At
the end of the computation, the Ntiles × Co × 6 × 6 tiles are written back to DRAM.

Figure 5. Element-wise matrix multiplication kernel overview. The computation is organized in
6 × 6 GEMMs. Each one is responsible for the computation of Ntiles × Co output pixels in the
Winograd domain.

3.4.3. Output Transform

The output transformation kernel is in charge of transforming the Ntiles × Co × 6 × 6
tiles coming from the EWMM kernel back to the spatial domain, producing the 8-bit
convolutional output Al ∈ RHo×Wo×Co (Figure 6). Also, in this case, the thread blocks are
arranged in a 2D array (Ntiles × Ctiles). Ntiles represents the number of tiles produced by
the input transformation and EWMM kernels. Ctiles refers to the number of tiles needed to
transform all the Co channels, Poc, at a time (Equation (15)).

Ctiles =

⌈
Co

Poc

⌉
(15)

Each thread block (TBi,j) fetches an integer tile Poc × 6 × 6 and transforms it back to the
spatial domain throughout the matrix multiplications AT(·)A that are fully unrolled. The
resulting 4 × 4 tile is clipped to the desired range ([−c,+c]) and quantized on 8-bit. At
this point, the resulting tile is ready to be written back to DRAM. In case Ho or Wo are not
divisible by 4, the 4 × 4 tiles belonging to the right and bottom edges are resized, cutting
out the extra values in order to match the expected output spatial dimensions (gray pixels
in the yellow tile in Figure 6).

Electronics 2024, 1, 0 12 of 18

Figure 6. Inverse transformation kernel overview. The Winograd tiles produced by the EWMM kernel
are transformed back to the spatial domain. Each thread block is responsible for the computation of a
4 × 4 × Poc output pixel.

4. Experiments

This section presents the results of the proposed Winograd-aware 8-bit quantized
training (Section 3.3) on various models (ResNet-20, ResNet-18 [1], VGG-9 [31], and
DeepLabv3+ [3]) and on different datasets (CIFAR-10 [32], ImageNet [33], and CityScapes [34]).
Unless otherwise specified, all training hyperparameters are adopted from the base im-
plementation. Additionally, the effectiveness of the 8-bit quantized F(4, 3) CUDA kernel
presented in Section 3.4 is evaluated on the NVIDIA Jetson Orin Nano 8 GB in the 7 W
configuration with frequency locked to 408 MHz, Jetpack 5 SDK [35] and CUDA 11. In all
the experiments, Pic = Poc = 128.

4.1. Quantized Winograd with Clipping Factors

In Table 2, the effectiveness of the proposed approach is evaluated on different models
(ResNet-20, VGG-9, ResNet-18, and DeepLabV3+) and datasets (CIFAR-10, ImageNet,
and Cityscapes). For each experiment, the number of bits for weights and activations
(NW/A), the accuracy, and the overall MAC reduction achieved through Winograd are
reported. The terms Conv and QConv refer to the standard convolutional algorithm
implemented in the floating-point and quantized domains, respectively, while WinoQ-
Conv denotes experiments where the quantized Winograd algorithm is applied to the
QConv-restored checkpoint.

In the ResNet-20-CIFAR-10 experiments, the effectiveness of the trainable clipping
approach is first evaluated against a post-training quantized network. The standard 8-bit
quantized model (QConv) is restored, and the Winograd F(4, 3) algorithm is enabled in
the forward pass (WinoQConv). Model weights are kept fixed, while only the clipping
factors for each layer and batch normalization parameters are calibrated. Although some
accuracy degradation remains, clipping improves prediction quality by +46.75 percentage
points compared to the standard PTQ Winograd F(4, 3) algorithm (WinoQConv). To further
reduce the accuracy gap, WAT is then enabled. Vanilla WAT alone achieves 89.69% accuracy
and improves to 90.89% with the approach with trainable clipping factors.

In the VGG-9-CIFAR-10 experiments, Winograd-aware training with learnable clipping
factors improves WinoQConv accuracy by +3.32 p.p.

