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Abstract

The rapidly advancing field of Additive Manufacturing (AM) has ushered in a myriad
of technological innovations, among which Direct Energy Deposition with Laser
Beam and Powder Feedstock Material (DED-LB/Powder) shows remarkable poten-
tial for efficient material deposition in industrial applications. However, optimizing
these systems demands an interdisciplinary methodology supported by robust pro-
cess parameters. This study employs the Design of Experiments (DoE) to navigate
this complex landscape, offering a systematic approach to establishing reliable,
data-driven process parameters.

This work is structured into two main parts. The first focuses on characterizing
the powder feeder system and narrowing down the variables that interact during
the fabrication process. This phase is critical for isolating key parameters and
laying the groundwork for subsequent optimization. The second part is devoted to
the experimental development and testing of a method for establishing a linkage
between the three typical physical processes in DED: powder stream dynamics,
melt pool formation, and track solidification. By comprehensively examining these
interrelated phenomena, the study aims to create a cohesive framework that enhances
the predictability and robustness of DED-LB/Powder systems, thereby advancing
their readiness for broader industrial applications.

The first segment of this study focuses on the comprehensive characterization of
the powder stream process within a powder feeder system. Utilizing a combination
of experimental techniques, statistical analyses, and regression methods, response
surfaces were derived. These surfaces not only delineate the operational boundaries
and ranges but also enable the precise setting of factors to achieve a specified powder
mass flow rate. The subsequent phase optimizes the carrier gas level, essential for
adequate powder transportation. By tuning this variable, the study establishes the
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optimal gas level required for consistent and accurate deposition, thereby minimizing
variability.

The second segment of this study is dedicated to the formulation of mathematical
models that serve as a bridge between three core physical processes involved in DED.
Through hypothesis testing and multifactorial experimentation, the efficacy and ro-
bustness of the developed methodology were rigorously evaluated. Specifically, three
physical properties of the specimens—density, porosity, and micro-hardness—and
one geometric property, the target height growth, were examined. A single exper-
iment was conducted to assess both the robustness and sensitivity of the method.
Utilizing regression analyses, relationships among these variables were established.
In the final phase, a computational code was developed that provides end-users with
the necessary process parameters tailored to varying input conditions.

The meticulous analyses conducted in this study validate the initial hypotheses
and generalize the findings, making them both applicable and adaptable to a wide
array of DED-LB/Powder systems. This work comprehensively addresses the initial
research questions and provides a nuanced understanding of the DED-LB process,
laying the groundwork for future research in this rapidly evolving field. Through the
systematic exploration and validation of key process parameters and their interactions,
the study establishes a rigorous mathematical framework that facilitates optimized
material deposition. The contributions of this research stand as a seminal effort in
bridging the knowledge gaps in DED-LB systems and offer a robust foundation for
subsequent investigations.
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Chapter 1

A gentle introduction to the Directed
Energy Deposition

1.1 A modern manufacturing challenge

The contemporary manufacturing sector is experiencing an escalating rate of paradig-
matic shifts, necessitating a reevaluation and subsequent update of traditional method-
ologies. Influenced by the advent of technological innovations, globalization, and
rapidly changing customer needs, modern manufacturing environments face unprece-
dented complexities. These challenges require agile, efficient, and customer-oriented
strategies to ensure a sustained competitive advantage. One of the defining aspects of
this paradigm shift is the increasing adoption of Industry 4.0 technologies and lean
manufacturing principles, both of which have considerable potential to revolutionize
the manufacturing landscape [3].

Lean manufacturing has long been the cornerstone of waste reduction, opera-
tional efficiency, and Just-in-Time (JIT) delivery [4]. This approach focuses on
maximizing value for the customer while minimizing waste and inefficiencies. The
lean philosophy is closely aligned with the objectives of Industry 4.0, a term that
refers to the digitization and automation of manufacturing processes. Both paradigms
aim to achieve exceptional levels of operational efficiency. However, they approach
this objective differently: lean through process optimization and waste reduction, and
Industry 4.0 through smart technologies and data analytics [5]. Lean manufacturing
aims to identify and eliminate waste in many forms, including overproduction, idle
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time, and unnecessary transport. Industry 4.0 complements this by enabling real-time
monitoring and data analysis, making it easier to identify inefficiencies and adapting
processes accordingly. The synergistic effect of these two paradigms could lead to
unprecedented levels of waste minimization.

Both lean and Industry 4.0 have significant implications for energy efficiency.
Lean manufacturing improves energy use by optimizing production flows, minimized
waste, and reduced idle times, reducing energy footprint. Industry 4.0 can improve
this through smart energy management systems that dynamically adjust energy usage
based on real-time demands. JIT manufacturing, an integral part of lean thinking,
aims to produce the right product at the right time, in the right amount. Industry 4.0
technologies such as the Internet of Things (IoT) and real-time data analytics can
further fine-tune JIT processes by accurately predicting manufacturing requirements,
thereby reducing stock shortages and overstocks [6].

It is precisely within this historical and socio-economic context that Additive
Manufacturing (AM) has emerged. This innovative manufacturing technique not
only allows considerable flexibility in production, but also finds its utility within
the framework of lean manufacturing and Industry 4.0. AM is inherently aligned
with the principles of waste reduction, as it enables additive processes that use
only material where needed. Moreover, its digital nature makes it an ideal fit for
data-driven, automated environments championed by Industry 4.0.

AM, commonly referred to as 3D-printing in non-specialized contexts, is the
fabrication of a three-dimensional object from a Computer-Aided Design or digital
3D model. This process involves layer-by-layer deposition, joining, or solidify-
ing material under computer control. The term "3D printing" has become closely
associated with fused filament fabrication (FFF), a specific technique invented by
Scott Crump. In 1992, Crump filed the patent US5121329A, entitled "Apparatus
and method for creating three-dimensional objects” [7]. A crucial turning point in
the popularization of 3D-printing was the anticipated expiration of this patent on
October 30, 2009. This led to a significant decrease in the cost of FDM printers, with
prices dropping from over $10.000 to under $1.000. The expiration of the patent
had a twofold effect: not only did it catalyze the emergence of consumer-friendly
3D printer manufacturers, such as MakerBot and Ultimaker, but it also intensified
commercial interest across various sectors [8]. As a result, 3D-printing technology
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experienced rapid proliferation in the hobbyist market and industrial applications,
attracting significant media attention and research interest.

1.2 Application of Directed Energy Deposition in mod-
ern industry

Building upon the foundational patents dating back to 1983, manufacturing firms
initially embraced AM primarily for prototyping [9]. Over the years, the application
of AM expanded from this rudimentary function to the production of complex com-
ponents, including those made of metallic alloys. As industries strive for increased
efficiency, reduced waste, and JIT production - all core tenets of lean manufacturing
and Industry 4.0 - AM has emerged as a significant player [10, 11].

In line with these trends, 3D-printing technology has evolved to serve the con-
sumer market and solve complex industrial problems, particularly waste reduction
and component recovery. A subset of AM techniques that has garnered considerable
attention for this specific purpose is Directed Energy Deposition (DED). This tech-
nology became prominent in July 2021, when a fully functional stainless steel bridge
was constructed using Directed Energy Deposition Arc Wire (DED-Arc/Wire), also
known as Wire Arc Additive Manufacturing (WAAM) [12]. Subsequently, it was
installed on the Oudezijds Achterburgwalin canal in Amsterdam (see Fig. 1.1).

Fig. 1.1 MX3D bridge, world’s first 3D printed stainless steel bridge in Amsterdam (NED)
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The bridge is a wonder of engineering and embodies real-world implementation
of these advanced techniques. It has a sophisticated sensor network that monitors
structural integrity and environmental conditions. The data collected are sent to an
online repository hosted by The Alan Turing Institute for long-term analysis. This
real-time monitoring facilitates predictive maintenance and provides information on
structural behavior and environmental interactions. DED technologies like WAAM
offer precise control over material deposition, thus minimizing waste. Moreover, they
are particularly well suited for repair and remanufacturing applications, presenting a
pathway for recovering components that would otherwise be discarded.

In the academic world, interest in AM and DED has grown exponentially. As
depicted in Fig. 1.2, this surge, particularly evident in the latter part of the timeline,
underscores the growing recognition and exploration of these technologies within
scholarly communities. The dashed curves in the graph extend projections up to a
decade ahead, predicting the potential trend of scientific publications through 2033.
A custom-designed Wide Neural Network was developed and utilized to facilitate
these projections. The model was trained using data sourced from Scopus up to
2022. To further validate the robustness and generalizability of the model, a 5-fold
Cross-Validation technique was rigorously implemented as an additional verification
measure.
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Fig. 1.2 Prediction of academic documents publication with "Additive Manufacturing" and
"Directed Energy Deposition" as keywords. Data source from Scopus
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Notably, these projections indicate an increasing number of publications on these
subjects in the years to come, suggesting that AM and DED are, and will continue to
be, hot topics in academic and industrial research for the foreseeable future.

1.3 Research Questionss

In the rapidly evolving field of AM, DED with laser beam, as thermal source, and
metal powder (DED-LB/Powder), as a feedstock material, systems hold significant
promise for efficient material deposition. However, to exploit the full potential of
these systems for industrial applications, it is crucial to develop methodologies that
ensure consistent deposition. One of the persistent challenges in this endeavor is
the lack of robust process parameters that yield predictable results under various
conditions. Achieving this level of consistency is critical for material efficiency and
ensuring the mechanical integrity of the deposited components. However, it is also
essential for comprehensive industrial adoption beyond isolated case studies.

Addressing these challenges requires an interdisciplinary approach that draws on
statistical methodologies to develop evidence-based process parameters. One such
statistical tool increasingly employed in engineering research is the Design of Exper-
iments (DoE). The latter minimizes the need for resource-intensive trial-and-error
methods by strategically planning experiments to obtain data-driven insights. The
two main objectives of this work are summarized in the following research questions:
RQ1: To what extent can a specimen be deposited to meet specified properties
leveraging on process parameters utilizing a DED system?
Within the intricate dynamics of DED-LB systems, many practitioners have often
gravitated towards intuitive judgments. This often leads them to adopt methodologies
that might seem rigorous, such as the one-factor-at-a-time approach. However, this
can result in considerable use of resources without necessarily achieving optimal
outcomes. It is essential to comprehend its underlying potential and limitations for
effective application of DED technology. Consequently, this research promotes a me-
thodical approach, focusing on how process parameters can be leveraged effectively
to ensure that specimens are deposited to meet the desired properties.

RQ2: How do deposition behaviors vary under diverse conditions when
employing DED-LB, and which factors determine its robustness?
Understanding the variability in deposition behaviors is paramount in the intricate
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realm of DED-LB/Powder. Many users might lean towards a reductionist perspective
on system behavior, but this research takes a more comprehensive stance. The
primary objective of this work is to validate the hypotheses formulated in the previous
research question and to assess its robustness. This was achieved through a sensitivity
analysis, also called factor screening in the specific experimental terminology. By
systematically delving into these interactions, we intend to significantly enhance
the predictability and reliability of DED-LB processes, paving the way for efficient
production and consistently high-quality results.



Chapter 2

An overview of the Directed Energy
Deposition

The DED technique merits significant attention in the constantly advancing AM
landscape. As delineated by the ISO/ASTM 52900:2021(E) standard [13], DED is
an AM procedure wherein focused thermal energy is employed to fuse materials
during deposition. Such versatility makes DED suitable for various applications,
from manufacturing complex components to rapid prototyping and meticulous repair.
Following the ASTM F3187-16 standard [14], the potential of the DED is in scenarios
like component repair, expedited prototyping, and small batch fabrication.

Fig. 2.1 details the classification of single-step AM techniques as defined by
ISO. Notably, two primary states of fusion are identified: melted and solid. The
latter pertains to the Sheet Lamination technique. Under the melted category are two
different feedstock materials: filament/wire and powder type. Another significant
differentiation is how the material is distributed. This distinction is between powder
bed techniques, where powder layers are laid on a platform, and those employing
a deposition nozzle. Notably, the latter can feed material as a filament or powder.
In recent years, the market has witnessed the emergence of hybrid systems that can
deposit both forms of material. A notable example is the Ianus cell by Prima Additive
(Torino, ITA) [15]. Furthermore, the type of thermal source is also categorized, with
options being Electron Beam (-EB), Arc (-Arc), or Laser Beam (-LB). Based on the
combinations of the categories mentioned above, the specific denomination of the
process is ascertained.
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Fig. 2.1 Single-step AM processing principles for metallic materials [13]

The following sections will further explore the mechanics and physics underlying
the DED method, particularly emphasizing DED-LB/Powder, which is the system
configuration employed and analyzed in this work.

2.1 The physics beyond the process

The intricacies behind the DED technique are a mosaic of intertwined physical
phenomena, each unique contributor to the overall process. Unravelling the nuances
of this deposition method is a complex task due to the multitude of coupled micro-
phenomena. Researchers often resort to computational models to accurately charac-
terize each intricate facet of the process. These models encompass a multi-physics
approach, integrating various physical interactions. In computational modeling, the
DED process involves multi-physics simulation, simultaneously examining various
system interactions. This approach uses mathematical models consisting of primary
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and auxiliary equations and initial conditions. Typically, methods such as the finite
element, the finite difference, or the finite volume are used for these simulations. The
precision and accuracy of such models are inherently tied to their approximations.
As one delves deeper into the complexities, the importance of these approximations
grows, directly influencing the fidelity of the predictions made. Thus, the balance of
simplification and accuracy becomes a crucial challenge in such endeavors.

Various researchers have ventured into DED physics to distill its complexities into
a more straightforward framework. Amongst these, the model posited by Pinkerton
[16] has been heralded for its comprehensibility and pragmatism.The simplified
model (Fig. 2.2) dissects the DED-LB process into three interacting macro-processes,
creating a structure that encompasses the core of the deposition mechanism.

Fig. 2.2 DED-LB physics and process parameters [17]

This delineation not only elucidates the fundamental phenomenology but also
aligns with the approach embraced in the current research. Each macro-process
comprises input, some of which are adjustable by the operator, known as process
parameters. In contrast, other unmanageable input arises from the specific setup
of the system, the material properties, and the boundary conditions. Every process
step interacts with or is influenced by the next or the previous, establishing an
intricate system. In this complex configuration, manipulating a single input variable
or parameter can intentionally or not modify one or more outputs. This aligns with
the overarching objective of varying inputs to optimize the outputs, as pursued in the
current research. In particular, the sequence involves the powder stream, the melt
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pool, and the path formation (solidification) processes. The latter visibly delivers the
material track, offering a tangible and measurable output.

2.1.1 Powder stream

Deposition head design

The DED-LB/Powder methodology is fundamentally anchored by the powder stream
process, recognized as the primary among three main macro-processes. This mecha-
nism defines how powder particles are introduced into the laser interaction zone. In
later chapters of this dissertation, the current section will elucidate the various factors
influencing the powder stream in terms of their intrinsic significance and exploration.
The deposition head is one of the main protagonists in characterizing the powder
stream through its integral component, the deposition nozzles. The deposition head
is a complex assembly, combining laser optics, deposition nozzles, protective gas
nozzles, and a series of sensors. While its configurations may vary, each brings
its unique strengths and challenges. Various patented configurations in the market
dictate the arrangement of powder delivery nozzles in the DED-LB process, namely
the lateral, the coaxial, and the discrete coaxial configurations.
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Fig. 2.3 Deposition head configuration: off-axis (a), continuous coaxial (b), discrete coaxial
(c). Inverted laser position configuration: continuous coaxial (d) and discrete coaxial (e) [18]

The lateral or off-axis configuration stands out for its simplicity (Fig. 2.3(a)).
In this arrangement, the powder feed nozzle is oriented at an angle to the heat
source. Although this offers ease of setup, it brings about operational challenges.
Specifically, the lateral approach can create asymmetries in the powder temperature,
laser beam intensity, and melt pool shape, impacting deposition consistency and the
final properties of the part. A significant hurdle with this setup is balancing powder
catchment efficiency with surface finish, both influenced by the relative position
between the nozzles, the melt pool and the scanning direction [19]. Nonetheless, the
configuration proves beneficial in applications valuing straightforward setup.

Coaxial nozzle configurations (Fig. 2.3(b)) have emerged as a natural evolution
of the lateral one. They are the most popular choice in the DED-LB process due to
their ability to produce complex parts with consistent properties that overshadow the
capabilities of lateral feed nozzles. The continuous coaxial nozzle, distinguished by
its annular outlet, uses two coaxial cones to direct the powder stream towards the
melt pool focal point. The angles of these cones can be adjusted to shift this focus.
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Many such nozzles incorporate channels between the cones to ensure a convergent
stream created by machining grooves in the inner cone. This design aims at a focused
powder stream aligned with the laser beam and a uniform distribution [20].

Discrete coaxial nozzle configurations (Fig. 2.3(c)) employ a unique approach by
utilizing multiple distinct channels, typically three to four, to convey the feedstock
material directly to the melt pool. The specific orientation of these channels is de-
signed to generate a convergent powder stream, and the subtleties of their positioning
critically influence the flow characteristics and the intersection of the focal point of
the stream with the laser beam. Like many intricate designs, these nozzles do not
adhere to a single prototype, but exhibit various adaptations. However, foundational
aspects such as the injection radius, the injection angle, the exit radius of the nozzles,
and the stand-off distance remain integral in different versions. A notable feature of
these nozzles is the ability to adjust the spatial arrangement of the powder jets relative
to the deposited layer. When the rotation of the deposition head is manipulated,
the feed position of the powder streams can be varied. However, this adaptability
keeps these streams aligned with the laser. The relationship between the geometric
parameters of the nozzle and the characteristics of the resultant powder stream is
multifaceted.

For example, an increase in the specific dimensions of the nozzle, such as the
diameter of the exit and the injection radius, tends to reduce the concentration of
powder mass at the focal point. On the contrary, a higher injection angle minimizes
the focal spot size, leading to a denser powder concentration. The stand-off distance,
which defines the gap between the nozzle and the deposition surface, displays
complex interactions with these geometric parameters. Interestingly, the orientation
of the nozzle exerts minimal influence on the dynamics of the powder flow, since
the powder concentration at the focal point remains largely invariant regardless of
its angular position [21]. Furthermore, increasing the number of channels (nchannels)
while maintaining a constant total cross-sectional area (At) enhances contact surfaces
within the system. This is correlated with an observed increase in pressure drop.
Mathematically, this phenomenon can be understood by considering that the radius
of each channel decreases as the number of channels increases, given the constant
area. The total perimeter Pt , which measures the contact surface, is then given by
Pt = 2

√
nchannels ·π ·At . Significantly, Pt scales with

√
nchannels, substantiating the

non-linear relationship between the number of channels and the pressure drop within
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the system [22]. Thus, given unchanged process parameters, an increase in the
number of conduits indicates a probable decrease in the mean powder velocity.

The described configurations are the most commonly used when dealing with
powder-based systems. However, there are other coaxial configurations, typically
employed for wire feedstock systems, named central feed nozzles. In these systems,
the laser and powder channels are inverted in their positions. To prevent the wire
from melting before reaching the substrate, the laser is positioned externally to
the wire, supplied from the center of the deposition head. These configurations,
depicted in Fig. 2.3(d) and Fig. 2.3(e)), can also be applied to powder-based systems,
especially in hybrid cells.

The powder feeding mechanism is the second inherent feature of the chosen
system. This mechanism can be broadly segmented into three key stages: powder
metering, conveyance, and delivery. During the powder metering phase, emphasis is
placed on the precise measurement of the powder from its primary storage, often a
hopper, ensuring the appropriate quantity is dispatched to the melt pool. Multiple
techniques are employed to ensure this accuracy, such as using specialized powder
dosing systems to guarantee the correct mass flow rate. Additionally, numerical
methods like Computational Fluid Dynamics (CFD) simulations are employed to
predict and optimize process behaviors [23]. Alternatively, an experimental approach
may also be taken to directly measure and validate the performance and behavior
of the system. In the powder conveyance stage, the emphasis shifts to ensuring
the transport of the accurately metered powder from its source to the delivery
nozzle. The dominant method in this regard uses an inert carrier gas, typically
argon, although other strategies such as vibration, auger mechanisms, and gravity
chutes are employed in commercially available systems. The powder delivery stage,
executed via a specialized nozzle, primarily concentrates the powder stream to a
specific focal point. It is important to note that, while these stages might appear
distinct, their functionalities frequently intersect and overlap.

Delving deeper into the powder metering and conveyance stages, various tech-
niques emerge, which can be summarized in the following methods:

• Screw/Auger: a motor-driven Archimedean screw introduces a specific amount
of powder into a gas chamber, from which an inert gas stream subsequently
propels it to the delivery nozzle;
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• Vibration-Assisted: a technique that employs vibratory feeders, capitalizing
on mechanisms such as the sealskin and jerk methods. The sealskin method
utilizes unequal friction coefficients in orthogonal directions to ensure effective
material movement, particularly during relative motion between the track and
the material. On the other hand, the jerk method operates on a principle of
slow advance followed by a quick return, requiring specific non-linear and
asymmetrical conditions for optimal material transport [24];

• Gravity-Driven: these systems might experience flow instabilities, especially
in narrow chutes, leading to potential granular segregation. The phenomenon
known as "Jamming" further complicates the flow by forming arch-like struc-
tures of particles that inhibit movement. This obstruction is highly influenced
by particle shape rather than material properties and commonly halts granular
flow.;

• Pneumatic: among the discussed methods, pneumatic powder feeders domi-
nate DED applications. These systems exploit pressure differentials across a
network of tubes to facilitate powder metering and transport;

• Electrostatic: implementing electric fields to govern granular flow has been
previously explored. Specific voltage ranges can influence flow dynamics,
resulting in distinctive flow patterns.

Powder characteristics

The physicochemical properties of materials substantially influence the amount of
powder transported in the powder stream process. Several studies in the literature
have examined different materials, but the focus of this section is different from what
is shown. Given that each batch of material produced by a company presents unique
challenges and must be characterized individually within the system in question, it
is essential to identify a standard method for powder characterization. The most
reliable standard for this purpose is undoubtedly ISO/ASTM52907-19 [25]. This
standard details and recommends practices to characterize AM metallic powder
consistently, reliably, and repeatably. The methodology of this standard will be used
later in this study.
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According to the ISO/ASTM52907-19 standard, maintaining meticulous doc-
umentation and traceability for metal powders is essential. Detailed records en-
compassing supplier details, product descriptions, storage instructions, and analysis
dates are imperative. For example, variables can still introduce inconsistencies even
when using the same powder from the same manufacturer, batch, and container.
Suppose the container is opened multiple times or stored for extended periods, even
under hermetic conditions. In that case, the powder may absorb moisture and form
agglomerates that inevitably impact the flow rate. The latter is why powder that has
been unused for an extended period still requires pre-treatment, as its characteristic
granulometry tends to capture moisture.

Particle size distribution is a multifaceted area where diverse methods yield
varied outcomes, from sieving to laser diffraction. It is customary to use standard
indices such as D10, D50, and D90 for a uniform representation of the data. In terms
of the chemical composition, it demands rigorous analysis through techniques like
atomic absorption spectrometry and X-ray fluorescence. One intriguing aspect is how
powder recycling can subtly alter chemical characteristics, particularly oxygen levels.
Densities, both apparent and tap, serve as useful metrics. They help to understand
flowability and are pivotal in selecting appropriate testing methods. The density
evaluation by a gas pycnometer is particularly revealing, shedding light on the true
density and potential porosity of the material.

Morphology, heavily influenced by the powder production process, requires the
adherence to established vocabularies, sometimes augmented by advanced imaging.
Flowability is inherently complex, dictated by particle size, cohesion, and inter-
particle friction. Lastly, the standard underscores the criticality of ensuring the
absence of contamination. Rigorous examination of representative powder samples
can detect and mitigate purity concerns, safeguarding the integrity of the material.

