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Abstract4

We generalize the model proposed in [Adimy, Babin, Pujo-Menjouet, SIAM Journal on Applied Dynamical5

Systems (2022)] for prion infection to a network of neurons. We do so by applying a so-called multigroup approach6

to the system of Delay Differential Equations (DDEs) proposed in the aforementioned paper. We derive the7

classical threshold quantity R0, i.e. the basic reproduction number, exploiting the fact that the DDEs of our model8

qualitatively behave like Ordinary Differential Equations (ODEs) when evaluated at the Disease Free Equilibrium.9

We prove analytically that the disease naturally goes extinct when R0 < 1, whereas it persists when R0 > 1. We10

conclude with some selected numerical simulations of the system, to illustrate our analytical results.11

1 Introduction12

Prion is a protein involved in neurodegenerative diseases and more particularly the transmissible spongiform en-13

cephalopathies such as scrapie for sheep, bovine spongiform encephalopathy, also known as mad cow disease in cattle,14

and the Creutzfeldt-Jakob disease in humans [1, 2]. Produced by the cells, this protein in its normal form is called15

PrPC (for Prion Protein Cellular) and appears to be protective [2]. However, it becomes harmful and fatal when its16

shape changes. This misfolded pathological conformation also known as PrPSc (for Prion Protein Scrapie) can be17

acquired either through transmission (this was the case for instance under the mad cow disease spread in the 1990s),18

or spontaneously, mostly above 75 years old for humans [3].19

Even if extensively studied in the past decades, the action of this protein on the neurons leading to a fatal20

issue remains unclear. However, some recent discoveries may bring possible explanations and open new therapeutic21

strategies. This mechanism also known as Unfolded Protein Response (or UPR) [4, 5, 6, 7, 8] can be described as22

follows.23

First, when produced by the cell, the PrPC proteins remain anchored to its membrane, unless misfolded PrPSc in24

the extracellular matrix forces it to set it free and to join the pathological cohort. It is important to remind here that,25

by contact, a PrPSc protein allows the normal form PrPC to change its conformation and to become misconformed.26

Once in this state, the proteins have the ability to polymerize, that is to tie together. They can easily reach very large27

sizes, stay in the neighbourhood of the cell or diffuse in the extracellular matrix to seed other neurons (see Fig. 1).28
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Figure 1: schematic view of the PrPC protein production (in blue) by two neurons (green). The PrPC protein can aggregate

and form pathological PrPSc (pink and orange). The PrPSc proteins diffuse and a certain amount can reach the neighbourhood

of another neuron (the orange ones can reach the neighbourhood of neuron 1, while the pink ones can reach neuron 2. We refer

to Section 2 for a complete description of this case and of the parameters and variables involved.

If for some reason, such as an over-expression of PrPC or a slow diffusion, they accumulate in the neuron proximity,1

this latter feels it and under this induced stress shuts down almost all its activities except the vital ones.2

This global shutdown, created by a high concentration of PrPSc in the neuron surrounding, causes the neuron to3

stop producing PrPC , not vital for the cell (see Fig. 2).4

This break ends only if these proteins move away by diffusion or degradation. When the zone is clear, the cell5

starts again its protein production and the process continues until the next stress period.6

Still under investigation, the detailed UPR mechanism remains to be fully understood, even if several papers may be7

referred to the reader [5, 6, 7, 8]. Besides, the link between UPR, PrPSc has been put in evidence [9, 10, 11, 12, 13, 14].8

Because of its complexity, the UPR modus operandi has already been the object of mathematical models, from9

a gene regulatory point of view [15, 16, 17, 18, 19] or through regulation of UPR intra- or extra-cellular pathways10

[17, 18]. Our goal here is to generalise the pioneering mathematical model [20] dealing explicitly with prion, and11

investigating the parameters causing the oscillating neural activity. In [20], the authors investigated the case of one12

neuron only, and for two neurons they gave analytical results specifically when both cells would exhibit the exact same13

behaviour. In this paper, we briefly remind the model with two neurons and give new theoretical results to complete14

the ones of [20], then we extend the construction to any neuron number n ∈ N, n ≥ 2.15

We exploit the formulation of the Delay Differential Equation (DDE) system set up in detail in [20], where the16

delay is only present in the infectious/infected variables, in order to apply a classical tool of Ordinary Differential17

Equations (ODE) epidemic models, namely the Next Generation Matrix. This technique was first introduced in [21],18

then generalized in [22] (see also [23]). Through an appropriate decomposition of the Jacobian matrix evaluated at19

the Disease Free Equilibrium, we are able to provide a formulation for the Basic Reproduction Number R0 of the20

n-dimensional system, under biologically acceptable conditions.21

Then, we apply the definition of the threshold quantity R0 to prove either global stability of the Disease Free22
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Figure 2: schematic representation of a neuron (neuron 1) under Unfolded Protein Response (UPR). Stressed by the overcrowded

amount of PrPSc in its neighbourhood, neuron 1 shuts down its activities (except the vital ones). No PrPC protein is then

produced, and the population of PrPSc pathological proteins diffuse out the neuron surroundings.

Equilibrium (when R0 < 1) or permanence of the system (when R0 > 1). Moreover, under slightly stricter conditions,1

we are able to prove the existence of at least one Endemic Equilibrium.2

The paper is structured as follows. In Section 2, we recall the 2 neurons model introduced in [20]. In Section 3,3

we generalize this construction to a network of n neurons, with n ≥ 2; moreover, we show two other results: first,4

how the fully connected and fully homogeneous case can be qualitatively reduced to a single neuron model (but with5

a different R0) proposed in [20], and second how the case of one-way direction connection of several neurons behaves6

like a single one. In Section 4, we prove global stability of the Disease Free Equilibrium when R0 < 1. In Section7

