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The State Change Per Cycle Map:
a novel system-theoretic analysis
tool for periodically-driven
ReRAM cells

A. Ascoli1*, N. Schmitt1, I. Messaris1, A. S. Demirkol1, R. Tetzlaff1

and L. O. Chua2

1Institute of Circuits and Systems, Faculty of Electrical and Computer Engineering, Technische Universität
Dresden, Dresden, Germany, 2Department of Electrical Engineering and Computer Sciences, University of
California, Berlekey, Berkeley, CA, United States

Memristive devices are the subject of extensive studies nowadays. While the
Dynamic Route Map is a powerful tool for analyzing the response of first-order
memristors under DC stimuli, the development of an equivalent tool for
investigating the response of these devices to AC stimuli is still an open
question. Recently, Pershin and Slipko introduced a graphic method, which we
name Time Average State Dynamic Route (TA-SDR), applicable to study first-order
memristors subject to periodic rectangular pulse train-based stimuli. In this paper
we introduce an alternative investigation tool, referred to as State Change Per
Cycle Map (SCPCM), which is applicable in these very same scenarios. The novel
analysis technique, inspired by the work of the French mathematician Henri
Poincaré, reduces the investigation of a first-order non-autonomous
continuous-time system to a simpler study of a first-order discrete-time
map. A State Change Per Cycle Map defines precisely how the stimulus
modulates each of the admissible device memory states over one input cycle.
It is derivable either by means of numerical simulations, where a model for the
ReRAM cell is available, or experimentally, in the case where the device memory
state is accessible. While the predictive capability of a TA-SDR is limited to those
case studies, where the AC periodic voltage signal applied across the device
induces negligible changes in the respective memory state over each cycle, the
conclusions drawn by analyzing a SCPCM have general validity, irrespective of the
properties of the stimulus. The advantages of the novel analysis method for
periodically driven ReRAM cells over the classical TA-SDR tool are highlighted
through a number of case studies, some of which reveal the interesting capability
of the ReRAM cell to display multiple oscillatory operating modes upon periodic
stimulation via trains with a suitable number of SET and RESET pulses per period.

KEYWORDS

ReRAM, non-volatility, fading memory, local fading memory, multi-stability, State Change
Per Cycle Map, Poincaré Map

1 Introduction

Over the past few years, in view of a probable and inevitable impending end of theMoore
era, the scientific community has been focusing with ever-growing fervor on the exploration
of novel device and data processing concepts to enable sustainable progress in integrated
circuit (IC) design in the years to come, especially when shrinking CMOS transistor
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dimensions shall no longer represent a viable option. Among the
various alternatives, disruptive two-terminal nano-devices, generally
called memory-resistors, or memristors (Chua, 2018) for short, in
which the resistance depends upon at least one state variable, have
caught the eye of the international scientific community for their
potential to enable a revolutionary paradigm shift in the operating
principles of computing machines (Zhang et al., 2020), which,
mimicking the behavior of energy-efficient biological neural
networks, may potentially outperform state-of-the-art data
processing structures that suffer from the well-known limitations
of classical von-Neumann architecture. With their unique capability
to combine multiple functionalities within a single nanoscale
physical volume, non-volatile memristors may be alternatively
used to perform a calculation, including the measurement of a
signal under monitoring, or to store data, which allows the hardware
implementation of innovative area-, time-, and energy-efficient
information management paradigms for Artificial Intelligence
(AI) applications, e.g., in-memory-sensing and in-memory-
computing, but cannot be run nowadays on conventional
computing structures, which are fabricated purely using
Complementary Metal Oxide Semiconductor (CMOS) technology.

Memristors from the non-volatile class (Ielmini and Waser,
2016) may be programmed at significantly high rates as many times
as state-of-the-art high-performance data storage units, consuming
very little power while switching between distinct resistance levels
and retaining information encoded in some state, under zero input,
for a very long time; as required in practical applications nowadays.
Furthermore, while densely packed across crossbar arrays, stacked
on top of standard CMOS circuitry by exploiting the natural
availability of metal-insulator-metal layers along the third
dimension in IC fabrication processes, they allow efficient use of
the available area, endowing the resulting hybrid hardware
platforms with add-on capabilities as compared to conventional
technical systems. For example, non-volatile memristors enable the
processing elements of standard cellular dynamic arrays to perform
memory operations without the need for additional data storage
units (Ascoli et al., 2021b).Interestingly, memristors may do much
more. Certain resistance switching memories (Ascoli et al., 2021a),
unable to store data, are attracting an increasing interest in both
academia and industry for their extraordinary capability to act as
sources of infinitesimal energy under suitable polarization,
analogous to the ion channels in biological neuronal membranes.
The adoption of these volatile memristor realizations in circuit and
system design opens the opportunity to synthesize Cellular Neural

Networks (CNNs) (Ascoli et al., 2022b; Ascoli et al., 2022c),
mimicking closely biological systems, which may enable a better
understanding of their complex bifurcation phenomena, as well as
the design of ground-breaking computing machines, including
spike-based computing Cellular Automata (CAs) (Pickett and
Williams, 2013), which, operating according to bio-inspired
principles, promise to approach the information management
efficiency of the human brain. Given the potential of memristors
for the electronics of the future, endowing the circuit designer’s
toolkit with predictive yet simple models of non-volatile and volatile
memristors, while facilitating the accessibility of the general
community to their physical realizations, which would allow their
usability in academic lab environments, is crucially necessary for
advancement of the knowledge base, which would ultimately
convince industry partners to invest massively in memristive
nanotechnologies.

In parallel to modelling activities, another fundamental area of
research regards the development of system-theoretic analysis
techniques for exploration of the complex dynamics of these
intrinsically nonlinear nano-devices. While the Dynamic Route
Map1 (DRM) (Chua, 2018) is a reference graphic tool for
studying the response of first-order memristors to DC
excitations, an equivalent methodology for investigating its
behavior under AC stimuli is not yet available.

In (Pershin and Slipko, 2019a), Pershin and Slipko studied the
time evolution of the mean value of the memory state of a non-
volatile Resistive Random Access Memory (ReRAM) cell (Yang
et al., 2010), manufactured at Hewlett Packard (HP) Labs, under
appropriately weak AC periodic rectangular pulse-based
stimulation, by applying a time averaging-based approximation
(Strogatz, 2015) of its mathematical description (Strachan et al.,
2013). The application of this method—see also (Pershin and Slipko,
2019b) for more details—resulted in the introduction of a powerful
graphic tool, enabling to infer that the level around which the
memory state, initiated from a predefined initial condition, would
be found to oscillate asymptotically. Here, we coin the name Time
Average State Dynamic Route (TA-SDR) for such a precious analysis
tool. The time averaging methodology has been recently adopted in
(Messaris et al., 2023) to study the response of the aforementioned
ReRAM cell to high-frequency AC periodic stimuli, which resulted
in the introduction of a new strategy for programming its memory
content.

In this paper, we introduce a new valuable graphic tool, which
we name State Change Per Cycle Map, SCPCM for short, inspired by
the Poincaré Map technique (Ascoli et al., 2005), enabling the
exploration of the response of a second-order continuous-time
system, corresponding to a resistance switching memory cell with

TABLE 1 Values assigned to the parameters in the Strachan DAE set (Strachan
et al., 2013) so as to match the static and dynamic properties of a Ta2O5−x

resistance switching memory from HP Labs (Ascoli et al., 2016c).

A/s−1 σRESET/V xRESET β/(A−1 ·V−1)

10–10 1.3 · 10–2 4 · 10–1 500

B/s−1 σSET/V xSET

1 · 10–4 4.5 · 10–1 6 · 10–2

σp/(A−1 ·V−1) Gm/Ω−1 a/Ω−1 b/V−1/2

4 · 10–5 2.5 · 10–2 7.2 · 10–6 4.7

1 Referring, without loss of generality, to a voltage-controlled first-order
memristor, with Differential Algebraic Equation (DAE) set (1)–(2), its DRM is
a family of State Dynamic Routes (SDRs), each of which visualizes the time
derivative _x of the device state x versus the device state x itself under a
specific DC voltage stimulus v = V (Chua, 2018). When lying in the upper
(lower) half plane, a SDR is endowed with arrows, pointing eastward
(westward), which reveal the progressive increase (decrease) in the
memory state under a given bias input. At each state value x � �x, where
a SDR crosses the horizontal axis with negative (positive) slope, the
Ordinary Differential Equation (ODE) 1) admits an asymptotically stable
(unstable) equilibrium for v = V.
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scalar state variables under periodic forcing, through the simpler
study of a one-dimensional discrete-time system. The derivation of a
SCPCM calls for the acquirement of a data series. Each recording,
which requires the run of an experiment, in the case where
accessibility to the device memory state is possible, or a
numerical simulation where a reliable model for the ReRAM cell
is available, quantitatively defines the change in the device memory
state from a prescribed initial condition over one input cycle.
Spacing the initial conditions uniformly across the admissible
range and then plotting each of the recordings versus the
respective initial condition, a map is finally obtained by means of
a suitable interpolation method. Remarkably, each fixed point of this
one-dimensional discrete-time system, i.e., the abscissa of any
crossing of the graph of the SCPCM with the horizontal axis,
indicating an initial condition, which the stimulus maps onto
itself from cycle to cycle, corresponds to a possible oscillatory
mode for the periodically driven ReRAM cell. The oscillatory
solution for the device memory state is then asymptotically stable
(unstable) if the slope of the graph of the SCPCM is found to be
negative (positive) at the fixed point under focus.

While the predictive capability of a TA-SDR is restricted to those
case studies in which the amplitude and frequency of the input signal
stimulating the ReRAM cell are set in such a way to induce small
changes in its memory state over each cycle2, a SCPCM has general
applicability, irrespective of the characteristics of the excitation
signal. This paper introduces the fundamentals of the novel

system-theoretic method for the investigation of first-order
ReRAM cells under periodic excitation, highlighting its
advantages over the standard TA-SDR graphic tool through a
number of illustrative examples, some of which unveil the
interesting capability of the ReRAM cell to exhibit multiple
steady-state oscillatory behaviors under the application of pulse
trains featuring a suitable number of pulses per cycle between its
terminals.