Process parameters

The previously elucidated factors relate to the inherent characteristics of the system
and the powder under investigation. Such characteristics remain invariant unless
intentionally altered, such as by introducing a different type of powder, material
or an alternative powder feeder system. Contrary to these fixed properties, which
do not exhibit gradual transitions, the operator must adjust the process parameters
according to the operational requirements. A process parameter can be defined as
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a quantifiable element of input or transformative activities within a process that
affects the resultant outputs. Process parameters in the context of the powder stream
predominantly encompass those that modify the powder mass flow rate during the
metering phase and are dependent on the specific system in question. Moreover, the
role of the carrier gas is crucial in a pneumatic conveyance mechanism in DED-LB,
and it is also explored in this doctoral research.

In AM techniques like DED, parallels can be drawn with traditional welding meth-
ods concerning shielding gas applications. Specifically, within a DED-LB system
that utilizes pneumatic conveyance, the gas employed performs a dual role: facilitat-
ing the transportation of powders and shielding the molten pool. Consequently, it is
designated as a carrier gas. Technically, the gases employed in conventional welding
processes could be appropriated for this purpose, except for flammable gases such as
oxygen and hydrogen. Different gases impart unique characteristics to the process,
listed below in descending order of their use in DED-LB applications[26, 27]:

• Argon (Ar): the most popular shielding gas choice due to its inert nature.
Suitable for many welding materials, including sensitive ones like aluminum
and stainless steel, Argon enhances weld penetration;

• Helium (He): inert like Argon, introduces increased heat input to the joint,
leading to wider and deeper penetration, particularly beneficial for thick-walled
materials like aluminum or copper;

• Carbon Dioxide (CO2): Often employed for short arc welding, CO2 is cost-
effective and especially suitable for welding galvanized steel. It presents
specific challenges, however, including a propensity for increased spatter;

• Nitrogen (N2): Nitrogen is versatile, serving as an alloying element and a
shielding gas. In specific contexts, such as the welding of copper, it offers
increased heat input without detrimental metallurgical effects [28].

Thus, once the most suitable type of gas has been selected, one of the process
parameters that can be manipulated is the flow rate. This is typically regulated via
laminar flow through the valves. Inevitably, this directly impacts the rate of powder
transported in a system that employs pneumatic conveyance. Therefore, the type of
gas and its flow rate are interrelated process parameters that significantly influence
the powder stream phenomenon.
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Noise sources

Referring to Fig. 2.2, there are specific process parameters that, although not directly
related to the feeder system, can significantly influence the powder stream process.
Notably, these parameters include the laser power, laser beam diameter, and the
gas-liquid interface of the melt pool. All three share a common characteristic: they
are heat sources and interrelate reciprocally. The beam diameter, inherent to the
system, possesses a specific magnitude and distribution that invariably interacts with
the laser power and the resultant melt pool. Expanding on this, the literature suggests
that laser radiation significantly affects the velocity of the powder particles. It was
demonstrated by Sergachev et al. [29] that when the laser is activated, the speed of
these particles tends to increase. The interaction of the beam with the powder stream,
influenced by factors such as standoff distance, leads to changes in the effective laser
power due to the interplay of absorption, reflection, and scattering [30]. Furthermore,
while powder in the DED-LB process customarily melts upon entering the melt pool,
there exists potential for it to melt during its in-flight travel under certain conditions.

Lastly, noise sources can be understood as the factors or phenomena that remain
elusive for manipulation and control. A quintessential example would be Boundary
Conditions (BCs). The number of noise sources in the powder stream process
escalates with increasing analytical detail. Notably, air viscosity is a crucial noise
factor. In a fluid with high viscosity, the resistive forces against the motion of the
body are more significant, consequently reducing its velocity (powder velocity in the
DED-LB/Powder). Governed by temperature and pressure, the dynamic viscosity of
air rises with increasing temperature, as delineated by the Sutherland model. While
generally invariant under moderate pressure conditions, viscosity can be affected
by compressibility effects at extreme pressures. Additional noise phenomena may
arise from laminar flow effects, pressure decay within containment cylinders, and
conduit turbulence. Powder conditions also play a crucial, albeit unpredictable, role
in the powder stream. In summary, noise sources encapsulate all those uncontrollable
phenomena that directly or indirectly impact the powder-stream process.
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2.1.2 Melt pool

Substrate and powder stream interaction

Within the context of DED-LB, it is pertinent to acknowledge the foundational role
of laser welding. While both laser welding and DED-LB share the commonality
of generating a melt pool, their objectives diverge substantially. Laser welding is
fundamentally aimed at the cohesive joining of two components without adding extra
material. DED-LB, on the other hand, is designed not only to create a fused zone
but also to introduce supplementary material, thereby facilitating layer buildup. This
contrasts yet is similar to multi-pass welding techniques such as Gas Tungsten Arc
Welding (GTAW) and Gas Metal Arc Welding (GMAW). The latter is commonly
employed for its high productivity in controlled environments, while GTAW is
adept at specialized conditions like underwater or thin-material welding. Despite
these similarities in material addition, the mechanisms and engineering objectives in
DED-LB differ substantially.

Mirroring the intricate dynamics inherent in laser welding, the genesis and
dynamics of the melt pool in DED-LB are influenced by many factors, making it a
multifaceted phenomenon to delineate. This process encompasses phase transitions
from solid to liquid, reverting to solid upon incorporating additive material. Intricate
thermo-fluid dynamics further compound the inherent complexities within the melt
pool. Such dynamics are accentuated by turbulent regimes on the surface of the melt
pool due to elevated velocities associated with the carrier gas [28]. Concurrently, the
movement of the heat source across the substrate, which subsequently dictates the
movement of the melted pool, is intertwined with heat transfer interactions between
the substrate and its ambient environment. This brief description merely offers a
superficial overview of the intricate processes transpiring during deposition.

Expanding upon the details, as encapsulated by Fig. 2.2, it is discerned that a
paramount interaction exists between the melt pool and the powder stream process.
Factors that remain relatively invariant encompass the materials of both the substrate
and the powder. The chemical composition of the substrate and powder does not
have to be identical, but they must be weldable with each other. Focusing on
the substrate, it is postulated that its geometrical attributes play a pivotal role in
modulating heat transfer phenomena. It is pivotal to delineate the three cardinal
mechanisms underpinning heat transfer [31]:
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• Conduction: refers to transferring heat across solid materials without mass
movement;

• Convection: pertains to the transfer of heat facilitated by the movement of
fluids, encompassing both liquids and gases;

• Radiation: involves heat transfer via electromagnetic waves, such as infrared
radiation. While conduction and convection necessitate a material medium for
their manifestation, radiation can transpire in a vacuum.

Under substrate geometry, surface conditions warrant consideration, specifically
form tolerances and roughness [32]. Geometric tolerances, such as stringent re-
quirements for substrate planarity, can critically impact the quality of the melt pool,
thereby affecting the deposition process. Surface roughness, characterized as the
presence of inherent or mechanically-induced micro-imperfections on the surface,
such as variable grooves or scratches, is crucial in the modulation of laser source
absorption and reflection due to its optical implications [33].

Shifting the focus to the powder component, its chemical composition and
other qualitative properties, as previously outlined, have demonstrated tangible
effects on melt pool behavior. Analyzing the interactions between the powder
stream mechanism and melt pool generation, a correlation emerges between the
attributes of the powder stream and the energy imparted to the melt pool. Noteworthy
factors encompass the velocity of the powder particles at the point of impact, which
correlates to kinetic energy, factoring in the average particle mass. Additionally,
the temperature of the powder, a byproduct of absorbing a portion of the energy of
the laser, inevitably results in laser power attenuation. Other considerations include
the configuration of the powder stream upon interfacing with the substrate, the
distribution of particles, and the laser beam energy distribution. In the literature, it is
common to assume the laser power density distribution as Gaussian [34].

However, such assumptions can lead to approximation errors that may signifi-
cantly impact the outcome. Hence, before adopting any approximation, conducting
tests, making measurements, and comparing with the proposed model is imperative.
This procedure, termed the principle of induction, will be extensively discussed in
Chapter 3. These phenomena represent a subset of the intricate interplay between
the melt pool and the powder stream. An additional yet critical mechanism is the
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gas-liquid interface of the melt pool, which exerts a retroactive effect on the powder
stream, altering the medium through which the powder is conveyed.

Process parameters

Although numerous authors have identified manipulable parameters affecting the
melt pool – such as track scan spacing, powder feed rate, laser travel speed, laser
power, and laser spot size – an energetic approach is often more insightful and
concise. This inclination towards an energy-centric approach can be attributed to
various reasons:

1. Simplicity: the energetic perspective simplifies the complex interplay between
various factors by focusing on the overall energy interactions, providing a
clearer insight into the process dynamics;

2. Uniqueness: instead of juggling multiple parameters that might interrelate
in multifaceted ways, an energy-centric model concentrates on a singular,
overarching factor, making the analysis more tractable;

3. Incorporation of Multiple Factors: by adopting an energetic perspective,
several influencing factors are inherently accounted for, being encapsulated
within the energy parameter. this minimizes the chances of overlooking pivotal
aspects;

4. System Independence: the energy approach allows for a level of abstraction,
making the analysis less tethered to the specificities of a given system and,
thereby, more universally applicable.

Delving into the energetic approach, the focus rests on discerning how energy
interacts with the material across its various manifestations. A crucial metric often
employed in this context is the energy density [35]. The latter is crucial, particularly
when predicting potential porosity within the deposited material. As the travel speed
increases, the dwell time on the substrate decreases, leading to a more contracted
melt pool. This results in accelerated cooling due to the reduced energy input. Instead
of individually manipulating each parameter, which could inadvertently introduce
secondary effects on the melt pool, an energy-centric perspective seeks to control its
size, shape, and temperature distribution. Employing energy density as a guiding
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metric makes it possible to maintain the desired pool characteristics. Dynamic
adjustments, such as modulating laser power, can ensure an optimal solidification
rate, resulting in the desired microstructure and properties [36].

Noise sources

Similar to the considerations for the powder stream mechanism, several factors can
introduce variability in the dynamics of the melt pool. BCs have a pronounced effect
on the melt pool. For instance, the convective heat exchange of the substrate is
governed by Newton’s law, where the outflowing heat flux is tied to the difference
between the temperature of the substrate and the environmental conditions. Conse-
quently, thermal interactions with the surrounding conditions are dictated in part by
BCs, which affect the melt pool. Another complex factor to characterize is the flow
of the carrier gas, which lowers the melt pool temperature through forced convection.
Turbulent flow conditions predominantly influence this phenomenon due to the high
velocities involved. Additionally, ambient humidity plays a role; moisture in the
atmosphere can absorb some of the energy intended for the melt pool, leading to
variations in its characteristics.

The mounting system used within the DED setup warrants attention. Typically
metallic, these systems can inadvertently influence the heat exchange dynamics
due to their inherent thermal properties. Mechanical discrepancies also contribute
to noise. Potential misalignment between the substrate and the orientation of the
laser beam can lead to uneven energy deposition. Furthermore, vibrations from the
movements of the Computer Numerical Control (CNC) machine might introduce
transient noise sources, which could affect the stability of the melt pool.

2.1.3 Track formation

The final macro-process identified within DED-LB is track formation, often called
solidification. This process emerges as a culmination of the previous two mecha-
nisms: melt pool generation and material incorporation through the powder stream
mechanism. Their synergistic actions determine the shape and composition of the
melt pool. The interplay of parameters governing these two mechanisms, coupled
with the influence of noise sources and the inherent physical and geometrical at-
tributes of the selected materials, results in a specific temperature distribution within
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the component. The latter establishes a corresponding thermal gradient, which, in
turn, dictates the solidification rate of the track.

The intricate interrelations of these mechanisms dictate the resultant microstruc-
ture, residual stresses, and surface quality of the deposition. In both contemporary
academic and modern industries, efforts are predominantly focused on enhancing the
mechanical properties of depositions by adjusting process parameters and monitoring
specific characteristics of the powder stream or the melt pool. The primary goals are
often to minimize porosity, contain residual stresses, and enhance the surface quality
of the depositions. To this end, parameter maps frequently employ the concept of
energy density (E), calculated based on laser power (P), scan speed (v), and laser
beam diameter (D):

E =
P

v ·D
(2.1)

This metric is often used to predict relative porosity and finds utility in predicting
layer height when used in conjunction with powder density (F), which is a metric
derived from the powder mass flow rate (Qp):

F =
Qp

v ·D
(2.2)

Finally, the Global Energy Density (GED) is a frequently cited parameter in the
literature that relates the powder stream to the melt pool, defined as follows:

GED =
P

Qp · v ·D2 (2.3)

The latter incorporates the energy density (melt pool) and powder flow rate (powder
stream), representing the energy introduced per unit mass added [37].

2.2 DED defects

As previously described, the outcome of deposition using the DED-LB technique
encompasses three major mechanisms. The end product is a solidified metal part
anchored to its substrate. Given that the process is imperfect and governed by
intricate variables, the result often exhibits one or more defects, which can also be
categorized into three main areas. The root cause of these imperfections frequently
stems from one or multiple factors, process variables, or parameters. Consequently,
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experimental methods are used to decipher ways to mitigate or eradicate such flaws.
A detailed subdivision and classification of these defects is evident in the literature.
The comprehensive categorization by Liu et al. [38] has been adopted for this
discussion.

2.2.1 Geometrical Defects

In DED geometrical defects arise from discrepancies between the CAD model and
the actual part produced, resulting in deviations in form and dimensions. Such
deviations can compromise aesthetic quality and structural integrity, potentially
rendering the part unsuitable. Here is an overview of common geometrical defects:

• Non-uniform Layer Thickness: variations in deposited layer thickness across
the building height can result in discrepancies in the final size of the part;

• Surface Warping: deformed top surface, marked by peaks and valleys, typi-
cally results from high volumetric energy density input from the laser;

• Edge Defects: appear as uneven edges where the material overlays or un-
derlays. Such inconsistencies often arise at deposition path starts or ends or
during abrupt nozzle direction changes;

• Satellite Defects: localized balled-up protrusions; these defects primarily
occur at overlap points between deposition start and endpoints.

• Dilution and Dimensional Discrepancies: this happens when metal is de-
posited onto a different material; the resultant bead or track might deviate
in dimension due to material interactions. Factors like melt pool size and
solidification times influence the extent of dilution;

• Material Shrinkage: contraction of the layers leading to slanted edges. This
phenomenon affects the outer geometry, demands post-processing, and might
resemble staircase defects indicative of poor resolution;

• Base Separation and Warping: excessive heat, sub-optimal scan strategies,
or inadequate heat dissipation can cause the bottom layer to warp or detach
from the substrate, rendering the part unviable.
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2.2.2 Morphological Defects

Morphological defects in DED stem from irregularities in the surface features and
internal quality of the fabricated component. Such irregularities can alter the inter-
action of the part with its environment and its mechanical response under loading
conditions. Here is an overview of common morphological defects divided into two
different groups.

Surface Morphological Defects

• Surface Waviness: deviation of the top surface from being planar, exhibiting
a wavy nature;

• Excessive Surface Roughness: affected by the combination of process pa-
rameters and build orientation;

• Blobs and Zits: minor imperfections may appear on the surface, especially at
the start or end of a scan path.

Bulk Morphological Defects

• Porosity: a diminished effective density of the material by gas entrapment;

• Delamination and Lack of Adhesion: unintentional separation of the part
from its base or between successive layers;

• Large Voids: typically larger than gas or lack-of-fusion induced porosities.

• Bulk Inclusions: foreign particles or impurities inside the part;

• Non-uniform Grain Morphology/Texture: variations due to non-uniform
thermal distributions and other factors;

• Heat Affected Zones (HAZ): Formed due to the scanning strategy and heating
from successive layer deposits;

• Unmelted Powder on Surface/Subsurface: a powder that only partially
fuses;
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• Incomplete Melting in Compositional Transition Layers: issues due to
differences in elemental composition.

2.2.3 Microstructural Defects

Microstructural defects in DED arise from variations in the minute composition and
arrangement of constituents within materials. Such variations can affect the mechan-
ical, thermal, and electrical properties of the produced part, often compromising its
performance and longevity. Here is an overview of common microstructural defects
grouped in two distinct type.

Feature-related Defects

• Discoloration: caused by overheating, differential cooling, and oxidation;

• Microstructural Inhomogeneity: variations in microstructure based on ther-
mal history and cooling rate;

• Inter-/Intra-layer Cracking: cracks formed during the solidification of the
melt pool;

• Tensile Behavior Anisotropy: primarily induced by grain anisotropy.

Composite-related Defects

• Brittle Intermetallics: formed due to the cooling rate and/or intended compo-
sitional blend;

• Undesired Phases with Degraded Properties: such as the brittle Laves phase
or martensite;

• Elemental Segregation: influenced by temperature’s effect on solid solution
solubilities.

There exist numerous potential geometrical, morphological and microstructural
defects in DED processes. The key to mitigating such defects is thoroughly under-
standing the process and optimizing process variables. Consistency and repeatability
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across machines are paramount to ensuring high-quality and defect-free produced
parts.

2.3 DED applications

DED offers a wide range of applications to meet various industrial needs. From the
fabrication of new components to the enhancement and repair of existing ones, the
flexibility and precision of DED make it an increasingly vital tool in contemporary
manufacturing practices. This section outlines the principal uses of DED by divid-
ing them into categories: Manufacturing, Repair and Remanufacturing, Coating,
and Functionally Graded Materials. This categorization aims to comprehensively
understand the capabilities and innovative potential associated with DED technology.

2.3.1 Manufacturing

As AM methodologies exemplify, DED distinguishes itself from traditional manu-
facturing avenues through its unparalleled flexibility and material efficiency [39]. In
aerospace applications, this technology facilitates the fabrication of intricate geome-
tries without requiring specialized moulds or casting tools [36]. Despite size-related
challenges in construction applications, DED provides an opportunity for the engi-
neered tailoring of compositional and microstructural gradients, potentially offering
mechanical properties superior to conventionally manufactured components [40].
Moreover, DED holds promise for mitigating greenhouse gas emissions commonly
associated with construction processes [41, 42].

Beyond efficiency and speed, DED technologies offer significant geometric
latitude, enabling the manufacture of structures that are either unfeasible or econom-
ically restrictive when employing traditional manufacturing methodologies. Such
AM methodologies, like Double-Wire Arc Additive Manufacturing (D-WAAM) ,
can significantly increase the strength of the material by up to 20 % and hardness by
9 % compared to standard Ti-6Al-4V components. Furthermore, the in situ alloying
capabilities, as demonstrated by Han et al. [43] in their investigation of Ti6Al-4V-
xCu alloys, enable material customization that was not possible through traditional
manufacturing techniques. These material advantages are attributed to multiple
factors, including reduction in grain size and intrinsic in situ alloying capabilities
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(a) Prima Additive Ianus (b) Meltio cell (c) MX3D Metal XL

Fig. 2.4 Robotic DED cells

of AM technologies [44, 45]. DED offers highly customizable solutions within
the biomedical sector, allowing adaptability in material composition and implant
geometries [46].

Emerging hybrid manufacturing systems that combine additive and subtractive
technologies offer potential solutions to inherent limitations of DED, such as residual
stresses and surface finish quality. Integrating post-processing techniques into the
manufacturing chain promises to improve productivity and market competitiveness
[47]. Compared to other metal AM methods, a salient advantage and distinguishing
feature of DED technology is its adaptability to various Computer Numerical Control
(CNC) machines. This flexibility ranges from straightforward configurations to com-
plex five-axis systems. Recent trends indicate that companies such as Prima Additive,
Meltio, and MX3D are capitalizing on this versatility by integrating DED systems
onto robotic arms and coupling these with rotary tables. This innovative approach
further expands the number of axes, enhancing overall system flexibility. Illustra-
tive examples of such robotic DED cells can be observed in Fig. 2.4a, showcasing
the configuration proposed by Prima Additive, in Fig. 2.4b, the Meltio robot cell,
and in Fig. 2.4c featuring the Metal XL from MX3D. It is worth noting that these
three systems have been specifically chosen for discussion as they represent distinct
subcategories within the broader realm of DED technology: Ianus operates on both
powder and wire feedstock, thus categorized as DED-LB/Powder-Wire; Meltio uti-
lizes wire feedstock and is categorized as DED-LB/Wire; and Metal XL from MX3D
employs the WAAM technique. This adaptability manifests in both the complexity
of achievable shapes and significantly expanded build volumes afforded by these
systems. For instance, Ianus cell offers a build volume of (1600×1200×700)mm3,
Meltio features a build volume of (2000×1000×1000)mm3, and Metal XL from
MX3D boasts a build volume of (2200×1400×1300)mm3.
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2.3.2 Repairing and Remanufacturing

A significant advantage of DED technology resides in its ability to repair components
that experience loss of functionality over their operational life. During the design
phase, considerations are made for the anticipated service life. Components are
subjected to wear, breakage, or technological obsolescence as time progresses.
Factors such as impacts, plastic deformation, corrosion, fatigue, and extended thermal
cycles can induce defects, including cracks and wear.

Traditionally, the standard approach has been to replace the affected product.
However, particularly for high-cost or frequently-replaced components, two alterna-
tive strategies emerge: repairing and remanufacturing. Both strategies aim to avoid
full product replacement. Remanufacturing is used to restore used components to a
"like new" state, while repairing targets components that do not meet product speci-
fications, exhibit manufacturing-induced defects or have sustained minor damage
[48]. In particular, remanufacturing requires comprehensive reconditioning, often
involving subsequent post-DED operations such as milling and turning. DED is
optimally suited for both repairing and remanufacturing, leveraging the specialized
capabilities of AM techniques and the flexibility and/or speed of a CNC system
capable of managing multiple axes simultaneously (see Fig. 2.5).
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Fig. 2.5 Repairing process. Image credits Prima Additive [49]

The choice of repair rather than replacement can yield significant economic
and environmental benefits. DED systems currently on the market can operate in
large build volumes, outclassing other AM technologies. Some of these systems
are integrated with chip removal systems, facilitating material deposition and re-
moval. This dual functionality compensates for geometric and surface irregularities,
ensuring precise control over layer growth on the Z-axis. Compliance with stringent
mechanical robustness and hardness standards is imperative post-DED repair for
specific components. The ASTM E8/E8M-21 standard often serves as a benchmark
for tensile strength [50], while ASTM A370-20 is essential for steel components
[51]. Hardness assessments generally adhere to the ASTM E384-22 standard [52].
It is critical to note that repaired components manifest a blended interface between
the starting materials and newly added materials. As a result, testing protocols must
adequately represent this hybrid zone [53]. Furthermore, since components under-
going repair or remanufacturing processes cannot be subjected to destructive tests,
non-destructive testing (NDT) methods become highly relevant for characterizing
different zones of the component.
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Drawing in parallel with welding evaluation techniques, NDT methods such
as industrial radiography or computed tomography (CT) scanning using X-rays
or gamma rays, ultrasonic testing, liquid penetrant testing and magnetic particle
inspection offer valuable insights. For example, a proper weld would reveal no cracks
in radiographic tests, demonstrate the unobstructed passage of sound in ultrasonic
tests, and show a clean surface in penetrant tests. Similarly, compliance with
predefined welding parameters can be confirmed through real-time weld monitoring,
ensuring the integrity of the weld prior to NDT and metallurgical evaluations. In
recent years, there has been a growing adoption of nanoscale hardness tests. These
are increasingly being employed to assess hardness and correlate these properties
with the elastic response of the material, typically represented by Young’s modulus
[54]. Such advances in testing methods offer a more comprehensive understanding of
material behavior, thereby enhancing the reliability of post-DED repair assessments.

