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ORTHOGONAL GAMMA-BASED EXPANSION FOR THE

CIR’S FIRST PASSAGE TIME DISTRIBUTION

ELVIRA DI NARDO∗, GIUSEPPE D’ONOFRIO†, AND TOMMASO MARTINI∗∗

Abstract. In this paper we analyze a method for approximating the first-
passage time density and the corresponding distribution function for a CIR
process. This approximation is obtained by truncating a series expansion
involving the generalized Laguerre polynomials and the gamma probability
density. The suggested approach involves a number of numerical issues which
depend strongly on the coefficient of variation of the first passage time ran-
dom variable. These issues are examined and solutions are proposed also
involving the first passage time distribution function. Numerical results and
comparisons with alternative approximation methods show the strengths and
weaknesses of the proposed method. A general acceptance-rejection-like pro-
cedure, that makes use of the approximation, is presented. It allows the
generation of first passage time data, even if its distribution is unknown.

keywords: Feller square-root process, hitting times, Fourier series expansion, cumu-

lants, Laguerre polynomials, acceptance-rejection method

2020 MSC: 65C20, 60G07, 62E17, 42C10, 60-08

1. Introduction

In many applications spanning from finance to engineering including, among
others, computational neuroscience, mathematical biology and reliability theory
(see [43] for a thorough exposition) the dynamics of a noisy system is described
by a stochastic process Y (t) evolving in the presence of a threshold S(t). The
first-passage-time (FPT) problem consists in finding the distribution of the ran-
dom variable (rv) T , defined by

(1.1) T =

{
inft≥τ{Y (t)>S(t)}, Y (τ)=yτ <S(τ),

inft≥τ{Y (t)<S(t)}, Y (τ)=yτ >S(τ),

representing the time the process Y (t) crosses the threshold S(t) for the first
time. Although classical and very easy to state, the solution in closed form of this
problem is available only in a very few cases, depending on the properties of both
Y (t) and S(t). In this paper, we address the FPT problem of a Cox-Ingersoll-
Ross (CIR) process Y (t) through a constant threshold S. This one-dimensional
diffusion process, belonging to the class of Pearson diffusions [20], is frequently
involved in the field of mathematical finance starting from the seminal paper [9]
by which it is commonly called nowadays. Outside this community the process is
often called square-root, due to the form of its diffusion coefficient (or volatility),
or, due to historical reasons, Feller process from the 1951 paper, in which the
process is introduced for the first time [18].
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When considering the FPT problem of a CIR process, the literature, also
quite recent, is vast but the results are partial and fragmentary, see for in-
stance [2], [10], [21], [22], [23], [24], [32], [34], [49], and [35] for a thorough review
of the state of art. Exploiting the Laplace transform of the FPT pdf and the
theory of formal power series, a closed form expression of its FPT cumulants
is given in [11]. In the same paper, under appropriate assumptions, the FPT
pdf has been expanded in series of generalized Laguerre polynomials, involving
moments computed from cumulants and weighted by a gamma pdf. The idea
of approximating a pdf by truncating a suitable series expansion is not new.
Indeed such an approximation is of the Gram-Charlier type with a gamma dis-
tribution rather than a normal distribution as reference (parent) distribution
and with generalized Laguerre polynomials instead of Hermite polynomials as
multipliers. In [40] a general methodology to approximate a pdf based on the
knowledge of its moments is introduced, using the product of a suitable weight
function, as parent distribution, and a suitable family of associated orthogonal
polynomials, as multipliers. One of the main issues of this approximation is
that negative values can occur, although the approximate density always entails
a unit area. This happens even with the Gram-Charlier series having Gaussian
parent distribution. To overcome this drawback, two approaches can be found
in the literature. The first one is to use the approximation with a low trunca-
tion order and to find constrained regions on the values of the cumulants (or
moments) that admit a valid (non-negative) pdf. The suggested truncation is
mostly at the fourth-order term because it becomes difficult to manage valid re-
gions for higher orders. Within the FPT framework, this approach was used to
approximate the FPT pdf of an Ornstein-Uhlenbeck process [48]. In particular,
the restrictions on the first four moments that guarantee the non-negativity of
the approximated density are outlined and discussed in [33], along with a thor-
ough examination of when to apply this approximation. Indeed, with this low
truncation order, the approximated density may fail to be close to the theoreti-
cal one, especially for distributions that are not sufficiently close to the parent
distribution. In the case of Gaussian parent distribution and for arbitrary even
order, the valid region of cumulants has been found numerically through a semi-
definite algorithm [31]. A second way of tackling this issue consists in replacing
values of a suitable positive interpolating function to the negative ones assumed
by the approximated pdf. In [51], as interpolating function for pdfs with support
(0,∞), a second-degree polynomial is suggested in a right-handed neighborhood
of the origin. In this paper, taking into account that the FPT pdfs are unimodal
for diffusion processes [46], this second approach is developed along a different
direction and for the first time within the FPT framework. Firstly, sufficient
conditions are given on the sign of the coefficients of the series expansion so
that the approximated density may hold non-negative values on the tails and
in a right-handed neighborhood of the origin. Secondly, if there are additional
intervals in which the approximated pdf turns out to be negative, an appro-
priate correction is proposed that takes into account sufficient conditions given
in [11] allowing the Laguerre-Gamma type expansion for the FPT pdf. The
issue concerning the possible negative values of the approximated pdf can be
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overcome also by considering the FPT cumulative distribution function (cdf).
For this reason, in parallel with our discussion, we develop the method for the
approximation of the cdf as well. We stress that this approach, new in the FPT
context, has some numerical advantages and allows an easier approximation of
quantiles.

Those highlighted so far are not the only issues concerning the use of such an
approximation. The choice of the gamma pdf parameters as well as the order
of truncation of the series are additional issues that may affect the quality of
the approximation. These issues, only briefly sketched in [40], are considered
in detail in this paper. For example, the key role played by the coefficient
of variation in the choice of the gamma pdf parameters is shown, while the
truncation order is controlled by appropriate stopping criteria.

The proposed Laguerre-Gamma expansion has an additional advantage since
density estimates can be produced based on sample moments. Indeed, if the
FPT moments/cumulants are not known, this approach allows to recover an
approximation of the FPT pdf starting from a sample of FPT data. These
estimators are known in the literature as orthogonal series estimators and can
be very competitive when compared with the classical density estimators such
as the kernel density estimator (KDE) or the histogram [26].

Thanks to obtained evaluations of the approximation error, an acceptance-
rejection-like method, that makes use of the series expansion, is finally proposed.
It allows the generation of FPT data, even if its distribution is unknown, and
can be applied to a wide class of pdfs. Note that, although never used for the
CIR process, acceptance-rejection methods had already appeared in the FPT
context (see for instance [27] and [36]), but the approximation strategy here
proposed is a novelty. This method is particularly useful since exact simulation
techniques for CIR sample paths are not available, and the existing ones, based
on discretization methods or transition densities, exhibit large computational
costs if the fixed time step is small.

The paper is organized as follows. In Section 2 we resume the FPT problem for
the CIR process recalling the known results useful for carrying out the proposed
approximation. In Section 3 we discuss the convergence of the method. Moreover
we address some theoretical issues closely related to the approximation such
as the choice of the truncation order. The role played by the coefficient of
variation of the FPT rv in the choice of the gamma pdf parameters is also
discussed. Section 4 suggests how to overcome the two main computational
issues arising in dealing with such an approximation: the monotonicity of the
approximated cdf and the positivity of the approximated pdf. Numerical results
and comparisons with alternative approximation methods are given in Section
5 aiming to discuss the strengths and weaknesses of the proposed approach. We
set three different choices of the CIR process parameters and boundaries that
corresponds to different forms and statistical properties of the FPT pdf. An
application of the Laguerre-Gamma approximation is shown in the last section,
which involves sampling FPTs using a technique analogous to the acceptance-
rejection method. Concluding remarks close the paper.
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2. The CIR process and the FPT problem

The CIR process we refer to is the unique strong solution of the stochastic
differential equation [18]

(2.1) dY (t)=(−τY (t)+µ)dt+σ
√
Y (t)−cdW (t),

where W (t) is a standard Brownian motion, c≤0, τ >0, µ∈R, σ>0 and Y0=y0.
The state space of the process is the interval (c,+∞). The endpoints c and
+∞ can or cannot be reached in a finite time, depending on the underlying
parameters. According to the Feller classification of boundaries [28], c is an
entrance boundary if it cannot be reached by Y (t) in finite time, and there is no
probability flow to the outside of the interval (c,+∞). In particular,

c is an entrance boundary if s :=2(µ−cτ)/σ2≥1.