With regard to the structure of the manuscript, a brief review
of the Strachan model, capturing the nonlinear dynamics of the
ReRAM cell from HP Labs, and constituting the object of the
investigations in this research study, is provided in section 2. The
novel system-theoretic method for exploring the response of a
first-order memristor to periodic excitations is presented in
section 3, which begins with a short introduction to the
classical technique introduced by Pershin and Slipko for the
same purpose, revolving around a time averaging-based
approximation of the Strachan model. Section 4 derives the
SCPCM and the TA-SDR for a number of ReRAM cell
excitation scenarios, comparing their predictions, which
clearly reveals the superior capability of the proposed analysis
tool. Conclusions are finally drafted in section 5.

2 Memristor model

The memristor model under study was first developed by
Strachan et al. (Strachan et al., 2013) in 2013 to capture the
nonlinear dynamics of a ReRAM cell (Yang et al., 2010)
manufactured at HP Labs and composed of a nearly
stoichiometric tantalum oxide Ta2O5−x thin film sandwiched
between two metal electrodes, one made of tantalum (Ta) and
one of platinum (Pt). Strachan modelled this nano-device as a

FIGURE 1
Circuit set-up (A) for the exploration of the response of the memristor M from HP Labs to AC periodic stimuli. (B) A rectangular pulse train-based
voltage stimulus with P positive and N negative rectangular pulses per period. The characterization of an AC periodic input from this class calls for the
specification of the heights andwidths of the positive pulses, i.e., the collection of pairs (V+,i, τ+,i) for i ∈{1,2,. . . , P}, as well as of the heights andwidths of the
negative pulses, i.e., the collection of pairs (V−,j, τ−,j) for j ∈{1,2,. . . , N}. (C) Rectangular pulse train excitation signal, featuring one SET (p =1) and one
RESET (N =1) pulse per cycle (Q =2), adapted from the stimulus employed by Pershin and Slipko by simply excluding from each period those intervals
where no signal was applied across the ReRAM cell in the interesting study reported in (Pershin and Slipko, 2019a). A stimulus of this kind is identifiable via
the tuple (V+, τ+, V−, τ−). In both plots (B) and (C), t0 indicates an arbitrary time instant at which the voltage stimulus vS is first applied across the
nanostructure.

2 The interested reader is invited to consult (Messaris et al., 2023) for more
details on the constraints to be enforced on the ReRAM stimulus for the
application of the time averaging method to its mathematical description
to deliver reliable predictions for the time evolution of the mean value of
the respective memory state from a given initial condition.
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first-order voltage-controlled extended memristor (Chua, 2018)
with the DAE set.

_x � g x, v( ), and (1)
i � G x, v( ) · v, (2)

where a dot over a variable denotes its time differentiation, while v
(i) stands for the voltage (current) falling between (flowing through)
its terminals, whereas x represents the memory state variable, which
is physically associated to the most conductive volume fraction of
the Ta2O5−x film, being tunable, by means of stimulation, across a
limited, closed range referred to as its existence domain D and
defined as [xmin, xmax], with xmin = 0, and xmax = 1. The ODE 1)
governs the time course of the memory state x, when a voltage drops
across the memristor3. It is also referred to as the state equation (SE).
Its right hand side, referred to as the state evolution function, here
reads

g x, v( ) � gSET x, v( ) · step v( ) + gRESET x, v( ) · step −v( ). (3)
Here, the adoption of the Heaviside function step (·) allows to capture
the asymmetry between the SET and RESET resistance switching
dynamics. In fact, with p = i · v denoting the instantaneous power
dissipated in the memristor while it is subject to some excitation, the
state evolution function g (x, v) reduces either to the form

gSET x, v( ) � B · sinh v

σSET
( ) · exp − x2

x2
SET

( ) · exp p

σp
( ), (4)

during a SET transition, i.e., for v > 0V, or to the form

gRESET x, v( ) � A · sinh v

σRESET
( ) · exp −x

2
RESET

x2
( ) · exp 1

1 + β · p( ),
(5)

during a RESET transition4, i.e., for v < 0V. Eq. 2 models the
electronic transport across the nano-structure. Here G (x, v),
standing for the memductance function, is expressed by

G x, v( ) � Gm · x + a · exp b · ��|v|√( ) · 1 − x( ). (6)

The values of the parameters in Strachan model Equations 6 and 4,
and 5 (Strachan et al., 2013), as fitted to the Ta2O5−x memristor
nano-device under focus here (Ascoli et al., 2016c), are listed in
Table 1.

Back in 2016, powerful circuit- and system-theoretic methods
applied to the Strachan model enabled to uncover a previously
unknown dynamical phenomenon (Ascoli et al., 2016c) emerging in
the nano-structure under both DC and AC periodic excitations,
known5 as Fading Memory (Boyd and Chua, 1985), and explored

FIGURE 2
Visualization of exemplary graphs, enabling studying the response of the time average state of the ReRAM cell to the application of a specific AC
periodic voltage stimulus belonging to the class illustrated in Figure 1B between its terminals, as shown in plot (a) of the same figure. Here, xmin =0 and
xmax =1, in agreementwith the Strachanmemristormodel. (A) Loci of the SET _�x|SET (blue trace) and RESET _�x|RESET (red trace) TA-SE components versus the
time average state �x. (B) Loci of the moduli of the SET | _�x|SET | (blue trace) and RESET | _�x|RESET | (red trace) TA-SE components versus the time average
state �x. In both plots (A) and (B), arrows along the blue (red) trace reveal how the physical mechanisms, which underlie the SET (RESET) resistance
switching process, and set in as a positive (negative) pulse voltage falls of height Vk across the ReRAM cell, induce a progressive increase (decrease) in the
time average state �x of the device over its temporal duration of length τk (refer to Eq. 9 for the significance of Vk and τk). (C) Locus of the right hand side of
the TA-SE (10) versus the time average state, denoting the TA-SDR associated with the stimulus under focus. The time average state evolves fromwest to
east (from east to west) on the upper (lower) half of the _�x versus �x plane. In this illustrative case study, the TA-SE (10) is assumed to admit two locally stable
equilibria, specifically �xl and �xr (an unstable equilibrium, namely, �xc), as indicated by the appearance of two filled circles (of a hollow circle) at their
locations (at its location), in both plots (B) and (C). This is the simplest formof local fadingmemory (Ascoli et al., 2016a; Ascoli et al., 2016b), also referred to
as bi-stability (Ascoli et al., 2022a). It has been recently discovered in the periodically driven HP Ta2O5−x nano-device through a bifurcation analysis
(Pershin and Slipko, 2019a) of the Strachanmodel (see also case study 2 in section 4.1). As anticipated earlier, the ReRAM cell may display a higher number
of possible steady-state oscillatory operatingmodes when driven by a pulse train voltage stimulus composed of more than 2 pulses per cycle, as revealed
in case study 3 from section 4.1.

3 If v = 0, the memory state x of an analogue non-volatile memristor such as
the one under consideration in this study, is motionless.

4 The state evolution function g(x, v) in Eq. 1 is said to be sign-invariant
(Chua, 2018), since it features the same sign as the voltage, falling across
the memristor, irrespective of the state variable value.

5 A system is said to have Fading Memory on a given input if it exhibits a
unique asymptotic behavior, irrespective of the initial condition, as it is
exposed to its stimulation. In case, on the other hand, a forced systemmay
feature one of a set of distinct operating modes, at the end of the transient
phase, depending upon the initial state, it is said to have Local Fading
Memory on the respective stimulus. Input-induced fading memory effects
were first discovered in a ReRAM cell from HP Labs back in 2016. As
revealed more recently (Ascoli et al., 2023), under suitable stimulation the
very same non-volatile memristor may experience local fading memory,
endowing the ReRAM cell with an interesting multi-modal operating
capability, which may be leveraged for application purposes.
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extensively in the literature since then, e.g., in (Messaris et al., 2023)
and, earlier, in (Ascoli et al., 2018) as well as in (Ascoli et al., 2022a).

3 Exploring the nonlinear dynamics of
periodically-driven memristors

While an accurate graphic tool, namely, the DRM (Chua, 2018),
was conceptualized for studying the response of first-order
memristors to DC inputs, there is no homologous method for
exploring the nonlinear behavior of these devices under AC
stimuli. Under the assumption that, over each T-long cycle, a
voltage signal applied across the aforementioned ReRAM cell
(Yang et al., 2010) from HP Labs is null for most of the time,
except within two brief temporal intervals of duration τ+ and τ−,
where it respectively consists of a rectangular pulse of positive SET
and a negative RESET amplitude, in turn V+ and V−, a graphic tool
was recently introduced in (Pershin and Slipko, 2019a) for
predicting the mean value of the oscillatory waveform of the
device memory state for any given initial condition, on the basis
of the Strachan model reviewed in section 2. We refer to such a tool
as Time Average State Dynamic Route (TA-SDR). Unless otherwise
stated, the investigations described in this manuscript assume AC
periodic stimuli, which are generalized versions of the rectangular

pulse train-based inputs employed in the study (Pershin and Slipko,
2019a) from Pershin and Slipko. First of all, given that the memristor
is insensitive to zero input signals, each excitation waveform from
the class considered in our research is never let vanish. Moreover,
within each cycle, an AC periodic stimulus is here composed of P
SET positive and N RESET negative rectangular pulses, as
schematically depicted in Figure 1B. The total number of pulses
in the input waveform per period isQ = P +N. The ith positive pulse
features a height V+,i and a width τ+,i (i ∈ {1, 2, . . . , P}). The jth
negative pulse features a height V−,j and a width τ−,j (j ∈ {1, 2, . . . ,
N}). The period of the stimulus is then T = τ+,1 + τ+,2 + / + τ+,P +
τ−,1 + τ−,2 + / + τ−,N.