The academic landscape abounds with studies exploring various dimensions of
the reparative capabilities of DED. These scholarly contributions act as foundational
pillars, illuminating the efficacy and adaptability of DED in a diverse array of material
and operational contexts. For instance, a study by Sun et al. [55] investigates the
implications of DED repair on AISI 4340 steel components, revealing intricate
nuances of microstructural changes and their ensuing mechanical responses. Paydas
et al. [56] focus on strategic choices during DED operations and their impact on the
microstructural and hardness characteristics of the repaired Ti-6Al-4V components.
Taken together, these academic insights underscore the versatile promise of DED
in component repair, attesting to its potential for precision, adaptability, and quality
assurance [53, 57].

2.3.3 Coating

DED processes offer significant advantages in the context of maintenance, repair,
and maintenance applications by enabling the application of coatings to both original
and damaged components. In forging tool applications, for example, a DED-bonded
material can withstand thermal and fatigue loading without chipping [39]. Tools
treated in this manner demonstrated up to four times greater longevity than those
subjected to conventional treatments, resulting in considerable cost savings and
minimized operational downtime. Moreover, DED has been employed to repair
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components with complex geometries, such as impeller blades, extending the lifespan
of critical machinery components.

DED processes are particularly beneficial for improving the surface properties
of metallic parts through coatings. Several vital advantages characterize the DED
technique in this application. Allows for a localized HAZ, thereby reducing thermal
distortion. Moreover, computer-controlled laser scanning patterns enhance the
reliability, repeatability, and flexibility of the coating process. Significantly, DED
facilitates coating metallic parts with intricate geometries previously considered
non-coatable using traditional methods [58]. The metallurgical bond between the
coating layer and the part significantly strengthens and stabilizes the coating.

2.3.4 Functionally graded materials

DED technology enables the meticulous tailoring of specific attributes within local-
ized regions of a component to optimize its functional characteristics and extend its
operational longevity [59]. This fine-tuning can involve depositing varying materials
or inducing compositional shifts within specific areas. Whether these modifications
are intentional, manipulated by process parameters or accidental due to irregularities
in the deposition, the result is a material with functionally graded properties, known
as Functionally Graded Materials (FGM). In particular, the mechanical properties
and in-vivo biocompatibility of porous Ti-6Al-4V scaffolds, a category of FGM, have
been effectively optimized, as corroborated by numerous studies [60]. The genera-
tion of FGM by DED is accomplished through several techniques (see Fig. 2.6). The
direct joining approach fuses Material A directly onto Material B, yet this method
may induce internal stresses because of the abrupt change in material properties. An
alternative method, the intermediate section technique, places a transitional layer of
a third material, Material C, between Materials A and B to mitigate abrupt property
alterations. The most sophisticated approach, the gradient path technique, crafts a
transition region where the composition smoothly transitions from Material A to
Material B, thereby reducing stress concentrations and potential failures [61].
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Fig. 2.6 Three FGM manufacturing strategies

The ability of DED to fabricate FGM proves especially valuable when materials
with significantly different thermophysical properties need to be joined. Traditional
joining methods often result in cracks that compromise performance [62]. In contrast,
the DED process mitigates such challenges, enabling the creation of an alloy that
incorporates the advantageous properties of its constituent materials.



Chapter 3

Overview of industrial experiments
and the role of statistical methods

The dawn of the 20th century brought forth many scientific breakthroughs, and among
them stood the pioneering contributions of Sir Ronald Fisher in the realm of industrial
experimentation and statistical methods. Tasked with a complex challenge at the
Rothamsted Experimental Station, now known as Rothamsted Research, Fisher faced
the challenge of maximizing agricultural yield. His objective required testing an
array of fertilizers in different quantities and at various application times throughout
the year - an endeavor as simple in its intention as it was intricate in its execution.

The difficulties inherent in agricultural experimentation are manifold, with elon-
gated timescales being a primary challenge. To put this into perspective, the duration
from sowing to harvesting wheat spans up to eight months, depending on factors such
as wheat variety and depending on environmental conditions [63]. Coupled with
this is the need to manage multiple variables: a range of fertilizers, their respective
doses, and the timing of their administration. Each of these components, when taken
together, significantly amplified the complexity of the task at hand.

Navigating these complex waters, Fisher broke new ground by developing the
Design of Experiments (DoE), adopting and developing factorial experiments, rather
than experimenting with the less efficient one-factor-at-a-time (OFAT). This approach
allowed for the concurrent exploration of multiple factors and their interrelationships.
The latter marked a turning point in the efficiency and effectiveness of experimental
design, drastically reducing the time and effort required to discern the factors influ-
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encing yield and pinpoint the optimal conditions. During the Rothamsted period,
Fisher also proposed and validated the Analysis of Variance (ANOVA). This statisti-
cal method allowed a more precise understanding of the effects and interactions of
the factors considered [64].

Fisher’s groundbreaking methodology revolutionized not just the field of agricul-
tural research, but it prompted a paradigm shift across numerous other sectors. DoE,
alongside ANOVA, became a fundamental component of agriculture experiments,
industrial statistics, and finding applications in diverse fields such as manufacturing,
health sciences, the pharmaceutical industry, and software engineering. Fig. 3.1
illustrates an application of this method in agriculture.

Fig. 3.1 An example of DoE in agriculture fields [65]

This chapter delves into essential topics to enhance comprehension of this thesis
work, focusing on the role of industrial experimentation, specifically, the DoE and
some basis of statistical methods. It presents critical components such as factorial
designs, factor screening, and the response surface methodology, each vital for the
application of DoE in AM.
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3.1 Introduction to the utility of statistical methods in
industrial settings

3.1.1 The deductive and inductive reasoning

Within the scope of scientific investigation, both inductive and deductive reasoning
play a central role. Inductive reasoning, deriving from specific observations, seeks to
make broader generalizations, whereas deductive reasoning starts with overarching
theories, leading to specific conclusions. These modes of reasoning are seamlessly
integrated into the scientific method. This method is the bedrock of contemporary
research, rooted in the cyclical process of hypothesis formulation, prediction, ex-
perimentation, analysis, inference, hypothesis evaluation, and potential subsequent
studies, as illustrated in Fig. 3.2.

Inductive Reasoning Deductive Reasoning

OBSERVATION or EXPERIMENT

PARADIGM or THEORY

GENERALIZATION PREDICTIONS

Fig. 3.2 Inductive reasoning process in the scientific method

The formulation of a research question is the first decisive step. Indeed, the
research question is in the first chapter of this doctoral thesis. This question could
emerge from observations that require an explanation or from finding solutions
to open-ended queries. Existing evidence from previous experiments, scientific
observations, and other scientists’ work all shape the research formulation of the
questions. The nature and quality of the question are pivotal as they directly influence
the outcome of the investigation.
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Hypothesis generation follows question formulation and is a conjecture that
provides plausible explanations for observed phenomena. The hypothesis forms
the basis for predictions, logical deductions made before knowing the outcome. If
the results corroborate the predictions, the hypothesis receives preliminary support.
The prediction process must distinguish the primary hypothesis from plausible
alternatives, as similar predictions from different hypotheses do not provide exclusive
evidence for either.

Testing encompasses the implementation of the experimental protocol, which
should be articulated prior to test execution to prevent tampering and facilitate
experiment reproducibility. During testing, the expected values derived from the
hypotheses are compared to the actual experimental results, potentially leading to
the hypothesis’s validation or refutation.

Following the experimentation phase, a comprehensive analysis is performed.
The latter evaluates the outcomes from the experimental results, interpreting and
making sense of the collected data. The conclusions drawn from this analysis provide
insights into the phenomenon under investigation and guide the subsequent steps of
the investigation.

During this analytical phase, especially in cases of repeated experiments or
large data sets, the use of statistical analyses becomes crucial. The application of
statistical methods helps to ensure the validity and reliability of the results, allowing
for a more nuanced understanding of the experimental data. These methods can
identify patterns, trends, and correlations, providing a robust way to test the original
hypotheses. Furthermore, they allow for estimating the degree of uncertainty or
variability in the results, which is crucial in any scientific investigation. This rigorous
analytical process is integral to strengthening or challenging the initial hypotheses,
ultimately shaping the direction of future studies and experiments.

3.1.2 Occam’s razor principle

Occam’s razor is a philosophical and methodological guideline suggesting that
the simplest one should be preferred when multiple hypotheses offer potential
explanations for a phenomenon. This principle is not about the certainty that the
simplest hypothesis is correct, but about its testability and practical efficiency.
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"Pluralitas non est ponenda sine necessitate"

In the research landscape, the principle of Occam’s Razor is a cornerstone,
underpinning the formulation of theories and models that balance simplicity and
effectiveness, hence curbing unnecessary complexity. This principle is widely used
in numerical methods, where the challenge often lies in choosing the right degree
of simplicity or complexity in a model. Rooted in the fundamentals of probability
theory, Occam’s razor finds its rationale. Each assumption within a model introduces
potential avenues of error. Should an assumption not contribute to the model’s
precision, it merely amplifies the likelihood that the theory could be incorrect.

While the principle of Occam’s razor directs the research towards a path of
simplicity, it is crucial to understand that the claim for simplicity should not be
overused. Indeed, if we were to simplify excessively, it would hinder our ability to
explain complex phenomena such as non-linear ones [66]. The delicate balance of
simplicity and complexity is eloquently encapsulated in Albert Einstein’s quote:

"Everything should be as simple as it can be, but not simpler"

Furthermore, in the context of this work, a dual strategy has been adopted,
entailing the adoption of simplicity for clarity of understanding while recognizing the
necessity for complexity in explicating more complex phenomena. This equilibrium
between simplicity and complexity has been integral to this research, ensuring the
robustness and significance of the models and theories developed.

3.2 Basic Principles of Industrial Experimentation

Within the experimental design environment, a triad of fundamental principles com-
mands significant attention, namely randomization, replication, and blocking. These
principles, which embody the foundation of robust experimental methodologies,
indisputably contribute to establishing the validity and reliability of experimental
results.

To illustrate the concept of randomization, one might liken it to the rules of poker
tournaments. The deck must be shuffled at the beginning of each hand. This shuffling
process ensures randomness and fairness, blocking any potential advantage that could
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be gained from observing previous hands or counting cards. The connection between
these two contexts is aptly summarized by Sir R. Fisher, who famously stated:

“Designing an experiment is like gambling with the devil: only a random strategy
can defeat all his gambling systems”

This comparison highlights the fundamental importance of randomness as a
strategy that maintains integrity and defeats all bias systems in experimental design
and poker. Randomization is the assignment of experimental material and the
determination of the order of individual experiments at random rather than in a
precise sequence. The latter helps ensure that observations are independent, which is
crucial for accurate statistical analysis. By eliminating the influence of outside factors
that could skew results, randomization ensures that the requirement for independently
distributed random variables is met. While some experimental scenarios may pose
challenges for implementing certain aspects of randomization, a comprehensive
approach ensures that each unit has an equal chance of encountering interference,
thereby reducing the risk of confounding effects.

“The three R of experimenters are:
Replication, Replication, Replication!” J. Andrews

Replication refers to the independent repetition of each factor combination in an
experiment. This principle allows for estimating the experimental error and provides
a basic unit of measurement to determine if observed differences are statistically
significant. Replication also facilitates a more precise estimate of parameters, such as
the mean response for one of the factor levels. For a valid experiment, measurements
should be conducted in more than one experimental unit. Replication demonstrates
the reproducibility of the measure, ensures that any intrusions affecting a single ex-
perimental unit do not cause significant bias, assesses the precision of the experiment
by measuring the variability among replicates, and increases the precision of the
experiment.

“Block what you can, randomize what you can’t” G. Box

Blocking, an essential method in experimental design, refines the accuracy of
comparisons by controlling nuisance factors. Creating homogeneous blocks where
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these factors are constant enables an unbiased evaluation. This approach uses block-
ing to neutralize significant nuisance influences, with randomization managing the
rest, thereby improving the estimation accuracy of effects, even amidst uncontrol-
lable factors like environmental conditions and material variations. Organizing
comparisons within these blocks optimizes outcomes, yielding valuable insights into
the impact of influential factors [67].

3.2.1 Implementing a structured approach for designing indus-
trial experiments

Experiments can be used to improve productivity and quality or reduce costs, but
these problems can be more complex and multifaceted than they seem. Designing
and conducting industrial experiments requires a meticulous and structured approach.
This section delineates a seven-step procedure for effectively planning, conducting,
and analyzing industrial experiments. Adherence to this methodology ensures
reliable results and optimizes the use of invested resources. This procedure has been
strictly followed in the work presented in this thesis to avoid wasting resources and
time and ensure consistent and reliable results.

The initial step in conducting an industrial experiment involves identifying and
defining the problem to be studied as a basic requirement of inductive reasoning.
This stage may not be as straightforward as it seems, as it requires discerning when
a situation necessitates an experimental approach. Formulating clear and specific
questions that the experiment aims to answer contributes to the overall clarity of the
experimental objectives.

The second step is the selection of the right response variable. The latter is crucial
to the experimental process and should provide meaningful and useful information
about the process being studied, often represented by a number, for example, the
average or standard deviation of the measured characteristic. Consideration should be
given to the capability of the gauge or measurement system, as inadequate capability
can limit the detection of process effects on the response.

The third step involves choosing the factors that could influence the process or
the performance of the system. The selection of factors to include also necessitates
determining the range or region of interest for each, which may adjust as the exper-
iment progresses and more information is learned about the critical variables. An
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iterative process of reviewing and selecting factors often leads to the most effec-
tive experimental design. At this point, the pre-experimental planning procedure
ends, and considerations and choices made from now on will irreversibly affect the
outcome of the experiment:

“To consult the statistician after an experiment is finished is often merely to ask him
to conduct a post mortem examination.

He can perhaps say what the experiment died of” Sir R. Fisher

The fourth stage strongly depends on prior considerations about the response
to be measured, like the number of factors and levels, available resources such as
feedstock materials, time, specialized workforce, tools for production and measure-
ment procedures. These resources can include feedstock materials, time, specialized
personnel, and production and measurement tools. Based on these considerations,
the specimens for production are selected. This selection is driven by raw material
availability, the most suitable experimental design, and the required number of repli-
cations to achieve a specific outcome. The latter is often gauged by the statistical
power of the experiment, which is related to the Type II error.

The fifth stage is the execution of the experiment. The latter includes monitoring
the process to ensure adherence to the plan, checking factor settings before each run,
and anticipating potential mistakes, especially human errors.

The sixth stage exploits the data analysis collected using appropriate statistical
methods, providing objective rather than judgment-based conclusions. Hypothesis
testing and confidence interval estimation procedures can provide insights into the ex-
perimental data, helping to formulate empirical models representing the relationship
between the response and the important design factors.

The seventh, but not always the last part, stage requires the intervention and
critical judgment of the experimenter who followed the entire process necessary to
conclude the analyses. It is decided to conclude the experiment, expand and replicate
the plan, or change the assumptions or the initial procedures.

The process is iterative and requires adaptation as new information is gathered.
This suggests that designing an experiment is part of a continuous learning process.
Importantly, it should be noted that the bulk of the effort (approximately 80 %) is
typically invested in the first four steps. In comparison, the remaining stages require
about 20 % of the time, granted the preliminary stages were meticulously planned
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and executed. The goal is to conduct a well-designed experiment that efficiently uses
resources and yields reliable results.

3.2.2 Comparisons

In the fifth stage of industrial experiments, the experimentation and response acqui-
sition phase, the focus is on recording response changes with precise, repeatable,
and reliable procedures. The act of measurement in engineering is fundamentally
a comparison, wherein a numerical value is assigned to a quantity by comparing it
with a conventionally chosen known as the unit of measure. This process is realized
through a measurement system designed to quantify physical variables allowing
a degree of precision unattainable by unaided human observation. The preferred
methodology for evaluating and expressing uncertainty should be globally applicable,
internally consistent, transferable, and provide a realistic confidence interval for the
measurement result [68].

Industrial experiments aim to determine if there is a significant change in response
as a factor changes. For example, in a study involving DED-LB, a pivotal aspect
could be ascertaining whether the mechanical properties of manufactured parts vary
based on changes in the composition of the employed metal powder. In the analysis
procedure, which represents the sixth stage of experimentation, a model is adopted
to compare the data objectively. This process begins with formulating the null
hypothesis (H0) and the alternative hypothesis (H1). The H0 proposes no differences
in the responses, implying they can be assumed equal. In contrast, the alternative
hypothesis posits that the responses cannot be assumed equal. These hypotheses
are then tested using a statistic at a specified significance level (SL). For our case,
the samples must be independent and randomly selected. In hypothesis testing, two
types of errors may be committed:

• Type I Error (α), where the null hypothesis is rejected despite being true;

• Type II Error (β ) where the null hypothesis is not rejected despite being false.

An essential metric often used is the power of the test. The latter is defined as
1−β ; the power of a test represents the likelihood of correctly rejecting the null
hypothesis when it is indeed incorrect [69].
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In this context, comprehending the diversity of approaches to assess the hypothe-
sis becomes essential. These methods are pivotal in affirming or negating the foun-
dational assumptions of models. These tests provide an objective outcome, offering
indispensable support in interpreting the results of an experimental study. Therefore,
these methodologies aid in statistical reasoning and fuel informed decision-making
based on experimental findings. It is worth mentioning here a few prominent tests:

• Z-test: applied when the data distribution approximates a normal distribution,
and the population variance and standard deviation are known. It should be
noted, however, that the Central Limit Theorem allows for applying the Z-test
even when the population variance is unknown, provided the sample size is
sufficiently large.

• t-test: typically employed when the data exhibits a normal distribution, but the
population variance remains unknown. Various forms of the t-test exist, such as
the independent t-test and the paired t-test, each with unique assumptions and
applicability. For large sample sizes, the requirement for normal distribution
may be relaxed.

• χ2-test: contrary to a common misconception, the χ2-test test is not strictly
non-parametric. Instead, it is a distributional test commonly used for evaluating
categorical variables. Different variants of the χ2-test test may have specific
distributional requirements.

• Analysis of Variance (ANOVA): utilized for comparing the means across
more than two groups, ANOVA operates under the assumption that the data
are sampled from normally distributed populations and that the variances of
these populations are equal, an assumption known as homoscedasticity.

• F-test: used to compare variances across two distinct populations, the F-
test also makes underlying assumptions about the data. These include the
assumptions of normality and homoscedasticity, similar to the ANOVA.

While these methods provide a concrete foundation for statistical analysis, it
should be noted that this brief exposition needs to delve into the mathematical
intricacies of these procedures. Instead, the objective here is to offer an overview,
arming the reader with a basic understanding of the tools available for statistical
analysis and the scenarios where each could be most effectively applied. The choice
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of test is contingent on the nature of the data and the specific questions the research
aims to answer. Despite the complexities these tests entail, their proper use can
provide invaluable insights, facilitating an improved understanding of the studied
phenomena. In this thesis work, the t-test, ANOVA, and ANCOVA have been
extensively utilized. Therefore, additional details on these specific tests have been
provided in Appendix A for the reader’s benefit.

3.3 Factorial designs

Factorial designs originated from the ideas of Gilbert and Lawes, serving as an
alternative to the commonly used OFAT approach. However, Fisher first recognized
and fully exploited their potential, especially in agriculture. Compared to OFAT
designs, factorial designs offer a more comprehensive, precise, and reliable view of
how the response reacts to stimuli (factors) given an equivalent number of tests when
two or more factors are under investigation.

“No aphorism is more frequently repeated in connection with field trials, than that
we must ask Nature few questions, or, ideally, one question, at a time. The writer is

convinced that this view is wholly mistaken.
Nature, he suggests, will best respond to a logical and carefully thought out

questionnaire; indeed, if we ask her a single question, she will often refuse to
answer until some other topic has been discussed” Sir R. Fisher

From Fisher’s perspective, the system, which could be Nature in agriculture, is
interrogated via a factorial design approach. The responses elicited by the system
are subsequently scrutinized through statistical testing. Factorial designs confer
multiple benefits, including orthogonality - a vital precondition for fractionation and
blocking. Moreover, it facilitates estimating effects (with the associated errors) and
evaluating interactions between factors, a crucial aspect not assessable with OFAT
designs. Various design types have been advanced, providing a wide array of choices.
With the assistance of software packages like R, JMP, and Minitab, it is feasible
to construct designs optimally fitted to the particular case under examination. This
work will initially focus on a 22 design, the simpler version of the 2k designs, to
facilitate a more comprehensive understanding before transitioning to broader cases.



44 Overview of industrial experiments and the role of statistical methods

The 22 full factorial design is particularly suited for systems influenced by two
specific factors, named A and B. Within this framework, both factors are system-
atically explored at two levels (“low” and “high” or “−“ and “+”). For the sake
of calculations within the design, the factors are systematically scaled, assigning
the low level a value of −1, and the high level a corresponding value of +1 (coded
values). By deploying a mere four experimental conditions, this design enables an
incisive investigation of the main effects of factors A and B and their interaction
(AB). The capital letters represent these effects: A for the first factor influence,
B for the second, and AB for their interaction. The average effect of a factor is
determined by analyzing the alteration in response caused by a change in that factor’s
level, considering the impact of other influencing factors. Through the Fisher-Yates
notation [70], specific symbols represent the summation of response observations
across all replicates for particular combinations of treatment levels.

The standard order and notation (1), a, b, and ab signify these totals, reflecting
the relationships between factors and their levels, making it easier to calculate effects
and interactions within the experimental framework. This can be summarized in
the design matrix as shown in the Table 3.1. By utilizing the columns of the table,

Table 3.1 Matrix Model

St. Order Treatment
Effect

A B AB

1 (1) -1 -1 +1
2 a +1 -1 -1
3 b -1 +1 -1
4 ab +1 +1 +1

the main effects can be calculated quite simply. Indeed, the contrasts are obtained
through the dot product between the treatment columns and the various effects,
including both main and interaction effects. The resulting values provide the main
effects by dividing these contrasts by 2n, where n is the replication. For example, to
estimate the main effect of A:

A =
1

2n
{[a− (1)]+ [ab−b]} (3.1)
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The same procedure can be used for B:

B =
1

2n
{[b− (1)]+ [ab−a]} (3.2)

and finally, for the interaction:

AB =
1

2n
{[ab−b]+ [a− (1)]} (3.3)

As depicted in Fig. 3.3, the difference in average responses between the right and left
sides of the square gauges the effect of factor A. In contrast, the effect of factor B is
calculated by the difference between the top and bottom averages. The interaction
effect AB is determined by contrasting the average of the right-to-left diagonal
combinations with the left-to-right diagonal ones within the square.

Low High
Factor A

Low

High

Fa
ct

or
 B

Main effect A Main effect B Interaction

Low High Low High

Fig. 3.3 Effects estimation

The contrast (or equally the effects) are precious for assessing the direction and
magnitude of the factors, yet ANOVA must support them. The latter provides the
significance of the factors in the investigated process. Specifically, calculating the SS
for all the terms involved in the model is essential. These can be utilized to obtain the
MS, which enable the performance of the F-test. Due to its orthogonality properties,
SS estimation becomes particularly easy for factorial design:

SSA
(ContrastA)2

4n

SSB =
(ContrastB)2

4n
(3.4)

SSAB =
(ContrastAB)

2

4n
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Thus, one can obtain the SSError by calculating the SSTotal derived from the sum-
mation of the difference of each squared observation minus the total mean squared.
This is the fundamental principle of ANOVA, namely, to decompose the variability
into various parts and compare them:

SSError = SSTotal −SSModel = SSTotal − (SSA +SSB +SSAB) (3.5)

where SSModel is the SS of the model. After calculating the SS, representing the
total variability within the data, it is possible to derive the ME for further analysis.
The ANOVA method is then employed to dissect this total variability into distinct
components, specifically differentiating between the variability between treatments
and the variability within treatments. The F statistic is central to this process, and it
is computed as the ratio of the mean square for the factor (representing the variability
between treatments) to the MSError. Following an F distribution, the critical F value
(upper tail) for α is identified for both the main effects and the interaction. This
value is determined based on the degrees of freedom associated with each source
of variation. This value aids in assessing the analysis, highlighting the significant
factors that influence the process under investigation.