This will be a standing assumption in the following.
Denote with g(t)= d

dtP{T ≤ t} the pdf of the FPT rv T as defined in (1.1).
Its Laplace transform g̃(z) is such that g̃(z)=1 if y0≡S and g̃(z)<+∞ for any
different y0 [35]. Its closed form expression is [16]

(2.2) g̃(z)=
Φ
(
z
τ ,s,

2τ(y0−c)
σ2

)
Φ
(
z
τ ,s,

2τ(S−c)
σ2

) , z >0

where Φ(a,b,z)= 1F1(a;b;z) is the confluent hypergeometric function of the first
kind (or Kummer’s function). The Laplace transform (2.2) cannot be inverted
explicitly, except for the case S=0, see for instance [34], but information on the
moments can be obtained by direct derivation or from cumulants as described
in the next subsection.

2.1. FPT cumulants and moments. Recall that, if T has moment generating
function E[ezT ]<∞ for all z in an open interval about 0, then its cumulants
{ck(T )}k≥1 are such that ∑

k≥1

ck(T )
zk

k!
= logE[ezT ]

for all z in some (possibly smaller) open interval about 0. Using the logarithmic
polynomials1 {Pk}, the FPT cumulants of the CIR process can be expressed
as [11]

ck(T )=(−τ)−k [c∗k (y0)−c∗k(S)], k≥1

where

(2.3) c∗k(w)=Pk

[
h1

(
2τ(w−c)

σ2

)
,h2

(
2τ(w−c)

σ2

)
,. ..,hk

(
2τ(w−c)

σ2

)]
,

with hj(y)= j!
∑

n≥j

[
n
j

]
yn

n!⟨s⟩n , for j=1,2,. ..,k,

[
n
j

]
the unsigned Stirling num-

bers of first type and ⟨·⟩n the n-th rising factorial.

1See Appendix for their definition.
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FPT moments of the CIR process are obtained from cumulants [11] using the
complete Bell polynomials2 {Yk} and {c∗k} given in (2.3), that is

(2.4) E
[
T k
]
=

(−1)k

τk

k∑
i=0

(
k
i

)
Yk−i

[
c∗1 (y0),. ..,c

∗
k−i (y0)

]
Yi [−c∗1(S),. ..,−c∗i (S)]

for k≥1. An alternative way to compute moments from cumulants is the well-
known recursion formula [14]

(2.5) E
[
T k
]
= ck(T )+

k−1∑
i=1

(
k−1
i−1

)
ci(T )E

[
T k−i

]
.

This formula is particularly convenient from a computational point of view and
has been used to recover FPT moments from the knowledge of cumulants.

2.2. The FPT pdf and cdf. Under suitable hypotheses, a closed form expres-
sion of the FPT pdf has been given in [11] using the moments {E

[
T k
]
}. Indeed,

suppose

(2.6) fα,β(t)=β(βt)α
e−βt

Γ(α+1)
, t>0

the gamma pdf with scale parameter α+1>0 and shape parameter β>0. For

α>−1, let the polynomial sequence {Q(α)
k (t)}k≥0 be defined as

(2.7) Q
(α)
k (t)=(−1)k

(
Γ(α+1+k)

k!Γ(α+1)

)−1/2

L
(α)
k (t),

where L
(α)
k (t) is the k-th generalized Laguerre polynomial

L
(α)
k (t)=

k∑
i=0

(
k+α

k− i

)
(−t)i

i!
, k≥1

with L
(α)
0 (t)=1. For any fixed t>0, the FPT pdf admits the following expansion

(see Theorem 2 in [11]):

(2.8) g(t)=
β(βt)αe−βt

Γ(α+1)

∑
k≥0

a
(α)
k Q

(α)
k (βt),

where a
(α)
k =E[Q(α)

k (βT )] for k≥0.

Remark 2.1. If∫ ∞

0
t−αeβt[g(t)]2<∞ then

g(t)

fα,β(t)
∈L2(ν),

where L2(ν) is the Hilbert space of the square-integrable functions with respect
to the measure ν having density fα,β(t). Therefore, (2.8) represents the Fourier-
Laguerre series expansion of g(t)/fα,β(t) in terms of the complete orthonormal

sequences {Q(α)
k (t)}.

2See Appendix for their definition.
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Some algebra allows us to write the FPT pdf g(t) in (2.8) as

(2.9) g(t)=β(βt)αe−βt
∑
k≥0

B(α)k L
(α)
k (βt), t>0

with coefficients B(α)0 =1 and

(2.10) B(α)k =(−1)ka(α)k

(
Γ(α+1)Γ(α+1+k)

k!

)−1/2

=
k∑

j=0

(
k

j

)
(−β)jE(T j)

Γ(α+j+1)
,

depending on the moments of T. By recalling that∫
ταe−τL

(α)
k (τ)dτ =

τα+1Γ(α+k+1)

k!

Φ(α+k+1;α+2;−τ)
Γ(α+2)

where Φ(a,b,z)= 1F1(a;b;z) is the confluent hypergeometric function of the first
kind, and using (2.9), a closed form expression of the FPT cdf is given in the
following statement.

Proposition 2.2. The FPT cdf G(t) is

G(t)=
(βt)α+1

Γ(α+2)

∑
k≥0

Γ(α+k+1)

k!
B(α)k Φ(α+k+1,α+2,−βt), t>0.

3. The FPT approximation

An approximation of the FPT pdf can be recovered from (2.8) by using a
truncation of the series up to an order n

(3.1) ĝn(t)=
β(βt)αe−βt

Γ(α+1)

n∑
k=0

a
(α)
k Q

(α)
k (βt), t>0.

The higher is the order n the better should be the approximation. Indeed the
L2(ν)-error in replacing g(t) with its approximation ĝn(t) given in (3.1) is [47]

(3.2)

∥∥∥∥g− ĝn
fα,β

∥∥∥∥
α,β

=

 ∑
k≥n+1

(
a
(α)
k

)21/2

where ∥ ∥α,β denotes the norm in L2(ν). Thus the error may be estimated by

calculating the rate of decrease of a
(α)
k when k→∞. The latter is given in the

following proposition.

Theorem 3.1. Assume the FPT pdf g(t)∈C2[0,+∞). If

β<
2

E[T ]
and g(t)=o(tδ) for t→0, with δ>

α

2
+1

then in (3.2) a
(α)
k =E[Q(α)

k (βT )]=O(k−1) as k→∞.
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Proof. Observe that a
(α)
k =E[Q(α)

k (βT )] gives

(3.3) a
(α)
k =

1

β

∫ ∞

0
Q

(α)
k (t) g̃α,β(t)t

αe−tdt where g̃α,β(t)=
g(t/β)

tαe−t
.

As the generalized Laguerre polynomials {L(α)
k (t)} are eigenfunctions of a Sturm-

Liouville problem [1] with associated eigenvalues λk=k

d

dt

(
tα+1e−ty′

)
+ktαe−ty=0 with y=y(t), k≥1

the same happens for the linearly transformed polynomials {Q(α)
k (t)} in (2.7).

Therefore in (3.3), replace

Q
(α)
k (t)tαe−t with − 1

k

d

dt

(
tα+1e−ty′

)
.

Integrating by parts the integral in (3.3) and neglecting the constants, the rhs
of (3.3) reads

(3.4) a
(α)
k ≈

1

k

∫ ∞

0
tα+1e−t d

dt
[Q

(α)
k (t)]

d

dt
[g̃α,β(t)]dt.

Indeed we have
(3.5)

lim
t→0

g̃α,β(t)t
α+1e−t d

dt
[Q

(α)
k (t)]=0 and lim

t→∞
g̃α,β(t)t

α+1e−t d

dt
[Q

(α)
k (t)]=0.