Consequently, any stimulus of this kind can be simply described
by the associated parameter tuple (V+,1, τ+,1, . . . , V+,P, τ+,P, V−,1, τ−,1,
. . . , V−,N, τ−,N). Crafting the pulse train with just two pulses per
cycle, as in the study from Pershin and Slipko, the memory state of
the ReRAM cell across which it is applied may be found to undergo
one of at most two different locally stable limit-cycle oscillations
after transients decay to zero (Pershin and Slipko, 2019a), depending
upon its initial condition. On the other hand, increasingQ past 2, the
periodically driven memristor may be endowed with a number of
distinct oscillatory modes progressively larger than 2 at steady state,
as revealed later on in section 4. Let us now briefly review the
standard analysis tool proposed by Pershin and Slipko for

FIGURE 3
(A) Magenta curve: exemplary illustration of a Poincaré map x(k + 1) � P(x(k)). Black line: graph of the identity map x(k + 1) � PI(x(k)). The
intersections between the curve and the diagonal line identify a triplet of fixed points, specifically {xl′, xc*, xr′}, for the one-dimensional discrete-time
system. Four cobweb trajectories (Ascoli et al., 2005) are also depicted here to determine the sequence of return points from each of four distinct initial
conditions (see the red, blue, green, and violet traces). Inspecting the zigzag trajectories, it is clear that in this pedagogical example, the fixed points xl′
and xr′ are asymptotically stable. Their basins of attraction are separated by the unstable fixed point xc*. The location of each of the two stable fixed points
(of the unstable fixed point) is indicated bymeans of a filled (hollow) circle, in line with the typical convention in the Theory of Nonlinear Dynamics (Pershin
and Slipko, 2019a). (B) Magenta curve: graph of the SCPCM corresponding to the x (k +1) versus x(k) locus from plot (a). It is constructed by plotting Δx
(k +1; k), as formulated in equation 15, against x(k). A sequence of return points x (1), x (2),. . .of the Poincaré map from a given initial condition x (0) may be
derived easily from the graph of the SCPCM. In fact, for any value of k ∈ N≥0, x (k +1) may be obtained by adding the ordinate Δx (k +1; k) of the point of
intersection between the graph of the SCPCM and a vertical line through the point (x(k),0). This geometric method is applied here only for one of the four
initial conditions from plot (a) so as to avoid clutter. Despite the SCPCM representing a discrete-time system, arrows are superimposed upon the
respective curve to indicate the direction along which the return points of the associated Poincarémap progress with increments in the iteration number.
The intersections between the graph of the SCPCM and the horizontal axis identify all the admissible fixed points of the associated Poincaré map. A zero
crossing of the locus of Δx (k +1; k) versus x(k) indicates an asymptotically stable (an unstable) fixed point for the Poincaré map if the slope of the graph of
the SCPCM is negative (positive) at its location. The direction of the arrows appearing along this curve in the neighborhood of the zero crossing are also
indicative of its stability properties. In both plots (a) and (b), xmin =0 and xmax =1, while a filled (hollow) circle marker is employed to mark a stable (an
unstable) fixed point of the Poincaré map under focus.

Frontiers in Electronic Materials frontiersin.org05

Ascoli et al. 10.3389/femat.2023.1228899

https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2023.1228899


FIGURE 4
Case study 4.1.1 on the input-induced ReRAM cell mono-stability: (A) Voltage waveform generated by the AC periodic source vS across the
memristor (see Figure 1A). With reference to the stimulus parameters defined in Figure 1C, the first SET and second RESET rectangular pulses in the input
pulse doublet within each cycle feature height-width pairs (V+, τ+)=(0.46V,1 µs) and (V−, τ−)=(−0.4V,1 µs), respectively. Here, the input period T is equal to
2μs and t = t0=0s. (B) Blue (Red) trace: graph of the SET (RESET) TA-SE component versus the time average state. As indicated by the arrows on the
first (latter) trace, the SET (RESET) dynamics, active as the positive (negative) pulse stimulates the device, determine a progressive increase (decrease) in
the time average state. The TA-SE (10), tailored to this input, features a single equilibrium at �xeq � 0.3084. The SET (RESET) TA-SE component is higher
than the RESET (SET) TA-SE component to the left (right) of this equilibrium, revealing its stability, as indicated by the filled circle appearing at the crossing
between the blue and the red traces, which is standard in the Theory of Nonlinear Dynamics (Strogatz, 2015). (C) Blue trace: TA-SDR associated with the
stimulus in plot (a). Arrows superimposed on the blue trace point to the east (west) on the upper (lower) half plane, indicating a progressive increase
(decrease) in the time average state therein. (D) Magenta trace: graph of the Poincaré map x(k + 1) � P(x(k)) of the first-order non-autonomous
continuous-time DAE system (1)–(2), with g (x, v) expressed by Eqs 3, 4, and 5,G (x, v) described by equation 6, and v ≡ vS, where vS is illustrated in plot (A).
Black trace: graph of the identitymap x(k + 1) � PI(x(k)). In this case study, the graph of the Poincarémap is found to stretch at very close proximity to the
diagonal line as it revolves around it, complicating the visualization of zigzag trajectories, which are thus omitted from plot (D). (E)Magenta trace: graph of
the SCPCM associated with the input in (A). The eastward (westward) direction of the arrows appearing along the magenta trace in the upper (lower) half
plane indicate a progressive increase (decrease) in the sequence of return points of the Poincaré map therein. The Poincaré map admits one globally
asymptotically stable fixed point at x*=0.3082. A filled circlemarks the location of this stable fixed point, as is common practice in the Theory of Nonlinear
Dynamics. (F) Brown (Green) trace: solution to the SE (1) for x0=0.15 (x0=0.85). The ReRAM cell has fading memory under the stimulus in plot (A). The
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investigating the nonlinear dynamics of periodically forced
memristors.

3.1 The Time Average State Dynamic Route

By shaping the AC periodic voltage stimulus from Figure 1A in
such a way that it would induce small changes in thememory state of
the ReRAM cell (Messaris et al., 2023) across which it is applied over
each cycle, precious insights into the response of the memristive
device may be gained from the6 Time Average State Equation (TA-
SE). Let us define the mean value of the memory state7 of the
periodically driven ReRAM cell at any given time t ≥ t0, with t0
denoting the time instant at which the stimulus from Figure 1A is
first applied between the device terminals, as

�x t( ) � 1
T
· ∫t′�t+T

t′�t
x t′( )dt′. (7)

Employing the Leibniz integral formula, and making use of
Equations 1–3, the derivative of the time average state with
respect to the time may be expressed via

_�x t( ) � x t + T( ) − x t( )
T

� 1
T
· ∫t′�t+T

t′�t
g x t′( ), v t′( )( )dt′ (8)

� 1
T
· ∑k�Q
k�1

∫t′�tk

t′�tk−1
g x t′( ), Vk( )dt′, (9)

where τk ∈ {τ+,1, τ+,2, . . . , τ+,P, τ−,1, τ−,2, . . . , τ−,N},Vk ∈ {V+,1,V+,2, . . .
, V+,P, V−,1, V−,2, . . . , V−,N}, and tk = tk−1 + τk. Now, invoking the
aforementioned hypothesis on the input shape, it is assumed that
replacing the memory state by its time average in each of the Q
integrands from Equation 9 does not introduce a noticeable error in

the resulting approximation (Messaris et al., 2023). The TA-SE is
then cast in the form (Pershin and Slipko, 2019a)

_�x ≈ _�xSET + _�xRESET, (10)
where the explicit dependence of the left hand side upon the time has
been omitted, while.

_�xSET � 1
T
·∑i�P
i�1

gSET �x, V+,i( ) · τ+,i, and (11)

_�xRESET � 1
T
· ∑j�N
j�1

gRESET �x,V−,j( ) · τ−,j (12)

May be respectively referred to as SET and RESET TA-SE
components, given the sign invariance of the state evolution
function 1) in the memristor model under focus. For Q = 2, with
P = N = 1 (refer to Figure 1C), the formulas for the SET and RESET
TA-SE components reduce to.

_�xSET � 1
T
· gSET �x,V+( ) · τ+, and (13)

_�xRESET � 1
T
· gRESET �x,V−( ) · τ− (14)

where (V+, τ+) and (V−, τ−) are the positive SET and negative RESET
pulse height-width pairs, respectively (Pershin and Slipko, 2019a).
Importantly, a TA-SE is strictly associated to a given stimulus as well
as to a specific model. The formulation in Equation 10 provides an
approximation for the ODE, which governs the time evolution of the
time average state of the ReRAM cell under a particular periodic input
belonging to the class illustrated in Figure 1B, and on the basis of the
Strachan model (Strachan et al., 2013). As sketched qualitatively
through an exemplary blue (red) trace in Figure 2A, plotting the
right hand side of Equation 11 ((12)) versus the time average state,
which is constrained to assume values in the closed set D in all
circumstances, the graph of the SET (RESET) TA-SDR component is
found to lie completely within the first (fourth) quadrant. Arrows
pointing toward the east (the west) are drawn on top of the blue (red)
trace to indicate how the SET (RESET) dynamics induce a progressive
increase (decrease) in the time average state over any τk-long time
interval, over which a positive (negative) voltage pulse of height Vk

falls across the ReRAM cell within any input cycle. Plotting the
modulus of the SET (RESET) TA-SE component versus the time
average state while keeping an eastward (westward) direction for the
arrows on the respective locus, as depicted in Figure 2B, extracted as
an illustrative example from plot a) of the same figure, is definitely
more insightful. In fact, the direction of motion of the time average

FIGURE 4 (Continued)
dashed horizontal blue line indicates the state value denoting the only equilibrium for the TA-SE. Sampling the state solution for x0=0.15 (x0=0.85)
from t= t0 at regular 10· T-long time intervals, i.e., at t= t0+ k ·10· T, with k ∈ N≥0, and then plotting Δx (k+1; k) versus x(k) for each k results in the sequence
of brown (green) squares, superimposed along the magenta curve of plot (C) and converging asymptotically toward the point (x*,0). (G) Zoom-in view of
the green-colored waveform from plot (D) across a steady-state time interval. Here, xss stands for the steady-state part of the data series of the
memory state x. In this example, the TA-SDR prediction for the time average state (refer to the blue line) agrees rather well with the time average of the
steady-state solution to the SE (1) (see the green line in dotted line style). The absolute error between �xss and �xeq , i.e., |�xss − �xeq| is as low as 5.9816·10–8. The
magenta line indicates the location of the Poincaré map fixed point, which coincides with the value assumed by the solution to the SE (1) for any initial
condition at the end of each input cycle, after the transient phase is over, providing evidence for the accuracy of the novel system-theoretic analysis tool.
(H) Bottom (top) red trace: time average of the solution to the SE (1) from the initial condition x0=0.15(0.85). The first cycle in each simulation is discarded,
i.e., the respective trace is plotted only thereafter. Bottom (top) blue trace: solution to the TA-SE (10) obtained upon setting the initial condition �x0 to the
result of the computation of the time average of the solution to the ODE (1) for x0=0.15(0.85) across the time interval [0, T].