3.3.1 Coded variables

In factorial design analyses, the employment of coded design variables, typically
confined between -1 and +1, is favored over natural or engineering units. This
preference is grounded in the following:

• Enhanced Interpretability: Utilizing coded variables often yields heightened
clarity and interpretability compared to original units.

• Orthogonality & Comparative Precision: Coded designs ensure orthogo-
nality of variables. Such an arrangement allows for the uniform estimation of
model coefficients, rendering them directly comparable. These dimensionless
coefficients signify the effect of a unitary change in the respective design
factor, facilitating the determination of relative effect magnitudes [71].

Transitioning between coded and uncoded designs can be swiftly accomplished
through straightforward algebraic procedures.
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3.3.2 Evaluation of model adequacy

Upon implementing factorial designs, a subsequent inquiry arises into the goodness
of the derived model to empirical observations. Several metrics have been established
to facilitate a rigorous evaluation of this fidelity. Foremost among these is the Coeffi-
cient of Determination (R2), which quantifies the proportion of the total variability
in the observed data accounted for by the model. Although a value approaching
1 indicates an optimal representation, caution is advised in models with increased
complexity due to including numerous predictors. For this reason, the Adjusted R2

has been introduced. As models grow intricate with the addition of predictors, the
risk of overfitting becomes more prevalent.

R2(ad j) compensates for this by adjusting for the number of predictors, thereby
providing a more nuanced model fidelity assessment. However, the adequacy of a
model is only partially contingent on its performance with familiar datasets. The
model’s capacity to predict unseen data is of paramount importance. In this realm,
the Predicted R2(ad j) and the concept of predicted residual error sum of squares
(PRESS) are utilized. R2(pred) offers a projection of the variance the model may
account for in novel contexts, with deviations from R2 serving as indicators of its
predictive robustness [72].

In addition to the metrics mentioned above, the Standard Deviation and the
Coefficient of Variation (CV) are also employed. The former offers a measure of
the dispersion of residuals, while the latter compares unexplained variability to
the mean of the response variable, thereby providing insights into potential model
inadequacies. Furthermore, the residuals, which are the discrepancies between
observed and predicted values, warrant analysis. Within the scope of Residual
Analysis, many techniques find their relevance. Notably, the inspection of histograms
of residuals serves as a preliminary tool to discern their normality. Should the
histogram depict a semblance to a normal distribution centered around zero, it
suggests the plausibility of the normality assumption.

However, it is also recognized that normality determination through such a
method may introduce uncertainty for smaller sample sizes. This shortcoming is
mitigated by resorting to a normal probability plot of residuals. A linearity in this
plot accentuates the likelihood of residuals following a normal distribution. More-
over, the issue of outliers must be relegated to more than mere footnotes. Outliers,



48 Overview of industrial experiments and the role of statistical methods

or values that diverge significantly from others can exert undue influence on an
analysis, potentially skewing outcomes and inferences. The genesis of these outliers
could range from computational inaccuracies to unique experimental circumstances.
Methodologies such as examining studentized residuals emerge as potent tools in
this regard. When most of these residuals lie within three standard deviations from
zero, those defying this range are flagged as potential outliers and must be treated as
it (discarded or fitted).

The homogeneity of variances across groups is another pillar that demands
scrutiny. Non-uniform variances can mandate corrective measures, which might
encompass data transformations. Furthermore, an imbalance in sample sizes across
groups might introduce complexities, notably if one group demonstrates a vastly
distinct variance [73].

In conclusion, while factorial design is an essential methodological approach in
experimental settings, its efficacy is augmented when complemented with rigorous
evaluation of model adequacy. The overarching objective remains to construct
both explanative and predictive models, mirroring the complexities of empirical
observations.

3.4 Introduction to factor screening

In modern manufacturing, where resources are limited or associated with high costs,
efficient experimentation is mandatory. Before advancing into the optimization
realm, it is imperative to delineate the problem in question rigorously. A thoroughly
defined problem is a cornerstone for ensuing experimental procedures, ensuring the
efficient deployment of resources. Notably, while there is an inclination towards
gradient-based methods in optimization endeavors, it must be acknowledged that
these methods often operate within a pre-specified process parameter window. Indeed,
to achieve global optimization, it often becomes imperative to search outside this
predefined boundary; otherwise, there is the inherent risk of settling for suboptimal
solutions or becoming trapped in local optima. Several strategic methodologies, such
as simulated annealing, genetic algorithms, and momentum-based gradient descent,
have been devised to circumvent these challenges, drawing upon principles from
probability, evolutionary biology, and physics, respectively [74].
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When transitioning from numerical (algorithmic) optimization to experimental
setups, a distinct perspective arises. Owing to the intrinsic variability and unpre-
dictability inherent in empirical data, these models work as mere approximations,
accentuating the robust design experimentation indispensability. Factor screening
designs, in this milieu, play an instrumental role. Their cardinal objective is to
discern and categorically isolate factors significantly impacting the response. By
meticulously categorizing these influential input, practitioners can strategically allo-
cate resources to the domains most significantly affecting the response. The array of
factor screening designs available encompasses [75]:

• 2-level Fractional Factorial Designs: primarily focused on linear terms, these
designs cater to a limited factor count, ensuring efficiency with fewer runs.

• Plackett-Burman Designs: tailored for scenarios demanding analysis of many
factors, these designs emphasize linear terms. They manage to strike a balance
between exhaustive factor study and resource efficiency.

• Definitive Screening Designs: when a more intricate understanding, encom-
passing quadratic terms and two-way interactions, is desired, these designs are
the go-to. They provide comprehensive insight into the process, capturing the
complex relationships between factors and responses.

In this work, specialized designs have been utilized to address specific challenges.
Subsequent sections will detail these methodologies, enabling a clear understanding
of their application and relevance to the research.

3.4.1 Aliasing

Fractional factorial designs and blocking principles are pivotal in screening experi-
ments to identify factors with pronounced effects amidst many under consideration.
These experiments are generally conducted in the early stages of a project when
numerous initial factors under investigation exhibit minimal or no effect on the
response. Following identification, factors with significant impacts are subjected to
further detailed examination in subsequent experiments.

The projective properties of factorial design play a core role in this strategy.
They come into play mainly when certain factors exhibit negligible or null effects.
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The projection property enables collapsing a larger factorial design into multiple
smaller ones, thus economizing resources without sacrificing analytical accuracy.
For instance, a single replication of a 2k factorial design can be transformed into two
replications of a 2k−1 factorial design or even four replications of a 2k−2. The sparsity
of effects principle supports the strategy, suggesting that the process or system is
governed mainly by main effects and low-order interactions among several variables
[76]. Therefore, less than half of the effects are expected to be active. The advantage
of factorial designs increases with the number of factors, notwithstanding potential
challenges linked to the growing number of trials. Furthermore, these designs are
instrumental in sequential experimentation. Combinations of runs from two (or more)
fractional factorials can progressively construct a larger design, enabling estimation
of the factor effects and interactions of interest.

Throughout the application of these designs, the concept of aliasing remains
crucial. This phenomenon arises when the effect of one factor, or an interaction, is
indistinguishable from another due to the structural design. As fractional factorial
designs test only some possible combinations, some effects become confounded
or aliased with others, which may lead to information loss and complications in
interpretation. Also, the blocking strategy is utilized to address the aliasing issue and
enhance trial uniformity. Despite the challenges and costs associated with blocking,
it effectively distributes contrasts for various estimates across blocks. Finally, the
resolution of a design serves as a measure of the extent of aliasing present. For
instance, resolution III designs exhibit aliasing between main effects and two-factor
interactions. Conversely, in resolution IV designs, the main effects are free from
aliasing, though two-factor interactions may still be confounded. Consequently, with
their reduced aliasing, higher-resolution designs become desirable as the degree of
fractionation permits.

3.4.2 Single Replicates design in factor screening

The experimental design choice becomes crucial in factor screening experiments.
Factorial designs of type 2k have their treatment combinations grow exponentially
with increasing factors. The latter can impose a significant challenge, especially
when resources are constrained. As a pragmatic solution, single replicates of 2k
designs emerge as a viable alternative to fractional designs. Though both designs
have limitations, the single replicate strategy retains many of the desirable properties
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of the full factorial design, with the added benefit of being more resource efficient.
Furthermore, these designs can be reproduced, collapsed, extended, and augmented
with a center point for enhanced error estimation. Given the inherent uncertainty in
ensuring minimal experimental error in such scenarios, aggressively spreading out
the factor levels is prudent. This tactic aims to mitigate the risk of capturing noise
rather than genuine effects (see Fig. 3.4), especially in fluctuating responses.
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Fig. 3.4 The influence of selecting factor levels in a non-replicated design. Image adapted
from [71]

Methods like examining the normal probability plot of effect estimates have
been advocated to ensure interpretation precision [77]. Additionally, Lenth’s method
has been recognized for its effectiveness and ease of implementation in analyz-
ing unreplicated designs [71]. Although replications stand as a cornerstone in the
DoE, these specific designs prove invaluable when navigating research with lim-
ited or prohibitive resources, ensuring the advantages of factorial designs remain
uncompromised.

3.4.3 Addition of central points

In 2k factorial designs inherently assumes the linearity of factor effects. While
interaction terms might be incorporated to represent some response curvature, there
are scenarios where a second-order model might be more apt. To safeguard against
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second-order curvatures and obtain an independent error estimation, central points
can be introduced into the 2k design. These points do not impact the typical 2k effect
estimates. For instance, a discrepancy between the means of the factorial and central
points might allude to quadratic curvature. If detected, the design can be augmented
with axial runs, leading to the so-called central composite design (CCD), primed
for fitting a second-order model across various factors. Critical considerations for
central point employment encompass:

• Utilizing ongoing operational conditions as the central point in ongoing exper-
iments;

• Validating the congruency of central point responses with historically observed
responses;

• The non-random sequencing of central point replicates to ascertain process
stability;

• Employing central points to evaluate variability in experiments with unknown
process variability;

• Applying central points in scenarios with both quantitative and qualitative
factors.

3.4.4 Determining the appropriate sample size in experimental
designs

In experimental design, the critical decision revolves around determining the ap-
propriate sample size (n), which essentially dictates the number of replicates to be
undertaken. An experimenter’s objective to discern specific magnitudes of effects
largely influences this choice. As highlighted in Fig. 3.5, aiming to detect smaller
effects inevitably escalates the overall experimentation cost.
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Fig. 3.5 Cost vs. sample size. Image adapted from [78]

The Operating Characteristic (OC) curve offers a graphical representation of
Type II error probability against a variable indicating the deviation from the null
hypothesis. In contrast, the Power Curve maps out the strength (1−β ) of the test
concerning this same parameter. Modern software tools enable the seamless creation
of these curves, acting as invaluable aids for experimenters. Such tools guide them
towards selecting an optimal number of replicates, ensuring the design is tuned to
discern potential critical differences in treatments. Selecting the right sample size is
influenced by multiple factors:

• Effect Size (ES): While this is intrinsically problem-specific, a common
benchmark for experimenters is to detect effects that are double the error
standard deviation, often referred to as a Huge ES [79];

• Power of the Test: While the desirable power is dictated by the specific
scenario, achieving a power of at least 0.80 or 80 % is a widely accepted
benchmark [71];

• SL: This parameter sets the threshold for the risk associated with incorrectly
rejecting the null hypothesis.

In scenarios like screening experiments, the ramifications of a Type I error (wrongly
marking a factor as influential) are typically more benign than those of a Type II error
(missing out on an impactful factor). Consequently, experimenters are often willing
to accept elevated Type I error rates. When traditional metrics like standard deviation
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remain unknown (often due to resource constraints or financial considerations),
Cohen’s relative ES becomes a pivotal tool in determining sample size. To bolster the
accuracy of this approach and sidestep potential pitfalls associated with solely relying
on Cohen’s method, Mathews suggests employing a composite method strategy for
sample size estimation [78].

In screening experiments, the consequences of committing a Type I error, which
involves incorrectly identifying a factor as active when it is not, are often less
significant than committing a Type II error, where an active factor goes undetected.
An erroneously identified active factor can typically be rectified in subsequent
research, rendering the repercussions of such a Type I error relatively minimal. In
contrast, overlooking an active factor can lead to more severe complications, as the
omitted factor may never be reconsidered in future investigations. Consequently,
within the context of screening experiments, higher Type I error rates, such as 0.10
or 0.20, are sometimes deemed acceptable by researchers [71].

3.5 Response surface methodology

The Response Surface Methodology (RSM), a confluence of mathematical and
statistical techniques, has been meticulously designed to optimize, develop, and
enhance processes. Rooted in the pioneering work of G. Box and K. Wilson in 1951
[80], this methodology emerged as an invaluable tool in product development. With
the advent of modern computers, RSM has garnered increasing prominence within
the contemporary industry. The computational prowess of modern-day computer
systems has facilitated the full exploitation of RSM capabilities. Notably, these
advances have empowered the visualization of the response surfaces in two and
three-dimensional spaces, thereby revolutionizing the understanding of complex
processes.

The efficacy RSM in addressing various challenges is well-recognized within
the academic and industrial spheres. Traditionally, the issues it addresses can be
delineated into three primary domains. Firstly, RSM assists in drafting and charting
a response surface over a specific region of particular relevance or interest. Secondly,
it serves as a crucial tool in the pursuit of response optimization, pinpointing condi-
tions that maximize, minimize, or target the response. Lastly, RSM facilitates the
meticulous selection of operating conditions, especially when there is a necessity to
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consider multiple responses concurrently. This multifaceted approach ensures that
the methodology remains pertinent across many industrial applications.

3.5.1 Correlations

Before delving into regression methodologies, it is imperative to elucidate the
concept of correlation, a foundational principle within statistical analysis. Correlation
quantifies the extent of a linear relationship between two variables. One of the
primary graphical techniques for visualizing this association is the scatterplot. This
graph depicts the values of the two variables as points within a coordinate system,
facilitating the visual identification of both the direction (either positive or negative)
and the strength (ranging from weak to robust) of the relationship between the
scrutinized variables. The Pearson correlation coefficient (PCC), often denoted by r,
provides a metric for this linear relationship. The general equation is:

r =
1
n

n

∑
i=1

xi − x̄
Sx

× yi − ȳ
Sy

(3.6)

where n is the sample size (paired data), xi and yi are individual observations, while
x̄ and ȳ represent the mean values of x and y, respectively. The value of r spans
between −1 and 1:

• Values approaching 1 denote a robust positive correlation: as one variable
escalates, the other also exhibits an inclination to rise.

• Values nearing −1 signify a robust negative correlation: an augmentation in
one variable typically results in a decrement in the other.

• Values proximate to 0 suggest a weak or non-existent linear correlation.

However, it is quintessential to underscore that a high magnitude of correlation
between two variables does not insinuate a causal relationship between them. For
instance, a pronounced correlation between shoe size and a reading test score does not
necessarily posit that shoe size influences reading proficiency. In certain scenarios,
the Spearman correlation coefficient might be more apposite, especially when the
relationship between the variables is non-linear or pertains to ordinal variables.
In summation, correlation proffers invaluable insights regarding the relationship
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between two variables, and a thorough grasp of this notion is paramount before
advancing to more intricate analyses such as regression.

3.5.2 Regressions

In RSM, regression models serve as fundamental tools for analyzing the relationship
between a dependent variable (response) and independent variables (factors). These
tools complement the ANOVA, which identifies active factors and seeks a system-
atic trend in the response through a mathematical function. These mathematical
models try approximate the unknown functional relationship between the variables.
Especially when the specific form of this relationship is not pre-established, one
frequently encounters scenarios in the scientific realm where experimental data are
employed to elucidate physical phenomena. However, given the rarity of physical
phenomena exhibiting very high polynomial orders, prudence in selecting these
orders is advocated, as highlighted by Occam’s Razor principle in section 3.1.2.
While these techniques are powerful, it is always better to approach these problems
with criticism: media stat virtus. For this reason, a simple regression technique will
be illustrated, aiming to equip readers with the necessary knowledge and tools to
fully comprehend the results presented in this work. It should be noted that to fit
polynomials of order higher than the first, excluding the interaction, 3k factorial
designs or multi-level designs can be used.

In general, the operations that need to be executed sequentially are the graphical
representation of the experimental data, enabling an informed and justified choice of
the model one wishes to adopt to explain the data.

“The first thing you should do is plot the data!” D. C. Montgomery

Subsequently, one of the available techniques calculates the parameters of the model.
Finally, the adequacy of the model is assessed by analyzing one or more parameters.
The initial phase is crucial and often hinges on the data analyst’s expertise, and this
step significantly aids the subsequent phase. For the second phase, a simple example
is introduced, which aptly encapsulates the mathematical method and fits well in
many practical scenarios.

Regressions can take various forms, such as quadratic, logarithmic, exponential;
however, these are not referred to as nonlinear regression [81]. Given k factors,
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denoted as (x1,x2, · · · ,xk), and after conducting n laboratory tests, the objective is to
ascertain a linear relationship with the response y and the following equations are
obtained:

y1 = β0 +β1x11 +β2x12 + · · ·+βkx1k + ε1

y2 = β0 +β1x21 +β2x22 + · · ·+βkx2k + ε2

... (3.7)

yn = β0 +β1xn1 +β2xn2 + · · ·+βkxnk + εn

that it is most practical to write the equations 3.7 in form of matrix and vectors:

y =
(

y1 y2 · · · yn

)T
(3.8)

X =

1 x11 · · · x1k
...

... . . . ...
1 xn1 · · · xnk

 (3.9)

β =
(

β0 β1 · · · βk

)T
(3.10)

ε =
(

ε1 ε2 · · · εn

)T
(3.11)

where Eq. 3.8 is the responses vector, Eq. 3.9 is an (n× k+1) matrix of the factor
levels and Eq. 3.11 is the error vector. The vector in Eq. 3.10, consisting of the
regression coefficients, is unknown in this system. Consequently, the relationship
can be compactly expressed as:

y = Xβ + ε (3.12)

The least squares method (LQM) generally fits regression models to sample data
because the problem is stochastic and not deterministic. The latter aims to minimize
the sum of squares of the errors between the observed data and the fitted model.
Without going into too much detail, as a result, this procedure provides the regression
model:

ŷ = Xβ̂ (3.13)
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where ŷ and β̂ are the response and regression coefficients, respectively. The dif-
ference between the measured responses and the model responses produces the
residual:

ε = y− ŷ (3.14)

At this point, the SS of the residual is calculated:

SSResiduals =
n

∑
i=1

(yi − ŷi)
2 (3.15)

Finally, the variance of the model is determined by its degrees of freedom (n− k).
The final step involves analyzing and evaluating the derived model through residual
analysis. It is standard practice to plot the residuals on a normal probability graph.
It is a good model quality indicator if the residuals are approximately normally dis-
tributed and do not show systematic factors. Residuals typically should be distributed
randomly, given that the data originate from stochastic processes. If the residuals
display issues, several strategies can be adopted. A straightforward approach is to
increase the polynomial degree in the regression model. However, this method must
be used judiciously, as emphasized repeatedly, because regression analysis aims to
differentiate the systematic part from the random one. Therefore, one should consider
the physical phenomenon, ensuring that the degree of the polynomial remains as
low as feasible to achieve residuals devoid of systematic irregularities and patterns.
Further, various issues inherent to experimental procedures, such as outliers, can
arise through residual analysis.

3.5.3 Lack of fit test

In advanced statistical methodologies, the SS of residuals is partitioned into two
primary components during an ANOVA, the lack-of-fit (LOF) and the pure-error
(PE). The former is integral to the F-test, assessing the fit of a proposed model
against the null hypothesis. Mathematically represented as:

SSError = SSPE +SSLOF (3.16)

The textSSPE is derived by assessing the variability inherent in repeated observa-
tions across each independent variable level. Conversely, textSSLOF quantifies the
divergence between observed values and those predicted by the model. Notable
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magnitudes of this divergence may intimate potential non-linearity in the model.
The adequacy of linearity of the model is assessed via the statistic F , a ratio of the
mean square for lack of fit (textMSLOF) to the mean square for pure error (textSSPE).
Adherence to linearity is indicated should F conform to a specified F-distribution
[82].

In summary, this test serves as an instrumental tool in the rigorous evaluation of
model adequacy, guiding the potential exploration of alternative, more fitting models.

3.5.4 The 3k Factorial Designs: Implementation in the current
study

The 3k factorial design was specifically harnessed for the optimization of a process
parameter in this research, a topic that will be meticulously dissected and elaborated
upon in Chapter 5. The 3k factorial design delineates experimental frameworks
comprising k factors at low, intermediate, and high levels. There are salient reasons
to adopt the 3k design. While it may appear as an intuitive choice for encapsulating
quadratic relationships between variables, it is essential to acknowledge that its
efficiency can be contingent on specific scenarios. From a mathematical perspective,
this design allows for the construction of a regression model, which can be illustrated
as:

y1 = β0 +β1x1 +β2x2 +β12x1x2 +β11x2
1 +β22x2

2 + ε (3.17)

Compared to the 22 design, the quadratic terms x2
1 and x2

2 are included with their
respective regression coefficients. Alternate methodologies offer superior efficacy in
specific applications. However, a 2k design supplemented with center points could
provide a more streamlined approach [71].

3.5.5 Stepwise regression method

Following an in-depth, comprehensive discourse on regressors, it becomes imper-
ative to address the intricacies of the stepwise regression method. Among all the
potential parameters, the stepwise methodology aims to pinpoint a concise subset
that elucidates the predominant portion of the observed variance. Such a meticu-
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lous selection process is pivotal, as it circumvents complications associated with
overdetermination and multicollinearity.

Historically, the hierarchical traditional approach, which sequentially considered
lower-order terms before the introduction of higher-order counterparts, has been
superseded by a more parsimonious methodology. A standard non-hierarchical
stepwise method with an SL of 10 % for the Alpha-to-Enter and Alpha-to-Remove
values in this doctoral research has consistently been favored, primarily due to its
propensity to yield more streamlined models, following Occam’s razor principle.
The culmination of this rigorous process is the acquisition of the Reduced Model of
the experiment, a representation that, albeit not necessarily optimal, is undeniably
coherent and pragmatic.

With advanced computational tools, techniques such as the stepwise and best
subset procedures have facilitated multiple regression analysis. In its robustness, the
stepwise routine commences by selecting the independent variable that showcases
the strongest correlation with the dependent variable. Subsequent steps involve
including or excluding variables based on their marginal contribution, consistently
reassessing the significance of variables, thereby ensuring refinement of the model.
This procedure persists until no additional variables can feasibly be incorporated or
excised [69].

In conclusion, while computational aids have greatly enhanced model construc-
tion, pivotal decisions inherently rely on both technical and statistical criteria. Such
judgments must be partially relegated to automated procedures, underscoring the
need for an astute analytical approach.



Chapter 4

Powder stream characterization

4.1 System description

The interdepartmental Integrated Additive Manufacturing center at the Politecnico di
Torino (IAM@PoliTo) is a prominent reference in advanced research about additive
manufacturing. Steadfast in its commitment to forging a multidisciplinary platform
for additive manufacturing, this center addresses the extant challenges associated
with machinery, materials, and pioneering applications. Central to its ethos is the
ambition to seamlessly incorporate additive manufacturing within the industry 4.0
paradigm, leveraging the rich reservoir of expertise amassed over the years.