The effectiveness of the proposed approach was subsequently evaluated using the
ResNet-18 [1] model on the more complex, large-scale ImageNet [33] dataset. In all experi-
ments, the model was trained for 80 epochs using a cosine learning rate decay schedule,
starting at 0.08 and decaying to 0.0. The results consistently demonstrated the benefits of
introducing trainable clipping factors in the Winograd domain, resulting in notable im-
provements in prediction accuracy. Specifically, for the Winograd-aware model trained with
F(4, 3), an enhancement of +3.43 percentage points in prediction accuracy was achieved by
incorporating trainable clipping parameters.

Electronics 2024, 1, 0 13 of 18

Table 2. Influence of the proposed Winograd quantize training on ResNet-20 and VGG-9 on CIFAR-10,
ResNet-18 on Imagenet and DeepLabV3+ on Cityscapes.

Dataset Model Method NW /A
QAT/ Winograd Top-1
WAT Algorithm Clipping Saving [%]

C
if

ar
-1

0
[3

2] R
es

N
et

-2
0

[1
]

Conv [1] 32 ✗ - - - 91.61
QConv [5] 8 ✓ - - - 91.39

WinoQConv 8 ✗ F(4,3) ✗ 3.4× 35.36

Ours 8
✗ F(4,3) ✓ 3.4× 82.11
✓ F(4,3) ✗ 3.4× 89.69
✓ F(4,3) ✓ 3.4× 90.89

V
G

G
-9

[3
1]

QConv 8 ✓ - - - 93.11
WinoQConv 8 ✓ F(4,3) ✗ 3.84× 88.97

Ours 8 ✓ F(4,3) ✓ 3.84× 92.29

Im
ag

en
et

[3
3]

R
es

N
et

-1
8

[1
]

Conv [1] 32 ✗ - - - 71.00
QConv [5] 8 ✓ - - - 70.54

WinoQConv 8 ✗ F(4,3) ✗ 2.45× 5.45

Ours 8 ✓ F(4,3) ✗ 2.45× 65.71
✓ F(4,3) ✓ 2.45× 69.14

CityScapes
[34]

DeepLabV3+
[3]

QConv [5] 8 ✓ - - - 67.82

Ours 8 ✓ F(4,3) ✓ 2.56× 66.57

In the final set of experiments, the analysis was extended to a semantic segmentation
task. The DeepLabv3+ [3] architecture was used on the CityScapes [34] dataset, with a mod-
ified ResNet-18 backbone in which the last two residual blocks were removed. Once again,
the Winograd-aware approach with trainable clipping factors effectively reduced accuracy
degradation compared to standard quantized convolution, confirming its robustness in
preserving model performance even in segmentation tasks.

4.2. Effect of Clipping Factors

This section demonstrates how the proposed method effectively constrains the range
of the transformed weights and activations, resulting in improved quantization perfor-
mance. Figure 7 presents the distribution of the Winograd F(4, 3) transformed weights
and activations for three specific layers (layers 15, 16, and 17) of the ResNet-20 model,
trained on the CIFAR-10 dataset. The x-axis shows the unique values of the transformed
weights and activations, while the y-axis (on a logarithmic scale) reflects the frequency of
occurrences within each respective layer. By limiting the range of these transformed values,
our approach reduces outliers in the Winograd domain, leading to a smoother distribution
that is more suitable for quantization.

For the activations, the enlargement factor increases the numerical range in the Wino-
grad domain, causing a huge quantization error that leads to severe accuracy degradation.
The approach proposed, mitigates this issue by dynamically constraining the distribution
of activations, ensuring more efficient use of the available quantized range. Additionally,
our method proves highly effective in clipping the transformed weights, preserving over
99% of the values that appear in the Winograd transform. By applying trainable clipping, it
is ensured that only a minimal portion of the weight distribution falls outside the clipped
range (red area), while the core data necessary for storing the information are retained
(green area).

Electronics 2024, 1, 0 14 of 18

(a) Transformed activation layer 15. (b) Transformed weight layer 15.

(c) Transformed activation layer 16. (d) Transformed weight layer 16.

(e) Transformed activation layer 17. (f) Transformed weight layer 17

Figure 7. Numerical distributions of example layers for transformed weights and activations of
ResNet-20 on CIFAR-10. The values in the clipped range (green) sufficiently contain the information
needed to maintain high-accuracy full 8-bit Winograd.