6 The TA-SE is anODE, which predicts rather well the dynamical evolution of
the time average of the state of a first-order memristor under pulse train
stimulation, provided the input is shaped in such a way so as to trigger a
rather slow device response over each period. Despite the fact that Pershin
and Slipko did not coin a name for this ODE, they should be credited for its
introduction in the bifurcation analysis of the Strachan DAE set (Strachan
et al., 2013) reported in (Pershin and Slipko, 2019a). The TA-SE was
recently employed in (Messaris et al., 2023) to study the response of
the non-volatile memristor from HP Labs to high-frequency AC periodic
excitations.

7 For simplicity, the mean value of the memory state is referred to as time
average state in the remainder of the paper.
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FIGURE 5
Case study 4.1.2 on the input-induced ReRAM cell bi-stability: (A) Rectangular pulse train-based voltage stimulus vS for the ReRAM cell in the test
circuit of Figure 1A. With reference to plot (c) in the same figure, the tuple defining the input signal is here (V+, τ+, V−, τ−)=(+0.54 V,20 ps,−0.6 V,20 ps). The
input period is then T= τ++ τ−=40 ps. Here, t= t0=0s. (B) Blue (red) trace: locus of | _�xSET | (| _�xRESET |) versus �x for the specified ReRAM cell excitation scenario.
The TA-SE admits here three equilibria, specifically �xeq,1 � 0.1062, �xeq,2 � 0.2371, and �xeq,3 � 0.3705. The SET (RESET) component is higher than the
RESET (SET) one to the left (right) of each of the outer equilibria, revealing their stability. The opposite holds true for the inner equilibrium, which is thus
unstable. The unstable equilibrium (stable equilibria) is (are) marked with a hollow circle (filled circles), according to typical convention in the Theory of
Nonlinear Dynamics (Strogatz, 2015). (C) Blue trace: TA-SDR, dictating the dynamics of the time average state under the above-specified pulse train-
basedmemristor stimulation. The slope of the TA-SDR is negative (positive) at the leftmost and rightmost TA-SE equilibria (at the inner TA-SE equilibrium),
confirming their asymptotic stability (its instability). (D) Magenta trace: graph of the Poincaré map associated with the given ReRAM cell excitation
scenario. Black trace: graph of the identity map. (E) Graph of the SCPCM for the periodically forced non-volatile memristor from HP Labs. Three are the
fixed points of the Poincarémap, namely, x1′ � 0.1062, x2* � 0.2323, and x3* � 0.3427. Clearly, inspecting the slope of themagenta curve, the intermediate
one (the outer ones) is unstable (are asymptotically stable), which is indicated by marking its location (their locations) using a hollow circle (using filled
circles), as is common in the Theory of Nonlinear Dynamics (Strogatz, 2015). (F) Green (Violet) trace: Device memory state over time as recorded in a
transient simulation of the test circuit of Figure 1A under the periodic excitation from plot (a) for x0=0.2 (x0=0.3). The ReRAM cell exhibits the simplest
form of local fading memory, i.e., bi-stability under the effects of such a stimulus. The dash-dotted, dotted, and dashed horizontal blue lines respectively
indicate the state values representing the leftmost, intermediate, and rightmost equilibria, respectively, for the TA-SE. This case study is adapted from the
one illustrated in Figure 4 from (Pershin and Slipko, 2019a). While here the stimulus is simply a square wavewith an offset, the excitation signal assumed by
Pershin and Slipko featured a longer period, being null for most of the time except for two non-consecutive time intervals of lengths τ+ and τ−,
accommodating a SET and a RESET pulse of heights V+ and V−, respectively. The green (violet) zigzag trajectory in plot (d), derived from the numerical
solution with initial condition x0=0.2 (x0=0.3), illustrated in plot (f), reveals the monotonically decreasing (monotonically increasing) sequence of return
points of the Poincaré map. As expected, the first (latter) cobweb plot approaches the leftmost (rightmost) fixed point of the map. Referring now to plot
(e), the samples of the waveform of the memory state, recorded at 100· T-long time intervals (at the end of each input period) from t = t0 in the transient
simulation for x0=0.2 (x0=0.3), may be extracted from the monotonically decreasing (monotonically increasing) abscissas of the green (violet) squares as

(Continued )
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state from any value it can possibly have at some given time may be
more easily inferred from this graph than from the visual
representation from which it was derived. If, at the time of
interest, the ordinate of the SET (RESET) locus is higher than the
ordinate of the RESET (SET) locus at the abscissa, corresponding to
the running value of the time average state, then the latter shall be
subject to an increment (a decrement) thereafter. Moreover, the
intersections between the SET and RESET loci in this graphical
representation identify the locations of the possible equilibria for
the associated TA-SE (10). A TA-SE equilibrium �xeq is asymptotically
stable if and only if the time average statemoves toward the east (west)
to its left (right) (Ascoli et al., 2022a). If, on the other hand, the time
average state moves toward the west (east) to its left (right), �xeq is
unstable. As it is common in the theory of nonlinear dynamics
(Strogatz, 2015), in this paper, a stable (an unstable) equilibrium is
marked as a filled (hollow) circle, as shown in the exemplary
illustration of Figure 2B. An alternative way to explore the
dynamics of the time average state, under the application of a
voltage stimulus from the class of Figure 1B across the ReRAM
cell, involves plotting directly the right hand side of the TA-SE
(10), which we call time average state evolution function, versus the
time average state itself. This locus is in fact the Time Average State
Dynamic Route (TA-SDR) associated with the AC periodic excitation
under consideration. Since the TA-SE adds up the SET and RESET
TA-SE components in modulus and sign, a TA-SDR is endowed with
arrows pointing to the east (west) on the upper (lower) half of the _�x
versus �x plane, as depicted in Figure 2C, which is derived as an
exemplary case study from plot a) of the same figure.While the arrows
superimposed upon a TA-SDR indicate the polarity of the change
about to occur in the time average state after it attains a certain value at
a given time instant, each crossing of the locus with the horizontal axis
identifies an admissible equilibrium �xeq for the associated TA-SE.
Here, �xeq is asymptotically stable (unstable) if the slope of the TA-SDR
is negative (positive) at its location. The derivation of a TA-SDR is
straightforward, as it merely requires to plot the right hand side of
Equation 10. This precious graphic tool allows a quick estimate for the
level around which the memory state, initially set to some predefined
value x0 ≜ x (t0), is bound to oscillate asymptotically under the
application of an AC periodic rectangular pulse train voltage
stimulus across the ReRAM cell. Specifically, computing the time
average state via Equation 7 for t = t0, which requires preliminarily
solving the ODE 1) over the first input cycle, i.e., across the time
interval [t0, t0 + T], a value for �x0 ≜ �x(t0) is first determined. This
then allows the derivation of the initial condition for the trajectory
point (�x, _�x) along the relevant TA-SDR, enabling to infer the
dynamics of the time average state thereafter. The next section
introduces a novel system-theoretic technique, which, different to
the TA-SDR analysis method, enables studying the response of the
periodically driven ReRAM cell also in the case where the voltage

stimulus, falling between its terminals, induces significant changes in
the respective memory state over each cycle.

3.2 The State Change Per Cycle Map: a novel
system-theoretic tool for exploring the
response of a ReRAM cell to any AC periodic
stimulus

The novel graphic tool to be introduced and discussed shortly is
inspired by the Poincaré Map Technique (Ascoli et al., 2005), a
powerful analysis method from the theory of nonlinear dynamics.
Let us then provide a pedagogical introduction to this precious
investigation method, first introduced by the French mathematician
Jules Henri Poincaré (1854–1912).

B.1 The Poincaré Map.The Poincaré Map Technique enables
one to study the nonlinear dynamics of an nth-order continuous-
time system through the investigation of a simpler (n − 1)-
dimensional discrete-time one. This analysis tool requires a
preliminary choice for an (n − 1)-dimensional sub-space, called
Poincaré section, here indicated as Π.