5, we show a condition for the existence (but not uniqueness) of the Endemic Equilibrium. In Section 6, we show8

the persistence of the system when R0 > 1. In Section 7, we provide extensive numerical simulations of the model9

proposed in Section 3. Lastly, in Section 8 we conclude.10

2 System with 2 neurons11

We begin by recalling the system of 2 neurons from [20]. It describes the dynamics of the PrPC protein associated with12

neuron 1 and neuron 2, respectively x1 and x2, as well as the PrPSc concentrations in the environment of neuron 113

and neuron 2, y1 and y2. Due to their biological interpretation, we only consider xi, yi ≥ 0. This model is represented,14
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for t > 0, by the following system1

dx1

dt
= K1β(y1(t− T1))− µ1x1(t)− dx1(t) (y1(t) + κα2y2(t)) ,

dx2

dt
= K2β(y2(t− T2))− µ2x2(t)− dx2(t) (y2(t) + κα1y1(t)) ,

dy1
dt

= dx1(t) (y1(t) + κα2y2(t))− α1y1(t),

dy2
dt

= dx2(t) (y2(t) + κα1y1(t))− α2y2(t),

(1)

where Ki > 0 (i = 1 or 2) represents the PrPC production rate of the neuron i and d > 0 characterizes the force of2

the interaction between PrPC and PrPSc. The terms dx1(t) (y1(t) + κα2y2(t)) and dx2(t) (y2(t) + κα1y1(t)) stand for3

the new PrPSc produced. The parameter µi represents the degradation rate of PrPC produced by the neuron i and αi4

is the rate at which PrPSc proteins are lost through degradation or diffusion. The factor κ indicates the interaction5

between proteins from different neurons. The parameter Ti is the time required for a neuron i to process the PrPC
6

protein synthesis. Due to the UPR effect, increasing the amount of PrPSc around a neuron decreases its activity and7

consequently the PrPC production. The contribution of PrPSc concentration to PrPC production is therefore given8

through the decreasing Hill function (negative feedback [20])9

β(y) =
1

1 + (y/yc)p
, (2)

where p > 0 is the sensitivity of PrPSc production to PrPSc overload. The parameter yc > 0 is the PrPSc threshold10

beyond which the neuron stops PrPC production.11

Compared to the notation in [20], to avoid confusion we write β instead of βn since n will represent the number of12

neurons in the system from Section 3 onward.13

The Disease Free Equilibrium corresponding to the system (1) is14

(x1, x2, y1, y2) =

(
K1

µ1
,
K2

µ2
, 0, 0

)
. (3)

The linearized version of system (1) around the Disease Free Equilibrium (3) is given by15

dx1

dt
= K1β

′(0)y1(t− T1)− µ1x1(t)− d
K1

µ1
(y1(t) + κα2y2(t)) ,

dx2

dt
= K2β

′(0)y2(t− T2)− µ2x2(t)− d
K2

µ2
(y2(t) + κα1y1(t)) ,

dy1
dt

= d
K1

µ1
(y1(t) + κα2y2(t))− α1y1(t),

dy2
dt

= d
K2

µ2
(y2(t) + κα1y1(t))− α2y2(t).

(4)

Note that β′(0) = 0. Then, the linearized system (4) becomes an ordinary differential system and its Jacobian matrix
is

JDFE =


−µ1 0 −dK1

µ1
−dκα2

K1

µ1

0 −µ2 −dκα1
K2

µ2
−dK2

µ2

0 0 dK1

µ1
− α1 dκα2

K1

µ1

0 0 dκα1
K2

µ2
dK2

µ2
− α2

 .

Now, we use the Next Generation Matrix method, firstly introduced in [21], then generalized in [22] (see also [23]) to
obtain the basic reproduction number R0 of the system (1). In order to do so, we need to write JDFE as JDFE = M−V ,
with M having non-negative entries and V invertible. One possible choice is the following

M =


0 0 0 0
0 0 0 0
0 0 dK1

µ1
dκα2

K1

µ1

0 0 dκα1
K2

µ2
dK2

µ2

 and V =


µ1 0 dK1

µ1
dκα2

K1

µ1

0 µ2 dκα1
K2

µ2
dK2

µ2

0 0 α1 0
0 0 0 α2

 .
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The basic reproduction number R0 is exactly ρ(MV −1). Remark that, in order to compute this spectral radius, we1

implicitly assumed that α1, α2 ̸= 0. This means that each neuron receives a strictly positive amount of infection from2

the other. Recall that in [20] the basic reproduction number of neuron i was computed as3

R0i = d
Ki

µiαi
.

Since the first two rows of M are 0, it suffices to observe the matrix

F =

(
d K1

µ1α1
dκK1

µ1

dκK2

µ2
d K2

µ2α2

)
=

(
R01 κα1R01

κα2R02 R02

)
,

which has eigenvalues4

λ± =
R01 +R02 ±

√
(R01 −R02)2 + 4κ2α1α2R01R02

2
, (5)

with λ+ = ρ(F ) being the new R0 of the 2-neurons system. We remark that the connectivity between the two5

neurons κ plays a fundamental role in the dynamics: even if both R0i < 1, with κ large enough the disease could6

remain endemic. However, we recall that due to its biological interpretation, the relevant region we should consider is7

κ ∈ [0, 1].8

In the next section, we generalize this construction to a network of n ∈ N≥2 neurons.9

3 System with n neurons10

The construction from the previous section can be generalized to a n neurons case by similarly constructing the11

matrices M and V . In this case, we would generally obtain R0 implicitly, as the spectral radius of a 2n× 2n matrix.12

However, such a matrix can be reduced to n × n as in the previous section since M will only have the lower-right13

quarter of non-zero entries.14

We consider the following system of Delay Differential Equations (DDEs)15

dxi

dt
= Kiβ(yi(t− Ti))− µixi(t)− dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

 ,

dyi
dt

= dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

−

∑
j ̸=i

αi→j

 yi(t).