4.3. Winograd GPU Kernel Speedup

In Figure 8, the latency speedup achieved by the custom Winograd kernel described
in Section 3.4 is reported in comparison to cuDNN’s best-performing algorithm, which
leverages 8-bit quantization and Tensor Cores (the cudnnConvolutionForward() function
with the CUDNN_CONVOLUTION_ FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm), referred to
as int8x32. The speedup was evaluated across multiple layers with varying spatial dimen-
sions Ho and Wo (ranging from 32 × 32 to 256 × 256) and channel dimensions Ci and Co
(256, 512, and 1024). For small spatial and channel dimensions (Ho × Wo < 64 × 64 and
Ci = Co = 256) the standard convolutional algorithm performs better than the Winograd
kernel because of the limited number of spatial tiles in the Winograd domain that causes an
underutilization of the hardware. However, for larger spatial and/or channel dimensions,
the proposed kernel outperforms the standard convolutional algorithm by up to 3.41×. It
is interesting to observe that the speedup brought by a larger channel dimension is much
higher than the one brought by a larger spatial dimension.

4.4. Contribution of Each Step to the Latency

We show in Figure 9 the latency contribution of each step of the Winograd algorithm
(input transformation, element-wise matrix multiplication and inverse transformation) on
the total latency. For each set of spatial dimensions (Ho and Wo), the contribution of each
step is presented across multiple channel dimensions (Ci, Co). For small spatial dimensions
(32 × 32) most of the latency is taken by the EWMM. Interestingly, the contributions of the
input and inverse transformations increase with larger spatial dimensions. This is caused by
two reasons: first, the number of tiles (Ntiles) increases with the spatial dimensions, leading
to more input and inverse transformations to be performed. Second, the size of the matrices

Electronics 2024, 1, 0 15 of 18

involved in the EWMM gets higher with the increase in the number of tiles, leading to a
better utilization, reducing the contribution of the EWMM to the overall latency.

Spatial Dimensions (HoxWo)

La
te

nc
y

sp
ee

du
p

32
×

32

64
×

32

64
×

64

12
8
×

64

12
8
×

12
8

25
6
×

12
8

25
6
×

25
6

0

1×

2×

3×

4× Ci=Co=256 Ci=Co=512 Ci=Co=1024

Figure 8. Latency speedup brought by the custom Winograd F(4, 3) kernels compared to cuDNN
convolution on Tensor Cores (int8x32).

Ci = Co

La
te

nc
y

co
nt

ri
bu

ti
on

(%
) Ho=Wo=32

Ci = Co

La
te

nc
y

co
nt

ri
bu

ti
on

(%
) Ho=Wo=128

Ci = Co

La
te

nc
y

co
nt

ri
bu

ti
on

(%
) Ho=Wo=256

Ci = Co

La
te

nc
y

co
nt

ri
bu

ti
on

(%
) Ho=Wo=512

16 32 64 128 256 512 1024
0

20

40

60

80

100

16 32 64 128 256 512 1024
0

20

40

60

80

100

16 32 64 128 256 512 1024
0

20

40

60

80

100

16 32 64 128 256 512
0

20

40

60

80

100

InputTransformation EWMM InverseTransformation

Figure 9. The latency contribution of each of the three steps in the Winograd F(4, 3) algorithm. In
each sub-figure, the spatial dimensions are fixed, while the channel dimensions are varied.

4.5. Layer-Wise Latency Comparison

In this final experiment, the ResNet-18 [1] backbone of the DeepLabV3+ [3] model
is considered. Table 3 presents a layer-wise latency comparison between the proposed

Electronics 2024, 1, 0 16 of 18

custom kernel, the cuDNN-optimized implementation of convolution utilizing the DP4A
instruction on CUDA cores (int8x4), and Tensor Cores (int8x32, Section 4.3).

For each layer, the configuration (Ci, Co,Wo,Ho), the latency of the three implementa-
tions, and the speedup with respect to the int8x32 implementation are reported. In all
cases, the Winograd kernel proposed in this work outperforms the standard convolution
implementation based on the DP4A instruction. When compared against the int8x32

variant, our kernel shows a lower latency for deeper layers, characterized by larger channel
dimensions, achieving a speedup of 2.1× for the last layers.

Table 3. Latency comparison of different layers in the proposed Winograd kernel against cuDNN’s
int8x4 and int8x32 variants. The speedup is calculated relative to the int8x32 variant.