Let us first assume the nth-order continuous-time system to be
autonomous8. Its state vector is denoted here as
x ≜ [x1, x2, . . .xn]T ∈ Rn, where the scalar variables x1, x2, . . ., xn
span the system state space. AssumeΠ to be defined as xi � h(~x), with
i conveniently chosen from the set {1, 2, . . . , n} and ~x ∈ Rn−1 denoting
a state sub-vector, which includes all components of x except for xi.
Let the ODE _x � f(x) govern the time evolution of the state vector.
This equation is numerically solved from the time instant t � t0 ∈ R≥0

for any initial condition x0 � [x1,0, x2,0, . . .xi,0, . . .xn,0]T ≜ x(t0) �
[x1(t0), x2(t0), . . .xi(t0), . . .xn(t0)]T from a set {x(1)0 , x(2)0 , . . . , x(J)0 }
of large cardinality J, and, in each case, the successive returns of the
state-space trajectory on the Poincaré sub-space Π are recorded in
terms of the state sub-vector ~x. In particular, denoting the kth
Poincaré return point (k ∈ N>0) in the jth simulation run (j ∈ {1,
2, . . . , J}) as ~x(j)k ≜ ~x(j)(t(j)k ), a data series of the form ~x(j)1 , ~x(j)2 , . . .
may be numerically determined for the jth initial condition9 x(j)0 . By
numerical interpolation methods, it is then possible to derive an (n −
1)-dimensional discrete-time system, known as a Poincaré map, and
defined as ~x(k + 1) ≜ P(~x(k)), which predicts how the vector field of

FIGURE 5 (Continued)
they progress toward (x1′,0) ((x3*,0)). (G) ((H)) Time course of the solution to the SE (1) of the periodically forced ReRAM cell when the initial
condition is set to the leftmost (rightmost) fixed point of the Poincaré map. In plot (E) ((F)), the memristor never experiences transient phenomena.
Moreover, as indicated by the dashed horizontal magenta line, the leftmost (rightmost) fixed point x1′ (x3*) of the Poincaré map corresponds to the
minimum of the oscillation in the memory state initiated from the same fixed point. Finally, the dashed horizontal blue line shows how the leftmost
(rightmost) equilibrium �xeq,1 (�xeq,3) of the TA-SE accurately predicts the level �x, around which the solution of the SE oscillates, as indicated by the dash-
dotted green (violet) line. With reference to plot (g) ((h)), the absolute error between �x and �xeq,1 (�xeq,3), i.e., |�x − �xeq1 | (|�x − �xeq,3|), is as low as 7.3538·10–14

(1.6580·10–3).

8 A nth-order continuous-time system is said to be autonomous if no input
signal drives its dynamics, which are then only controlled by means of the
initial conditions assigned to its n state variables.

9 The sequence of time instants {t(j)1 , t(j)2 , . . .} is monotonically increasing. If
the jth initial condition is chosen on the Poincaré section Π, then t(j)1 ≡ t0
holds true, which implies ~x(j)1 ≡ ~x(j)0 , where ~x(j)0 includes all components of
x(j)0 except for the ith one x(j)i,0.
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FIGURE 6
Case study 4.1.3 on the input-induced ReRAM cell tri-stability: (A) Time waveform of a pulse train-based voltage signal, which, stimulating the
ReRAM cell, as illustrated in the circuit of Figure 1A, induces the emergence of amore interesting form of local fadingmemory, namely, tri-stability, across
its physical stack. The input belongs to the class of Figure 1B, being composed ofQ =3 consecutive pulses per cycle. The first, second, and third pulse in
each cycle of the pulse train feature heights V+,1=0.6V, V+,2=0.51V, and V−,1=−0.52V, and widths τ+,1=3·10−19s, τ+,2=0.8·10−9s, and τ−,1=2·10−9s,
respectively. Thus, here, p =2 and N =1. Moreover, the input period amounts to T = τ+,1+ τ+,2+ τ+,3=2.8 ns, while t0=0s. (B) Blue (Red) trace: graph of the
SET (RESET) TA-SE component _�xSET ( _�xRESET ) versus the time average state �x. (C) Blue (Red) trace: graph of the modulus of the SET (RESET) TA-SE
component | _�xSET | (| _�xRESET |) versus the time average state �x. The crossings between the blue and red traces reveal the existence of five equilibria for the
TA-SE, specifically, �xeq,1 � 0.1368, �xeq,2 � 0.2170, �xeq,3 � 0.3059, �xeq,4 � 0.3618, and �xeq,5 � 0.4113. Those labelled by means of odd (even) numbers are
asymptotically stable (unstable). In both plots (b) and (c), arrows along the blue (red) traces point toward the east (west), indicating a progressive increase

(Continued )

Frontiers in Electronic Materials frontiersin.org10

Ascoli et al. 10.3389/femat.2023.1228899

https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2023.1228899


the original nth-order continuous-time system transforms any return
point ~x(k) in Π onto a subsequent return point ~x(k + 1) in Π.

Focusing now on the class of case studies our periodically driven
ReRAM cell falls into, let us consider an nth-order non-
autonomous10 continuous-time system with state vector
x ≜ [x1, x2, . . . , xn]T ∈ Rn. Assume an ODE in the form11 _x �
f(x, t) to dictate the nonlinear dynamics of the state vector. In
particular, let the nth-order non-autonomous continuous-time
system be driven by an AC periodic excitation, as it is in the case
for the ReRAM cell under consideration in our research study. In
order to derive the Poincaré map under these circumstances,
samples of the state vector, which solves the nth-order non-
autonomous ODE, are first recorded successively at regular T-
long time intervals, where T is the period of the stimulus for
each initial condition from a set {x(1)0 , x(2)0 , . . . , x(J)0 } of large
cardinality J. Specifically, indicating the kth (k ∈ N≥0) sample in
the jth simulation run (j ∈ {1, 2, . . . , J}) as x(j)k ≜ x(j)(t0 + k · T), a
data series of the form x(j)0 , x(j)1 , x(j)2 , . . . is then obtained for each of
the J iterations. The application of numerical interpolation methods
allows then the derivation of an n-dimensional Poincaré map
x(k + 1) � P(x(k)), which enables the prediction of the value x
(k + 1), which the state vector of the original nth-order non-
autonomous continuous-time system attains from any admissible

value x(k) from the respective existence domain, after a T-long time
interval, due to the AC periodic excitation.

Studying a Poincaré map allows one to gain precious insights
on the nonlinear dynamics of the original continuous-time
system, whether the latter be autonomous or non-
autonomous. Our ReRAM cell is a first-order system. The
Poincaré map of a first-order system under periodic
stimulation reduces to the one-dimensional form
x(k + 1) � P(x(k)), where P: R → R is a scalar function and
k ∈ N≥0. Figure 3A shows a graph of the Poincaré map (magenta
trace) associated to the very same case study explored in Figure 2.
The identity map, defined as x(k + 1) � PI(x(k)) ≜ x(k), is also
plotted along with the map of interest in this figure (black trace).
This enables one to infer the sequence of return points x (1), x (2),
. . . of the map x(k + 1) � PI(x(k)) ≜ x(k) from any initial
condition x (0) by graphic inspection of the associated cobweb
plot ((Ascoli et al., 2005; Strogatz, 2015)). The following remark
explains how to derive a cobweb plot, which is also known as
Verhulst diagram, from an arbitrary initial condition.

Remark 1. Given a one-dimensional Poincaré map P: R → R,
its graphic representation consists of the locus of P(x(k)) versus
x(k). The graph of the identity map x(k + 1) � PI(x(k)) is a line
forming a 45° angle with the horizontal axis as it crosses it in the
origin. A cobweb plot associated with a given initial condition x (0) is
a zigzag trajectory, which may be derived by iterating a sequence of
steps (refer to the exemplary blue-colored trace in Figure 3A). For
m = 1, where m indicates the iteration number, the following
operations are carried out:

1. Find the point on the graph of the map of interest with abscissa x0.
The ordinate of this point is x(1) ≜ P(x(0)).

2. Draw an horizontal line from this point to the graph of the identity
map. The horizontal and diagonal lines meet at the point (x
(1), x (1)).

FIGURE 6 (Continued)
(decrease) in the time average state under the effects of the physical mechanisms, which underlie a SET (RESET) resistance switching process and set
in as a positive (negative) pulse voltage fall across the ReRAM cell. (D) Blue trace: Locus of the time average state evolution function versus the time
average state for the specified ReRAM cell excitation scenario. The competition between the counteractive SET and RESET dynamics shall determine
either an increase or a decrease in the time average state over a given input cycle, depending upon the value, which the time average state itself
holds at the end of the previous input cycle, as inferable from the direction of the arrows along the TA-SDR in its neighborhood. (E)Magenta trace: graph
of the Poincaré map x(k + 1) � P(x(k)) in the case study under focus. Black trace: graph of the identity map x(k + 1) � PI(x(k)). The Poincaré map
provides the value x (k+1), which thememory state x is bound to attain at the end of the (k+1)th input cycle, given any possible value x(k) ∈ D, which it may
ever hold at the end of the kth input cycle (k ∈ N≥0). The twomaps share the same return point at five occasions, specifically at x1′ � 0.1368, differing from
�xeq,1 at the sixth decimal point only, at x2* � 0.2163, at x3* � 0.2996, at x4* � 0.3610, and at x5* � 0.4037. (F) Magenta trace: Graph illustrating the net
change Δx(k + 1; k) � P(x(k)) − x(k) that thememory state x is bound to undergo over the (k+1)th input cycle, given any value x(k) ∈ D, it may ever assume
at the end of the kth input cycle (k ∈ N≥0). (G) Numerical simulations of the Strachan DAE set under the excitation signal from plot (A), uncovering the
progressive approach of the memory state x toward one of three admissible oscillatory waveforms, depending upon the initial condition. In the jth
simulation run, the initial condition x0 for the devicememory state x is set to the jth value x(j)0 in the set {0.08,0.2,0.23,0.35,0.37,0.9} (j ∈{1,2,3,4,5,6}). The jth
color from the set {orange, violet, red, green, cyan, brown} is assigned to the trace, which is initiated from the jth initial condition (j ∈{1,2,3,4,5,6}). While the
solutions from the last four initial conditions in the aforementioned set attain the steady state well before the end of the 2μs-long simulation, this is not the
case for the other two solutions, whose transient behaviors aremuch longer, asmay be evinced from plot (H), illustrating their asymptotic convergence to
a common oscillation. The cobweb plots, extracted from the solutions initiated from the last four initial conditions in plot (G) and from the solutions
initiated from the first two initial conditions in plot (H), are illustrated using the aforementioned color convention in plot (E), revealing the stability
(instability) of the Poincaré map fixed points labelled via odd (even) numbers. For j ∈{1,2,3,4} (j ∈5,6), the sequence of Poincaré return points from the jth
initial condition may be read from the abscissas of the squares, which are laid over the graph of the SCPCM in plot (F), feature the same color as the
associated DAE set solution in plot (G) ((H)), and show the discrete-time evolution of the trajectory point (x(j)(k), Δx(j) (k +1; k) for each k ∈ N≥0. (I), and (J)
((K)): Zoom-in view of the DAE set solutions (solution) initiated in turn from the second and fourth (initiated from the sixth) initial condition from the
earlier-specified set, as illustrated respectively through a violet and green trace in plot (G)) (as illustrated through a brown trace in plot (G), over an 80μs-
long steady-state time interval. The absolute error between themean value of the state solution from plot (I) (J), and (K) and the first, third, and fifth TA-SE
equilibrium, respectively, is in turn as low as 9.9632·10–11, 2.7604·10–3, and 1.2362·10–3. The first, third, and fifth map fixed point match accurately the
minimum of the oscillation from plot (I), (J), and (K), respectively.