(6)

Due to their biological interpretation, we only consider xi, yi ≥ 0. The parameter αi→j represents the fraction of16

prions produced by neuron i and moving towards neuron j. It also includes prion degradation. In other words, αi→j17

describes the diffusive property (including degradation) of PrPSc to the neuron j ̸= i. This includes both prions which18

die while moving away and prions which actually reach neuron j. The interactions between PrPC from neuron i with19

PrPSc of another neuron j ̸= i is given by the factor κji (it characterizes the difference between prion species); hence,20 ∑
j ̸=i κji ≤ 1 for all j, since this sum represents the fraction of prions “orbiting” neuron i (neuron has a number of21

prions it can spread to others) which does not die and manages to spread to other neurons.22

For ease of notation, let

αi :=
∑
j ̸=i

αi→j

denote the total rate of migration of prions from neuron i, which can result in either the death of the prion or contact23

with any other neuron j ̸= i.24

Let C := C([−T, 0],R), T := maxi=1,...,n Ti, be the space of continuous functions on [−T, 0] and C+ := C([−T, 0],R+)25

be the space of nonnegative continuous functions on [−T, 0]. We assume throughout this paper that the initial con-26

ditions for the system (6), i.e. (xi0, φi) ∈ R+ × C+, for i = 1, ..., n. The existence and uniqueness of nonnegative27

solutions of (6) can be obtained by using the theory of functional differential equations.28
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Since the delay is discrete, the continuity of β is sufficient to ensure the existence and uniqueness of the solution1

(see, [24, 25]). We call the history function each function ut ∈ C, for t ≥ 0 and u ∈ C([−T,+∞),R) satisfying2

ut(θ) = u(t+ θ) for θ ∈ [−T, 0]. Now, we show the nonnegativity and boundedness of solutions of the system (6).3

Proposition 1. All solutions of the system (6) with nonnegative initial conditions remain nonnegative and bounded.4

Proof. We prove nonnegativity by applying the Theorem 3.4 of [26]. In fact, for i = 1, ..., n, if xi(t) = 0 then5

dxi

dt
= Kiβ(yi(t− Ti)) ≥ 0, for yi ∈ C+,

and if yi(t) = 0 then6

dyi
dt

= dxi(t)
∑
j ̸=i

κjiαj→iyj(t) ≥ 0, for xi ∈ R+, yj ∈ C+.

Then, by Theorem 3.4 of [26], we get xi(t) ≥ 0 and yi(t) ≥ 0 for t ≥ 0.7

Now, by adding both equation of xi and yi, we get, for t ≥ 0,8

dxi

dt
+

dyi
dt

= Kiβ(yi(t− Ti))− µixi(t)−

∑
j ̸=i

αi→j

 yi(t).

This implies that, for t ≥ 0,9

d(xi + yi)

dt
≤ Kiβ(0)−min{µi, αi}(xi + yi).

This means that10

lim sup
t→+∞

xi(t) + yi(t) ≤
Kiβ(0)

min{µi, αi}
.

Therefore, the solution should be necessarily bounded.11

We now introduce a formula for the Basic Reproduction Number (BRN) R0 of the system (6), given as the spectral12

radius of an n×n matrix. We do so by applying the Next Generation Matrix method [21, 22, 23]. We remark that this13

method was developed specifically for systems of ODEs. However, when evaluated in its Disease Free Equilibrium,14

namely15

(x1, . . . , xn, y1, . . . , yn) =

(
K1

µ1
, . . . ,

Kn

µn
, 0, . . . , 0

)
, (7)

the system (6) does not exhibit any form of delay, and qualitatively reduces to a system of ODEs. We focus on the16

Jacobian on the system evaluated in this equilibrium, obtaining a reliable threshold quantity.17

Proposition 2. Recall from [20] that the “Basic Reproduction Number of neuron i” is R0i = d Ki

µiαi
.18

The Basic Reproduction Number R0 of the system (6) is given by the spectral radius of the matrix F ∈ Rn×n
19

defined as20

(F )ij =

{
R0i if j = i,

κjiαj→iR0i if j ̸= i.
(8)

Proof. For ease of notation, we use diag(·) to indicate diag(·)1≤i≤n, since all the diagonal matrices we consider are of21

dimension n× n.22

We compute the Jacobian J of (6), dropping the explicit dependence on (t) everywhere for ease of notation. By
“splitting” the system into x and y, we can write

J =

(
J11 J12
J21 J22

)
,

where

J11 = diag

−µi − d

yi +
∑
j ̸=i

κjiαj→iyj

 , (J12)ij =

{
Kiβ

′(yi)− dxi if j = i,

−dxiκjiαj→i if j ̸= i,

6



J21 = diag

d

yi +
∑
j ̸=i

κjiαj→iyj

 and (J22)ij =

{
dxi − αi if j = i,

dxiκjiαj→i if j ̸= i.

We now evaluate the Jacobian in the Disease Free Equilibrium of System (6), given in (7).1

Recall that β′(0) = 0. We obtain

J11,DFE = diag (−µi) , J21,DFE = 0,

(J12,DFE)ij =


−d

Ki

µi
if j = i,

−d
Ki

µi
κjiαj→i if j ̸= i,

and (J22,DFE)ij =


d
Ki

µi
− αi if j = i,

d
Ki

µi
κjiαj→i if j ̸= i.

Finally, we decompose JDFE = M − V , with

M =

(
0 0
0 M22

)
and V =

(
V11 V12

0 V22

)
,

where

(M22)ij =


d
Ki

µi
if j = i,

d
Ki

µi
κjiαj→i if j ̸= i,

and
V22 = diag (αi) .

We do not write V11 and V12 explicitly, since they are not needed for our computations. Then, the basic reproduction
number of the whole system is the spectral radius R0 = ρ(M22V

−1
22 ) = ρ(F ), with F ∈ Rn×n defined as

(F )ij =

{
R0i if j = i,

κjiαj→iR0i if j ̸= i.

2

Notice that, in order to compute this spectral radius, we implicitly assumed that αi ̸= 0 for all i = 1, 2, . . . , n.3

This means that we assume that each neuron receives some infection from at least one of its neighbours. We comment4

more on this in Section 7. We derived the Basic Reproduction Number of System (6) similarly to how we proceeded5

on page 2 for the 2 neurons case. Here, the influence of the various κji is less obvious, and we shall investigate it6

numerically, except for the case R0 < 1, for which we analytically prove global convergence towards the Disease Free7

Equilibrium (7) in Section 4.8

3.1 Fully homogeneous case9

Recall that we are interested in the number of neurons n ≥ 2, so the divisions we make in this section by n − 1 are10

not problematic. Assume now that the system is fully homogeneous, and that all the neurons are connected to each11

other. This is clearly an unrealistic setting, however, it is instructive to obtain an intuition of what the role of n, the12

number of neurons, is in the spread of the prion.13

Full homogeneity in this setting means that in the system (6) the parameters areKi = K, µi = µ for all i = 1, . . . , n,
and κij = κ, αi→j = α/(n − 1) for all i, j = 1, . . . , n. Then, αi = α; moreover, for each neuron the local Basic
Reproduction Number is