Within the ambit of this distinguished institution, the system and materials
elucidated in the present research have been directly sourced from IAM@PoliTo.
This exposition constitutes a modest yet salient segment of the extensive gamut of
investigations and endeavors underway at the center, underscoring the significance
and preeminence of IAM@PoliTo in the global AM landscape. In reference to the
classification, the system under examination falls within the DED category, wherein a
laser is employed to melt metallic powder onto a substrate. Consequently, following
the ISO guidelines, this system is designated as DED-LB/Powder/SS-316L.

4.1.1 Machine specification

The study emphasizes the powder feeding system, specifically the CS 150 by Op-
tomec (Albuquerque, NM, USA), depicted in Fig. 4.1.
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Fig. 4.1 Optomec CS 150 powder feeder system

By blending innovation with functionality, the system seamlessly integrates the
principles of a rotating disk and a pressurized gas-enhanced gravity hopper. Within
this system, two crucial operational variables stand out. The first is the carrier gas
flow rate, Vcg, measured in L·min−1, and the second, the disk rotation speed, ω ,
is gauged in rotations per minute (rpm). It should be noted that according to the
International System of Units (SI) and ISO 80000-3 [83, 84], ω should ideally be
expressed in s−1 or equivalently in Hz. However, this would introduce complications
in intuitively understanding the rotation values. The relationship between Hz and
rpm is given by:

Hz =
rpm
60

= 0.016̄ rpm (4.1)

Given these considerations, this work opts to use rpm as the unit of measurement for
ω to maintain clarity and ease of interpretation. Argon was the preferred carrier gas
for this research, leading to its notation as VAr.

Through exploration of the inner workings of the powder feeder, it operates
on a fundamental, yet ingenious mechanism. The feeder employs a rotating disk
punctuated with evenly spaced holes, which moves against a stationary disk with
a single hole aligned with the gas inlet. Adjacently, there is a conduit tailored for
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powder transport. As the disk rotates, the holes align at intervals with the stationary
disk hole and the powder outlet, capitalized on the Venturi effect to streamline the
powder through the outlet. The powder stored in the hopper descends due to gravity
into this metering system, with a stepper motor governing the rotation of the disk.
The interaction between the size and number of holes, combined with the ω and
the Vcg, turns in the mass flow rate of the powder, Qp. The efficient operation of
the powder feeder system is based on a consistent supply of carrier gas, stored in a
cylinder system, and supplied at a pressure of (5.0±0.6) bar. A lamination valve
ensures Vcg, with its rate precisely controlled using a manual Sho-Rate flow meter
from Brooks (Hatfield, PA, USA). The latter is a Glass Tube Variable Area Flow
Meter that offers an accuracy of 5 % and a repeatability of 0.25 %.

Continuing with the research equipment, the AM system is the Laserdyne 430
(Fig. 4.2, supplied by Prima Additive (Torino, ITA).

Fig. 4.2 Prima Additive Laserdyne 430 DED-LB system

This DED-LB system, fully integrated into a CNC framework, boasts a roto-
tilting table that increases its five-axis deposition capability. The deposition head,
constructed through a blend of additive manufacturing techniques and meticulous
grinding, houses four distinct nozzles suited for powder flow, each presenting a
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nominal radius, rnozzle, of (0.50±0.01)mm. Moreover, the system is equipped with
the CF 1000 fiber laser by Convergent Photonics (Turin, ITA), it features a fiber laser
delivering a robust maximum power of 1 kW, with a D of (2.00±0.01)mm and a
wavelength range of (1075±3) nm. Furthermore, all experiments conducted in this
study followed the guidelines set by Prima Additive, which recommends depositing
at a standoff distance of 8 mm from the substrate. All the specifics of the system
used in this study are presented in Table 4.1.

Table 4.1 Laserdyne 430 datasheet

Parameter Value

Building volume (585×400×500)mm3

Laser type Yb fibre laser
Wavelength (585×400×500)mm3

Max. Power 1 kW
Max. travel speed 250 mm·s−1

Beam diameter (2.00±0.01)mm
Nozzles configuration discrete
Number of nozzles 4
Radius of the nozzle (0.50±0.01)mm

Within the Laserdyne 430 system, it is critical to highlight the restricted mobility
of the deposition head, which operates exclusively along the Z-axis of the system.
This design decision carries paramount significance. Analyses have shown that
alterations in the configuration of the head within the system do not influence the
Qp. Such flow consistency might be at risk if the deposition head had rotational
capabilities, which could lead to changes in the powder feeding tube configuration.
Introducing rotation can manifest in bends, elbows, and other structural shifts,
represented by increased pressure loss coefficients in the governing flow equation
for pipes, namely the Darcy-Weisbach equation [85].

4.1.2 Feedstock material

The feedstock material used in this research is a commercially sourced gas-atomized
pre-alloyed MetcoAdd 316L-D austenitic stainless steel powder supplied by Oerlikon
(Freienbach, SWI). This powder possesses a nominal particle size distribution of
D10 = 49.2 µm, D50 = 60.9 µm, and D90 = 74.6 µm. This distribution was rigorously
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assessed using a Mastersizer 3000 laser diffraction particle size analyzer by Malvern
Panalytical (Malvern, UK) and is shown in Fig. 4.3.
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Fig. 4.3 Particle size distribution

The corresponding micrograph of the powder, evident in Fig. 4.4a, showcases
predominantly spherical particles, albeit with some observed defects such as satellites,
agglomerates, and elongated forms.
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Table 4.2 KERN ANJ-NM/ABS-N Characteristics [1]

Max. Capacity Readability Repeatability Linearity

320 g 0.1 mg 0.2 mg 0.3 mg

a)

b)

100 μm

100 μm

Fig. 4.4 (a) SEM micrograph of 316L powder. (b) Optical micrograph of cross-section of
316L powder

Moreover, a detailed and precise two-step method was employed to determine
the average density of the powder. Initially, the mass of the powder sample was
precisely gauged using the ANJ-NM/ABS-N balance by KERN (Gottlieb, GER),
with characteristics listed in Table 4.2.

This step was followed by assessing the sample volume with the Ultrapyc 5000
pycnometer by Anton Paar (Graz, AUT), detailed in Table 4.3. This instrument
employs an iterative technique until a minimal variance of 0.01 % is achieved, and
helium (He) is employed as a medium. Consequently, these combined measurements
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Table 4.3 Anton Paar Ultrapyc 5000 Characteristics for 10 cm3 Cell Size [2]

Readability Accuracy Repeatability

0.1 mm3 0.03 % 0.015 %

furnished an average density of (7.896 ± 0.005) g·cm−3 at (20.000 ± 0.001) ◦C.
For a comprehensive description of the methodologies and processes employed to
calculate the associated uncertainties, refer to Appendix B. Further insights into
the powder were procured by examining its cross-section with the DMI 5000 M
optical microscope by Leica Microsystems (Wetzlar, GER), revealing the existence
of pores as illustrated in Fig. 4.4b. The bulk properties of the powder adhered to the
stipulations of ISO 4490 for flowability and ISO 3953 for tap density [86, 87]. In
practical tests, a 50 g sample of the powder transitioned through a Hall funnel within
(13.26± 0.08) s. Moreover, Carr’s compressibility index was registered at 8.3 %,
signifying exceptional flowability.

4.2 Experimental plan

4.2.1 Recognition and statement of the problem

The motivation for this analysis emanates from a previous experiment that employed
a factorial design of the 3k type. In that experiment, a counterintuitive response
surface was found. As the Vcg increased, there was an unexpected decrease in the
Qp. Given the restrictive nature of the ranges in the preceding experiment and the
understanding that the subsequent exploration would primarily demand time and
gas without incurring hefty costs, it became evident that a more comprehensive
investigation into this phenomenon was warranted.

This study seeks to delineate the Qp transport phenomenon that leads to reducing
the Qp as the VAr rise, and subsequently the response surface, within the DED-
LB system configuration by scrutinizing the input parameters of the powder feeder
system and also monitoring and analyzing the boundary conditions, BCs, that, though
uncontrollable, are observable and serve as covariates. Parameters that evade direct
manipulation encompass attributes like powder morphology, type of material, and
some system configurations. BCs remain monitorable, thus allowing their influence



68 Powder stream characterization

on Qp to be gauged. Prominent BCs potentially affecting Qp include attributes of the
chamber such as temperature, pressure, and relative humidity. The interplay of these
factors is visually represented in the cause-effect diagram, showcased in Fig. 4.5.

Powder - Material Machine specification

BCs Process parameters Carrier gas

Chamber Temperature

Chamber Humidity

Chamber Pressure

Gas Temperature

Gas Pressure

Nozzle type

Nozzle orientation

Number of nozzles
Material type

ω

Vcg

Gas type

Feeder system type

Qp

Fig. 4.5 Qp cause-effect diagram

It should be emphasized that, given that a prior study has been conducted on this
system using the same powder but with a more limited design, this investigation
positions itself between a confirmation and discovery experiment. On the one hand, it
aims to validate findings consistent with previous observations or theories, ensuring
that system behavior aligns with established expectations. On the other hand, it
delves into exploring potentially new phenomena and factor ranges, venturing into
the realm of discovery.

Boundary conditions monitoring system

A tailored monitoring system was designed and assembled to accurately observe
BCs. This system incorporates two ESP32 microcontrollers; the first is the Sender,
dedicated to data acquisition and elaboration, and the second is the Receiver, to
acquire the data from the Sender via a web server. The Bosh BME280 sensor is
integrated into this setup. The sensor (BME280) gauges air temperature (TAir),
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pressure (p), and air relative humidity (HR). The operational range, resolution, and
accuracy of the BME280 are ideal for measuring boundary conditions within the
construction chamber, as delineated in Table 5.

Table 4.4 Bosh BME280 Characteristics

Parameter Range Unit Accuracy

TA −40 to 85 ◦C ±1.0
P 30 to 110 kPa ±1.0
HR 0 to 100 % ±0.12

To ensure the stability and protection of the monitoring system, it resides in an
IP55 box within the construction chamber. Only the Bosh BME280 sensor remains
exposed, with a custom made perforated nylon (PA12) component fabricated by
selective laser sintering (SLS), providing a shield against powder dispersal. The HR

is one of the monitored parameters due to its dependence on atmospheric pressure
and temperature. From an experiential perspective, determining absolute humidity
offers greater practical relevance. Absolute humidity (HA) can be derived from the
volume of steam present in a unit mass of dry air, as delineated by Cengel and Ghajar
[88]:

HA =
0.622 ·HR · pv

p−HR · pv
(4.2)

Here, HA signifies absolute humidity in g·m−3, HR is in %, pv represents the sat-
uration vapour pressure contingent on temperature, and p indicates pressure. It is
paramount to note that the units selected for the components of the equation must
be consistent to achieve the desired result. The only variable left undefined is the
saturated vapour pressure. Although the Clapeyron equation provides a pathway
for determining this parameter, the semi-empirical Antoine equation, derived from
experimental data and Clapeyron’s formula [89], offers a more straightforward ap-
proach. Within the scope of this research, the three-parameter Antoine equation,
pertinent between 0 and 100 ◦C, was employed:

log10(P) = A− B
C+T

(4.3)

where P represents the vapour pressure in mmHg, T is the temperature measured in
◦C, and A = 7.96681, B = 1668.21, and C = 228 are recognized as Antoine constants
for water [90]. The data acquisition process was carried out at a sampling rate of
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1 Hz, according to the sensor data refresh rate. The information was subsequently
processed employing the simple moving average methodology, which stands as
a fundamental Moving Mean technique [91, 92]. This procedure facilitates the
attainment of the average BCs over the experimental duration, eliminating the need
for extensive data storage and offering an efficient data analysis avenue.

The code implemented in the Arduino IDE in detail is shown in Appendix C;
in particular, the first part is the Sender, and the second is the Receiver code. In
particular, the results of the model were rounded off, reflecting the resolution of the
sensor and the standard deviation inherent to the regression.

4.2.2 Response variable evaluation

The objective of this research is to measure the unknown response variable, specif-
ically Qp, within the given system, which is affected by two primary quantitative
factors and possibly by BCs. Quantifying Qp presents challenges due to the dis-
persion tendency of the powder, influenced by the velocity of the carrier gas and
its very small particle size. Additionally, achieving a steady state for the system
requires attention. A customized experimental setup was devised to address these
complexities, ensuring that the powder was collected during steady-state and within
a specific timeframe.

The powder mass was measured using the KERN ANJ-NM/ABS-N balance,
which possesses a 320 g maximum load capacity. On the basis of prior familiarity
with the system and the capacity of the balance, we allotted a preparatory duration
of one minute to pass from a transient state to a complete steady-state powder flow.
Following this, two minutes were designated for steady-state powder collection. The
acquired weight was divided post-experiment by the test duration to determine Qp.

The procedure to measure Qp incorporated the following steps:

1. Two separate beakers were arranged adjacently on the table (refer to Fig. 4.6
). The first beaker was designated to collect the powder dispersed during
the transient phases, which was used to initiate and stop the powder stream.
Meanwhile, the subsequent beaker was set to collect powder during the steady-
state phase;
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2. The powder amassed in the latter beaker was quantified using the precision
balance, and the result was computed as the proportion of weight to time.

After the measurements, the powder from both beakers was collected and prepared
for potential future reuse, although it was not utilized within this experiment.

Fig. 4.6 Experimental setup

For this investigation, the hoppers were consistently replenished with virgin
powder to prevent any bias in the experimentation. Additionally, the powder level in
the hoppers was meticulously maintained above 70 % of their maximum capacity.
This precaution was adopted to mitigate potential errors from the weight force
that the powder exerts on the conduit that channels the powder into the measuring
chamber. Although this phenomenon was constrained within certain limits, its
elimination remained elusive. However, through complete randomization of the
experimental procedures, any effects of this phenomenon were diffused throughout
the tests. The emptied beakers were then repositioned on the table, ready for the
subsequent measurement cycle.
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Particular emphasis was placed on the design of the beaker collection system.
Constructed using ABS through the FFF technique, this system was specifically
tailored to serve the needs of this experiment. Two coloration was utilized for the
beakers to ensure effortless differentiation between the steady-state and transient
phases, thereby minimizing the potential for operational errors during the experiment.

4.3 Choice of experimental design

In the present study, technical constraints have been established for the powder
feeder system. Specifically, the upper limits are 24 rpm for ω and 10 L·min−1

for Vcg. Although the theoretical lower limits for both factors are 0, such values
would result in no powder flow, making them practically infeasible. The exploration
ranges for these variables were determined based on insights gained from previous
experiments. For ω , a range of (2 to 22) rpm was selected, intentionally steering clear
of the peak limit of 24 rpm due to complications associated with powder spattering
within the metering chamber. Meanwhile, for Vcg, a range of (2 to 8) L·min−1 was
chosen, an extension of the ranges explored in earlier studies.

Evaluations of Qp resulted in minimal material consumption, argon gas being the
exception; the powder was systematically collected, sieved, and reintegrated. For a
comprehensive analysis of how ω and VAr affect Qp at the nozzles, a methodological
design was adopted that incorporates four levels for VAr and six for ω , arranged
uniformly, as presented in Fig. 4.7 and summarized in Table 4.5.
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Table 4.5 Process variables values used in the planned experimentation

Factor Values

ω/rpm 2 – 6 – 10 – 14 – 18 – 22
VAr/L·min−1 2 – 4 – 6 – 8

In a balanced fixed multilevel full factorial design, the capacity to discern a
distinction between treatments is contingent upon the levels of each factor. Notably,
given that ω possesses more levels, the power of the experiment plan is predominantly
contingent on this factor [78, 93]. For the calculation of the sample size, a two-step
approach was employed. In the initial step, the necessary sample size was calculated
a priori to detect the chosen ES with a specified power and SL. Notably, it was
presumed that the main effects and interactions were equally important. Table 4.6
summarizes the results obtained for a Very Large ES, a 5 %, minimum power of
80 %, and inclusive of the two covariates. The chosen software was G*Power 3.1.9.4,
a free tool developed by Heinrich-Heine-Universität Düsseldorf [94].

At this point, the calculated minimum sample size was divided based on the
selected factorial design. Considering the importance of the interaction between the
two main effects alongside the main effects themselves, a sample size greater than
69 was chosen. For ease of allocation in the design replications, a sample size of
72 was ultimately selected. This size was based on 24 unique points—derived from
6 levels of the first factor and 4 levels of the second factor—and was allocated to
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Table 4.6 A priori computed sample size for Very Large ES, 5 % SL, and 80 % minimum
power

Effects Groups d f Sample Size

VAr 24+2 3 41
ω 24+2 5 47
ω ·VAr 24+2 15 69

Table 4.7 Post hoc computed power

Effects d f Critical F Power/%

VAr 3 2.8 99
ω 5 2.4 97
ω ·VAr 15 1.9 83

allow for 3 replications per point, yielding 72 tests. Subsequently, the power of the
F test was calculated to identify all factors considered and is presented in Table 4.7.
The results obtained for the chosen sample size are satisfactory with respect to the
hypotheses formulated.

4.4 Analysis and discussion

The experiment was carried out in a single day. Within this period, covariates
were acquired, namely temperature (TA) and absolute humidity (HA). A blocking
strategy was deemed unnecessary because the experiment was carried out in one
day by a single operator and with powder from a single container. It should be
highlighted that a software package determined the test sequence pseudo-randomly
based on the methodology introduced by von Neumann [95]. To mitigate potential
errors related to the gas flow regulation system, in each test VAr was first maximized.
Subsequently, during the transient phase, it was adjusted to the precise rate, following
the guidelines provided by Montgomery [71]. In this manner, errors arising from
issues such as sensor blockage or residual pressure in the pipelines were avoided.
Each test consistently used the same upstream argon pressure for the feeder system.
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Table 4.8 ANCOVA for Qp/(g·min−1)

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 25 99.37 3153.64 126.145 291.78 <0.1
Covariates 2 5.93 0.76 0.379 0.88 42.3

TA 1 2.66 0.45 0.455 1.05 31.0
HA 1 4.54 0.53 0.532 1.23 27.3

Linear 8 79.97 2504.51 313.063 724.13 <0.1
ω 5 47.45 981.03 196.205 453.83 <0.1
VAr 3 32.52 865.53 288.508 667.34 <0.1

2-Way Inter.
ω ·VAr 15 13.47 427.41 28.494 65.91 <0.1

Error 46 0.63 19.89 0.432
Total 71 100

4.4.1 ANCOVA analysis

The data (see Appendix D) were assessed using ANCOVA, and within the experimen-
tal ranges observed, neither temperature nor absolute humidity seems to influence
Qp as depicted in Table 4.8. Therefore, these covariates will not be incorporated
into subsequent phases of this study, and all results presented will be in the context
of a temperature of (27.4±2.1) ◦C and an absolute humidity of (11.4±0.1) g·m−3.
However, tracking these BCs may prove beneficial in the long term, and these data
will be retained for potential research. The model yielded a standard deviation, S, of
0.6, an R2(ad j) of 99.4 %, which means that the model explains almost 99 per cent
of the variability of the data and an R2(pred) of 98.5 %, which is an indicator of how
well the model could predict new observations. The distribution of the residual plots
is almost normal, which suggests that terms of an order higher than the first may
need to be included in the model to explain the data adequately. Four notable outliers
are observed in tests (Standard Order) 13, 37, 38, and 52; these are presented in
Table D.1 in Appendix D. These last are evident at 14 rpm in combination with lower
VAr rates (2 L·min−1 and 4 L·min−1). Randomization of the experiment ensures that
there are no discernible patterns or variations in the residuals. Analysis indicates
that linear terms predominantly influence the total Adjusted SS, with the ω factor
having the most substantial impact. The primary effects and their interactions are
statistically significant for the selected SL, as validated by their p-values.
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In Fig. 4.8, factorial plots of the main effects are presented. A clear trend is
observable, whereby an increase in ω corresponds to an almost linear enhancement
in the response. In particular, between (18–22) rpm, the response shows a reduction,
diverging from the trend. Furthermore, with respect to the increase in VAr, the
findings corroborate those from previous experimentation, demonstrating an inverse
relationship with Qp. As VAr increases, a decrease in response is evident. Regarding
the interaction, as illustrated in Fig. 4.9, it is more pronounced at lower VAr levels,
whereas it becomes almost negligible at 8 L·min−1.
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For a more comprehensive understanding of the effects, visualization via a
normal probability plot (NPP) using the Johnson’s method is presented in Fig. 4.10.
This plot elucidates the distinctions among the means of the effects at different
factor levels. A distinct variability in the data is observed as the factor levels alter,
particularly noticeable between the levels (2–10) rpm (see Fig. 4.10, a). In contrast,
the range between (14–22) rpm levels displays consistent means and variances, a
fact previously underscored in the factorial plot of the main effect (Fig. 4.8).
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Such observations imply the non-adherence to the assumption of homoscedastic-
ity. The physical phenomena at play are not consistent across all evaluated factor
levels. This variability suggests that, at high ω levels, there may not be a consistent
behavior that governs the volume of powder that passes through the metering system.

A physical threshold might exist for the scrutinized powder to pass through the
disk holes at such velocities. Regarding the VAr factor, the onset of high turbulence
in the pipes and then in the measuring chamber, at higher levels (spanning 6 to 8)
has been substantiated, as evidenced by significant flow meter oscillations observed
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during the experiment, which complicate the transportation of the powder. It is worth
noting that while the standard deviation displays variations between the levels of ω

and VAr the CV, as detailed in Table 4.9 and Table 4.10, exhibits minimal fluctuation.
This trend signifies that data dispersion increases with increasing mean responses,
implying that the relative variability of data remains almost constant at all levels.
This observation may indicate that the variation in machine behavior is primarily
driven by changes in levels rather than the variability of internal data that affects the
different behaviors [96].

Table 4.9 Descriptive statistics of Qp/(g·min−1) for ω levels

ω/rpm N Mean SE Mean St. Dev CV/%

2 12 1.35 0.23 0.79 58.62
6 12 3.78 0.66 2.29 60.62

10 12 6.89 1.00 3.47 50.31
14 12 10.08 1.54 5.32 52.77
18 12 12.98 1.98 6.84 52.72
22 12 13.25 2.32 8.04 60.67

Table 4.10 Descriptive statistics of Qp/(g·min−1) for VAr levels

VAr/L·min−1 N Mean SE Mean St. Dev CV/%

2 18 14.11 1.95 8.27 58.56
4 18 9.59 1.32 5.60 58.43
6 18 5.39 0.72 3.06 56.68
8 18 3.12 0.41 1.73 55.46

4.4.2 RSM analysis

In this section, the primary objective is to derive a response surface that is both
simplistic and sufficiently explanatory of the data. The 22 rpm level for ω has been
omitted from this analysis based on prior discussions. The response was analyzed
using the standard stepwise methodology for linear, quadratic and interaction terms,
allowing for removing less effective terms to simplify the model without losing
information. A non-hierarchical approach was employed to maintain a more con-
servative model, with a 10 % SL as the Alpha-to-Enter and to Remove. This way,



4.4 Analysis and discussion 79

less effective terms can be removed from the model, making it more straightforward
without losing information. The regression model emerged after four iterations after
concluding the regression optimization process. It results in an S of 0.7, an R2(ad j)
value of 98.7 %, and a predicted R2(pred) value of 98.5 %.

The ANOVA of the regression modelis reported in Table 4.11 shows that the
model fits the data well, as the LOF test yields a p-value greater than the SL chosen,
then is not significant. Moreover, a close examination of residuals, representing
the disparities between observed values and their corresponding model predictions,
affirms the robustness of the model.