10 An nth-order continuous-time system is said to be non-autonomous if
some input signal controls its dynamics.

11 An nth-order non-autonomous ODE of the form _x � f(x, t) can be
converted into an equivalent (n + 1)th-order autonomous one,
combining _x � f(x, xn+1) with _xn+1 � 1, where the time variable assumes
the role of an additional state via yn+1 ≜ t. The application of the Poincaré
map technique then allows investigation of this (n + 1)th-order
autonomous continuous-time system through the simpler study of an
n-dimensional discrete-time one.
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FIGURE 7
Case study 4.2.1 on the SCPCM accuracy in predicting the asymptotic memristor response upon large state excursions per input cycle: (A) Time
course of the voltage signal vS, acting as an AC periodic stimulus for the ReRAM cell in the circuit of Figure 1A. The first SET and second RESET pulses,
which, as sketched in plot (c) from the same figure, compose the excitation waveform in each cycle, of duration T = τ++ τ−=3ns, have height-width pairs
(V+, τ+)=(0.55V,1ns) and (V−, τ−)=(−0.57V,2ns), respectively. Here, t0=0s. (B) Blue (Red) trace: locus of | _�xSET | (| _�xRESET |) versus �x for the input from plot
(a). Here, the TA-SE (10) admits a globally asymptotically stable equilibrium at �xeq � 0.4596. (C) Blue trace: TA-SDR associated with the above-specified
ReRAM cell excitation scenario. (D) Magenta trace: graph of the Poincaré map x(k + 1) � P(x(k)) of the memristive system upon excitation via the AC
periodic voltage signal from plot (a). Black line: plot of the identity map x(k + 1) � PI(x(k)). The Poincaré map admits here a globally asymptotically stable
fixed point at x*=0.2163. (E) Magenta trace: graph of the SCPCM corresponding to the Poincaré map. (F) Brown (Green) trace: time waveform of the
solution to the SE (1) for x0=0.15 (x0=0.85), revealing the emergence of global input-induced history erase effects (Ascoli et al., 2016c) across the ReRAM
cell. The green (brown) cobweb plots in plot (d) show the sequence of samples of the SE solution with initial condition x0=0.15 (x0=0.85) at regular T-long
time intervals from t = t0. The series of brown (green) squares, lying along the magenta-colored graph of the SCPCM from plot (e), is obtained upon
recording the state value at the end of each period from the beginning of the transient simulation, where x0 is set to 0.15(0.85). (G) Close-up view of the
time course of thememory state initiated from0.85 over a steady-state time interval. The top green line in dashed line style, indicating the time average of
the steady-state solution xss to the SE, is rather distant from the blue line, showing the TA-SE equilibrium xeq. In fact, for the input parameter setting in this
case study, approximating the state with its time average within each integrand from Eq. 9 introduces a non-negligible error. The absolute error between
�xss and xeq is in fact as large as 9.4408·10–2. On the other hand, as shown by the magenta line, the Poincaré map fixed point corresponds to the value
attained by the memory state, irrespective of the initial condition, at the end of each input period after transients decay to zero, demonstrating the

(Continued )
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FIGURE 8
Case study 4.2.2 on the SCPCM accuracy in predicting the number (here, 1) of admissible and stable memristor oscillatory modes upon large state
excursions per input cycle: (A) Time waveform of the AC periodic voltage signal applied across the ReRAM cell in the test circuit of Figure 1A. With
reference to plot (C) from the same figure, vS is unequivocally identified through the tuple (V+, τ+, V−, τ−)=(0.52 V,15·10−3s,−0.58 V,2·10−3s). The input
period is T = τ++ τ−=17·10−3s. Once again, t0=0s. (B) Blue trace: TA-SDR associated with the pulse train-based stimulus from plot (A). The TA-SE (10)
admits here three equilibria, of which the outer ones, specifically �xeq,1 � 0.1237 and �xeq,3 � 0.3212, are locally stable, while the intermediate one,
i.e., �xeq,2 � 0.2249, is unstable. Here, the TA-SDR tool is unable to predict the monostable oscillatory dynamics of the periodically driven ReRAM cell. (C)
Magenta trace: Graph of the Poincarémap for the case study under consideration. Black trace: graph of the identitymap. Here, the Poincarémap features
one globally asymptotically stable fixed point at x*=0.0862. (D)Magenta trace: Graph of the SCPCM extracted from the Poincaré map. (E) Brown (Green)
trace: Time course of the memory state of the non-volatile memristor driven by the pulse train depicted in plot (A) from the first (second) initial condition
x0 in the set {0.04,0.6}. Clearly, the input from this examplemay determine very large changes in thememory state per cycle. The only fixed point x* of the
Poincaré map matches the value attained by either of the two solutions at the end of each cycle after transients decay to zero. A brown (green)-colored
cobweb plot, showing the discrete-time evolution of the Poincaré return points from x0=0.04 (x0=0.6), as extracted from the respective state solution in
plot (E), is shown in plot (C). In either case, the sequence of return points of the Poincarémap converges rather quickly to its globally asymptotically stable
fixed point x*. A brown (green) square is marked along the magenta curve in plot (D) at the abscissa, corresponding to the sample of the state solution
initiated in plot (E) from x0=0.04 (x0=0.6) at the end of each input cycle, from the very beginning of the corresponding numerical simulation. (F) Bottom
(Top) red trace: Time average of the solution to the ODE (1) from the initial condition x0=0.04 (x0=0.6). The traces are displayed from the end of the first
input cycle. Bottom (Top) blue trace: solution to the TA-SE (10), resulting from setting the initial condition �x0 to the time average of the solution to the
ODE 1 for x0=0.04 (x0=0.6) across the time interval [0, T].

FIGURE 7 (Continued)
infallibility of the SCPCM analysis method. (H) Bottom (Top) red trace: Time average of the solution to the SE (1) for x0=0.15 (x0=0.85). The traces are
shown from the end of the first input cycle. Bottom (Top) blue trace: solution to the TA-SE (10), resulting from choosing as initial condition �x0 the time
average of the solution to the ODE (1) from the initial condition x0=0.15 (x0=0.85) across the first input period. Clearly, comparing this simulation result to
its counterpart in case study 4.1.1—refer to Figure 4H—here, the time averaging method is not as reliable as in the earlier example.
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FIGURE 9
Case study 4.2.3 on the SCPCM accuracy in predicting the number (here, 2) of admissible and stable memristor oscillatory modes upon large state
excursions per input cycle: (A) Time evolution of the pulse train-based voltage signal, which stimulates the ReRAM cell in the circuit from Figure 1A. With
reference to plot (B) from the same figure, three are the pulses, which the train accommodates over each cycle, i.e.,Q =3 here. The height-width pairs of
the pulses are (V+,1, τ+,1)=(0.6 V,3·10–18 s) (V+,2, τ+,2)=(0.51 V,8·10–9 s), and (V−,1, τ−,1)=(−0.52 V,20·10–9 s) (thus p=2, andN=1). The input period is then
T = τ+,1+ τ+,2+ τ−,1=28·10−9s, whereas t0=0s. (B) Blue trace: TA-SDR of the memristive system in the periodic stimulation scenario illustrated in plot (A). In
this example, five are the equilibria of the TA-SE (10), namely, �xeq,1 � 0.1368, �xeq,2 � 0.2170, �xeq,3 � 0.3059, �xeq,4 � 0.3618, and �xeq,5 � 0.4113, of which
those labelled by means of odd (even) numbers are locally asymptotically stable (unstable). Here, the time averaging method predicts the existence of
three possible oscillatory modes for the periodically driven ReRAM cell, which, however, truly exhibits a bistable oscillatory response to the earlier
specified pulse stimulus. (C)Magenta trace: locus of x(k + 1) � P(x(k)) versus x(k) for the case study under focus. The fixed points of the Poincarémap are
x1′ � 0.1368, x2* � 0.2107, and x3* � 0.2640, of which the outer ones (the intermediate one) are locally asymptotically stable (is unstable). (D) Magenta
trace: graph of the SCPCM associated with the Poincaré map. (E) Brown (Green) trace: state solution of the ODE (1), employing the state evolution
function reported in (3), from the initial condition x0=0.075 (x0=0.2). The stepwise approach of the Poincaré return point from the first (latter) initial
condition toward x1′ is illustrated by the brown (green) zigzag trajectory in plot (C). The monotonically increasing (monotonically decreasing) abscissas of
the brown (green) squares lying along the locus of Δx (k +1; k) versus x(k) in plot (D) correspond to the sequence of samples extracted from the ODE
solution initiated from x0=0.075 (x0=0.2) at regular one-cycle-long time intervals from t = t0. (F) Red (Blue) trace: solution to the Strachan state equation
from the initial condition x0=0.215 (x0=0.9). The red (blue) zigzag trajectory in plot (c) reveals the progressive convergence of the sequence of Poincaré
return points from the first (latter) initial condition toward x3*. Thewhole sequence of Poincaré return points from x0=0.215 (x0=0.9) can also be read from

(Continued )
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3. A vertical line drawn through this point is found to intersect the
graph of the map of interest at a location with coordinates (x (1), x
(2)), where x(2) ≜ P(x(1)).