R0i =
dK

µα
=: R0,

and the matrix F defining the global Basic Reproduction Number R0 is given by14

(F )ij =

{
R0 if j = i
κα

n− 1
R0 if j ̸= i

= R0

{
1 if j = i
κα

n− 1
if j ̸= i

= R0

((
1− κα

n− 1

)
In +

κα

n− 1
1n

)
, (9)

7



where In is the n× n identity matrix, and 1n is the n× n matrix with 1 in all its entries.1

Then, 1n has one eigenvalue n (its trace) and n− 1 zero eigenvalues (since it has rank 1), whereas the matrix(
1− κα

n− 1

)
In,

clearly has n eigenvalues equal to 1− κα/(n− 1).2

Recall that, if a matrix A has eigenvalues λ1, . . . , λn, then the matrix cIn+ bA has eigenvalues c+ bλ1, . . . , c+ bλn,3

for any b, c ∈ R, since any eigenvector v of A will also satisfy cIv = cv.4

Hence, the sum (9) (ignoring for a moment the scalar coefficient R0 in front of the brackets) has one eigenvalue5

equal to κα+ 1 (its spectral radius) and n− 1 eigenvalues equal to 1− κα/(n− 1). Consequently,6

R0 = ρ(F ) = R0 (κα+ 1) . (10)

This value is clearly strictly greater than R0, and independent on n. This means that, as long as the network is7

fully connected and fully homogeneous, the number of neurons has no direct impact on the dynamics of the system,8

according to our model. However, the connectivity between the neurons, expressed by κ, plays a fundamental role in9

the dynamics in the sense that even if all R0 < 1, with κ big enough the global system might have a Basic Reproduction10

Number R0 > 1, and the disease could hence remain endemic. Figure 4a in Section 7 is an example of a fully connected11

network with n = 3.12

. . .

. . .

1

2

3

4

n− 1

n

(a) Ring network, n neurons.

. . .

. . .

1

2

3

4

n− 1

n

(b) Line network, n neurons.

. . .

. . .

1

2

3

4

n− 1

n

(c) One-way network, n neurons.

Figure 3: The three networks we consider in the sections 3.2, 3.3 and 3.4. We only show the forward case from Section
3.4, as the backward case would look exactly the same but with each arrow reversed.

3.2 Case of ring network13

Next, we consider a case of a ring network with homogeneous coefficients. In this scenario, as illustrated in Figure 3a,
each neuron i is only connected to the previous one (i − 1) and the following one (i + 1), as well as the n-th neuron
being connected to the first. This leads then to the following expression

(F )ij = R0



1 if j = i,
κα
2 if j = i− 1, 2 ≤ i ≤ n,
κα
2 if j = i+ 1, 1 ≤ i ≤ n− 1,
κα
2 if j = 1, i = n,
κα
2 if j = n, i = 1,

0 otherwise.

8



F is a symmetric circulant matrix (see [27]); its eigenvalues are given by1

λk = R0

(
1 + κα cos

(
2kπ

n

))
, k = 0, . . . , n− 1.

Then, the spectral radius of the matrix F is given by2

R0 = ρ(F ) = R0 (1 + κα) .

As with a fully connected network, connectivity between neurons plays an important role in the dynamics of a ring3

network. Figure 4c in Section 7 is a particular case of ring network with n = 5.4

3.3 Case of line network5

Then, we consider a case of a line network with homogeneous coefficients. This corresponds to the ring network
considered in Section 3.2, from which we remove the connection between neuron n and neuron 1. This scenario is
illustrated in Figure 3b. This leads then to the following expression

(F )ij = R0


1 if j = i,
κα
2 if j = i− 1, 2 ≤ i ≤ n,
κα
2 if j = i+ 1, 1 ≤ i ≤ n− 1,

0 otherwise.

We obtain a tridiagonal symmetric Toeplitz matrix (see [28]). Then, the eigenvalues of F are given by6

λk = R0

(
1 + κα cos

(
kπ

n+ 1

))
, k = 1, . . . , n,

and the spectral radius is7

R0 = ρ(F ) = R0

(
1 + κα cos

(
π

n+ 1

))
.

We see here that not only the connectivity κ between neurons plays a fundamental role, but also the number n of8

neurons involved. This network acts like a ring network when n is very large (n → +∞). Figures 4b and 4d in Section9

7 are particular cases of line networks with n = 5 and n = 9, respectively.10

3.4 Case of one-way direction11

Lastly, we consider a case in which each neuron is only connected to the ones preceding (or following) it, meaning
neuron i only spreads the infection to neurons j < i (or j > i), with homogeneous coefficients. This leads then to the
following expressions,

(F )ij = R0


1 if i = j,
κα

n− j
if i ≥ j + 1, j ≤ n− 1,

0 otherwise,

or (F )ij = R0


1 if i = j,
κα

j − 1
if i ≤ j − 1, j ≥ 2,

0 otherwise.

In this case, since the matrix F is triangular, we obtain12

R0 = ρ(F ) = R0.

The former case is illustrated in Figure 3c. Unlike fully connected networks, ring networks and line networks, the13

global Basic Reproduction Number R0 of the one-way direction network is independent of the connectivity between14

neurons.15

9



4 Global stability of the Disease Free Equilibrium1

In this section, we prove the global stability of the Disease Free Equilibrium (7) for System (6) when R0 = ρ(F ) < 1.2

In order to do so, we proceed similarly to [29, Thm. 5].3

Theorem 1. The Disease Free Equilibrium (7) of System (6) is globally asymptotically stable when R0 = ρ(F ) < 1.4

Proof. Recall from (2) that β(x) ≤ 1 for all x ≥ 0. Then, we can bound the first n DDEs of System (6) from above by

dxi

dt
= Kiβ(yi(t− Ti))− µixi(t)− dxi

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

 ≤ Ki − µixi(t).

Consider the auxiliary system5

dzi
dt

= Ki − µizi(t), i = 1, 2, . . . , n. (11)

Clearly, the first n entries of Disease Free Equilibrium (7) form a point which is globally asymptotically stable for
(11). Then, for any ε > 0, there exists a t̄i > 0 such that, for t ≥ t̄i,

xi(t) ≤
Ki

µi
+ ε.