The first limit in (3.5) results by the hypothesis g(t)=o(tδ) for t→0. The second
limit in (3.5) follows by taking into account that the FPT pdf of one-dimensional
diffusion processes with steady-state distribution is known to be approximately
exponential for t→∞, with parameter E[T ]−1 [37]. Integrating by parts the
integral in (3.4) and neglecting the constants, the rhs of (3.4) reads

(3.6) a
(α)
k ≈−

1

k

∫ ∞

0
Q

(α)
k (t)

d

dt

(
tα+1e−t d

dt
[g̃α,β(t)]

)
dt,

where similar considerations done for (3.5) apply for recovering

lim
t→0

tα+1e−tQ
(α)
k (t)

d

dt
[g̃α,β(t)]=0 and lim

t→∞
tα+1e−tQ

(α)
k (t)

d

dt
[g̃α,β(t)]=0.

Now, in (3.6) set

h(t)=
1

w(t)

d

dt

(
tα+1e−t d

dt
[g̃α,β(t)]

)
with w(t)= tαe−t.

Applying the Cauchy-Schwarz inequality to the rhs of (3.6), we get∣∣∣∣∫ ∞

0

√
w(t)Q

(α)
k (t)h(t)

√
w(t)dt

∣∣∣∣2≤(∫ ∞

0
w(t)[Q

(α)
k (t)]2dt

)(∫ ∞

0
[h(t)]2w(t)dt

)
which is finite and not depending on the order k, if the same is true for both
integrals on the lhs. Observe that the first integral corresponds to the orthonor-

mality condition of Q
(α)
k (t) and so it is finite and not depending on k. The second
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integral does not depend on k and is finite if the integrand is smooth and the
limits for t→0 and t→∞ are finite. Note that

h(t)√
w(t)

=
(α+1− t) d

dt [g̃α,β(t)]+ t d2

dt2
[g̃α,β(t)]

t−α/2et/2
.

Thus for t→∞ and β<2/E[T ] we have

lim
t→∞

h(t)√
w(t)

= lim
t→∞

ez[1−(βE[t])−1]

zα/2ez/2
+ lim

t→∞

ez[1−(βE[t])−1]

zα/2−1ez/2
=0

assuming g(t)=O(e−t/(βE[T ])). Instead for t→0 the limit reduces to

lim
t→0

h(t)√
w(t)

= lim
t→0

et/2tδ−α/2−1+lim
t→0

et/2tδ−α=0

if δ>1+α/2. □

The request of the existence of the second derivative in Theorem 3.1 is a
reasonable assumption, since the property can be seen as a consequence of the
following observation.

Remark 3.2. Following [38], we could have alternatively asked that there exists
ε>0 such that σ

√
x≥ε, for all x in the state space of the process. This condition

implies, in this case, the existence and boundedness at least of the first two
derivatives of the FPT pdf g(t). To investigate Pauwels’ condition, one can
follow Feller’s classification of the boundaries [19]. Using the transition densities
of the Feller process [35], one has to show that the flux through the value ε is
zero or that the capacity of the interval [0,ε) vanishes [4]. For a fixed, small
ε>0 we observe, at least numerically, that the capacity of the interval [0,ε) (see
formula 19 in [4]) goes to zero as µ increases. This means that for a “large
enough” choice of µ, the mentioned assumption in Theorem 3.1 is satisfied.

By truncating the series in (2.9) up to the order n, the approximated ĝn(t) in
(3.1) can be rewritten as

(3.7) ĝn(t)=fα,β(t)pn(t) where pn(t)=

n∑
k=0

hn,k
(−βt)k

k!

with

hn,k=
n∑

j=k

B(α)j

(
α+j

j−k

)
and

(
α+j

j−k

)
=

{
1, j=k,
(α+j)(α+j−1)···(α+k+1)

(j−k)! , j >k.

In particular {hn+1,i}n+1
i=0 can be recovered from {hn,i}ni=0 using the following

recursion formula [12]

(3.8) hn+1,i=

{
B(α)n+1, for i=n+1,

hn,i+B(α)n+1

(
α+n+1
n+1−i

)
, for i=0,. ..,n.
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Likewise, the coefficients {B(α)n+1} can be recovered from {Bj(α)}nj=0 as

(3.9) B(α)n+1=

n+1∑
j=1

(
n+1

j

)
(−1)j+1B(α)n+1−j+

(−β)n+1E[Tn+1]

(α+n+1)n+1
.

Due to the orthogonality property of generalized Laguerre polynomials, the
approximation ĝn(t) has nice properties, that are:

(3.10)

∫ ∞

0
ĝn(t)dt=1

for all n≥0, and the first n moments of ĝn(t) are the same of g(t). Unfortunately,
ĝn(t) is not guaranteed to be a pdf since negative values can occur. Indeed
the values assumed by the polynomial pn(t) are not necessarily non-negative.
However pn(t) may hold non-negative values on the tails and in a right-handed
neighborhood of the origin, depending on the sign of some coefficients in (3.7).
These conditions are established in the following proposition.

Proposition 3.3. Suppose pn(t)>0 for all t>0. Then (−1)nhn,n≥0 and hn,0≥
0. Conversely, if hn,0>0 and (−1)nhn,n>0, there exist t1>0 and t2>0 such
that pn(t)>0 in (0,t1)∪(t2,+∞), with t1 and t2 not necessarily distinct or finite.

Proof. From (3.7) we have

pn(0)=hn,0 and pn(t)∼ (−1)nhn,ntn
βn

n!
, for t→∞.

Since β>0 and pn(t)∈C(0,∞), the results follow from the sign permanence
theorem. □

Integrating ĝn(t) in (3.7) over (0,t), an approximation of the FPT is

(3.11) Ĝn(t)=
1

Γ(α+1)

n∑
k=0

(−1)k

k!
hn,k [Γ(α+k+1)−Γ(α+k+1,βt)]

where Γ(a,t)=
∫∞
t τa−1e−τdτ is the incomplete Gamma function.

3.1. On the order n of the approximation. The normalization condition
(3.10) has been used to derive a first stopping criterion [12]. Indeed (3.10) is
equivalent to (Proposition 4.2 [12])

(3.12) hn,0+

n∑
i=1

(−1)i

i!
hn,i(α+ i)i=1.

As a result, in (3.7) the order n is increased as long as (3.12) is satisfied with
a fixed level of tolerance. Here, with the more conservative aim of obtaining
reliable approximations, we propose to join the normalization condition (3.12)
with an additional condition following from Proposition 3.3. This condition
guarantees an order n of approximation such that pn(t) is positive close to the
origin and as t→+∞. Therefore, the recursive procedure runs as long as

(3.13) (|ĥn+1−1|>ε, for a fixed ε>0) or (hn,0>0 and (−1)nhn,n>0)

is fulfilled.
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3.2. On the choice of α and β. Denote with Xα,β the rv having pdf fα,β in
(2.6). In [11] we have chosen

(3.14) α=
c21[T ]

c2[T ]
−1 and β=

c1[T ]

c2[T ]

since with these choices we have B(α)1 =B(α)2 =0 in (2.10) and

E[Xα,β]=
α+1

β
=E[T ] and E[X2

α,β]=
(α+1)(α+2)

β2
=E[T 2].

Let us underline that a range of values was investigated for α and β. Actually
the choices in (3.14) seem to be the most reliable with respect to the selection
of parameters in (2.1). On the other hand, this choice falls within the classical
method of moments and is also suggested in [40], where a general procedure
is developed for the approximation of a pdf based on its moments. Different
choices are suggested in [3] where results concerning the determination of the
two parameters α and β are presented. Unfortunately, adopting these choices
requires a knowledge of the FPT pdf not depending on α and β, which is not
true in the case of CIR process. Moreover, the choices of α and β in (3.14)
return

cν [Xα,β]= cν [T ]=

√
c2[T ]

c1[T ]

where cν denotes the coefficient of variation. In such a case the first equation
in (3.14) reads α+1=(cν [T ])

−2. Thus an higher coefficient of variation reduces
α+1 and increases the chance of a vertical asymptote of the gamma pdf in 0. As
g(0)=0, the occurrence of this vertical asymptote represents a numerical issue
which is further worsened if the FPT pdf is flat with a large mean value and a
heavy right tail with a large variance. To deal with this scenario, a successful
strategy is the employment of a suitable standardization technique. The idea is
to construct the approximation g̃n(t) of the pdf g̃(t) corresponding to

(3.15) T̃ =T/σT ,

where σT is the standard deviation of T. The approximated FPT pdf and cdf
can be recovered as

ĝn(t)=
1

σT
g̃n

(
t

σT

)
and Ĝn(t)= G̃n

(
t

σT

)
respectively. As c2[T̃ ]=Var[T̃ ]=1, from (3.14) the parameters of the gamma
pdf are

α̃ := (E[T̃ ])2−1 and β̃ :=E[T̃ ]
so that α̃+1= β̃2=(cν [Xα̃,β̃])

−2=(cν [T̃ ])
−2 and Var[Xα̃,β̃]=1. The advantage of

this strategy is to use an initial guess (the gamma pdf) with a shape resembling
the picked shape of the FPT pdf and concentrating probability mass on small
time values. Moreover, the moments E[T̃n] grow slower than the moments E[Tn],
leading to an observed improvement of numerical stability.