Name Layer Config Latency [ms] Speedup
Ci Co Wo Ho int8x4 int8x32 Ours Best [×]

conv2_block1_2 64 64 512 256 25.84 5.08 13.76 5.08 1.00
conv2_block2_1 64 64 512 256 25.84 5.08 13.76 5.08 1.00
conv2_block2_2 64 64 512 256 25.84 5.08 13.76 5.08 1.00
conv3_block1_2 128 128 256 128 25.13 4.79 7.05 4.79 1.00
conv3_block2_1 128 128 256 128 25.13 4.79 7.05 4.79 1.00
conv3_block2_2 128 128 256 128 25.13 4.79 7.05 4.79 1.00
conv4_block1_2 256 256 128 64 24.80 4.57 3.96 3.96 1.15
conv4_block2_1 256 256 128 64 24.80 4.57 3.96 3.96 1.15
conv4_block2_2 256 256 128 64 24.80 4.57 3.96 3.96 1.15
conv5_block1_1 256 512 128 64 49.54 9.07 6.22 6.22 1.46
conv5_block1_2 512 512 128 64 98.33 17.82 8.49 8.49 2.10
conv5_block2_1 512 512 128 64 98.33 17.82 8.49 8.49 2.10
conv5_block2_2 512 512 128 64 98.33 17.82 8.49 8.49 2.10

Total 571.84 105.85 106.00 73.18 1.44

Although some layers cannot take advantage of the proposed Winograd kernel, in
Table 3, it is possible to observe how both implementations (ours and the int8x32) result in
a similar total latency. It is also interesting to observe how for each layer the best kernel can
be selected at compile time based on the layer configuration. In the reported example, when
the int8x32 implementation is selected for the first layers and ours for the remaining ones,
the overall latency goes down to 73.18 ms, bringing a 1.44× reduction to the overall latency.

5. Conclusions and Discussion

In this work, we proposed a method to tackle the numerical instability that affects the
8-bit Winograd F(4, 3) algorithm on edge devices. We demonstrated how using trainable
clipping factors for transformed weights and transformed activations in the Winograd
domain, the data range can be limited, reducing the quantization error and providing
a better mapping to the 8-bit quantized range. With the proposed training scheme we
achieve 2.45× and 2.56× MAC reduction with minimal degradation in prediction quality
for ResNet-18-ImageNet and DeepLabV3+ on CityScapes, respectively. Furthermore, we
designed a novel kernel for accelerating the proposed Winograd quantized algorithm on
edge GPUs, taking advantage of both 8-bit quantization and Tensor Cores. We showed
how our Winograd kernel can reduce the latency of the standard convolution algorithm
on edge GPUs by 3.41× compared to the optimized cuDNN implementation. Finally, we
showed how our kernel can be used combined with the standard cuDNN implementations
to maximize the benefits on edge GPUs. In future work, we aim to extend the benefits of
our approach across different hardware platforms and explore multiple Winograd variants
to further generalize its application.

Electronics 2024, 1, 0 17 of 18

Author Contributions: Conceptualization, P.M.; methodology, P.M., M.S.R., M.R.V., and N.F.; soft-
ware, P.M. and M.S.R.; validation, P.M., M.S.R., and M.T.; formal analysis, P.M. and M.T.; investigation,
L.F. and S.B.S.; resources, N.F., A.F., and M.R.V.; data curation, M.S.R., L.F., and M.T.; writing—original
draft preparation, P.M., C.P., and N.F.; writing—review and editing, P.M., N.F., L.F., S.B.S., C.P., and
M.R.V.; visualization, P.M., L.F., and S.B.S.; supervision, C.P. and W.S.; project administration, C.P.
and W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article material. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: Authors Pierpaolo Mori, Mohammad Shanur Rahman, Lukas Frickenstein,
Shambhavi Balamuthu Sampath, Moritz Thoma, Nael Fasfous, Manoj Rohit Vemparala and Alexander
Frickenstein were employed by the company BMW AG. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
EWMM Element-Wise Matrix Multiplication
PTQ Post-Training Quantization
QAT Quantization-Aware Training
MAC Multiply and Accumulate
WAT Winograd-Aware Training
FP Floating Point
STE Straight-Through Estimator
GEMM General Matrix Multiply

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850.
3. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

4. Implementing the Tensorflow Deep Learning Framework on Qualcomm’s Low-Power DSP. 2020. Available online:
https://www.edge-ai-vision.com/2017/07/implementing-the-tensorflow-deep-learning-framework-on-qualcomms-low-
power-dsp-a-presentation-from-google/ (accessed on 23 October 2024).

5. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.J.; Srinivasan, V.; Gopalakrishnan, K. Pact: Parameterized clipping activation
for quantized neural networks. arXiv 2018, arXiv:1805.06085.

6. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv 2016, arXiv:1606.06160.

7. Khalil, K.; Eldash, O.; Kumar, A.; Bayoumi, M. Designing Novel AAD Pooling in Hardware for a Convolutional Neural Network
Accelerator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 303–314. https://doi.org/10.1109/TVLSI.2021.3139904.

8. Nvidia Jetson Nano Developer KIT. 2019. Available online: https://cdn.sparkfun.com/assets/0/7/f/9/d/jetson-nano-devkit-
datasheet-updates-us-v3.pdf (accessed on 17 July 2024).

9. Snapdragon 8 Gen 1 Mobile Platform. 2021. Available online: https://www.qualcomm.com/content/dam/qcomm-martech/
dm-assets/documents/snapdragon-8-gen-1-mobile-platform-product-brief.pdf (accessed on 23 October 2024).

10. Google Coral. 2020. Available online: https://coral.ai/static/files/Coral-M2-Dual-EdgeTPU-datasheet.pdf (accessed on 23
October 2024).

11. Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021.

12. Maji, P.; Mundy, A.; Dasika, G.; Beu, J.; Mattina, M.; Mullins, R. Efficient Winograd or Cook-Toom Convolution Kernel
Implementation on Widely Used Mobile CPUs. arXiv 2019, arXiv:1903.01521.

13. Alam, S.A.; Anderson, A.; Barabasz, B.; Gregg, D. Winograd Convolution for Deep Neural Networks: Efficient Point Selection.
arXiv 2022, arXiv:2201.10369.

https://www.edge-ai-vision.com/2017/07/implementing-the-tensorflow-deep-learning-framework-on-qualcomms-low-power-dsp-a-presentation-from-google/
https://www.edge-ai-vision.com/2017/07/implementing-the-tensorflow-deep-learning-framework-on-qualcomms-low-power-dsp-a-presentation-from-google/
https://doi.org/10.1109/TVLSI.2021.3139904
https://cdn.sparkfun.com/assets/0/7/f/9/d/jetson-nano-devkit-datasheet-updates-us-v3.pdf
https://cdn.sparkfun.com/assets/0/7/f/9/d/jetson-nano-devkit-datasheet-updates-us-v3.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/snapdragon-8-gen-1-mobile-platform-product-brief.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/snapdragon-8-gen-1-mobile-platform-product-brief.pdf
https://coral.ai/static/files/Coral-M2-Dual-EdgeTPU-datasheet.pdf

Electronics 2024, 1, 0 18 of 18

14. Barabasz, B.; Anderson, A.; Soodhalter, K.M.; Gregg, D. Error analysis and improving the accuracy of Winograd convolution for
deep neural networks. ACM Trans. Math. Softw. (TOMS) 2020, 46, 1–33.

15. Kim, M.; Park, C.; Kim, S.; Hong, T.; Ro, W.W. Efficient Dilated-Winograd Convolutional Neural Networks. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2711–2715.
https://doi.org/10.1109/ICIP.2019.8803277.

16. Jiang, J.; Chen, X.; Tsui, C.Y. A Reconfigurable Winograd CNN Accelerator with Nesting Decomposition Algorithm for Computing
Convolution with Large Filters. arXiv 2021, arXiv:2102.13272.

17. Yang, C.; Wang, Y.; Wang, X.; Geng, L. WRA: A 2.2-to-6.3 TOPS highly unified dynamically reconfigurable accelerator using
a novel Winograd decomposition algorithm for convolutional neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019,
66, 3480–3493.

18. Liu, X.; Pool, J.; Han, S.; Dally, W.J. Efficient Sparse-Winograd Convolutional Neural Networks. arXiv 2018, arXiv:1802.06367.
19. Yang, T.; Liao, Y.; Shi, J.; Liang, Y.; Jing, N.; Jiang, L. A Winograd-Based CNN Accelerator with a Fine-Grained Regular Sparsity

Pattern. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic and Applications (FPL),
Gothenburg, Sweden, 31 August–4 September 2020; pp. 254–261. https://doi.org/10.1109/FPL50879.2020.00050.