Take t̄ = maxi t̄i. Then, for t ≥ t̄, the second n ODEs of the system (6) can be bound from above by

dyi
dt

≤ d

(
Ki

µi
+ ε

)yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

Consider the second auxiliary system

dwi

dt
= d

(
Ki

µi
+ ε

)wi(t) +
∑
j ̸=i

κjiαj→iwj(t)

− αiwi(t).

This system is linear in w = (w1, w2, . . . , wn), and can be rewritten as

dw

dt
= (M22(ε)− V22)w,

where

(M22(ε))ij =


d

(
Ki

µi
+ ε

)
if j = i,

d

(
Ki

µi
+ ε

)
κjiαj→i if j ̸= i,

meaning the matrix M22 used in the definition of R0 is actually M22(0), and

V22 = diag (αi) ,

as above. For ε > 0 small enough, as a consequence of our assumption R0 < 1, we can have ρ(M22(ε)V
−1
22 ) < 1. We6

then use the following lemma:7

Lemma 1 ([30], Lemma 2). If M is non-negative and V is a non-singular M-matrix, then R0 = ρ(MV −1) < 1 if and8

only if all eigenvalues of (M − V ) have negative real parts.9

10



This means that, if ρ(M22(ε)V
−1
22 ) < 1, then

lim
t→+∞

wi(t) = 0

for all i = 1, 2, . . . , n, which implies
lim

t→+∞
yi(t) = 0.

Thus, for any δ > 0, there exists t∗ > 0 such that, for all t ≥ t∗ and for all i = 1, 2, . . . , n, we have yi(t) ≤ δ. Hence,
introducing for ease of notation T = maxi Ti, for t ≥ t∗ + T , we have

β(yi(t− Ti)) =
1

1 + (yi(t− Ti)/yc)p
≥ 1

1 + (δ/yc)p
= β(δ).

Notice that β(δ) → 1 as δ → 0. We can then bound the first n DDEs of System (6) from below by

dxi

dt
≥ Kiβ(δ)− µixi(t)− dxi(t)

δ +
∑
j ̸=i

κjiαj→iδ

 .

Consider the final auxiliary system

dvi
dt

= Kiβ(δ)− µivi(t)− dvi(t)

δ +
∑
j ̸=i

κjiαj→iδ

 .

Clearly, each for each i we have

lim
t→+∞

vi(t) =
Kiβ(δ)

µi + δd(1 +
∑

j ̸=i κjiαj→i)
.

Hence, for each i = 1, 2, . . . , n and for all ε, δ > 0, we have the following lower and upper bounds:

Kiβ(δ)

µi + δd(1 +
∑

j ̸=i κjiαj→i)
≤ lim inf

t→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤

Ki

µi
+ ε.

Letting ε, δ → 0 concludes the proof.1

2

Corollary 1. The Disease Free Equilibrium is locally unstable when R0 > 1.3

Proof. Direct consequence of Theorem 1 and [30, Thm. 1].4

We remark that, for all our results thus far, the only assumptions on the function β(·) are: β(0) = 1, β′(0) = 0 and5

β(x) decreasing in x. Our specific choice (2) was made for consistency with [20] and because it appears biologically6

relevant. However, other choices might lead to interesting results. We comment more on this in Section 8.7

5 Existence of an endemic equilibrium8

We now prove, under stronger assumptions than R0 > 1 (but weaker than R0i > 1), that System (6) admits at least9

one Endemic Equilibrium (EE), i.e. an equilibrium such that yi > 0 for all i.10

Theorem 2. Assume that the matrix F (8) is such that the minimum row sum is strictly bigger than 1. Then, System11

(6) admits at least one Endemic Equilibrium.12

11



Proof. We know that

min row/column sum of F ≤ ρ(F ) ≤ max row/column sum of F,

hence under our assumption, ρ(F ) = R0 > 1.1

We begin by noticing that an equilibrium of the system (6) necessarily satisfies2

xi =
Kiβ(yi)

µi + d
(
yi +

∑
j ̸=i κjiαj→iyj

) . (12)

Substituting (12) in the ODEs for yi and equating them to 0, we obtain3

0 =
dKiβ(yi)

(
yi +

∑
j ̸=i κjiαj→iyj

)
µi + d

(
yi +

∑
j ̸=i κjiαj→iyj

) − αiyi. (13)

Notice that, for yi large enough, the right hand side (RHS) of (13) is clearly negative. Let us denote with Mi a large
number such that dKiβ(yi)

(
yi +

∑
j ̸=i κjiαj→iyj

)
µi + d

(
yi +

∑
j ̸=i κjiαj→iyj

) − αiyi

∣∣∣∣
yi=Mi

< 0,

for all non-negative values of yj , j ̸= i. Moreover, let us denote with M = maxMi.4

If we find a value ε > 0 such that the RHS of (13) is positive for all i = 1, 2, . . . , n, we can apply the Poincaré-5

Miranda theorem [31, 32] (qualitatively, a higher dimensional version of the intermediate value theorem) to conclude6

the existence of at least one Endemic Equilibrium of System (6).7

Let us evaluate the RHS of (13) at yi = ε for all i = 1, 2, . . . , n, and study its sign. We have

dKiβ(ε)
(
ε+ ε

∑
j ̸=i κjiαj→i

)
µi + d

(
ε+ ε

∑
j ̸=i κjiαj→i

) − αiε > 0.