Since the pdf g(t) has support (0,∞), further information on the shape of
the density can be recovered using some dispersion indices that work as the
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coefficient of variation but provide further global statistical information [29]. In
particular we consider the relative entropy based dispersion coefficient

(3.16) ch :=
σh

E(T )
=

1

E(T )
exp

{∫ ∞

0
g(t)lng(t)dt−1

}
.

The value of σh quantifies how evenly is the pdf over (0,∞). Moreover, in loga-
rithmic scale, ch is inversely proportional to the Kullback-Leibler distance of the
pdf g(t) from the exponential density with mean E[T ]. For densities resembling
the exponential distribution, the coefficients cν and ch are approximately equal
to 1.

4. Computational issues

In [12] a fast recursive procedure for implementing (3.7) is proposed, relying on
nested products and taking advantage of (3.8) and (3.9). Note that, differently
from the geometric Brownian motion in [12], in the case of the CIR process an
additional issue arises in computing (3.9). The FPT moments are calculated
from the FPT cumulants (2.3) using the recursion (2.5). Because of the series
involved in (2.3), an approximation order m should be chosen before computing
the moments through (2.5). Here, a standard approach has been used, which
involves computing partial sums of the series as long as their difference exceeds
an input tolerance.

4.1. On the monotonicity of Ĝn. For a fixed ∆t>0, the computation of the
FPT cdf can benefit from the iterative calculation of increments
(4.1)

∆Ĝn(t)=
1

Γ(α+1)

n∑
k=0

(−1)k

k!
hn,k [Γ(α+k+1,βt)−Γ(α+k+1,β(t+∆t))]

where ∆Ĝn(t)= Ĝn(t+∆t)−Ĝn(t),t>0. Note that the increments ∆Ĝn(t)
might be negative, in accordance with the values of t where ĝn(t)<0. As a by-
product, the approximated cdf may turn out to be decreasing in these intervals.
Moreover, if in a right-handed neighborhood of the origin the first increments
are already negative, this circumstance might determine negative values of the
approximated cdf itself in the same neighborhood. A possible correction to this
last drawback is: set τ0=0 or τ0=min{t>0|∆Ĝn(t)<0}, depending if ∆Ĝn(∆t)

is negative or not, and τ1=min{t>τ0|Ĝn(t)>Ĝn(τ0)}. Then iteratively find the
intervals [τi,τi+1] such that

τi=min{t>τi−1|∆Ĝn(t)<0} and τi+1=min{t>τi|Ĝn(t)>Ĝn(τi)}

in order to replace Ĝn(t) with a suitable line for t∈ [τi,τi+1]. For the cases here
considered the intervals t∈ [τi,τi+1] have a small amplitude. The advantage of
this approach is twofold. The first one is getting an approximated cdf which is
positive and increasing. The second advantage is the chance to use an ad hoc
numerical procedure to carry out the derivative of the resulting cdf and thereby
automatically recovering an approximation of the pdf which is always positive.
Since the corrected Ĝn(t) is linear for t∈ [τi,τi+1], the corresponding pdf will be
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constant in [τi,τi+1]. Thus, this approximation is computationally simple, but it
might fail to fit some properties of the FPT pdf of a CIR process. The following
subsection suggests a different correction of the approximated pdf taking into
account specifically these properties.

4.2. On the positivity of ĝn. For a fixed order n of approximation, it could be
of interest constructing the pdf directly, overcoming the drawbacks occurred in
the numerical derivation of the cdf. In that case, although the stopping criteria
in (3.13) take into account Proposition 3.3, there is no guarantee that ĝn(t) is
non-negative on (0,∞) depending on the values assumed by pn(t) for t∈ (t1,t2).
If this happens, an ad hoc strategy can be implemented to solve this issue.

Suppose (t1,neg,t2,neg)⊆ (t1,t2) such that ĝn(t)<0, t∈ (t1,neg,t2,neg). In what
follows we develop a simple numerical procedure to replace ĝn(t) with a suit-
able positive function p(t), for t in a generic interval (t′1,t

′
2)⊇ (t1,neg,t2,neg). It

is reasonable to assume that ĝn(t) can be negative in an interval located to the
right or/and to the left of the approximated mode of the FPT rv, since the FPT
pdf of a diffusion process is unimodal [46]. In both cases, a classical technique
would consist in selecting a fourth-degree polynomial p(t) interpolating smoothly
(t′1, ĝn(t

′
1)) and (t′2, ĝn(t

′
2)), fulfilling the additional constraints imposed by the

conservation of probability mass

(4.2)

∫ t′2

t′1

p(t)dt=

∫ t′2

t′1

ĝn(t)dt,

as well as positivity and monotonicity. Since such a polynomial is unique, the
last two remaining conditions would possibly be satisfied by a computationally
cumbersome choice of t′1 and t′2. Therefore, in the following we propose a different
approach both to determine numerically (t′1,t

′
2) and to correct ĝn(t), taking into

account the conditions required on the FPT pdf g(t) in Theorem 3.1.
Suppose m∗=maxt∈(0,∞) ĝn(t) be the approximated mode of the FPT rv T .

In agreement with the previous observations, the following two possible scenarios
might occur:

a) ĝn(t)<0 for t∈ (t1,neg,t2,neg) with t2,neg<m∗

b) ĝn(t)<0 for t∈ (t1,neg,t2,neg) with t1,neg>m∗.

Two procedures were therefore developed taking into account the behavior of
the FPT pdf either in a right-handed neighborhood of the origin - Case a) - and
on the tail - Case b) - with the aim of minimizing the number of parameters
involved while streamlining the writing and the procedure. No conservation
of the probability mass (4.2) is required in this strategy. Empirically, this is
justified by the circumstance that in all the observed cases the negative areas
are so small that the mass involved gives almost no contribution.

Case a). Since g(0)=0, we set t′1 :=0. To reduce the number of parameters, we
assume p(t)=atδ with a>0 and δ> α

2 +1 according to Theorem 3.1. Therefore,
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the correction of ĝn(t) is defined as

(4.3) ĝcorrn (t)=

{
atδ 0≤ t≤ t′2,

ĝn(t) t>t′2.

In order to achieve a certain level of smoothness, a and δ in (4.3) are chosen
such that

p(t′1)= ĝn(t
′
1) and

d

dt
p(t)

∣∣∣∣
t=t′1

=
d

dt
ĝn(t)

∣∣∣∣
t=t′1

.

Finally, we set

t′2 :=min

{
t∈ (0,m∗)

∣∣∣∣ ∫ t

0
ĝn(t)dt>0

}
to avoid an excessive increment of the probability mass when ĝn(t) is replaced
by ĝcorrn (t). Fig. 1-a) shows an example of negative ĝn(t) in an area close to
the origin together with its correction ĝcorrn (t), as obtained by the procedure
described above.

Case b). We assume p(t)=aebt, with a>0 and b<0, according to the well known
exponential asymptotic behaviour of the FPT pdf of diffusion processes with
steady-state distribution [37]. Therefore, the correction of ĝn(t) is defined as

(4.4) ĝcorrn (t)=


ĝn(t) t<t′1
aebt t′1≤ t≤ t′2
ĝn(t) t>t′2.