For m ≥ 2, only steps 2 and 3 from the above list are performed in
the same order as in the first iteration, with x(j) in place of x (1), and
x(j + 1) ≜ P(x(j)) in place of x (2). This iterative procedure allows
one to determine the sequence of return points x (1), x (2), . . . of the
map x(k + 1) � P(x(k)) from any initial condition x (0) of interest.
Importantly, the sequence of return points can be read either on the
horizontal or on the vertical axis of the x (k + 1) versus x(k) plane, in
correspondence with the abscissas or the ordinates of the points where
the zigzag trajectory of interest meets the diagonal line, respectively.

Given a generic map x(k + 1) � P(x(k)), with P: Rn → Rn, it
is said to admit a fixed point at x(k) = x* if and only if x* � P(x*)
(Strogatz, 2015). Thus any intersection between the graph of the
map of interest and the diagonal line, denoting the locus of x (k +
1) = x(k) versus x(k), indicates a possible fixed point for the one-
dimensional discrete-time system x(k + 1) � P(x(k)). Importantly,
the progressive bidirectional convergence (divergence) of a sequence
of Poincaré return points to a fixed point12 x* � P(x*) (Ascoli et al.,
2005), as inferable through the inspection of a couple of cobweb
plots, initiated one to the left and one to the right of the fixed point
itself, indicates the existence of a stable (an unstable) periodic
attractor for the original continuous-time system. With reference
to the pedagogical illustration of Figure 3A, both the red and the blue
(both the green and the violet) cobweb plots asymptotically converge
toward the leftmost (rightmost) fixed point xl′ (xr*) of the map. The
stability of the two fixed points of the map reveals the emergence of
bi-stability in the oscillatory response of the periodically forced first-
order continuous-time system. In particular, depending upon the
initial condition, the ODE of the continuous-time system shall admit
one of two admissible oscillatory solutions after transients vanish. At
the end of each input cycle, the value attained by the first (latter) of
these steady-state solutions shall indeed be xl′ (xr*).

B.2 The State Change Per Cycle Map.In some cases, especially
for stimulus parameter settings whereby the memory state
undergoes negligible changes over each input cycle across its
entire existence domain D, which definitely ensures the accuracy
of the approximation of the memory state with its time average in
each integrand function from Equation 9, the visualization of
cobweb trajectories on the x (k + 1) versus x(k) plane is difficult
since the graph of the Poincaré map is found to deviate very little

from the diagonal line illustrating the identity map (see for example,
Figure 4D referring to case study 1 in section 4.1).We then introduce
a variant of the Poincaré map, named State Change Per Cycle Map
(SCPCM), revealing the net change Δx (k + 1; k) that the memory
state x experiences over the (k + 1)th input cycle, depending upon its
value x(k) at the end of the kth input cycle for k ∈ N≥0. In fact, the
SCPCM may be directly retrieved from the Poincaré map via

Δx k + 1; k( ) ≜ x k + 1( ) − x k( ) � P x k( )( ) − x k( ). (15)
With reference to Figure 3, the magenta trace in plot b)

qualitatively depicts the locus of Δx (k + 1; k) versus x(k),
which corresponds to the Poincaré map from plot a). The
magenta trace shows the graph of an exemplary SCPCM,
characterizing the oscillatory response of the ReRAM cell to the
periodic stimulation envisaged in the pedagogical case study from
Figure 2. The same information, extracted from the Poincaré map,
may be retrieved from the associated SCPCM. For example, the
sequence of return points x (1), x (2), . . ., associated with a given
initial condition x (0), may be easily inferred from Equation 15,
given that x (k + 1) = x(k) + Δx (k + 1; k), k ∈ N≥0. They lie along
the horizontal axis of the plane, hosting the graph of the SCPCM.
In fact, for each k value in N≥0, the (k + 1)th return point x (k + 1)
may be obtained by adding to the abscissa x(k), representing the
kth return point, the ordinate Δ(k + 1; k) of the point of
intersection between the graph of the SCPCM and the vertical
line passing through the point (x(k), 0). For example, the abscissas
of the blue squares in Figure 3B represent the return points
associated with the initial condition of the blue cobweb
trajectory in plot a) of the same figure.

Remark 2. A time-efficient approach to derive the graph of the
SCPCM of the ReRAM cell under the application of any given AC
periodic stimulus between its terminals, either experimentally, in the
case where the device memory state is physically accessible, or
numerically, where a predictive model for the nonlinear
dynamics of the non-volatile memristor is available, envisages the
following steps. Preliminarily, a set of regularly spaced values
{x(1)

0 , x(2)
0 , . . . , x(J)

0 } for the initial condition x0 ≡ x (t0) for the
memory state would be picked from the respective existence
domain D. For each of the specified initial conditions, the AC
periodic voltage stimulus of interest would then be applied across the
non-volatile memristor over a T-long time span only. At the end of
the test, associated with the jth initial condition (j ∈ {1, 2, . . . , J}), the
value x(j)

T ≡ x(j)(t0 + T) for the memory state would be recorded, as
well as the change Δx(j)(T; 0) ≡ x(j)

T − x(j)
0 in the memory state

itself over the single input cycle, which would allow plotting of the
point (x(j)

0 ,Δx(j)(T; 0)) on the plane, reserved for accommodating
the graph of the SCPCM. Applying a suitable interpolation method
to the sequence of points collected from the series of J tests, a
numerical approximation for the graph of the SCPCM of interest
would be finally derived. With such an approach, one could in

FIGURE 9 (Continued)
the monotonically increasing (monotonically decreasing) abscissas of the red (blue) squares superimposed on the graph of the SCPCM in plot (D).
(G) ((H)) Time waveform of the device memory state, as resulting from the numerical simulation of the Strachan ODE from the initial condition x0=0.075
(x0=0.215)—refer to plot (E) ((F))—over a 0.4μs-long steady-state time window. As may be inferred by inspecting plots (G) and (H), the SCPCM analysis
tool accurately predicts the bistable dynamics of the periodically forced ReRAM cell, detecting the value that the respective memory state attains at
the end of each input cycle after transients decay to zero, for each of its two possible oscillatory solutions.

12 With f′(·) denoting the derivative of a function f: R → Rwith respect to its
argument, the fixed point x* of amap x(k + 1) � P(x(k)) is said to be stable
(unstable) if and only if |P′(x(k))|x(k)�x*|< (> )1, i.e., if the modulus of the
slope of the graph of the map at the fixed point is smaller (larger) than the
unitary slope of the diagonal line (Strogatz, 2015).
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principle rename the horizontal and vertical axes of the plane
hosting the graph of the SCPCM, associated with a certain
periodic stimulation of the ReRAM cell, as x0 and Δx (T; 0),
respectively.

4 Application of the theory

This section, composed of two sub-sections, shall provide strong
evidence for the significance of the novel analysis tool for the

FIGURE 10
Case study 4.2.4 on the input-agnostic SCPCM predictive capability: (A) Magenta trace: AC periodic triangular voltage waveform vS, featuring
amplitude V =0.5V, offset V0=0.01V, and period T =1·10−6s, and let fall across the ReRAM cell from t0=0s in the test circuit from Figure 1A. Black trace:
Pulse train-based voltage signal vS,TA−SDR, employed as an approximation of the triangular wave stimulus, so as to enable the application of the TA-SDR
analysis tool in this case study. The pulse train falls into the class depicted in Figure 1C, accommodating two pulses per cycle, specifically first a SET
one of height V+=0.51 V andwidth τ+=5.1·10−7s, and then a RESET one of height V−=−0.49 V andwidth τ−=4.9·10−7s. (B) Blue trace: TA-SDR of the ReRAM
cell under the assumption that the pulse train-based voltage waveform vS,TA−SDR from plot (A) falls between its terminals. The TA-SE (10) admits one
globally asymptotically stable equilibrium at �xeq � 0.3858. Here, the TA-SDR analysis tool properly predicts the existence of one and only one possible
oscillatory operating mode for the non-autonomous memristive system. However, its estimate for the level around which the memory state is bound to
revolve at steady state, irrespective of its initial condition, is rather off from the actual value. (C)Magenta trace: graph of the Poincaré map of the ReRAM
cell under the specified triangular wave-based periodic stimulation. The map admits one globally asymptotically stable fixed point at x*=0.3593, where it
assumes the same value as the identity map, appearing as a diagonal line that forms a 45° angle with the horizontal axis in the origin. (D) Magenta trace:
locus of Δx (k+1; k) versus x(k), as extracted from the Poincarémap. (E) Brown (green) trace: Time evolution of thememory state from the initial condition
x0=0.2 (x0=0.8) toward the unique oscillatory steady-state solution, which the SE (1) admits under the application of the earlier-defined triangular voltage
waveform across the ReRAM cell. Plot (C) shows the discrete-time evolution of the Poincaré return point from the first (latter) initial condition through a
brown (green) cobweb plot. Themonotonically increasing (monotonically decreasing) abscissas of the brown (green) squares along themagenta trace in
plot (D) correspond to the sequence of return points, which stepwise approach the only fixed point x* of the Poincaré map from the initial condition
x0=0.2 (x0=0.8). (F) Unique steady-state oscillation in the memory state, as retrieved from the green trace in plot (E). While the fixed point x* of the
Poincaré map matches the minimum of the steady-state time waveform xss of the memory state, the absolute error between the mean value �xss of this
very same signal and the TA-SE equilibrium �xeq is rather noticeable here, amounting to 0.0228.
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investigation of the response of an arbitrary first-order ReRAM cell
to AC periodic stimuli of any kind. In the first subsection 4.1, the
properties of the pulse train stimulus, applied across the particular
memristor under focus in this manuscript, are carefully set (Messaris
et al., 2023) so as to guarantee a small change in the respective
memory state per cycle, which is the conditio sine qua non, to endow
the TA-SDR investigation tool with a good predictive capability. In
the second subsection 4.2, scenarios where either the pulse train
stimulus or a triangular wave induces non-negligible changes in the
device memory state per cycle shall be investigated, revealing the
general applicability of the proposed system-theoretic technique to
explore the nonlinear dynamics of the periodically driven
ReRAM cell.