In fact, we can divide by ε > 0 on both sides, obtaining8

dKiβ(ε)
(
1 +

∑
j ̸=i κjiαj→i

)
µi + d

(
ε+ ε

∑
j ̸=i κjiαj→i

) − αi > 0. (14)

Recall that β(0) = 1. Then, for ε = 0, (14) coincides with the i-th row sum of F being strictly greater than 1. Since9

by assumption the minimum of the row sums (hence, all the row sums) is greater than 1, by continuity there exists a10

small εi > 0 such that the RHS of (13) is strictly positive. Let us denote with ε = min εi.11

Applying the Poincaré-Miranda theorem on the set [ε,M ]n allows us to conclude the existence of at least one12

Endemic Equilibrium, i.e. with 0 < ε < yi < M for i = 1, 2, . . . , n.13

We conjecture the following, based on our extensive numerical simulations:14

Conjecture 1. System (6) admits at least one Endemic Equilibrium when R0 > 1.15

Our proof of Theorem 2 relies heavily on the assumption on the minimum row sum being strictly bigger than 1,16

hence it fails so for a generic matrix F , if we only assume ρ(F ) > 1. However, the application of the Poincaré-Miranda17

theorem might not be necessary to prove this result.18
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6 Persistence of solutions1

In this section, we treat the long-term behavior of the system (6) whenR0 > 1. We start with the following proposition:2

Proposition 3. Consider a fixed i = ĩ ∈ {1, . . . , n}. If R0ĩ = dKĩ/(µĩαĩ) > 1, then R0 > 1 and there exists a constant3

εĩ > 0 such that4

lim sup
t→+∞

yĩ(t) > εĩ, with φĩ ∈ C([−T, 0],R+), φĩ(0) ̸= 0.

Proof. By considering the second equation of System (6) for i = ĩ, we have, for t > 0,

dyĩ
dt

≥ dxĩ(t)yĩ(t)− αiyĩ(t).

We have also, for t > 0,

d(xĩ + yĩ)

dt
= Kĩβ(yĩ(t− T1))− µĩxĩ(t)− αĩyĩ(t).

We suppose by contradiction that lim supt→+∞ yĩ(t) ≤ εĩ, for any small εĩ > 0. By the boundedness of solutions,5

we consider lim inft→+∞ xĩ(t) = xĩ∞ and lim inft→+∞ yĩ(t) = yĩ∞ = 0. Then, there exists a sequence tk → +∞ as6

k → +∞, such that xĩ(tk) → xĩ∞, yĩ(tk) → 0, y′
ĩ
(tk) → 0 and x′

ĩ
(tk) → 0. This yields to7

0 ≥ Kĩβ(0)− µĩxĩ∞ ⇒ xĩ∞ ≥ Kĩβ(0)

µĩ

=
Kĩ

µĩ

.

For a very large time t, the ODE of yĩ then satisfies

dyĩ
dt

≥ dKĩ

µĩ

yĩ(t)− αiyĩ(t).

By using R0ĩ = dKĩ/(µĩαĩ) > 1, then limt→+∞ yĩ(t) = yĩ∞ = +∞, which contradicts the hypothesis and clashes with8

the results derived earlier on the boundedness of solutions.9

Clearly, if R0ĩ > 1, then R0 > 1. This is a consequence of Theorem 1: if R0 < 1, then the solution approach zero10

in every yi component, which is not the case for i = ĩ.11

Next, we show the weak persistence of each yi, i = 1, ..., n, in the following proposition.12

Proposition 4. Suppose that R0 > 1. Then, there exists a constant ε > 0 such that, for any initial condition13

(xi0, φi) ∈ R+ × C([−T, 0],R+), for i = 1, ..., n, we have14

lim sup
t→+∞

yi(t) > ε, φi(0) ̸= 0.

Proof. We suppose by contradiction that lim supt→+∞ yi(t) ≤ ε, for i = 1, . . . , n and for any small ε > 0. Then, there
exists a sufficiently large t1ε > 0 such that yi(t) ≤ ε, for all t ≥ t1ε. Hence, we get for all t ≥ t1ε,

dxi

dt
≥ Kiβ(ε)− µixi(t)− dxi

(
ε+ ε

∑
j ̸=i κjiαj→i

)
.

We denote lim inft→+∞ xi(t) = xi∞, for i = 1, . . . , n. Then, there exists a sequence tm → +∞ as m → +∞, such that15

xi(tm) → xi∞ and x′
i(tm) → 0 (see Lemma A.14 of [33]). This yields16

0 ≥ Kiβ(ε)− µixi∞ − dxi∞

ε+ ε
∑
j ̸=i

κjiαj→i

 .

Then, we have17

xi∞ ≥ Kiβ(ε)

µixi∞ + d
(
ε+ ε

∑
j ̸=i κjiαj→i

) =: xiε.
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Hence, for every small ν > 0, there exists a sufficiently large t2ν > 0 such that, for t ≥ t2ν ,1

xi(t) ≥ xiε − ν =: xν
iε.

Then, for a significant large time, we get2

dyi
dt

≥ dxν
iε

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

As in the proof of Theorem 1, we consider the following system of ODEs:

dwi

dt
= dxν

iε

wi(t) +
∑
j ̸=i

κjiαj→iwj(t)

− αiwi(t).

This system is linear in w = (w1, w2, . . . , wn), and can be rewritten as

dw

dt
= (M22(ε, ν)− V22)w,

where

(M22(ε, ν))ij =

{
dxν

iε if j = i,

dxν
iεκjiαj→i if j ̸= i,

V22 = diag (αi) .

Using the hypothesis that R0 = ρ(M22(0, 0)V
−1
22 ) > 1, we can consider ε and ν sufficiently small such that

Rε,ν
0 := ρ(M22(ε, ν)V

−1
22 ) > 1.

We then use Lemma 1 to conclude that at least one eigenvalue of (M22(ε, ν) − V22 has positive real part. This leads
to a contradiction with the assumption lim supt→+∞ yi(t) ≤ ε, for all i = 1, ..., n. As a consequence, there exists at

least one i = ĩ such that
lim sup
t→+∞

yĩ(t) = yĩ∞ > ε.

This is sufficient to conclude the weak persistence for each i ∈ {1, . . . , n}.3

Suppose this is not true, and for some i ∈ {1, . . . , n} and i ̸= ĩ we have lim supt→+∞ yi(t) = 0. This means since
solutions remain non-negative, that

lim
t→+∞

yi(t) = 0.

By the boundedness of solutions and as a consequence of Barbalat’s Lemma [34, 35], we obtain

lim
t→+∞

y′i(t) = 0.

We can then choose a sequence tm → +∞ as m → +∞, such that yĩ(tm) → yĩ∞. Recall the equation of yi, for t > 0,4

dyi
dt

= dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

Therefore, by letting tm → +∞ we obtain5

0 ≥ dxi∞κĩiαĩ→iyĩ∞ > 0.