In this case, a and b are chosen such that

p(t′1)= ĝn(t
′
1) and p(t′2)= ĝn(t

′
2).

In order to fit a decreasing exponential function in the interval (t′1,t
′
2), the end-

points t′1 and t′2 are chosen such that

t′2=min

{
t>t2

∣∣∣∣ ddt ĝn(t)<0

}
and t′1=min

{
t<t1

∣∣ ĝn(t)>ĝn(t
′
2)
}
.

Fig. 1-b) shows an example of negative ĝn(t) for values of t larger than the mode
together with its correction ĝcorrn (t), as obtained by the procedure just described.

5. Numerical results

In this section, the functions Ĝn(t) in (3.11) and ĝn(t) in (3.7) are used to
approximate respectively the FPT cdf G(t) and the FPT pdf g(t) of a CIR
process (2.1) with the corrections suggested in subsections 4.1 and 4.2.

Before examining the numerical results, in the following we provide some
details on how the goodness of approximation was assessed.
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a)

b)

t′1

t′2

t′2

Figure 1. In a) plots of the approximation ĝn and of its correc-
tion ĝcorrn (4.3) over the interval (0,t′2) are given for n=10 and
parameters y0=0, µ=3, S=10, c=−10, σ=1.2,τ =0.2 (see case
C in Section 5.2). In b), plots of the approximation ĝn and of its
correction ĝcorrn (4.4) over the interval (t′1,t

′
2) are given for n=9

and parameters y0=0.2, µ=0.9, S=1, c=0, σ=1.2,τ =2/3 (see
case A in Section 5.2).

5.1. Comparisons with alternative approximation methods. As the
shape of the FPT pdf and cdf for a CIR process is unknown, the proposed
approximations’ validity needs to be evaluated by comparing it with alternative
estimates obtained using different techniques.

For one-dimensional diffusion processes, the FPT pdf through a time-
dependent boundary can be recovered as the solution of a Volterra integral
equation of the second kind [5]. With suitable numerical methods for approx-
imating the integral, a discrete numerical evaluation of this solution can be
efficiently computed. Unfortunately, when implementing these tools, we came
upon the issue that, when the coefficient of variation is large, this procedure
is subject to overflow failures and could lead to completely misleading results.
This circumstance is likely amplified by an unavoidable propagation of numerical
errors since the new approximated values of the FPT pdf are computed using
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those recovered at the previous steps. However, even for FPT pdfs with a small
coefficient of variation, we encountered numerous issues in its implementation.
These undesirable behaviors are essentially caused by the presence of the Bessel
function in the transition pdf of the process, whose derivatives cause numerical
overflow issues. Similar difficulties have been encountered using the R package
fptdApprox [45]. Ultimately, beyond these pathological cases, the numerical
results are comparable to those obtained by Monte Carlo methods, which we
have therefore chosen as methods for assessing the goodness of approximation.

A Monte Carlo method consists in generating sample paths of the CIR pro-
cess and look for their FPTs over the given threshold. When choosing how to
sample the paths of the CIR process in the Monte Carlo method, we first imple-
mented the Milstein algorithm [39] which generates a trajectory by a suitable
discretization of the stochastic differential equation (2.1). As it is well-known,
this procedure is time-demanding: to get a FPT sample of size N, at least N
different trajectories of the CIR process must be generated. Indeed not all the
generated trajectories may reach the threshold in a reasonable time. This also
implies that the FPT pdf can be underestimated if a finite time interval has been
set for the simulation, as usually happens. Moreover, the fixed time step de-
termines how accurately the dynamics can be described and the computational
time increases as this time step gets smaller. Therefore, to obtain significant
results, it is necessary to choose a very small step size and simulate many tra-
jectories of the CIR process. This can be very time-consuming, especially if the
coefficient of variation of T is large, as a consequence of the likelihood of a large
time span length over which the trajectories must be simulated.

Similar problems arise when sampling positions of the CIR process using its
transition pdf, a non-central chi-square distribution [18]. In such a case, starting
from Y0=y0, an instance of Y∆t is generated from the conditional distribution of
Y∆t|Y0=y0, an instance of Y2∆t from the conditional distribution of Y2∆t|Y∆t and
so on. The results obtained by the two Monte Carlo methods are comparable.
However we have used the Milstein algorithm, since the computational time is
lower in all the cases examined.

Once a FPT random sample has been collected, a sufficiently reliable estimate
of the cdf shape can be obtained using the empirical cdf. Nonparametric meth-
ods can also be used to obtain an estimate of the pdf. The most widely used
nonparametric pdf estimator is the histogram. Despite its popularity, the draw-
backs of this tool are well known in the literature, as for example, the strong
dependence on bandwidth choice. In the literature, KDEs are typically men-
tioned as simple alternatives to histograms. If the unknown pdf has its support
confined to the positive half line and is not smooth at the origin, then the kernel
method can perform not efficiently [26]. Indeed, the mode of the unknown pdf
may be actually hidden by the KDE assigning positive mass to negative values
(see Fig. 5).

To recover the smoothness characterising the KDEs and still obtain an ade-
quate estimated density with support (0,∞), an estimator based on an orthog-
onal series can be very competitive [17]. Indeed, an orthogonal series estimator
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is exactly what is obtained from the approximation ĝn(t) in (3.1) when the the-
oretical FPT moments are replaced by their corresponding sample moments. In
fact, suppose a sample of iid FTPs T ={T1,. ..,TN} is available, arising either
from simulations or from experiments. A straightforward calculation shows that
replacing FPT moments (2.4) with sample moments is equivalent to replacing

E[L(α)
k (βT )] in (2.10) with its sample mean estimator

l̄k=
1

N

N∑
i=1

L
(α)
k (βTi).

Then, the FPT pdf g(t) can be approximated by

(5.1) g̃n(t)=fα,β(t)

(
1+

n∑
k=1

l̄kb
(α)
k L

(α)
k (βt)

)
with b

(α)
k =

k!Γ(α+1)

Γ(α+1+k)

which is the orthogonal series estimator of g(t). This observation reveals an addi-
tional advantage of using the Laguerre-Gamma approximation. If the FPT mo-
ments/cumulants are not known but a random sample is available, the Laguerre-
Gamma approach offers the opportunity to recover an approximation of the FPT
pdf similarly to the orthogonal series estimators. In such a case, the estimates
carried out by sample moments or by k-statistics [13] replace the occurrences
of FPT moments or cumulants respectively. Under suitable hypotheses on the
true pdf g(t), estimations of the convergence order of g̃n(t) to g(t) are assessable
through the mean integrated squared error [26]. Indeed, by recalling that the
generalized Laguerre polynomial sequence is orthonormal with respect to the
reference density fα,β(t), the mean integrated squared error is [15]

J(n) = E
∫ ∞

0

∣∣∣∣ g̃n(t)−g(t)

fα,β(t)

∣∣∣∣2fα,β(t) dt(5.2)

=
1

N

n∑
k=1

b
(α)
k Var[L

(α)
k (βT )]+

∑
k>n

b
(α)
k E[L(α)

k (βT )]2

with b
(α)
k as in (5.1). Thus increasing the sample size leads to a reduction

of the error J(n) as expected from the estimation of moments with sample
moments. There are various strategies in the literature to choose the degree of
the polynomial approximation n in (5.2), see for example [15]. A discussion on
which strategy is the most effective for the CIR process goes beyond the scope
of this paper.

In all the cases examined, the results estimated by the orthogonal series
method on a collected FPT sample overlap with the Laguerre-Gamma approxi-
mations (3.7), when the stopping criteria addressed in Section 3.1 are used. This
explains why the subsequent section does not include these results. Instead, to
assess the goodness of these approximations, the corresponding histograms have
been used despite their well-known flaws.

5.2. Numerical examples. To analyse the efficiency and the usefulness of the
proposed method, in the following we consider three scenarios:
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Table 1. FPT dispersion indexes cv and ĉh togheter with mean, standard
deviation, skewness and kurtosis for the cases A, B and C.

cv ĉh E[T ]
√

Var[T ] γ1 κ1

A 0.855 0.909 1.16 0.984 1.968 5.9862
B 1.231 0.916 2.991 13.56 2.39 8.118
C 0.765 0.855 3.937 9.084 1.905 5.572

case A: y0=0.2, µ=0.9, S=1, c=0, σ=1.2 and τ =2/3,

case B: y0=0.01, µ=0.005, S=0.02, c=0, σ=0.1 and τ =0.25,

case C: y0=0, µ=3, S=10, c=−10, σ=1.2 and τ =0.2.