4.1 From mono-stability to multi-stability

In the three case studies13 discussed in this sub-section, the pulse
train stimulus shall be respectively crafted in such a way to induce
mono-stability, bi-stability, and tri-stability in the oscillatory
dynamics of the non-volatile memristor from HP Labs (refer to
Figure 4; Figure 5; Figure 6, respectively).

Remark 3. Remarkably, as shown in the last figure, a more
elaborate variant of the pulse train adopted in the study from
Pershin and Slipko in (Pershin and Slipko, 2019a) allows one to
endow the ReRAM cell with tri-stability. A systematic method
enabling one to induce the emergence of a predefined number of
oscillatory dynamical phenomena in the nano-device under pulse
train stimulation, including an interesting discussion on potential
applications, is about to appear shortly in (Ascoli et al., 2023).

4.2 On the general applicability of the
SCPCM analysis tool

In the examples to follow, the stimulus applied across the
ReRAM cell induces major changes in its memory state over
each cycle. In these circumstances, the time averaging-based
approximation of the Strachan model loses reliability, and,
consequently, the predictions of the standard TA-SDR analysis
tool are either prone to error (refer to the case study illustrated
in Figure 7) or completely wrong (see the case studies in Figure 8;
Figure 9). On the other hand, as revealed in Figures 7–9, the SCPCM
investigation tool enables accurate estimation of both the number

and the stability properties of the possible oscillatory modes for the
periodically driven non-volatile memristor, irrespective of the input
characteristics. Last but not least, and very importantly, the SCPCM
tool is also applicable in scenarios where the ReRAM cell is
stimulated via AC periodic stimuli other than the pulse trains
considered so far, as demonstrated in the final case study
illustrated in Figure 10, which provides further evidence for the
superior performance of the novel system-theoretic technique over
the standard TA-SDR method.

4.3 Discussion

Comparing the TA-SDR and SCPCM analysis methods, the
technique from Pershin and Slipko, revolving around a time
averaging approximation of the device model, is trustworthy only
in excitation scenarios where approximating the memory state of
the periodically forced ReRAM cell with its time average in each
input cycle is reasonable, whereas the tool proposed in this
manuscript, relying strictly on the true un-approximated
switching kinetics of the memory state, enables one to
accurately explore the response of a first-order memristor to
any kind of AC periodic stimulation. Provided physical
measurements of the memory state of a device were feasible,
the SCPCM tool more naturally lends itself to experimental
validation. In fact, acquiring a TA-SDR in the lab would be
cumbersome as it would preliminarily require estimation of the
time derivative of the state across its existence domain under the
application, across the ReRAM cell of each DC voltage from a set,
including the heights of all the pulses and composing the input
train over each cycle according to Equations 10 and 11, and 12.
However, upon availability of a predictive device model, the
derivation of a TA-SDR is computationally inexpensive, as it
merely requires plotting the time average state evolution function
versus the time average state, while the acquirement of a SCPCM
envisages the run of a number of numerical simulations. A couple
of important observations should be made at this point in regard
to the examples from case studies 4.1.3 and 4.2.3. They call for the
use of rather small input pulse widths. To the best of our
knowledge, no instrumentation tool available nowadays would
be capable of producing a pulse with a temporal width of the
order of 10−19s in a practical experiment. As a result, future
research efforts shall be devoted to the development of a strategy
that allows increasing the minimum input pulse width without
jeopardizing the device response of interest. Perhaps some
adaptation of the simple experimental set-up shown in
Figure 1A shall allow us to resolve the issue; however, its
design might take a long time and is reserved for a future
publication. It is important to remark, however, the theoretical
relevance of these two examples, granted that the Strachan model
is capable of predicting the nonlinear dynamics of the HP
Ta2O5−x nano-device with high accuracy, as demonstrated in
the seminal work (Ascoli et al., 2016c) in the past. In fact, as
established by the TA-SE (10), each pulse contributes to the
device time average kinetics as an additive term, appearing on the
right hand side of the same equation and consisting of the
product between the ratio between its time duration and the
input period and the value of the time average state evolution

13 Without loss of generality, in each of the AC periodic stimuli shown in
Figures 4A, 5A, 6A, the sequence of pulses included in the train over each
cycle is arranged in such a way to accommodate only one RESET pulse
featuring a negative height at its very end. As a result, inspecting the
behavior of the device, evolving from a certain initial condition in
response to any of these excitation signals, the sample of the memory
state at the end of each input period, after transients decay to zero,
coincides with the minimum of the asymptotic oscillatory solution to the
periodically driven continuous-time ODE 1), adapted to the Strachan
state evolution function, expressed by Eqs 3, 4, and 5. In each of these
ReRAM cell excitation scenarios, a stable (an unstable) fixed point x* for
the relevant one-dimensional discrete-time system x(k + 1) � P(x(k))
corresponds to the minimum value of a stable (of an unstable) steady-
state oscillation in the device memory state.
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function, evaluated at the voltage level and corresponding to the
pulse amplitude, as shown in (11) and 12 for the SET and RESET
cases, respectively. Therefore, even if a pulse has a rather short
temporal width, it may still have a significant impact on the
device time average dynamics because this is also affected by the
range of values assumed by the time average state evolution
function for the DC level corresponding to the pulse amplitude
across the domain of existence of the device state (for the
Strachan model, such a range can span several orders of
magnitudes and its upper bound may be as high as 1035s−1 for
a voltage level of just 0.7V, as shown in Fig. 15a) from (Demirkol
et al., 2022)). On the basis of these observations, were it possible
1 day in the near future to avail of instrumentation tools capable
to generate pulses of temporal widths on the order of 10−19s, the
theoretically sound predictions from examples 4.1.3 and
4.2.3 could be experimentally tested. Furthermore, it is fair
and worthy to mention that the unique opportunity offered by
the analysis technique from Pershin and Slipko to decompose the
time average state evolution function into SET and RESET
components, allows the development of a system-theoretic
procedure, enabling the setting of number, heights, and widths
of the pulses within each period of a train stimulus so as to endow
the ReRAM cell with as many locally stable steady-state
oscillatory modes as desired, as discussed in (Ascoli et al.,
2023). Here, the SCPCM tool can be used for verification
purposes, so as to validate the theoretical predictions drawn
from the TA-SDR analysis. Finally, with an outlook on other
research works planned in our agenda, the evaluation of the
transient dynamics of a non-volatile memristor ((Slipko and
Pershin, 2019; Slipko and Pershin, 2021)) toward the
respective asymptotic behavior in response to a given stimulus
is worthy of consideration, especially in view of an in-depth
evaluation of the practical feasibility of a potential exploitation of
its peculiar features, including, in relation to the work presented
in this manuscript, its global and local fading memory properties.

5 Conclusion

While the response of a first-order ReRAM cell may be
completely characterized by means of a standard Dynamic Route
Map analysis (Ascoli et al., 2022a), no homologous tool has ever
been introduced for exploring the nonlinear dynamics of a
memristive nanodevice of this kind under any AC excitation. In
order to fill this gap in the literature, Pershin and Slipko (Pershin
and Slipko, 2019a) recently proposed a new insightful method,
which revolves around a time averaging-based approximation of
the mathematical description of a first-order memristive device, and
is applicable in scenarios where the memristive device itself is driven
by pulse train-based stimuli (refer to (Pershin and Slipko, 2019b) for
more insights). As shown in (Pershin and Slipko, 2019a), when
applied to the predictive model (Strachan et al., 2013) of a first-order
ReRAM cell from Hewlett Packard (HP) Labs, this method, which
we call Time Average State Dynamic Route, enables one to infer the
time evolution of the mean value of the device memory state under
the assumption that the pulse train-based voltage stimulus, falling
across the non-volatile memristor, induces small changes in the

memory state itself over each cycle. In order for such an assumption
to hold true, the amplitudes of the pulses included over each cycle in
the waveform of the AC periodic stimulus, as well as the input
frequency, must be carefully chosen, as thoroughly explained in
(Messaris et al., 2023). A ReRAM cell is typically excited by pulse
trains; therefore, the Time Average State Dynamic Route enables us
to investigate its behavior for a very important class of case studies.
However, this tool is not rigorously applicable to studying the device
response to other AC periodic excitations. Motivated by the
necessity to derive a more general analysis method for
periodically driven ReRAM cells, this manuscript introduces a
novel system-theoretic tool, referred to as State Change Per Cycle
Map, which is inspired by the Poincaré Map technique, and is
applicable in all case studies where an arbitrarily shaped AC periodic
signal stimulates a first-order device of this kind. The new tool
enables one to infer the change that the device memory state
undergoes during one complete cycle of the stimulus from any of
its admissible values. In particular, it allows us to determine the
number and stability properties of all the possible oscillatory modes
of the periodically driven nano-device, which is effectively a second-
order autonomous continuous-time system, through the
investigation of a simpler one-dimensional discrete-time one
(Ascoli et al., 2005). Light is shed on the significance and general
applicability of the proposed system-theoretic tool through the
analysis of a number of illustrative case studies. The State
Change Per Cycle Map technique could be employed to explore a
time- and energy-efficient approach to program a ReRAM cell. An
in-depth study of this kind could allow the synthesis of a look-up
table, which would provide the most appropriate characteristics of a
suitable AC periodic stimulus for programming a ReRAM cell from
a given initial state into a desired final one within the shortest time
and at the lowest possible energy cost. Last but not least, the
manuscript reveals, for the first time, how applying, across the
ReRAM cell, a pulse train more elaborate than the stimulus
employed in the study from Pershin and Slipko may induce the
asymptotic convergence of the respective memory state toward any
of a number of locally stable oscillatory waveforms larger than two,
depending upon the initial condition (see (Ascoli et al., 2023) for
more details). This research study contributes to laying the
foundations of memristor theory, providing the research
community with a new, powerful analysis tool to unlock the full
potential of memristive nanotechnologies for the electronics of the
future.
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