Table 4.11 ANOVA for the regression model for Qp/(g·min−1)

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 4 98.79 2048.25 512.06 1118.11 <0.1
Linear 2 85.71 1777.21 888.60 1940.31 <0.1

ω 1 50.56 1048.37 1048.37 2289.18 <0.1
VAr 1 35.15 728.83 728.83 1591.44 <0.1

Square
VAr ·VAr 1 0.36 7.48 7.48 16.33 <0.1

2-Way Inter.
ω ·VAr 1 12.71 263.57 263.57 575.52 <0.1

Error 46 0.63 19.89 0.432
LOF 15 0.37 7.73 0.52 1.18 32.5
Pure Error 40 17.46 0.44

Total 59 100

The normal distribution of residuals was corroborated through the NPP followed
a linear trend. Furthermore, the Anderson-Darling test (ADT), reveals that the null
hypothesis, which states that residuals adhere to a normal distribution, cannot be
rejected at a 5 %. Further validation is evident in the residual plot against the fitted
values. Here, the residuals form a horizontal band close to the zero line, and no
evident patterns are discernible. Upon evaluation of these results, the predictive
capacity of the model is notably high. The subsequent response surface equation,
expressed in coded units, was derived. Henceforth, this equation will be employed
to characterize the powder flow within the scope of this investigation.

Qp/(g·min−1) = 6.574+5.911 ·ω −4.676 ·VAr+0.794 ·V 2
Ar−3.977 ·ω ·VAr (4.4)



80 Powder stream characterization

Accompanying standard errors and detailed results are furnished in Table 4.12. For
a comprehensive visual interpretation, the contour plot of the response surface is
shown in Fig. 4.11.
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Table 4.12 Estimates of parameters of the model in coded units

Variable Parameter Coef SE Coef

Constant β0 6.574 0.140
ω β1 5.911 0.124
VAr β2 -4.676 0.117
V 2

Ar β22 0.794 0.197
ω ·VAr β12 -3.977 0.166

4.5 Conclusions

This research thoroughly investigated the behavior of 316L powder Qp within the
CS 150 system coupled with the Laserdyne 430. The study utilized an intricate
DoE, accounting for numerous factor levels while meticulously addressing potential
noise sources. Through a rigorous application of ANCOVA, three discrete powder
transportation mechanisms were identified:
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1. Beyond a rotational speed of 18 rpm, the efficiency with which disc rotations
transport powder starts to reduce. This indicates that the mechanical limita-
tions of the system do not necessarily align with its physical constraints;

2. Upon exceeding a VAr of 6 L·min−1, the system exhibits turbulence which
negatively influences the response. From an economic and environmental
sustainability standpoint, it is advisable to operate at lower VAr levels to
achieve the same Qp rates;

3. At a VAr of 2 L·min−1, the velocity of the powder stream exiting the deposition
head is diminished, resulting in an imprecise formation at the standoff of the
deposition head, which in turn means the powder possesses inadequate energy
for optimal transportation. Clearly, the powder lacks the requisite kinetic
energy upon exiting the nozzle, leading to poor focalization at the standoff.

Moreover, the analysis unveiled certain operational ranges, contingent upon specific
factor levels, that define the performance boundaries of the examined system. A
pivotal finding within these boundaries is the capability of the system to achieve Qp

values ranging from (0.3 to 21.9) g·min−1, emphasizing the flexibility and adaptabil-
ity of the system with the given powder. Results from the study align with previous
observations in which, within a vertical powder supply configuration, an increase in
the value of ω typically augments the Qp for specified VAr levels.

The study further highlighted that with an increase in VAr, the range of potential
Qp values contracts. From an operational perspective, utilizing excessively high VAr

levels is less than optimal, given the minimal variation in Qp upon adjusting the
ω factor. Distinct Qp ranges were discerned when alterations in factor levels were
synchronized.

This comprehensive analysis accentuates the benefits of a well-constructed DoE
and underscores the significance of a holistic approach that considers all variables
and noise sources over extended periods. To the best of current understanding, this
work is a pioneering effort to explore the diverse phenomena intrinsic to this partic-
ular powder feeder system, especially when integrated with a boundary condition
monitoring apparatus. Experimental data revealed a spectrum of transport physics
phenomena with potential implications on the accuracy and volume of Qp.

While the foundational assertions in this research are backed by statistical analy-
sis, reservations exist, particularly about the breadth of covariance and the evaluated



82 Powder stream characterization

effect size. Future efforts are encouraged to focus on more refined VAr level ranges,
incorporate additional replications, and consider alternate DoE methodologies to
reduce the standard error inherent in the regression coefficients, enhancing the
robustness of the response.



Chapter 5

Melt pool and track formation:
modeling and experiments

5.1 Relationship between powder stream and track
formation

In the current research, emphasis is placed on a comprehensive understanding of the
powder stream, as discussed in the preceding chapter. The objective is to optimize the
delivery of powder to the melt pool, ensuring accurate track construction. Without
a real-time feedback mechanism to verify the current construction height during
the fabrication process, a reliable and robust strategy becomes increasingly vital.
Knowledge acquired through such strategies could be advantageously integrated into
systems with feedback mechanisms to enhance the overall quality of the deposition.
The latter necessitated a departure from traditional methodologies, which rely on
single-track analyses to determine the thickness of the layer.

In this research context, the height of prismatic specimens is directly employed to
infer the height of the track, facilitating a correlation between the volume of powder
dispensed and the geometric parameters of the track. This approach culminated in
the introduction of a pivotal dimensionless parameter, R, represents the ratio of the
volumetric flow rate of powder dispensed from the deposition head, represented
as Vp = Qp/ρp, to the expected track to be constructed in a given time frame,
symbolized as Vtrack. The track volume per unit of time can be roughly estimated as
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the product of track height ∆Z (defined by the Z-increment of the deposition head at
each new layer), D, and v. The mathematical representation of this relationship is
given by:

R =
Vp

Vtrack
=

Qp

∆Z · v ·D ·ρp
(5.1)

where ρp is the powder density, and assuming that the density of the deposited
material is equivalent to the powder density, the expression for R can be simplified
as:

R =
Qp

Qtrack
(5.2)

where Qtrack is the deposited mass rate of the track. The units of measurement for
both terms in R must be consistent to ensure that R remains dimensionless. The ideal
scenario would have R equals 1, signifying an optimal powder-to-track ratio without
losses. Given the nuances in real-world applications, modifications to the initial
equation became essential. Consequently, a multiplicative coefficient κ (greater than
or equal to 1) was introduced and multiplied by the factor R to account for powder
losses in the process, expressed as a percentage. Henceforth, R will be consistently
held at 1 for this work, allowing modifications to be exclusively centered on κ .

In this work, Oe is treated as a qualitative rather than quantitative factor for two
pivotal reasons. First, it allows for the simple linkage between the powder mass
flow rate and the intended track geometry to be constructed. Second, it correlates
the tool path— the deposition head in this context—with the virtual geometry one
aims to create, which is prismatically shaped. Given these premises, it becomes
intuitive to conceive that a layer can be constructed in multiple passes or sub-layers
by overlapping tracks. These tracks must have a height lesser than the layer to meet
the geometric constraints. To address this and lend a unique and original approach to
the problem, a qualitative scheme was chosen over a quantitative one.

Accordingly, layers can be constructed by overlapping 1, 2, 3, or 4 tracks or with-
out any overlap. Depending on overlap values, such as 75 %, 66.7 %, 33.3 %, or 0 %,
the requisite number of tracks needed for a given layer width is multiplied by factors
of 4, 3, 2, or 1, respectively. Conclusively, the Qp relationship is conveyed through
the system of equations, including the prediction of Qp based on the deposition rate,
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the Qp function of VAr and ω , and the minimum and maximum limit values of Qp:
Qp = κ[R ·∆Z · v ·D ·ρp · (1−Oe)]

Qp = f (QAr,ω)

0.3 ≤ Qp/(g·min−1)≤ 21.9
(5.3)

where Oe can range from 0.75 to 0. Hypothetically, it could also assume a value
of 1; however, this implies that the tracks are entirely overlapping, resulting in the
construction of a single wall. Such a scenario is not considered in this study, although
the equation system could be adapted for this purpose. Therefore, when employing a
value of 0.75 for Oe, it indicates the intention to construct the layer by overlapping
the tracks by 75 %, requiring four passes. Subtracting this value from 1 reduces the
mass flow rate by 75 %, effectively utilizing only 25 % of the flow rate to construct
the layer. In contrast, if a value of 0 is used, meaning that there is no overlap, the
entire flow rate necessary to construct the layer would be utilized.

This system of equations 5.3 adeptly provides Qp as a function of the deposition
rate, which is intrinsically tied to the process parameters, especially v. In addition, it
includes the characteristics of the fixed system (D), the density of the chosen powder,
and the specifics of the powder feeder system, along with its operational constraints.
In particular, Oe is treated as a qualitative factor rather than a quantitative numerical
value and all the units of the parameters are chosen in such a way as to be consistent
and to be oriented to obtain Qp in the desired units (g·min−1).

5.1.1 Challenges in the initial experimental design: setting the
stage for carrier gas flow optimization

During the experimental phase of a complex factorial design focused on screening
mechanical and physical properties (height of the specimens, density, porosity, and
hardness), certain problems arose. Several key factors come into play in the DED-LB
process, such as laser power, P, travel speed, v, powder mass flow rate, Qp, carrier
gas flow rate, Vcg, overlap efficiency, Oe, layer thickness, ∆Z, and scanning strategy.
Among these, Qp, P, and v are closely related. For example, increasing v has a
similar effect to decreasing P. Moreover, if P or Qp increases, the deposition track
becomes thicker. In contrast, a faster v means that the laser spends less time in one
spot, resulting in a smaller melt area and quicker cooling [36].
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Given these dynamics, the study focused on the specific energy density, E. This
parameter, a representation of energy applied relative to the laser spot diameter,
offers a perspective independent of the system. The vital role of this energy lies in its
connection to the melting interaction between the powder and the substrate, which
impacts a range of properties. The E is calculated by dividing P by the product of v
and the diameter of the laser spot. Although unlimited power combinations and v
can yield the same specific energy value, the system operates at a maximum power
of 1 kW. With the increased risk associated with higher operating temperatures in
equipment dependent on heat sources, the power was set at 80 % of this maximum,
according to the guidance of Cengel and Ghajar [88]. Therefore, variations in v were
made to achieve the desired levels of E. This strategic emphasis on E as a factor
over P and v provides a comprehensive understanding of the attributes and results of
the process.

The second factor, ∆Z, represents the Z-increment of the deposition head for
each subsequent layer. Achieving a layer thickness that aligns with ∆Z is pivotal,
especially in scenarios without a feedback control system, which highlights the need
for precise melt pool positioning [97].

The third factor examined in this study is VAr, representing the carrier gas flow
rate, specifically that of Argon. This parameter is crucial to understanding the
transport behavior of the powder and its subsequent deposition dynamics.

The fourth factor considered in this study is the dimensionless coefficient κ ,
introduced to account for the excess powder that does not contribute to the generation
of the track, thus capturing deviations from the ideal scenario of no powder loss.

The last factor, Oe, is illustrated in Figure 5.1, is determined by the ratio of the
distance d between the centers of consecutive tracks to D [98]. Oe stands out due
to its independence from specific machine features. Instead, it is defined by the
nominal diameter of the laser, positioning Oe as a universally applicable parameter.
In summary, the qualitative factor Oe transforms the factorial design 24 into a 23

for two approaches, with or without track overlap. This distinction is crucial as one
of the fundamental assumptions of this study is the adoption of a halved E and Qp

when constructing with Oe at 50 %, precisely because with each laser pass, 50 % of
∆Z is effectively deposited. This hypothesis is grounded in one of the most important
texts in AM: ’In practice, multiple overlapping scan lines create different melt pool
dynamics than single scan tracks. If the laser returns to a spot on a return pass prior
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to solidification from the previous pass, it has a similar effect to a longer dwell time
(lower scan speed)” [36].

d

Substrate

D

Fig. 5.1 Overlap efficiency (Oe)

The experiment involved the fabrication of 40 specimens spread over four sub-
strates, identified as blocks. Prismatic specimens with dimensions of (10× 10×
15.6)mm3 were built on a substrate measuring (120× 120× 7)mm3. The height
of 15.6 mm along the Z-axis was strategically selected to yield an integer number
of layers for various ∆Z values. This choice helps to observe the growth effects of
the specimen while avoiding interference of the deposition head during fabrication.
Specifically, a Single Replicate design was employed with a central point for each
block, considering five prominent factors, namely E, ∆Z, VAr, κ , and Oe. Prima
Additive, the supplier of the DED system under investigation, provided process
parameters that informed the selection of the central points. The details of the levels
adopted in this experiment are detailed in Table 5.1. Since the factor Oe is qualitative

Table 5.1 Summary of process variables and their levels

Process variable Values Center point

E/J·mm−2 46 – 60 53
∆Z/mm 0.4 – 0.6 0.5
VAr/L·min−1 2 – 6 4
κ 1.00 – 1.50 1.25
Oe/% 0 – 50 /

rather than quantitative, it does not possess central points in the traditional sense
used for numerical factors. This specialized design has a IV resolution, and the
emerging alias confounds between Blocks 1, 2, and 3 with the interactions of ABC,
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CDE, and ABDE. In this factor screening phase, the alias structure proves adequate.
Following the sparsity principle, the focus primarily shifts to the main effects and the
two-way interactions. This choice is further justified by the absence of replications,
a limitation dictated by the particularly limited and high-cost resources available.

During the construction of the first block in the experimental phase, an issue was
observed with the growth height of specific specimens. Four of the ten specimens
examined exhibited sub-optimal growth, attaining merely half of the predicted height.
Based on the previously established methodological approach, this anomaly was not
associated with the powder quantity spread on the melt pool. Measurements, taken
using a dedicated gauge system from the substrate to the specimen top, were essential
to counterbalance potential substrate distortions and geometric anomalies. The data,
which illustrates the actual height values and the growth percentage compared to
nominal values, can be found in Table 5.2. A shared characteristic among all under-
performing specimens was the low VAr level of 2 L·min−1.

Table 5.2 First block Height values

Std. Run
Position

E/ ∆Z/ VAr/ Oe/
κ

Height/
Order Order J·min−1 mm L·min−1 % %

1 10 5 46 0.4 2 0 1.00 42.9
2 4 10 60 0.6 2 0 1.00 44.2
3 3 7 60 0.4 6 50 1.00 101.3
4 8 2 46 0.6 6 50 1.00 100.0
5 2 1 60 0.4 6 0 1.50 110.9
6 6 9 46 0.6 6 0 1.50 103.2
7 9 6 46 0.4 2 50 1.50 56.4
8 5 8 60 0.6 2 50 1.50 53.2
9 1 3 53 0.5 4 0 1.25 80.8

10 7 4 53 0.5 4 50 1.25 83.7

Given these discrepancies, the experiment was halted to conduct thorough an-
alyzes to identify, isolate, and rectify the root causes. A subsequent trial was
performed on the opposite substrate side, avoiding the blocking nuisance effect that
two substrate differences could cause, and also saving precious resources and money.
The run order was randomized while maintaining the order of the specimen position,
facilitating a better assessment of the variations of the specimen due to position.
Four replications were available for both low and high gas levels. The objective
was to determine whether there was an improvement in response by increasing the
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low and intermediate VAr levels from 2 and 4 to 4 and 5 (L·min−1) and maintaining
the high level at the same. The results showed an improvement in response in all
the increased low VAr levels (Table 5.3 and Fig. 5.2). Adjustments to the VAr level
showed notable improvements in response.

(a) (b)

Fig. 5.2 Comparison between (a) First trial and (b) Second trial

Table 5.3 Second trial of the first block Height values

Std. Run
Position

E/ ∆Z/ VAr/ Oe/
κ

Height/
Order Order J·min−1 mm L·min−1 % %

1 3 5 46 0.4 4 0 1.00 84.0
2 6 10 60 0.6 4 0 1.00 79.8
3 8 7 60 0.4 6 50 1.00 105.1
4 4 2 46 0.6 6 50 1.00 101.0
5 2 1 60 0.4 6 0 1.50 110.6
6 5 9 46 0.6 6 0 1.50 105.1
7 1 6 46 0.4 4 50 1.50 101.1
8 10 8 60 0.6 4 50 1.50 94.6
9 7 3 53 0.5 5 0 1.25 97.8

10 9 4 53 0.5 5 50 1.25 97.4

Moreover, to rigorously evaluate these observations, a two-sample t-test at 95 %
SL between the two trials was conducted on the specimen height at low VAr levels,
assuming equal variances between treatments. The subsequent analysis revealed a
pronounced difference in the response between the two carrier gas levels. With a
p-value less than 0.01 %, the null hypothesis was rejected, leading to the conclusion
that enhancing the carrier gas level impacted the height of the specimens. This
finding is also supported by the boxplot in Fig. 5.3.
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In contrast to previous evaluations that primarily focused on measuring the mass
flow rate, Qp, the current study has shifted its attention to the actual deposition
process. Consequently, the relationship between the VAr rate and the growth of
depositions comes to the forefront. The initial hypothesis suggested a significant
influence of VAr on the velocity of in-flight powder, which, in turn, could affect
the quality of the melt pool and deposition outcomes [36]. Reducing VAr rates may
compromise the melt pool’s energy balance, potentially leading to the observed
deposition anomalies. This phenomenon underscores the multifaceted interaction
between powder stream characteristics and their translation into effective depositions.

Given these complexities, the study proposes a restructured experimental design
that emphasizes the fine-tuning of VAr and κ values. The aim is to ensure the
specimens attain their expected heights while addressing the newly observed factors
pertinent to the deposition process. While the current investigation adopts a black-
box approach, it paves the way for future research endeavors to explore the physical
mechanisms that govern these interactions in greater detail.
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5.2 Optimization of carrier gas flow level

5.2.1 Response variable evaluation

In assessing specimen height using the EquatorTM 300 precision gauging system
by Renishaw (Wotton-under-Edge, UK), two distinct strategies were employed to
address challenges associated with AM techniques. The first strategy aimed to
compensate for the distortions typically observed in substrates of the DED method.
A datum plane was interpolated by acquiring four proximal points to the specimen
of interest. This locally established plane was a reference, compensating for inherent
substrate distortions and ensuring accurate height determinations. The subsequent
strategy addressed the complexities of quantifying the upper surface of specimens.
Given the challenges, such as undulations resulting from laser traversal and pro-
nounced surface roughness, a proper probe equipped with a large ruby sphere tip was
chosen to offset these irregularities. Five reference points on the upper surface of the
specimen were acquired, with four positioned at the periphery and one centralized.
The average distance from these points to the established local datum accurately
represented the height of the specimen.

5.2.2 Choice of experimental design

The methodology was strategically formulated in this research endeavor to delve into
the intricate interconnection between powder velocity and its ensuing repercussions
on the melt pool temperature without monitoring it directly. A salient aspect of this
exploration is to discern how these temperature variations subsequently influence the
height growth of the specimen during deposition processes. The primary hypothesis
is based on the assumption that the velocity of the powder particles at their exit from
the nozzle is similar to the velocity of the carrier gas:

vp = vAr =
Qcg

4 ·π · r2
rozzle

(5.4)

where vp is the velocity of the powder, vcg is the velocity of the carrier gas, while
the denominator on the right side of the equation signifies the sum of the area of
the four nozzle apertures of the deposition head. Upon colliding with the melt pool
on the substrate, a powder particle transfers completely his kinetic energy, Ek. This
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supposes an inelastic collision in which Ek is completely transformed into thermal
energy [99, 100]. The kinetic energy a particle holds prior to impact is represented
by:

Ek =
1
2
·mp · v2

p (5.5)

where mp represents the average mass of the powder, after the collision, this energy
becomes zero as it merges with the melt pool, converting entirely into heat. To
calculate the resulting temperature change, ∆T , in the melt pool after these impacts,
the following equation is used:

Ek = mmelt pool · c ·∆T (5.6)

where mmelt pool denotes the mass of the melt pool and c is the specific heat of the
metal in a liquefied state. The individual contribution of a singular particle to the
temperature variation becomes insignificant when juxtaposed with the entirety of the
melt pool.

A 32 factorial experimental design was contemplated to embrace such potential
quadratic phenomena. Among all potential factors that might influence the height
of the specimens, VAr has been identified as the primary factor under investigation,
complemented by the coefficient κ . All parameters not under investigation were
retained at their central points, except for Oe, which was set at 50 % due to its
qualitative nature. Furthermore, VAr levels were chosen to be in the vicinity of
5 L·min−1 to approximate 100 % of the desired height. The factor levels of the
experiment are detailed in Table 5.4.

Table 5.4 Process variables values used in the planned experimentation

Process variable Values

VAr/L·min−1 5 – 6 – 7
κ 1.00 – 1.25 – 1.50
E/J·mm−2 53
∆Z/mm 0.5
Oe/% 50

Three replications were selected to fully utilize the plate due to the availability
of only one AISI 316L substrate of (250×250×10)mm3 dimensions. The distance
required to avoid collisions of the deposition head between each specimen depends on
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the height of the specimen itself. Therefore, a compromise had to be reached between
the number of specimens to saturate the substrate, their dimensions, and the ensuing
experimental power. A total of 27 cubic specimens measuring (10×10×10)mm3

were then built on the same substrate, and a post hoc power was calculated for both
Very Large and Huge ES, as shown in Table 5.5.

Table 5.5 Post hoc computed power

Factor d f Critical F
Power/%

Very Large Huge

VAr 2 3.6 72 99
κ 2 3.6 72 99
VAr ·κ 4 2.9 57 97

5.2.3 Analysis and discussion

The experiment was conducted in one day to ensure uniform conditions (see Ta-
ble E.1 in Appendix F). BCs were carefully monitored and analyzed using ANCOVA,
focusing on the measured heights compared to the desired ones. Exploiting the RSM,
the aim is to understand better how these factors affected the response and to achieve
the desired specimen height within specific confidence limits. A fully randomized
strategy was employed during creating and placing specimens on the substrate. This
methodology aimed to mitigate potential systematic effects arising from several
variables. One significant factor is the initial temperature of the substrate at the
commencement of each deposition. Moreover, as each specimen is deposited, there
is a direct alteration in the thermal characteristics of the substrate. Specifically, the
thermal capacity undergoes modification, an outcome rooted in the principle that
thermal capacity is derived from the product of specific heat and mass [88]. Concur-
rently, geometry changes in the substrate occur. Due to the deposition of specimens,
the changing geometry influences the distribution of heat across the substrate and its
heat exchange with the ambient convection heat transfer. An increase in free surface
area generally can augment the rate of convective heat exchange [101]. Therefore,
adopting this randomized strategy is pivotal in ensuring that such dynamic thermal
and geometrical changes do not skew the experimental data.
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Table 5.6 ANCOVA for Height/%

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 10 85.37 4268.89 426.889 9.34 <0.1
Covariates 2 62.81 1781.11 890.553 19.48 <0.1

TA 1 62.69 234.54 234.54 5.13 3.8
HA 1 0.12 0.63 0.63 0.01 90.8

Linear 4 19.11 933.33 233.333 5.10 0.8
VAr 2 17.74 817.62 408.811 8.94 0.2
κ 2 1.37 62.86 31.432 0.69 51.7

2-Way Inter.
VAr ·κ 4 3.45 172.60 43.151 0.94 46.4

Error 16 14.63 731.53 45.720
Total 26 100

The ANCOVA (Table 5.6) model yielded an S of 6.7 and an R2(ad j) of 76.23 %,
signifying the proportion of total variability in the data explained by the model when
adjusted for the number of predictors. Moreover, only the VAr factor and covariate
TA influence the response at the selected SL. Furthermore, this suggests that the
temperature inside the construction chamber correlates with and impacts the Height
of the specimens. Specifically, as the temperature increases, there is a slight rise in
the response.

In the context of this study, while the factorial plot did not provide significant
insights due to only the VAr factor being influential, it was observed that, as in the
first two tests, an increase VAr results in higher specimens. However, delving deeper
using the Johnson transformation method and visualizing the data on a NPP sheds
light on the response variability as the factor levels change. Specifically, for the
factor VAr, the nonnormal distribution is evident at higher flow levels, highlighted by
two unique clusters marked with orange triangles for 7 L·min−1 in Fig. 5.4. Such an
irregular pattern, coupled with the broad spread of the data, points to the process’s
unpredictability and subsequent inconsistencies in the response.