Each case results in FPT pdfs and cdfs with different forms and statistical
properties, as shown in Fig. 2, where plots of empirical FPT cdfs are given.

Figure 2. Plots of the empirical (not standardized) FPT cdfs
for cases A (in solid red), B (in dash green), and C (in dashed
purple).

According to Section 5.1, the empirical cdfs have been constructed after using
the Milstein method to simulate a sample of 104 FTPs for each case. In the
following, these three samples are denoted by TA, TB and TC respectively.

For each case, we have computed the FPT dispersion coefficients as given in
Section 3.2. The coefficient of variation is computed using the theoretical FPT
mean and variance. The estimated relative entropy based dispersion coefficient
ĉh is computed with the Vasicek estimator [30] using the samples TA, TB and
TC respectively. The results are given in Table 1.

Figs. 3, 4, 5 and 6 refer to the standardized FPT rv T̃ in (3.15). In Fig. 3
we have plotted the empirical cdfs Ge(t), corrisponding to the samples TA, TB
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εa = 0.01513 εa = 0.06027 εa = 0.02197

a) b) c)

Figure 3. Plots of the approximated G̃n(t) (in solid blue) and of
the empirical cdf (in dashed red) together with the corresponding
absolute error εa. The plots refer: to case A in a) with n=10, α=
0.367 and β=1.17; to case B in b) with n=10, α=−0.34 and β=
0.812; to case C in c) with n=9, α=0.7 and β=1.306. Note that

G̃n(t) is obtained using the stopping criteria (3.13) and corrected
according to Section 4.1 while the empirical cdf is obtained from
the standardized samples TA,TB and TC respectively.

and TC , together with the approximated cdfs Ĝn(t), as obtained using (4.1)
and the corrections described in Section 4.1, for ∆t=10−5, normalized by the
corresponding standard deviations (see Table 1). Moreover each figure displays

the absolute error defined as εa=maxt≥0 |Ĝn(t)−Ge(t)|. Figs. 4, 5 and 6, corre-
spond to cases A, B and C respectively. To emphasize the differences in density
estimations, as discussed in Section 5.1, we have plotted in these figures a classi-
cal KDE3, a histogram4 and the standardized approximated pdf g̃n(t), corrected
according to Section 4.2. Since the three considered instances correspond to
FPT pdfs with different shapes, these comparisons should provide a comprehen-
sive picture of the strengths and weaknesses of the proposed method, which are
discussed in the following.

5.2.1. Case A. Among the three instances taken into consideration, case A has
the lightest tails (see Fig. 2). This produces an accurate approximation, even
with a small value of n. Indeed there is a low absolute error between the empirical
and approximated cdf (see Fig. 3-a)), which is assumed at t=0.134. For the
pdf, the suggested approach combined with the stopping criteria (3.13) yield an
approximation g̃n(t) with n=10, α=0.367 and β=1.17. In this case, g̃n(t) is
negative on a small interval after the mode, as shown in Fig. 1. Therefore, a
suitable correction of g̃n(t) has been implemented, as outlined in Section 4.2.
This corrected approximation is plotted in Fig. 4. The same figure shows also

3The KDE has been generated by the R function density() [42].
4The histogram has been generated by the R function hist() [42].



19

Figure 4. Plot of g̃n(t) (in solid blue) in case A with n=10,
α=0.367 and β=1.17, obtained with the stopping criteria (3.13)
and corrected to ensure positivity as in (4.4), together with a
KDE (in dashed red) and a histogram both computed with the
standardized sample TA.

the estimated pdf obtained with a classical KDE and with a histogram, both
computed on the standardized sample TA.

5.2.2. Case B. In this case, different considerations are required. From Table
1, the FPT rv has a coefficient of variation larger than 1. This makes the ap-
proximation more challenging because the distribution has a significantly heavy
tail (see Fig. 2). The stopping criteria (3.13) yield an approximated FPT pdf
g̃n(t) with n=10, α=−0.34 and β=0.812, not adequately reproducing g̃(t)
when compared with a KDE and a histogram, as shown in Fig. 5 a). This is a
result of the first conservative stopping criterion in (3.13), which was initially
proposed to avoid numerical instability caused by an excessively high order of
approximation. To underline that the behavior of g̃n is significantly influenced
by the numerical precision, Fig. 5-b) shows the remarkably good approximation
obtained when computing g̃n(t) with a very high numerical precision, allowing to
push the recursion up to n=55. The numerical precision has been raised using
the R-package bignum [25]. Still, it is worth to mention that the approximation
g̃n(t) in Fig. 5-a) yields a satisfactory result for the tail of g̃(t). Note that the
absolute error at t=0.042 between empirical and approximated cdf is higher
compared to case A (see Fig. 3-b)). This results from overestimating g̃(t) in the
right-handed neighborhood of the origin, see Fig. 5-b).

5.2.3. Case C. In this case, from Fig. 2 and Table 1, the FPT pdf has a coeffi-
cient of variation less than 1 along with a tail whose heaviness lies between cases
A and B. As in case A, this value of the coefficient of variation should intuitively
ensure a good approximation. Indeed there is a low absolute error between the
empirical and approximated cdfs (see Fig. 3-c)), which is assumed at t=1.365.
For the pdf, the suggested approach yields an approximated FPT pdf g̃n(t) with
n=9, α=0.7 and β=1.306. In this case, g̃n(t) is negative on a small interval
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a)

b)

Figure 5. In a), plot of g̃n(t) (in solid blue) in case B with
n=10, α=−0.34 and β=0.812, obtained with the stopping cri-
teria (3.13) together with a KDE (in dashed red) and a histogram
both computed with the standardized sample TB. In b), a plot
of g̃n(t) (in solid blue) in case B with n=55 and α=−0.34, ob-
tained without any stopping criterion, increasing the numerical
precision.

before the mode and close to the origin (see Fig. 1). Therefore, also in this case,
a suitable correction of g̃n(t) has been implemented, as outlined in Section 4.2.
The resulting approximation is shown in Fig. 6.

6. Application: An acceptance-rejection type algorithm

In this section we propose a possible application of the polynomial FPT
pdf approximation consisting in sampling FPTs using a method similar to the
acceptance-rejection one.

The acceptance-rejection method is a classical technique for sampling from a
distribution that is unknown or difficult to simulate through an inverse transfor-
mation [44]. Under such circumstances, samples are collected from an auxiliary
density if a suitable probability of acceptance is known [6,8].
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Figure 6. Plot of g̃n(t) (in solid blue) for case C with n=9,
α=0.7 and β=1.306, obtained with the stopping criteria (3.13)
and corrected to ensure positivity as in (4.3), together with a
KDE (in dashed red) and a histogram both computed with the
sample TC , after the latter has been standardized.

More in details, let Z be a rv with pdf π. Suppose there exists a constant
M>0 and a pdf q(x) such that

(6.1) q(x)>0 whenever π(x)>0 and
π(x)

q(x)
≤M, ∀x∈ supp(Z).

The acceptance-rejection method exploits the condition in (6.1) to sample from
the support of Z. Therefore, if the FPT pdf g(t) were known and an upper
bound for the right hand side of

(6.2)
g(t)

fα,β(t)
=
∑
k≥0

aαkQ
(α)
k (βt),

were available, this method could have been used to sample from the FPT rv.
However, g(t) is generally unknown. Therefore,

(6.3)
ĝn(t)

fα,β(t)
=pn(t)

can be used in place of (6.2), assuming ĝn(t) as given in (3.7) and non-negative
for all t>0. Unfortunately, since pn(t) is a polynomial for any n>0, the right
hand side of (6.3) is clearly unbounded on (0,∞).