20. Fernandez-Marques, J.; Whatmough, P.; Mundy, A.; Mattina, M. Searching for Winograd-aware Quantized Networks. In
Proceedings of the Machine Learning and Systems, Austin, TX, USA, 2–4 March 2020; Dhillon, I., Papailiopoulos, D., Sze, V., Eds.;
Volume 2, pp. 14–29.

21. Mori, P.; Frickenstein, L.; Sampath, S.B.; Thoma, M.; Fasfous, N.; Vemparala, M.R.; Frickenstein, A.; Unger, C.; Stechele, W.;
Mueller-Gritschneder, D.; et al. Wino Vidi Vici: Conquering Numerical Instability of 8-Bit Winograd Convolution for Accurate
Inference Acceleration on Edge. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 53–62.

22. Li, G.; Jia, Z.; Feng, X.; Wang, Y. Lowino: Towards efficient low-precision winograd convolutions on modern cpus. In Proceedings
of the 50th International Conference on Parallel Processing, Lemont, IL, USA, 9–12 August 2021; pp. 1–11.

23. Chikin, V.; Kryzhanovskiy, V. Channel Balancing for Accurate Quantization of Winograd Convolutions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022.

24. Barabasz, B. Quantaized winograd/toom-cook convolution for dnns: Beyond canonical polynomials base. arXiv 2020,
arXiv:2004.11077.

25. Andri, R.; Bussolino, B.; Cipolletta, A.; Cavigelli, L.; Wang, Z. Going Further with Winograd Convolutions: Tap-Wise Quantization
for Efficient Inference on 4 × 4 Tiles. In Proceedings of the 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), Chicago, IL, USA, 1–5 October 2022; pp. 582–598.

26. Castro, R.L.; Andrade, D.; Fraguela, B.B. OpenCNN: A Winograd Minimal Filtering Algorithm Implementation in CUDA.
Mathematics 2021, 9, 2033. https://doi.org/10.3390/math9172033.

27. Liu, J.; Yang, D.; Lai, J. Optimizing Winograd-Based Convolution with Tensor Cores. In Proceedings of the 50th International
Conference on Parallel Processing, New York, NY, USA, 9–12 August 2021; ICPP ’21. https://doi.org/10.1145/3472456.3472473.

28. Bengio, Y.; Léonard, N.; Courville, A. Estimating or propagating gradients through stochastic neurons for conditional computation.
arXiv 2013, arXiv:1308.3432.

29. Nvidia. cuBLAS. 2019. Available online: https://docs.nvidia.com/cuda/cublas/index.html (accessed on 23 October 2024).
30. Nvidia. Tensor Cores. 2019. Available online: https://www.nvidia.com/en-us/data-center/tensor-cores/ (accessed on 23

October 2024).
31. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
32. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
33. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. https://doi.org/10.1007/s112
63-015-0816-y.

34. Cordts, M.; Omran, M.; Ramos, S.; Scharwächter, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset. In Proceedings of the CVPR Workshop on the Future of Datasets in Vision, Boston, MA, USA, 7–12 June 2015.

35. Nvidia. Jetpack. 2024. Available online: https://developer.nvidia.com/embedded/jetpack (accessed on 4 November 2024)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICIP.2019.8803277
https://doi.org/10.1109/FPL50879.2020.00050
https://doi.org/10.3390/math9172033
https://doi.org/10.1145/3472456.3472473
https://docs.nvidia.com/cuda/cublas/index.html
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://developer.nvidia.com/embedded/jetpack

	Introduction
	Related Works
	Post-Training Winograd-Based Quantized CNNs
	Winograd-Aware Training (WAT)
	Winograd Algorithm on GPU

	Materials and Methods
	Quantized Convolutional Algorithm
	Winograd Algorithm
	Clipping Factors in the Winograd Domain
	Trainable Clipping Factors ta, tw

	Winograd F(4,3) Convolution on GPU
	Input Transform
	Element-Wise Matrix Multiplication
	Output Transform

	Experiments
	Quantized Winograd with Clipping Factors
	Effect of Clipping Factors
	Winograd GPU Kernel Speedup
	Contribution of Each Step to the Latency
	Layer-Wise Latency Comparison

	Conclusions and Discussion
	References