5.2 Optimization of carrier gas flow level 95

80 100 120 140 160
1

5

10

20

40

60

80

90

95

99

Height/%

Pe
rc

en
t/%

5 L· min−1

6 L· min−1

7 L· min−1

Fig. 5.4 VAr factorial plot (Johnson’s method)

The next step of the analysis is focused on obtaining a model of the relationship
between the process parameters and the response. A comprehensive quadratic model
was selected, and a standard stepwise regression was executed to derive a model
encompassing solely significant factors. The thresholds for Alpha-to-Enter and
Alpha-to-Remove were designated at 10 %, facilitating the incorporation of terms
nearing the 5 % SL. The result presents a linear regression formula consistent with
the described methodology, incorporating the factor VAr and the covariate TA, the
latter taken only as a linear term. The regression model is:

Height / % =−167.4+8.67 ·TA +0.2554 ·TA ·VAr (5.7)

It is essential to note that this equation holds within the temperature range of (27.7±
0.1) ◦C. Given its limited validity range, a more streamlined model was derived
using the same approach without lack-of-fit. This resulted in the following regression
equation in coded values, with the coefficients and their standard errors detailed in
Table 5.7

Height / % = 118.7+6.34 ·VAr (5.8)
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Table 5.7 Estimates of parameters of the model in coded units

Variable Parameter Coef SE Coef

Constant β0 118.7 2.37
VAr β1 6.34 2.90

Given that the objective of the experiment is to achieve 100 % of the desired
height, an examination of the regression equation reveals that at 5 L·min−1, a value of
(107±4)% is attained. Extrapolating this data suggests that the 100 % value would
be achieved at 4.04 L·min−1, outside the resolution capability of the instrument.
Given the significant variability in the data and considering that the top surface will
be processed further, it was conservatively decided to set the VAr value at 5 L·min−1.
Consequently, any subsequent adjustments to reach the target height will be made
solely based on other factors.

5.2.4 Conclusions

The primary objective of this research was to optimize the combinations of VAr

and κ to determine the ideal height of deposited specimens in the DED system
while maintaining all other process parameters constant. Utilizing a 3k full factorial
design allowed the assessment of the relationship between influential factors and the
response, advancing from methodologies used in earlier studies. Advanced analytical
techniques like ANCOVA, the Johnson plot, and stepwise regression within the RSM
provided invaluable insights during data analysis. A series of significant outcomes
emerged from this study:

• The height of the specimens predominantly depends on VAr;

• The temperature inside the construction chamber, represented as TA, appears
to have some influence on the results. However, its definitive impact remains
to be determined due to the restrictive range within which it was assessed;

• An evaluation of flow levels revealed no discernible difference between 6 and
7 L·min−1;

• The lack of VAr quadratic effects challenges the initial hypothesis about kinetic
energy;
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• Parameters under which material deposition occurs most efficiently have been
identified.

Drawing from these findings, especially the insights provided by the regression
equation, the VAr factor will be maintained at a consistent 5 L·min−1 for future
experiments. Through its systematic approach, this research enhances the existing
knowledge surrounding DED systems. The method introduced, which emphasizes
the intricate relationship between key parameters and the resulting response, has
the potential for a broad application in DED manufacturing. However, potential
challenges and limitations must be recognized for further studies. The limited
sample size and the use of one substrate need attention. Further explorations should
consider the interplay of internal temperature and humidity within the construction
chamber, especially in more varied operational ranges. In summary, this study sets a
precedent for further research in this domain, suggesting refinements of the existing
methodology and its potential application to diverse materials and systems.

5.3 Factor screening on mechanical characterization

5.3.1 Recognition and statement of the problem

In this research segment, the primary objective is to evaluate the robustness of
previously obtained results from experiments related to powder stream and carrier
gas optimization levels. There are several methodologies to achieve this; the most
conventional approach involves intentionally perturbing the system to evaluate how
the responses vary within the specified perturbation ranges. The purpose of this
section is to serve as a connective bridge, synthesizing the insights gleaned across
different experimental outcomes.

5.3.2 Responses variable evaluation

For this investigation, square-based prismatic specimens with dimensions of (12×
12× 15.6)mm3 were employed. The height of 15.6 mm in the Z-direction was
deliberately chosen to ensure divisibility, resulting in an integer number of layers for
selected ∆Z levels. This dimension highlights the effects of specimen growth while
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preventing interference with the deposition head during construction. The dimensions
of the specimen were meticulously selected to meet all response measurement
prerequisites, ensuring the unhindered execution of the operations and analyzes.

Height, the first response variable, was assessed by precision gauge. Measure-
ments were carried out locally for each specimen to accommodate potential substrate
distortions, as detailed in Section 5.2.1. After height measurements, the top sec-
tion of each sample was sectioned 14 mm from its substrate. It was then detached
from the platform at a height of 1 mm using electrical discharge machining of wires
(W-EDM). Subsequently, the lateral surfaces of these samples were removed using
the Brillant 220 precision cutter by QATM (Mammelzen, GER). Following these
processes, the aim is to obtain prismatic samples with approximate dimensions of
1 cm3.

A polishing process was followed to mitigate the potential effects of surface
oxidation on subsequent density evaluations. Sample densities were determined using
the ANJ-NM / ABS-N precision balance and the Ultrapyc 5000. The samples were
then sectioned and embedded within the acrylic resin. After a standardized polishing
regimen utilizing semi-automated rough grinding, followed by manual mirror-like
polishing, image analysis rendered them suitable for porosity estimations. During
this phase, 25 representative micrographs from each specimen were procured using
the DMI 5000 M optical microscope by Leica (Wetzlar, GER) at a magnification
factor of 100×. The images were analyzed using ImageJ, a public domain image
processing tool developed by the National Institutes of Health. This software is
renowned for its versatility and extensibility in scientific image analysis.

To conclude the series of tests, the microhardness of the samples was quantified
using the JVS DHV-1000 digital micro-Vickers instrument (Licheng District, Jinan,
China). Measurements were taken at two distinct positions, the first at the bottom
(2 mm from the substrate) and the second at (2 mm from the substrate). This was exe-
cuted using a 0.5 kgf load and a dwell time of 15 s (HV/0.5/15) [102], in accordance
with the recommendations stipulated by ASTM International [103].
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5.3.3 Choice of factors, levels, and ranges

Based on findings from the study on the Optimization of carrier gas flow level in
Section 5.2.1, the equation system transitions to:

Qp = κ · [R ·∆Z · v ·D ·ρp · (1−Oe)]

Qp = f (QAr = 5L·min−1,ω)

0.7 ≤ Qp/g·m−1 ≤ 12.5
(5.9)

The levels of experimentation, shown in Table 5.8, were selected such that the central
point was aligned with those adopted in previous experiments. Only the levels
of the factor κ slightly deviate from the central point of the previous experiment.
Setting VAr to 5 L·min−1 and ensuring that all specimens surpass the 100 % Height
threshold, an excess of powder ranges between 25 % and 40 %. This criterion is
pivotal in this study to determine whether a specimen is deemed successful or not. In
addition, the ranges were adequately and assertively expanded to ensure pronounced
responses. The 16 combinations of process parameters must also adhere to the
constraints of the system, which are predominantly influenced by the powder stream.
Indeed, the boundaries set from (0.7 to 12.5) g·min−1 for powder also serve as
manufacturing limits; the system cannot achieve deposition at a rate beyond these
limits. Furthermore, when factor κ is taken into account, the productivity of the
system is further negatively impacted. Therefore, the production limits are not
only limited to the constraints of the powder feeder, but are also dependent on the
proportion of powder utilized in the construction (buy-to-fly ratio).

Table 5.8 Summary of process variables and their levels

Process variable Low level High level

E/J·mm−2 46 60
Oe/% 0 50
κ 1.25 1.40
∆Z/mm 0.4 0.6

In this experiment, three BCs were monitored due to their potential as disturbance
phenomena. In addition to conditions inside the construction chamber, such as air
temperature and absolute humidity, the substrate temperature, TT , at time zero prior
to each deposition was observed. Monitoring the temperature of the substrate is
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essential. After each deposition, some residual heat remains, making it difficult
to maintain uniform conditions throughout subsequent depositions. The K-type
thermocouple is used to measure temperature. However, the temperature reading
can be influenced due to its limited precision, accuracy, and fixed position on
the substrate, especially if it is near a recently deposited specimen. Given these
limitations, the substrate temperature is not used as a covariate in the analysis but
rather as a monitoring system. To maintain consistency, each new deposition is
started when the substrate temperature is close to the previous trial temperature,
allowing for a slight variance of up to 5 ◦C.

5.3.4 Choice of experimental design

A two level 2k full factorial design confounded in p blocks was chosen. Further
examination uncovers that the total number of blocks is four, corresponding to the
substrates. The ensuing design exhibits resolution III due to the two-way interaction
BC being confounded with Block1. The two generators in this setting are the
interactions BC and ABD. Such an arrangement leads to an alias structure that
confounds the BC, ABD, and ACD interactions with the blocks, creating challenges
in discerning whether the impact on the response comes from one interaction.

A crucial choice made during the process involved confounding κ with Oe. As
substantiated in the preceding section, this decision is based on the understanding that
Oe does not significantly alter one of the responses. Regrettably, for other responses,
no tangible information is available. However, since this approach primarily aims at
factor screening, analyzing up to the double interaction suffices. This strategy also
uses the principle of effect sparsity, ensuring that the most significant influences are
captured while discarding the least impactful ones.

Several critical considerations are paramount to determining the required sample
size. Among these, the nominal dimensions of the specimens warrant meticulous
examination. Of equal importance are the dimensions of the substrate and the
precise positioning of specimens on it. Moreover, the factorial design in question
significantly influences this determination. Concurrently, an assessment of the upper
limit of specimens can be accommodated on each substrate without introducing
interferences or complications in construction and subsequent procedures. According
to the recommendations of Mathews [78], the sample size was determined using
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at least two distinct methods. Given the resource constraints, conducting a pilot
study to evaluate data variability proved infeasible, except for the Height response.
Recognizing this limitation, several measures were taken to enhance the reliability
of the experiment. The transition from a Single Replicate approach with central
points to a factorial design incorporating multiple replications was instrumental.
Additionally, covariates were taken into account to provide a more robust analysis.
Then, the simplified formulation can be used to determine the sample size for testing
the main effects:

n ∼=
1

2k−2

(
z α

2
+ zβ

)2(σε

δ

)2
(5.10)

where n is the number of replications, k is the number of factors, zα/2 is the standard
normal distribution Z-score with tail area α/2 related to Type I error, zβ is the
standard normal distribution z-score with tail area β related to Type II error, and
σe/δ is the inverse of ES [93]. Z-scores were preferred over t-scores as the error
degrees of freedom are sufficient to support this approximation. With an α level
of 0.05, a β level of 0.2, and a Large ES, a total of 3 replications are necessary. It
is crucial to maintain a more stringent ES in a screening design to ensure effective
identification of the impact of factors on responses.

The second methodology used the G*Power software for the assessment. Power
evaluations on both main effects and interactions were carried out within this compu-
tational framework, incorporating an experimental design that encompassed three
replications derived from prior computations. Two covariates were incorporated into
the model, excluding six terms (one two-way interaction, four three-way interactions,
and a single four-way interaction). With a Large ES and a SL of 5 %, it was observed
that both main effects and interactions share an equivalent degree of freedom. Post
hoc power values corresponding to these conditions are meticulously presented in
Table 5.9.

Table 5.9 Post hoc computed power

Factor Group d f Critical F Power/%

Main 9+2 1 4.1 77
2-Way Interaction 9+2 1 4.1 77
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5.3.5 Analysis and discussion

Each block contained twelve specimens for the study that underwent a designated
treatment and was deposited entirely within a single day. Blocking can be concep-
tually applied to materials (substrates), distinct days, and operators. Adopting this
approach is one safeguard against potential nonuniformities across tests. It is note-
worthy that, upon completion of the polishing process for density measurement, all
specimens exhibited volumes that were remarkably similar to each other. During the
design phase, the goal was to achieve a volume of approximately 1 cm3 for density
evaluation. The specimens obtained displayed a volume range of (0.91±0.01) cm3.
This outcome is highly commendable given the extensive manual operations involved,
such as cutting and polishing.

The 2-Way interaction (κ ·Oe) was naturally excluded from the analysis since
it is completely confounded with Block1. Then factor plots and interaction plots
of significant factors were constructed. Reduced models were derived using the
standard stepwise method with Alpha-to-Enter and Alpha-to-Remove designated at
10 %, and response surface plots of the reduced model were generated.

The arrangement of the experiment is presented in Table E.2 (see Appendix F),
divided into columns in Standard Order, Run Order, Platform Position, Block, E, ∆Z,
Oe and κ . The data collected are depicted in Table E.3, which presents the results
of the experiment: Height, Density, Porosity, Hardness, thermocouple temperature
(TT ), air temperature (TA), and absolute humidity (HA). For a more concise notation
of the specimens, a system was adopted in which the block number is first identified,
followed by a hyphen, and then the specimen number (Run Order). This results in a
designation format of Block#-S#.

Height assessment

The ANCOVA results on Height are detailed in Table 5.10. The model yielded
an S of 1.0, an R2(ad j) of 87.53 %, and an R2(pred) of 75.41 %. The analysis of
residuals shows that they mostly follow a normal pattern. This is supported by the
ADT, which indicates that the residuals are normally distributed. The plot comparing
residuals and fitted values spreads the data evenly around the zero line without any
noticeable trends. The latter suggests that there is consistent variance across the data.
Lastly, no specific trends are observed in the observation order. These observations
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Table 5.10 ANCOVA for Height/%

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 14 91.24 375.413 26.815 24.56 <0.1
Covariates 2 4.32 4.407 2.204 2.02 14.9

TA 1 2.05 4.044 4.044 3.70 6.3
HA 1 2.27 0.990 0.990 0.91 34.8

Blocks 3 8.53 5.462 1.821 1.67 19.3
Linear 4 74.43 304.783 76.196 69.79 <0.1

E 1 1.61 8.211 8.211 7.52 1.0
κ 1 2.47 12.820 12.820 11.74 0.2
Oe 1 25.85 95.684 95.684 87.64 <0.1
∆Z 1 44.49 185.106 185.106 169.54 <0.1

2-Way Inter. 5 3.96 16.296 3.259 2.99 2.5
E ·κ 1 1.64 6.859 6.859 6.28 1.7
E ·Oe 1 0.05 0.196 0.196 0.18 67.4
E ·∆Z 1 0.12 0.416 0.416 0.38 54.1
κ ·∆Z 1 1.15 4.660 4.660 4.27 4.7
Oe ·∆Z 1 1.01 4.162 4.162 3.81 5.9

Error 33 8.76 736.030 1.092
Total 47 100

lead us to conclude that the model is suitable. On examination, it is evident that no
covariate significantly affects the response within the acquired ranges. This aligns
with the findings and the strategy adopted in the Optimization of carrier gas flow
level, thereby validating the decision to exclude this covariate from the optimization
process. Interestingly, the Blocks also prove to be not significant.

About 74% of the data variability comes from the main effects, all significant
to the chosen SL. The ∆Z is the most influential main effect, contributing to about
44.5 % of the variability, as confirmed by its p-value. The latter suggests that the
number of layers into which the desired geometry is sliced directly influences the
Height. As Fig. 5.5 illustrates, increasing ∆Z values, which means fewer layers, lead
to a noticeable reduction in Height. This can potentially be attributed to the layer-by-
layer additive effect of the surplus material on the response. Such findings align well
with hypotheses and decisions drawn from the results of the preceding section. Oe

holds the position as the second most significant main effect. Its SS contributes to
around 25.8 % of the data variability. The response is significantly influenced by Oe,
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as evidenced by its p-value being lower than the minimum resolution of the software.
An increase in the response is observed when specimens are constructed with an Oe

of 50 %, implying that the specimen is constructed over double the laser scanning
passes. This effect is prominently displayed in the factorial plot (Fig. 5.5). The κ

coefficient emerges as the third significant main effect. A tangible explanation for this
is that when more powder is provided to the melt pool at higher levels, an increment
in Height is realized. The main effect of least prominence is E. Specifically, as
the specific energy supplied to the melt pool increases, the average height of the
specimens also rises. This phenomenon can be attributed to the enhanced ability to
melt and trap more powder. Indeed, a higher E in this study implies a reduced v.

Among the two-way interactions, depicted in Fig. 5.6, E · κ and E ·∆Z can
be identified. Specifically, for the interaction between E and κ , high values of
both E and κ are observed to result in an increased response. The latter supports
the hypothesis that an increase in E manages to melt a greater amount of powder.
Regarding the interaction between E ·∆Z, as ∆Z increases, meaning a reduction in
the number of layers, there is a decrease in Height, and for high values of E, the
response increases. Although it does not meet the chosen SL, the interaction between
Oe ·∆Z should still be considered. In fact, its p-value is borderline, and, as with their
respective main effects, the height also increases as Oe and the number of layers
increases.
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After identifying the active factors through ANCOVA, they were used to derive a
reduced model using the standard stepwise regression without hierarchical model
terms, setting the SL at 10 %. This resulted in the following equations for the two
levels of Oe in coded units are:

Height/% = 100.000+0.440 ·E +0.448 ·κ+
−1.844 ·∆Z +0.501 ·E ·κ +0.352 ·κ ·∆Z (Oe = 0%) (5.11)

Height/% = 102.799+0.440 ·E +0.448 ·κ+
−2.414 ·∆Z +0.501 ·E ·κ +0.352 ·κ ·∆Z (Oe = 50%) (5.12)

The metrics, including an S value of 1.1, an R2(ad j) of 87.3 %, and an R2(pred) of
83.2 %, highlight the robustness and precision of the developed model. Furthermore,
an analysis of the residuals supports this, revealing no significant anomalies or signs
of LOF, further confirming the reliability of the model. From the system of equations,
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presented in coded units and averaged across blocks, it is evident through the constant
term that the average of the samples constructed with 50 % Oe is higher than those
constructed without. The response trend, on the other hand, remains consistent
for both construction strategies. Utilizing coded units allows for a straightforward
interpretation of the regression coefficients, elucidating the impact of both the factor
and the interaction. Notably, all the standard errors are identical, a characteristic of
the regressors in a 2k design. The values of the coefficients, alongside their respective
standard errors, are detailed in Table 5.11.

Table 5.11 Estimates of parameters of the model in coded units

Variable Parameter Coef SE Coef

Constant (Oe = 50%) β0 101.400 0.152
Constant (Oe = 0%) β0 100.000 0.152
E β1 0.441 0.152
κ β2 0.448 0.152
∆Z β4 -2.129 0.152
E ·κ β12 0.501 0.152
κ ·∆Z β24 0.352 0.152
∆Z ·Oe (Oe = 0%) β42 0.285 0.152

Lastly, the contour plots of the response for the two qualitative levels of Oe are
illustrated in Fig. 5.7.
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Density assessment

In exploring specimen density as a response variable, findings provide intriguing
insights. The model yielded an S of 0.01, an R2(ad j) of 55.04 %, and an R2(pred) of
23.37 %. From the ANCOVA results about Density (Table 5.12) indicate that only the
blocks exhibited a significant systematic effect. At this screening stage, pinpointing
the exact cause of this effect remains challenging. Several reasons might explain this
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Table 5.12 ANCOVA for Density/(g·cm−3)

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 14 68.43 0.014927 0.001066 5.11 <0.1
Covariates 2 53.20 0.000764 0.000382 1.83 17.6

TA 1 3.89 0.000012 0.000012 0.06 81.0
HA 1 49.32 0.000759 0.000759 3.64 6.5

Blocks 3 11.22 0.002269 0.000756 3.62 2.3
Linear 4 1.29 0.000267 0.000067 0.32 86.2

E 1 0.55 0.000114 0.000114 0.55 46.4
k 1 0.00 0.000001 0.000001 0.00 95.0
Oe 1 0.43 0.000096 0.000096 0.46 50.2
∆Z 1 0.31 0.000053 0.000053 0.25 61.7

2-Way Inter. 5 2.71 0.000592 0.000118 0.57 72.4
E · k 1 0.10 0.000018 0.000018 0.08 77.3
E ·Oe 1 1.11 0.000232 0.000232 1.11 29.9
E ·∆Z 1 0.00 0.000002 0.000002 0.01 92.3
k ·∆Z 1 0.67 0.000149 0.000149 0.71 40.4
Oe ·∆Z 1 0.83 0.000181 0.000181 0.87 35.8

Error 33 31.57 0.006886 0.000209

phenomenon. It could stem from one or more high-order interactions confounded
within the blocks. Alternatively, discrepancies in the substrates could be at play.
Another possibility is that each block was constructed on different platforms and
days, leading to the observed variations. Given that the data are normally distributed,
further confirmed by the ADT, such a variability in density might be attributed
merely to process variability. Once again, Occam’s razor provides guidance: the
simplest explanation is most likely correct. This suggests that all specimens exhibit
consistent density within the selected process parameter window with the designated
evaluation system. This consistency lends credence to the equation system developed
to correlate the construction parameters Qp, and the powder transport system.

Upon further examination of the density values, the observed value1 stands at
(7.927±0.006) g·cm−3. When comparing this result with the density of the virgin
powder using a one-sample t-test, where the null hypothesis states that the density

1Values were calculated based on the sample of 48 specimens, with the standard error multiplied
by a coverage coefficient determined using the t-student distribution with 47 degrees of freedom and
two-tailed 5 % (α) SL.
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of the powder is equal is equal to specimen one, the hypothesis is rejected with a
p-value lower than 0.01 %. The latter implies that a portion of the porosity inherent
in the powder is eliminated during the construction process (see Fig. 5.8). Further
bolstering the above findings, several crucial observations were made about the
sample of 48 specimens. In particular, there are no data outliers that could adversely
influence the test results. Moreover, the null hypothesis concerning the non-normality
of the density of the specimens cannot be rejected, emphasizing the uniformity of
the density of the sample. Given the sufficiently large sample size, it is adept at
discerning the difference from the average density of the powder. These satisfied
assumptions collectively reinforce the conclusions stated above.
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Porosity assessment

The distribution of the Porosity data deviates from the expected normality, as ev-
idenced in Fig. 5.9. Although there are two distinct clusters within the NPP, they
have not been labelled as outliers.
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This is particularly due to the secondary cluster that contains nine to eleven
values, which is approximately 19 % to 23 % of all observations. This grouping
cannot be associated with any specific factor or level, necessitating a distinct ana-
lytical approach. To ensure a normal distribution, which is essential for the proper
application of ANOVA/ANCOVA, the Box-Cox transformation method was used
[104]. The method is employed to address non-normal, positive data sets. Given that
porosity inherently holds values greater than 0, this technique proves particularly
appropriate for the case under consideration. Because of this iterative procedure, a
rounded λ value of −0.5 was derived, subsequently leading to the transformation of
data using the inverse square root, represented by the equation:

Y = Y−0.5 =
1√
Y

(5.13)

Following this transformation, the ADT lead a p-value greater than 5 %, suggesting
that the newly transformed data has a normal distribution, making it suitable for the
subsequent statistical procedures.