We provide a suitable modification of the standard acceptance-rejection
method with the aim of sampling from the FPT rv using (6.3). In the fol-
lowing, suppose Tn be the rv with non-negative pdf ĝn(t) over (0,∞). The main
steps of the method here proposed can be summarized as follows:

i) find a constant C such that P(T >C)≤ε, for a fixed, small ε>0;
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ii) for t≤C apply the classical acceptance-rejection method using the ratio

(6.4)
ĝTn|C(t)

f̃α,β|C(t)
≤M where M =

P(Tn≤C)

P(Xα,β≤C)
max
t∈[0,C]

pn(t)

and

(6.5) f̃α,β|C(t)=
fα,β(t)

P(Xα,β≤C)
1(0,C](t), ĝTn|C(t)=

ĝn(t)

P(Tn≤C)
1(0,C](t);

iii) for t>C sample from a truncated exponential rv T̄ with pdf

(6.6) gT̄ (t)=
1

E[T ]
exp

(
− t−C

E[T ]

)
1(C,+∞)(t).

The last step takes into account the FPT pdf’s exponential asymptotic behav-
ior for one-dimensional diffusion processes with steady-state distribution [37].
Algorithm 1 outlines the proposed method for constructing an “approximated”
sample S of size N from T .

Algorithm 1: Modified acceptance-rejection method

Set the parameters α, β>0, n>0 and ε>0.
Initialise

Find a constant C such that P(T >C)≤ε.
Set M as in (6.4).
j←1.
S←{}.

While j <N

With probability ε
Generate T̄ from the truncated exponential pdf in (6.6).

j← j+1.

S←S∪Tj .

With probability 1−ε

Generate G from the truncated gamma pdf f̃α,β|C in (6.5).

Generate U ∼U(0,1).

While U >
ĝTn|C(G)

M f̃α,β|C(G)

Generate G from the truncated gamma pdf f̃α,β|C in (6.5).

Generate U ∼U(0,1).

j← j+1.

Tj←G.

S←S∪Tj .

Return S.
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In addition to the user-specified input parameters, the constant C in i) must
be chosen for the algorithm initialization. The so-called Vysochanskij-Petunin
inequality for one-sided tail bounds [41] is used to achieve this goal.

Theorem 6.1 (Vysochanskij-Petunin inequality). If r≥0 and X is a rv with
unimodal density, finite mean µ and finite variance σ2, then

(6.7) P(X−µ≥ r)≤

{
4
9

σ2

σ2+r2
if 3r2≥5σ2,

4
3

σ2

σ2+r2
− 1

3 otherwise.

Since the FPT rv of diffusion processes has a unimodal pdf [46], the
Vysochanskij-Petunin inequality can be applied. Setting 4σ2/[9(σ2+r2)]=ε
in the first inequality (6.7), we recover r= r(ε) as a function of ε and get the
condition ε≤1/6 from 3r(ε)2≥5σ2. Then set C=µ+r(ε) where

(6.8) r(ε)=


√

4σ2

9ε −σ2 if ε≤1/6,√
4σ2

1+3ε−σ2 if 1/6<ε≤1.

Remark 6.2. From (6.8), C may become arbitrarily large by decreasing ε.
However, as C increases, so does M , increasing the chance of rejection and
subsequently the required number of iterations.

The quality of the outcome of Algorithm 1 relies on the approximation ĝn(t)
and the selection of an exponential distribution for t>C.

A theoretical justification for Algorithm 1 is provided in the following. We
first calculate the cdf of the rv Y, whose observations are generated by Algorithm
1, and then prove that such a distribution turns out to be a good approximation
of the FPT cdf.

Lemma 6.3. If Y denotes the rv sampled at the end of each cycle of Algorithm
1, then

P(Y ≤ t)=ε

[
1−exp

(
− t−C

E(T )

)]
+(1−ε)P(Tn≤ t |Tn≤C), t>0

where C,n and ε are given in Algorithm 1, and Tn is the rv with pdf ĝn(t).

Proof. According to Algorithm 1, we have

(6.9) P(Y ≤ t)=P(X=1)P(T̃ ≤ t)+P(X=0)P(G≤ t |Gaccepted)

where X is a Bernoulli rv of parameter ε∈ (0,1) independent from the rv T̃ , with
truncated exponential pdf gT̃(t) in (6.6), and the rv G with truncated gamma

pdf f̃α,β|C(t) in (6.5). Thus from (6.6) and (6.9), we have

(6.10) P(Y ≤ t)=ε

[
1−exp

(
− t−C

E(T )

)]
+(1−ε)P(G≤ t |Gaccepted).

For the latter term in (6.10) observe that

(6.11) P(G≤ t |G accepted)=M P(G≤ t,G accepted)
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since P(G accepted)=1/M with M given in (6.4). Moreover

P(G≤ t, G accepted)=

∫ ∞

0
P(G≤ t, G accepted |G=x) f̃α,β|C(x) dx

=

∫ ∞

0
P(G≤ t |G=x)P(G accepted |G=x) f̃α,β|C(x) dx(6.12)

since (G≤ t) and (G accepted) are conditionally independent events. Observe
that P(G≤ t |G=x)=1x≤t and

P(G accepted |G=x)=P

(
U ≤ ĝTn|C(G)

M f̃α,β|C(G)

∣∣∣∣G=x

)

=P

(
U ≤ ĝTn|C(x)

M f̃α,β|C(x)

)
=

ĝTn|C(x)

M f̃α,β|C(x)
(6.13)

since U is a rv with uniform distribution over (0,1). Plugging (6.13) in (6.12)
and the resulting integral in (6.11), we get

P(G≤ t |G accepted)=M

∫ ∞

0
1x≤t

ĝTn|C(x)

M f̃α,β|C(x)
f̃α,β|C(x)dx=

∫ t

0
ĝTn|C(x)dx,

and the result follows from (6.5). □

The following is a technical lemma necessary for the subsequent proposition.
The lemma gives an upper bound of the error in approximating the FPT pdf
g(t) with the Laguerre-Gamma expansion ĝn(t) in (3.7) for t≤C.

Lemma 6.4. Under the same hypotheses as Lemma 6.3, we have

∣∣∣P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)
∣∣∣≤ 1

P(Tn≤C)

 ∑
k≥n+1

(a
(α)
k )2

 1
2(
1+

1

P(T ≤C)

)
with a

(α)
k given in (3.1).

Proof. If gT |C(t)=1(0,C](t)g(t)/P(T ≤C) is the truncated FPT pdf for t≤C, and
ĝTn|C(t) is given in (6.5), we have∣∣∣ĝTn|C(t)−gT |C(t)

∣∣∣= ∣∣∣∣ ĝn(t)

P(Tn≤C)
− g(t)

P(T ≤C)

∣∣∣∣
≤ 1

P(Tn≤C)
|ĝn(t)−g(t)|+g(t)

∣∣∣∣ 1

P(Tn≤C)
− 1

P(T ≤C)

∣∣∣∣.
Using the previous inequality, the difference between the truncated FPT cdf and
its approximation by means of the Laguerre-Gamma expansion may be bounded
as follows:

|P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)|=
∣∣∣∣∫ t

0
[ĝTn|C(s)−gT |C(s)]ds

∣∣∣∣
≤
∫ ∞

0
|ĝTn|C(t)−gT |C(t)]|dt≤

1

P(Tn≤C)

∫ ∞

0

|ĝn(s)−g(s)|
φα,β(s)

φα,β(s)ds
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+

∣∣∣∣ 1

P(Tn≤C)
− 1

P(T ≤C)

∣∣∣∣∫ ∞

0
g(s)ds︸ ︷︷ ︸
=1

=
1

P(Tn≤C)

∥∥∥∥ ĝn−g

fα,β

∥∥∥∥
L1(ν)

+

∣∣∣∣ 1

P(Tn≤C)
− 1

P(T ≤C)

∣∣∣∣(6.14)

where L1(ν) is the Hilbert space of the integrable functions with respect to the
measure ν having density fα,β(t). Observe that

(6.15)

∥∥∥∥ ĝn−g

fα,β

∥∥∥∥
L1(ν)

≤
∥∥∥∥ ĝn−g

fα,β

∥∥∥∥
L2(ν)

=

 ∑
k≥n+1

(a
(α)
k )2

1/2

where the last equality follows from (3.2). Finally, since

(6.16)

∣∣∣∣ 1

P(Tn≤C)
− 1

P(T ≤C)

∣∣∣∣≤ 1

P(Tn≤C)

(
1+

P(Tn≤C)

P(T ≤C)

)
with P(Tn≤C)≤1, plugging (6.16) and (6.15) in (6.14) the result follows. □

The following proposition gives the theoretical justification of the proposed
acceptance-rejection Algorithm 1.