This contradiction completes the proof.6

Using the boundedness of the solution (see Proposition 1) and the fact that β is nonincreasing, we can show easily7

the following result.8
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Proposition 5. There exists a constant ε̃ > 0 such that, for any initial condition (xi0, φi) ∈ R+×C([−T, 0],R+), for1

i = 1, ..., n, we have2

lim inf
t→+∞

xi(t) > ε̃.

Now, we can establish the following result stating the strong uniform persistence of System (6) when R0 > 1.3

Theorem 3. Suppose that R0 > 1. Then, there exists a constant ε > 0 such that, for any initial condition (xi0, φi) ∈4

R+ × C([−T, 0],R+), for i = 1, ..., n, we have5

lim inf
t→+∞

yi(t) > ε, φi(0) ̸= 0.

The proof can be adapted from the demonstration of Theorem 1 of [36] and it follows that the uniform weak6

persistence implies the uniform (strong) persistence (see also Theorem 7.3 of [37]).7

7 Numerical simulations8

In this section, we provide an extensive, but not exhaustive numerical exploration of the system (6), for various values9

of the parameters involved. Specifically, we simulate the model (6) for the four choices of networks depicted in Fig. 4:10

fully connected network with n = 3 neurons; line networks with n = 5 and n = 9 neurons; and ring network with n = 511

neurons. Our selection of initial conditions is influenced by a potential relevance from a biological standpoint. In the12

context of initiating an experiment, there is an inherent interest in commencing with all neurons exhibiting similar13

behavior. This entails the production of an identical amount of monomers and, through a protein misconfiguration14

process, the generation of oligomers in approximately the same quantities. This initial production may be set at zero15

in certain simulations, as illustrated in Figure 7, Figure 8, Figure 9, or at a non-zero value, as observed in Figure 5.16

Other choices of initial conditions can be explored, but as the analytical study has shown, the asymptotic behaviour17

of the solution will remain unchanged, so no further simulation is required.18

We start by considering two fully connected, and fully homogeneous scenarios, which could correspond to the figure19

(a) in Fig. 4.20

An illustration for the case R0 < 1 with n = 3 is given in Fig. 5. In this configuration, we observe an extinction21

of the disease, as analytically expected and proven in Section 4.22

In Fig. 6, instead, we illustrate the case R0 > 1 with n = 3. These figure showcase the role of µi, i.e. degradation23

rate of PrPC produced by the neuron i, particularly its effects on the basic reproduction number and the spread of24

the infection, in a non-trivial case.25

We are also interested in the fully homogeneous case (κij := κ and αi→j = α/(n − 1)) with a line connection
between neurons as depicted in Fig. 4b, 4c and 4d. In this case, the system has the following form, for t ≥ 0,

dx1

dt
= Kβ(y1(t− T ))− µx1(t)− dx1(t)y1(t),

dy1
dt

= dx1(t)y1(t)− αy1(t),

dx2

dt
= Kβ(y2(t− T ))− µx2(t)− dx2(t)

(
y2(t) +

κα

n− 1
y1(t)

)
,

dy2
dt

= dx2(t)

(
y2(t) +

κα

n− 1
y1(t)

)
− αy2(t),

...

dxi

dt
= Kβ(yi(t− T ))− µxi(t)− dxi(t)

(
yi(t) +

κα

n− 1
yi−1(t)

)
,

dyi
dt

= dxi(t)

(
yi(t) +

κα

n− 1
yi−1(t)

)
− αyi(t),

...

15
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(a) Fully connected network, n = 3.
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5

(b) Line network, n = 5.
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(c) Ring network, n = 5.

1

2

3

4

56

7

8

9

(d) Line network, n = 9.

Figure 4: The four networks we consider in our numerical simulations. Notice that only the network with n = 3
has double arrows on each edge, representing the fully connected network. The three remaining networks all have
unidirectional edges.

and the matrix (8) becomes

(F )ij = R0


1 if j = i,
κα

n− 1
if j = i− 1, i ≥ 2,

0 otherwise.

Hence, we obtain1

R0 = ρ(F ) = R0 =
dK

µα
.

Note that in the non-fully homogeneous case, and non-fully connected like in Fig. 4 (b), (c) or (d) (where parameters2

can be different from one neuron to another) we cannot apply this definition of R0, since some of the αi’s may end3

up to be equal to 0. We need then to go back to the more general theory.4

5

In Fig. 7, a fully homogeneous line network, after some initial “wobbling”, the system approaches an Endemic6

Equilibrium. In particular, we notice that neurons further down the line (i.e., couples (xi, yi) with larger i’s (i = 4,7

or 5) approach equilibrium with a higher value for the infected compartment yi.8

In Fig. 8-11, we examine the behavior of the neural network when the parameter κ is varied. In fact, we obtain9

similar results, see Fig. 12, by varying the time delay T .10

In Fig. 8 we “close” the line, forming a close ring with the five neurons. Without changing the other parameters,11

this additional link completely destabilizes the system. Each neuron approaches a limit cycle. Proving the existence12

of such a limit cycle analytically remains to prove and will be the object of future works. This result was proved for13

two neurons [20], by a Hopf bifurcation with respect to the parameters κ and T . It can naturally be extended to a14

network of n neurons. It is also interesting to notice that in the case of the close ring, all neurons oscillate at the same15

time, with the same period.16
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Figure 5: the fully connected network of n = 3 neurons (recall Fig. 4a), showing the stability of disease free equilibrium when

R0 = ρ(F ) = 0.8194 < 1. In this case R0i = 0.6944 < 1 for i = 1, 2, 3. The parameters are: αi→j = 0.9, κij = 0.1, p = 5,

d = 0.015, yc = 60, T = 0.17, Ki = 1500 and µi = 18.