Proposition 6.5. Under the same hypotheses as Lemma 6.3, for every δ>0,
there exist a finite constant Cδ and an integer nδ ∈N such that, for n>nδ and
C>Cδ in Algorithm 1, we have

|P(Y ≤ t)−P(T ≤ t)|<δ, t>0.

Proof. Fix δ, n>0 and ε>0 and let C>0 be the corresponding quantity cal-
culated in Algorithm 1. By plugging P(T ≤ t)=P(T ≤C)P(T ≤ t|T ≤C)+P(T >
C)P(T ≤ t|T >C) in |P(Y ≤ t)−P(T ≤ t)| and using Lemma 6.3, the following
bound can be recovered:

|P(Y ≤ t)−P(T ≤ t)|≤P1+P2

where

P1 := |εP(T̄ ≤ t | T̄ >C)−P(T >C)P(T ≤ t |T >C)|
P2 := |(1−ε)P(Tn≤ t |Tn≤C)−P(T ≤C)P(T ≤ t |T ≤C)|,

T̄ is the truncated exponential rv with pdf in (6.6) and Tn is the rv with pdf ĝn(t).
Now, let us bound P1. Adding and subtracting the quantity εP(T ≤ t |T >C) in
P1, we get

P1≤P1,1+P1,2 with

{
P1,1 := ε|P(T̄ ≤ t | T̄ >C)−P(T ≤ t |T >C)|,
P1,2 := P(T ≤ t |T >C)|ε−P(T >C)|.

Since P(T >C)≤ε, thanks to Remark 6.2 and to the exponential behaviour of
the tails of the FPT pdf, it is always possible to find Cδ,1 (big enough) such

that P1,1<
δ
4 and P1,2<

δ
4 . Let us apply the same strategy to P2. Adding and

subtracting the quantity (1−ε)P(T ≤ t |T ≤C) in P1, we get

P2≤P2,1+P2,2 with

{
P2,1 := (1−ε)|P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)|,
P2,2 := P(T ≤ t |T ≤C)|ε−P(T >C)|.
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From Lemma 6.4, the quantity P2,1 can be made sufficiently small for a suitable
n, since the remainder (3.2) goes to zero as n increases. Therefore, thanks to
Remark 6.2 and the exponential behaviour of the FPT pdf tail, we can always
find Cδ,2 and nδ such that P2,1<

δ
4 and P2,2<

δ
4 . Setting Cδ=max(Cδ,1, Cδ,2)

concludes the proof. □

Remark 6.6. Note that although Proposition 6.5 guarantees that we can always
choose a constant C and an order n such that the cdf of Y sampled in each
cycle of Algorithm 1 is sufficiently close to the cdf of T , as C increases, M =
maxt∈[0,C]pn(t) will also increase or at most remain constant. However, the
probability of acceptance in Algorithm 1 decreases if M increases, as we have
already noted in Remark 6.2. Therefore, there is a trade-off between increasing
C, to achieve better accuracy, and the running time of the proposed algorithm.

The ability of Algorithm 1 to generate a satisfactory “approximated” sample
from the FPT rv is shown in Fig. 7. In the latter we consider case A with
the standardization procedure outlined in Section 3.2. Hence in (6.5), instead of

ĝn(t), we use the approximation g̃n(t) of the pdf g̃(t) corresponding to T̃ =T/σT ,
where σT is the standard deviation of T .

C

rejection sampling

ĝTn|C(t)

Mf̃α,β|C(t)

rejected

accepted

sample from truncated exp

Figure 7. Plot of rejected draws (in red) and accepted draws
(in blue) for the acceptance-rejection part of Algorithm 1 with
N =300, ϵ=0.05 and n=10 applied to case A, together with

the corresponding Mf̃α,β|C(t) and g̃Tn|C(t)=
g̃n(t)

P(Tn≤C)1(0,C](t) as

in (6.5), with C=3.97, α=0.367 and β=1.17. On the same plot
an histogram computed on the sample of size N =300 arising
from Algorithm 1 with the aforementioned parameters is shown.
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7. Conclusions

In this paper we develop a method for approximating the FPT pdf and cdf of a
CIR process that relies on a series expansion involving the generalized Laguerre
polynomials and the gamma pdf. The significant improvements of the method
proposed recently in [11] follow two main directions. The first one is theoretical:
we detail a study of the approximation error along with considerations on the
choice of the reference pdf parameters as well as some sufficient conditions for
the non-negativity of the approximant in a right hand side of the origin and
in the tail. The second direction is more of a numerical nature. We propose
computational strategies to overcome some numerical issues like the possible
negativity of the resulting function, a feature that is undesirable in the approx-
imation of a pdf. Methods of standardization according to considerations on
dispersion measures, stopping criteria and iterative mechanisms for the choice
of the best order of truncation of the series are investigated and applied to three
main classes of target pdfs here considered. Moreover, we investigate the per-
formance of the approximation of the FPT cdf that constitutes a novelty in this
framework. The developed iterative procedure is of general nature and can be
applied both starting from the model or from FPT sample data. The method,
in fact, works well both using theoretical cumulants or their values estimated
from the data. The discussion can be easily extended to the case of other diffu-
sion processes as long as it is possible to calculate their FPT moments and the
reference pdfs are moment determined [50].

As a side result an acceptance-rejection-like method, that makes use of the
approximation, is proposed. It allows the generation of FPT data, although its
distribution is unknown. Its usefulness is increased by the lack of existing exact
methods for simulating the sample paths of the CIR process and consequently its
FPTs. Furthermore, note that the suggested acceptance-rejection like procedure
could be directly extended to a wider class of pdfs (not necessarily of FPT rv)
which, although unknown, may admit a series expansion of the type discussed
in this paper.

8. Appendix

The logarithmic (partition) polynomials {Pk} are [7]

Pk (x1,. ..,xk)=
k∑

j=1

(−1)j−1(j−1)!Bk,j (x1,. ..,xk−j+1)

where {Bk,j} are the partial exponential Bell polynomials. For a fixed positive
integer k and j=1,. ..,k, the j-th partial exponential Bell polynomial in the
variables x1,x2,. ..,xk−j+1 is an homogeneous polynomial of degree j given by

(8.1) Bk,j (x1,. ..,xk−j+1)=
∑ k!

λ1!λ2!·· ·λk−j+1!

k−j+1∏
i=1

(xi
i!

)λi
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where the sum is taken over all sequences λ1,λ2,. ..,λk−j+1 of non-negative in-
tegers such that

λ1+2λ2+ ·· ·+(k−j+1)λk−j+1=k, λ1+λ2+ ·· ·+λk−j+1= j.

The complete Bell (exponential) polynomials {Yk} are [7]

Yk (x1,. ..,xk)=

k∑
j=1

Bk,j (x1,. ..,xk−j+1), k≥1

where {Bk,j} are the partial exponential Bell polynomials (8.1) and Y0=1.
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[22] V. Giorno, P. Lánskỳ, A. Nobile, and L. Ricciardi. Diffusion approximation and first-
passage-time problem for a model neuron: III. A birth-and-death process approach. Bio-
logical cybernetics, 58:387–404, 1988. 1

[23] V. Giorno and A. G. Nobile. On the first-passage time problem for a Feller-type diffusion
process. Mathematics, 9(19):2470, 2021. 1
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Via Carlo Alberto 10, 10123 Torino, Italy

Email address: tommaso.martini@unito.it


	1.  Introduction 
	2. The CIR process and the FPT problem
	2.1. FPT cumulants and moments
	2.2. The FPT pdf and cdf

	3.  The FPT approximation
	3.1. On the order n of the approximation
	3.2. On the choice of  and 

	4. Computational issues
	4.1. On the monotonicity of n
	4.2. On the positivity of n

	5.  Numerical results 
	5.1. Comparisons with alternative approximation methods 
	5.2. Numerical examples

	6. Application: An acceptance-rejection type algorithm
	7. Conclusions
	8. Appendix
	9. Acknowledgements
	References