In Fig. 9, we revisit the n = 5 line structure, illustrating a case in which neurons 4 and 5 exhibit instability in their1

asymptotic behaviour, whereas neuron 1 converges to an equilibrium. This is possible because neuron 1 only spreads2

the infection, and does not receive feedback from the remaining neurons in the network. Moreover, we provide more3

detail on the parameter κ, which incorporates crucial information, namely the interconnectivity between neurons. We4

provide the bifurcation values of κ, assuming all the other parameters to be fixed, for which each neuron of the system5

destabilizes. From a mathematical point of view, the oscillating neuron acts as a force on the next neuron, which in6

turn oscillates, and the oscillations thus propagate to all the following neurons.7

In Fig. 10, we explored the case of Fig. 9 a little further in the following sense: beginning our simulations from the8

stable case, we increased κ, one of the key parameters for the Hopf bifurcations and managed to compute the exact9

value of κ at which the first neuron of the line would oscillate. For instance, at κ = 0.07 only the last (the fifth) one is10

destabilized, while for κ = 0.077 only the first one is stable, while all the others oscillate. We observe that this process11

is non-linear. Predicting the number of neurons destabilized with respect to κ analytically is also an open problem12

that we keep for future work.13

In Fig. 11, we showcase how a continuous variation of the parameter κ impacts the asymptotic value of each xi14

and yi, again for the n = 5 line network. Increasing κ causes more neurons to destabilize; for each of them, we plot15

the maximum and minimum values assumed by each variable as they asymptotically approach a limit cycle. Similarly,16

in Fig. 12 we showcase what the influence of the delay T is on these oscillations.17

Finally, in Fig. 13, we explore the effect of increasing the number of neurons in the line network in the case of18

our choice of κij = κ = 0.125 set up in Section 3.1. Using similar parameter values as in Fig. 9 (except for κij and19

αi→j , to keep them biologically feasible). We manage to show that adding more neurons (going from 5 to 9 neurons20

here) can damp the oscillations, and lead the system of neurons to stabilize again. This process has to be explored21

biologically to be confirmed experimentally.22

We remark that our results in Section 3.1 only concern R0, from which however we can only predict extinction or23

permanence of the disease, and nothing on the asymptotic stability of orbits. Hence, further analytical results in this24

direction are a promising research outlook.25
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Figure 6: the fully connected network of n = 3 neurons (depicted by Fig. 4a), showing the stability of endemic equilibrium

when R0 = ρ(F ) = 1.1346 > 1. In this case R0i = 0.9615 < 1 for i = 1, 2, 3. The parameters are: αi→j = 0.9, κij = 0.1, p = 5,

d = 0.015, yc = 60, T = 0.17, Ki = 1500 and µi = 13.

Figure 7: line network of n = 5 neurons (depicted in Fig. 4b). This case shows that cutting the connection showed stabilization.

The parameters are: αi→j = 2.5, κij = 0.17 (when considered), p = 10, d = 0.15, yc = 50, Ki = 1500, µi = 20 and T = 0.15.
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Figure 8: circle (ring) network of n = 5 neurons (depicted in Fig. 4c). This case shows that linking the connection in Fig. 7

showed destabilization of the system. The parameters are: αi→j = 2.5, κij = 0.17 (when considered), p = 10, d = 0.15, yc = 50,

Ki = 1500, µi = 20 and T = 0.15. Similar results can be obtained by varying the time delay T and fixing all other parameters.

Figure 9: line network of n = 5 neurons (depicted in Fig. 4b). For this figure showing the oscillation of only some neurons

(n = 4, 5, the last ones), we took κ = 0.071. Parameters are: p = 10, d = 0.15, yc = 60, Ki = 1800, µi = 50, αi→j = 0.9

(αi = 3.6) and T = 0.15. Similar results can be produced by changing the delay T .
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Figure 10: line network of n = 5 neurons (depicted in Fig. 4b). Our starting point was the case where the system is stable and

we have increased the bifurcation parameter κ and noted each value for which a neuron is destabilized. The value of bifurcations

are 0.07, 0.0709, 0.728 and 0.768. The neurons are destabilized one by one from the last and going up to the second. The last

neurons always look destabilized almost at the same time (approximately the same bifurcation values). Parameters are: p = 10,

d = 0.15, yc = 60, Ki = 1800, µi = 50, αi→j = 0.9 (αi = 3.6) and T = 0.15. A curve similar to this one can be obtained as a

function of the time delay T .

8 Conclusions and outlook1

In this paper, we presented a model for the delayed spread of prion in a network of n neurons, building on the 12

neuron model proposed in [20]. We studied its analytical properties and provided extensive numerical simulations to3

illustrate various scenarios.4

Due to the high dimension of the system, and of the analytical complexity of systems of DDEs, many questions5

remain unanswered. How can we overcome the requirement that αi > 0 in the definition of R0? The system has a clear6

biological interpretation even when this condition is not satisfied; hence, we would like to find a threshold quantity7

in such a scenario. Moreover, does the Endemic Equilibrium exist for all systems with R0 > 1? Is it unique? If yes,8

when is it stable? In our numerical exploration, we found both convergences to Endemic Equilibrium and sustained9

oscillations, indicating a possible stable limit cycle arising in the system. It would be of interest to understand which10

relations between the parameters of the system lead to the former or the latter.11

Finally, we should point out here also that spatial structure has not been taken into account. Indeed, considering12

diffusion may appear challenging for the following reason: in the case of Alzheimer’s disease, oligomers diffuse ran-13

domly in the brain tissue since the Aβ monomers are no longer anchored to the cell membrane. On the contrary,14

for the prion disease, pathological PrPSc proteins spread following the axon (and thus the cell membrane) where the15

source of non-pathological PrPC proteins are attached (thanks to a GPI anchor). Thus diffusion cannot be represented16

in the same way depending on the neurodegenerative disease studied. Furthermore, PrPSc might not be produced17

immediately after the contact with previous neurons. A time lag may be needed, and thus this could involve some18

de-synchronisation and perhaps some chaotic behaviour. We leave these fundamental and other interesting questions19

as the possible outlook for future work.20
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Figure 11: line network of n = 5 neurons (recall Fig. 4b). The amplitude of the oscillations as a function of κ ∈ [0.055, 0.1].

The amplitude of the oscillations becomes almost the same for higher values of κ. Parameters are: p = 10, d = 0.15, yc = 60,

Ki = 1800, µi = 50, αi→j = 0.9 (αi = 3.6) and T = 0.15. The red, blue, green and yellow curves are associated respectively

with (x2, y2), (x3, y3), (x4, y4) and (x5, y5). The same behavior can be obtained as a function of time delay T , see Figure 12.
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