The ANCOVA was conducted on transformed data (as shown in Table 5.13), and
the resulting model exhibited a non-significant p-value. In the context of ANOVA and
ANCOVA, a non-significant p-value challenges the tested hypotheses. Essentially,
the null hypothesis posits no significant differences between the compared groups.
This result could stem from an ES that is too subtle for our sample size to discern or
from limitations in the current measurement system and technique.
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Table 5.13 ANCOVA for transformed Porosity/%

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 14 41.77 143.821 10.2730 1.69 10.6
Covariates 2 1.61 19.937 9.9687 1.64 20.9

TA 1 1.03 0.032 0.0318 0.01 94.3
HA 1 0.58 18.787 18.7867 3.09 8.8

Blocks 3 9.23 24.570 8.1899 1.35 27.6
Linear 4 7.46 22.159 5.5396 0.91 46.9

E 1 0.22 1.042 1.0419 0.17 68.1
k 1 2.07 4.265 4.2648 0.70 40.8
Oe 1 3.92 14.559 14.5590 2.40 13.1
∆Z 1 1.25 2.781 2.7808 0.46 50.3

2-Way Inter. 5 23.47 80.830 16.1660 2.66 4.0
E · k 1 0.00 0.373 0.3733 0.06 80.6
E ·Oe 1 1.41 5.966 5.9657 0.98 32.9
E ·∆Z 1 14.19 46.986 46.9858 7.73 0.9
k ·∆Z 1 5.84 19.959 19.9594 3.28 7.9
Oe ·∆Z 1 2.03 6.999 6.9987 1.15 29.1

Error 33 58.23 200.517 6.0763
Total 47 100

Considering this, a more advanced measurement technique, such as computed
tomography (CT) scans, might offer a detailed insight on porosity. One of the inherent
limitations of the current method is that it examines a single section, whereas the
material potentially has infinite sections. The porosity of a given section could be
influenced by its unique positioning within the whole. To substantiate these claims, a
correlation study was conducted. Intuitively, an increase in porosity would decrease
mass, then in density, implying a negative correlation coefficient (in an ideal case
r =−1). As depicted in Fig. 5.10, the scatterplot does not display a trend suggestive
of a negative correlation. A notable concentration of data points is observed at
lower porosity values. When executing the Pearson correlation test between the
density and porosity of the specimens, with a SL set at 5 %, a p-value of 19.2 % was
obtained. Thus, the hypothesis suggesting a correlation between the two variables is
rejected. This outcome aligns with our prior assertions, as it contradicts fundamental
principles of physics. Building on the abovementioned observation, when isolating
and re-executing the correlation test on the subset of these 9 data points (colored in
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red in the Fig. 5.10), an r-value of −0.94 is derived. This pivotal result underscores
that analyzing porosity on a section using an optical microscope may not adequately
represent the comprehensive porosity of the entire specimen.
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Fig. 5.10 Matrix plot of the Density/(g·cm−3) vs. Porosity/%

Hardness assessment

Results from Table 5.14 indicate that the ANCOVA analysis validates the significance
of the model. Neither covariates nor blocks appear to influence the response. Exami-
nation of the residuals reveals a normal distribution without discernible patterns. The
regression analysis yields an S of 2.7 and a R2(ad j) value of 30 %. This infers that
the devised model elucidates 30 % of the observed variance in the dependent variable
and underscores that a significant 70 % remains elusive. This discrepancy might
arise from methodological errors, inherent variability in the studied phenomena, or
other unconsidered factors. Such considerations are crucial when contextualizing
the broader implications of this research. A noteworthy observation is the R2(pred)
value of zero. This value underscores the predictive incapability for new data points
of the model. Therefore, the primary utility of this model lies in discerning factors
that influence hardness, a parameter intrinsically linked to Young’s modulus, an
essential measure in engineering materials studies.

A comprehensive evaluation reveals that all four main effects have a marked
contribution, cumulatively accounting for 29 % of the model. Factor E emerges
as the most predominant, succeeded by κ and Oe in terms of influence. Among
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Table 5.14 ANCOVA for Hardness/(HV/0.5/15)

Source d f
Contribution/

Adj SS Adj MS F
p-value/

% %

Model 14 51.37 248.502 17.7502 2.49 1.6
Covariates 2 0.40 15.966 7.9829 1.12 33.8

TA 1 0.32 13.905 13.9051 1.95 17.2
HA 1 0.08 0.430 0.4297 0.06 80.8

Blocks 3 9.26 32.492 10.8307 1.52 22.8
Linear 4 29.26 132.091 33.0228 4.63 0.4

E 1 12.15 56.406 56.4056 7.91 0.8
k 1 8.50 30.496 30.4963 4.28 4.7
Oe 1 8.26 41.836 41.8356 5.87 2.1
∆Z 1 0.35 1.839 1.8386 0.26 61.5

2-Way Inter. 5 12.46 60.263 12.0526 1.69 16.4
E · k 1 5.50 29.485 29.4848 4.14 5.0
E ·Oe 1 1.75 8.886 8.8860 1.25 27.2
E ·∆Z 1 1.78 8.075 8.0750 1.13 29.5
k ·∆Z 1 2.36 11.331 11.3314 1.59 21.6
Oe ·∆Z 1 1.06 5.112 5.1119 0.72 40.3

Error 33 48.63 235.276 7.1296
Total 47 100

the main effects, ∆Z registers as the least consequential. Regarding the two-way
interactions, only E ·κ appears to influence the response.

When examining the factorial plots (Fig. 5.11), it is evident that an increase in
E leads to a significant reduction in hardness. This suggests that greater energy
increases heat provision, affecting the cooling rates and grain growth coefficients.
Such changes inevitably alter the microstructure of the specimens. This observation
is consistent with established scientific findings such as the Hall-Petch law [105]. In
contrast, a rise in the value κ tends to decrease hardness, probably due to phenomena
related to thermal source attenuation. An Oe value of 50 % results in a stark decline
in hardness. Given the initial assumptions, where E is halved during the construction
with overlap, this phenomenon can be attributed solely to the double passage of the
thermal source at each point. The total summation of power to construct a specimen
with Oe, keeping E and ∆Z constant, remains unchanged. Lastly, decreasing the
number of layers, or increasing ∆Z, leads to an enhanced hardness, which aligns
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with expectations. The overall energy provided is less since E is surface-focused
rather than volumetric.

Regarding interactions (Fig. 5.12), it is noteworthy that only the interaction
between E and κ is significant. As mentioned above, this results in a greater fusion
of powders. Specifically, at low κ values and increasing E, there is a significant
reduction in hardness. This effect is not as pronounced for high κ values, implying
that the surplus powder utilizes some energy to undergo a phase change from solid
to liquid.
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Fig. 5.11 Main effects plots for Hardness/(HV/0.5/15)
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Fig. 5.12 Interaction plots for Hardness/(HV/0.5/15)

The reduced model using the standard stepwise regression without hierarchical
model terms, setting the SL at 10 %. This resulted in the following equations for the
two levels of Oe in coded units are:

Hardness/(HV/0.5/15) = 167.352−1.027 ·E+
+0.715 ·κ +1.010 ·E ·κ (Oe = 0%) (5.14)

Hardness/(HV/0.5/15) = 165.345−1.027 ·E+
+0.715 ·κ +1.010 ·E ·κ (Oe = 50%) (5.15)

The latter yielded an S value of 2.7, an R2(ad j) of 35.6 %, and an R2(pred) of 19.8 %.
Issues related to residuals were not observed, and no signs of LOF were evident.
Despite the limited applicability of the model, it provides a qualitative wealth of
information that will be invaluable for future studies. Generally speaking, when
examining the coefficients of the model, it can be inferred that given the same energy
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provided to the specimen, constructing with overlap results in reduced hardness.
Regression coefficients and their standard errors are presented in Table 5.15.

Table 5.15 Estimates of parameters of the model in coded units

Variable Parameter Coef SE Coef

Constant (Oe = 50%) β0 165.345 0.388
Constant (Oe = 0%) β0 167.352 0.388
E β1 -1.027 0.388
κ β2 0.715 0.388
E ·κ β12 1.010 0.388
∆Z ·Oe (Oe = 0%) β42 0.285 0.388

Lastly, the contour plots of the response for the two qualitative levels of Oe are
illustrated in Fig. 5.13.
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Fig. 5.13 Contour plots for the two qualitative levels of Oe for Hardness/(HV/0.5/15)

Building on the previous analysis, an evaluation was conducted contrasting each
top five and bottom five points of each specimen. Subsequently, a two-sample t-
test was executed, assuming equal variances. The findings suggest that with the
exceptions of the specimens Block3-S2, Block4-S3, and Block1-S6, hardness at the
top of the specimens is typically diminished compared to the bottom, corroborating
Moheimani et al. [106]. ANOVA was then undertaken to ensure that such disparities
were not associated with the selected factor levels or test assumptions. The ANOVA
substantiated that the observed variations were linked to the specific case (either the
process or the test) and could not be rationalized by the existing data set.
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5.4 Linking the process parameters to the properties
of the deposition

This thesis culminates in the development of a user-friendly framework to com-
prehensively guide the user through various aspects of process optimization and
experimental data regression (see Appendix F) exploiting the Matlab software by
MathWorks Inc. (Natick, Massachusetts, USA). The code is systematically divided
into distinct sections, beginning with the crucial elements of the powder stream
processes, followed by regression of experimental data. The code subsequently
prompts the user to specify desired process parameters, providing options to focus
on travel speed or specific energy. Moreover, it accommodates two approaches -
operating with or without Oe - and leverages optimized response surface models for
layer height to calculate the required powder mass flow rate (Qp).

Powder stream process

This subsection is designed to serve as an instrumental guide for the experimenter,
facilitating the assessment of the constraints and operational ranges of the powder
feeder system. The investigation employs a rigorous methodology tailored to address
the complexities inherent in powder stream systems. The scope of this inquiry is
specifically limited to the study of disk rotational speed (ω) as a single influential
factor. This particular focus arises from the conclusions drawn in Section 5.3.5,
which stipulated a constant carrier VAr of 5 L·min−1. In this context, the code is
engineered to zero in on the determination of Qp, elucidating its relationship with
the rotational speed of the powder feeder system. The code is organized into the
following steps:

1. User input for ω

2. Data validation for number of levels

3. Defining the range for ω

4. Calculating increment and levels of the factor

5. Query for the number of replicates



118 Melt pool and track formation: modeling and experiments

6. Generating the final ω vector

7. User option to view randomized test order

8. Randomization of experimental order

9. Post-experiment data input for Qp

10. Creation of a data table for regression

11. Stepwise regression analysis

12. Displaying the selected model

13. Coefficient refinement

14. Regressors visualization

15. Predictive analysis

The first crucial step in the code requires the user to specify the number of levels for
ω that will be studied. A minimum of 2 levels is necessary for conducting a linear
regression analysis. However, a minimum of 3 levels is suggested to fit a quadratic
model, which provides a more nuanced understanding of the relationship between
the variables. The user input here significantly affects the resolution and breadth of
subsequent experiments and analyses. After collecting the number of levels from
the user, immediate validation is performed to ensure that at least 2 levels have been
entered. This validation step is critical to preempt potential mathematical errors or
inconsistencies at later stages of data analysis. It serves as an initial checkpoint to
guarantee the suitability of the data for regression analysis.

Upon validation, the code asks the user for the minimum and maximum ω values.
Determining the range of ω allows the code to calculate the increment (∆ω) between
each level, facilitating a uniform distribution of data points. This step is crucial in
ensuring that the experiment covers a sufficiently wide span of the focus variable,
making the findings more generalizable and robust. The increment between the speed
levels is then calculated, generating a vector of rotational speed levels (ω_levels).
This computed vector provides the experimental settings at which the factor of
interest, rotational speed, in this case, will be tested.
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The code then queries the user to specify the number of replicates for each ω

level. Replication is indispensable in experimental design, as it allows for assessing
experimental error and increases the reliability of the findings. The user is advised
to conduct at least 5 replicates, enhancing statistical power in testing the slope
coefficient of the linear regression. A final vector for ω is created on the basis of
the levels and replicates. This vector is then displayed to the user, serving as a
comprehensive guide to the levels of ω that will be evaluated in the experiment.

Randomization is an integral part of experimental design, mitigating the influence
of extraneous variables and minimizing systematic error. A random index is gener-
ated and the vector ω is reordered based on this index, leading to ω_randomized.
Finally, the user is asked whether they want to view the randomized test order. If the
user opts to view it, the randomized vector is displayed. This step adds a layer of
transparency, allowing the researcher to be fully aware of the sequence in which the
experimental runs will be conducted. After the experiments, the user must manually
enter the Qp data obtained for each test following the Standard Order sequence.

After input of experimental data, the code constructs a data table explicitly
designed for regression analysis. The organization of this data table provides the
foundation for efficient and accurate statistical analyzes, ensuring the readiness of
the data for complex algorithms to be applied subsequently. The next computational
operation performed by the code is stepwise regression analysis. This technique
iteratively evaluates the statistical significance of each predictor variable in the model,
in this case, ω , and its potential linear and quadratic terms. It adds or removes terms
based on statistical criteria to optimize the fit to the experimental data of the model.
The outcome is a model that effectively captures the inherent relationships among the
variables while simultaneously minimizing the risk of overfitting. Upon completion
of the stepwise regression analysis, the code outputs the selected regression model
for review. This transparent display of the model allows the experimenter to gain
immediate insights into which predictor variables, and in what mathematical form,
have a statistically significant impact on the response. In subsequent steps, the code
refines the model coefficients to improve predictive accuracy. In this refinement
phase, the insignificant coefficients are rounded to zero, simplifying the model
without sacrificing significant predictive power. An illustration of the results returned
by the Matlab code, employing the pre-set default vectors based on experimental
trials with the powder feeder is presented below in the Command Window and
depicted in Fig. 5.14:
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1 1. Removing Omega^2,
2 FStat = 0.26923 ,
3 pValue = 0.62242
4 Optimized Model:
5 Linear regression model:
6 Qp ~ 1 + Omega
7
8 Estimated Coefficients:
9 Estimate SE tStat pValue

10 (Intercept) -0.12639 0.18342 -0.68906 0.51297
11 Omega 0.44375 0.015356 28.897 1.5296e-08
12
13 Number of observations: 9,
14 Error degrees of freedom: 7
15 Root Mean Squared Error: 0.301
16 R-squared: 0.992 , Adjusted R-Squared: 0.99
17 F-statistic vs. constant model: 835,
18 p-value = 1.53e-08
19
20 Model Coefficients:
21 -0.1264
22 0.4437

The experimenter is presented with the option of visualizing the regression model
through a graph. Opting to execute this function will generate a plot that graphically
represents the relationship between the predictor and the outcome variables. This
graphical representation is beneficial for qualitative assessment and assists in pre-
senting the findings in a more digestible format for both technical and non-technical
audiences. Lastly, the code leverages the final selected model for predictive analysis.
Using the experimentally determined range of ω , it calculates the minimum and
maximum Qp values that can be expected. These predicted values are then displayed,
offering the researcher comprehensive information about the behavior of the system
within the experimental constraints.

It is important to note the limitations in the applicability of this approach. Al-
though the method has shown robustness within the explored constraints, meaning
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Fig. 5.14 Regression plot example

that it is reliable for interpolation within these limits, its validity becomes uncertain
when extrapolating beyond these boundaries. Consequently, individual operators
should recalibrate the method based on the specifics of their system, mainly when
operating outside of the previously established limits.

Process parameters

This subsection elucidates the computational aspects of determining various process
parameters crucial for DED-LB/Powder. It begins by defining initial settings and pro-
ceeds through multiple steps, including user input, validation checks, computational
procedures, and output generation. The aim is to comprehensively determine and
validate parameters such as overlap, laser beam power, scan speed, and energy den-
sity, which are indispensable for achieving precision and reliability in the subsequent
manufacturing processes. The code is structured into the following steps:

1. Initialization of parameters

2. User choice for v or E
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3. Validation and calculation

4. Energy layer adjustment

5. Powder feed rate calculation

6. Validation of Qp

7. Equation solving for ω

8. Output

In the initial segment of this code, a set of predetermined parameters is established
to serve as the framework for the DED-LB/Powder technique. These parameters
include Oe, P, ∆Z, D, ρ p, and the desired layer height as a percentage (H). These
variables are hard-coded (see the example code below), thus serving as the foundation
for the remaining calculations and decisions.

1 %%%%%%%%%%%%%%%%% PROCESS PARAMETERS %%%%%%%%%%%%%%%%%
2 % Input
3 Oe = 0; % 50 if we are using 50% overlap , otherwise

without overlap with any other number
4 P = 750; % Laser Beam power in W
5 DeltaZ = 0.5; % value between 0.4 mm and 0.6 mm
6 D = 2; % Laser beam diameter in mm
7 rho = 7.896e-3; % Powder density in g*mm^{-3}
8 H = 100; % Height of the desired layer in percentage

Following this, the code requests the user choose between v (scan speed) or
E (energy density). This choice reflects the methodology applied in the ensuing
calculations and affects how subsequent variables will be determined. If v is selected,
its value must be entered, setting E to an undefined status (NaN). Conversely,
selecting E requires its value to be entered, and v is then set to NaN. An error message
is generated for invalid input, ensuring data integrity. A series of conditional checks
are performed upon choosing between v and E. If v is numeric, E is calculated using
a predefined formula involving laser beam power, scan speed, and diameter. The
overlap condition is also accounted for, effectively doubling the energy per layer if
a 50 % overlap is specified. When E is selected, the same computational rigor is
applied, where v is computed using an equivalent formula. The next part of the code
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is dedicated to calculating the powder feed rate (Qp_calculated). A distinct formula
is used depending on whether there is an overlap. The computed κ_calculated value
used in this calculation is set to a minimum of 1 if it falls below this threshold.

The code then checks if the computed powder feed rate is within a predefined
feasible range, issuing a warning if not, informing the user to reconsider the geometric
parameters. Lastly, a symbolic variable Omega_sym is declared to formulate a
quadratic equation. This equation is then solved to obtain omega_calculated, the
computed value of rotations. Based on the specific conditions, such as overlap
and other variables, the code outputs calculated values for E, k_calculated, v, and
Qp_calculated. The computed process parameters resulting from the Matlab code
(see Fig. 5.15) are displayed in the Command Window as follows:

1 The calculated value of Rotations is: 12.3 rpm
2 The surplus of powder k spread on the melt pool is:

1.20
3 The input of E is: 40.0 J/mm^2
4 The calculated value of v based on the specific

energy supplied is: 562.5 mm/min
5 The calculated value of Qp is: 5.3 g/min

In summary, this subsection of the code is an essential mechanism for determining
and validating key process parameters, effectively laying the groundwork for a robust
and reliable additive manufacturing process, based on factor screening results.
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Fig. 5.15 Process parameters plot example

5.5 Conclusions

In the presented chapter, a detailed analysis was conducted on different mechanical
and physical properties of samples, highlighting the various interactions between the
parameters involved. Key findings are summarized below:

• Height: The analysis revealed a high correlation between the number of layers
and the height of the sample. In particular, the increase in the ∆Z value, which
indicates a lower number of layers, leads to a noticeable reduction in height.
Other factors such as Oe, κ and E have significantly influenced pitch. The
models developed for two levels of Oe highlighted the robustness and precision
in analyzing the height of the samples;

• Density: The results showed an average density of (7.927±0.006) g·cm−3

for the samples. Detailed analysis suggested a potential elimination of some
inherent porosity in the material during the construction process. The homoge-
neous distribution of density data indicates the consistency and reproducibility
of the manufacturing process within the chosen parameters;
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• Porosity: The porosity distribution data was transformed to meet normal-
ity standards. However, the ANCOVA model proved insignificant post-
transformation, and no correlations between density and porosity emerged.
This underscores the need for future studies to employ more sophisticated
tools to assess porosity accurately;

• Hardness: The results revealed that while microscopic hardness is affected
by various factors, such as E, κ and Oe, the developed model explains only
30 % of the observed variance. This indicates that other factors or intrinsic
variability could play a significant role in determining the hardness of samples.
The interactions between the parameters, particularly between E and κ , showed
a significant influence on hardness.



Chapter 6

Discussion and comparative
evaluation of existing literature

6.1 Analysis and review of related literature

In any scientific exploration, a comprehensive understanding of existing studies,
theories, and methodologies related to the topic is indispensable. This chapter
critically reviews the existing literature, categorizing the findings based on the process
parameters and the resulting outputs, defectiveness, and mechanical properties.

6.1.1 Analysis of key literature on process parameters and re-
sponses

The inherent adaptability of the DED-LB technology allows its configuration to be
tailored to specific needs and requirements. Consequently, the process parameters
can substantially differ from one configuration to another. Furthermore, the selection
and emphasis on specific process parameters are driven mainly by the objectives that
practitioners and researchers aim to achieve. For example, Qi and Mazumder [107]
pinpointed the importance of 14 distinct process parameters in a quest to simulate
the process numerically. This underlines the multifaceted nature of DED-LB, where
different parameters can be prioritized based on the desired outcome and specific
application demands.
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On the other hand, Pinkerton [16], who delineated the three main physical
processes that occur during DED-LB / powder-based construction, opted to isolate
the key process parameters specifically for the powder-stream process. Among
these, some are controllable and thus fall into the "manageable" category, such as
laser power, gas flow rate, and powder mass flow rate. Other elements are intrinsic
to the DED system employed, including the diameter and power distribution of
the laser beam, the geometry of the nozzle and the stand-off distance. The latter,
although adjustable, falls within the characteristics determined by the calibration
procedure. Indeed, once the direction of the powder stream is calibrated, the point at
which the powders collide becomes an intrinsic property of the system and is thus
unmanageable. The remaining parameters are tied to the inherent "unmanageable"
characteristics of the powder used.

Expanding on Pinkerton’s categorization, the melt pool formation is predomi-
nantly influenced by laser power, though it can experience partial attenuation during
its interaction with the powder stream. Influential parameters such as the powder flow
rate and its velocity at the substrate, substrate temperature distribution, and travel
speed are of paramount significance. Furthermore, the inherent chemical-physical
characteristics of the substrate and the powder utilized determine the fabrication
outcome. Additionally, attributes such as the dimensions of the substrate, thermo-
mechanical properties, and surface quality undeniably impact the encompassing
thermal phenomena within the DED-LB/Powder process.

In the DED-LB/Powder processes continuum, these stages culminate in the final
step: solidification of the deposited track. The thermal history chiefly dictates the
intricacies of this phase, the composition and morphology of the melt pool, the
velocities of the solidification front, and the prevailing thermal gradient. Turning
attention to the response categories delineated by Pinkerton, notable mentions include
the residual stresses manifesting within the track and the substrate, the geometric
attributes of the track, and lastly, the microstructure characteristics of the track, the
remelting zone, and the HAZ.

The parameters mentioned above can be further detailed, and additional ones
can also be identified, as pointed out by Svetlizky et al. [108]. Among the process
parameters, we can also include the layer thickness, or layer Z-step (∆Z), the hatching
distance (comparable to Oe), and the deposition strategy (toolpath). Meanwhile,
unmanageable parameters, unless there is a hermetically sealed building chamber,
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include the amounts of oxygen and humidity within the chamber (BCs). With respect
to the material itself, a finer level of detail can be achieved through analyses of the
powder sample. Factors such as powder morphology, flowability, material reflectivity
(given its interaction with a light source), and impurities such as undesired contents of
oxygen, carbon, nitrogen, hydrogen, and moisture come into play. Moisture is often
a cause of powder agglomeration, which leads to challenges in the powder stream
process. To address this, it is prudent to dry and sieve the powders before every job
or after the powder has been unused (or stored) for an extended period. Finally, when
detailed system characteristics are presented, the source can be characterized by the
type of laser, wavelength, pulse frequency, and duty cycle.

Single track

In the literature, significant efforts have been made regarding single tracks. Indeed,
these are the initial outputs obtained through DED, following the solidification
process (see Chapter 2). When the material is deepened, single tracks are linear
scans that are used to characterize the geometric properties of the deposited material.
Among these properties are the track height (H), width (W ), and depth (Dtrack), as de-
picted in Figure 6.1. Despite the considerable endeavors in this domain, the approach
adopted in this doctoral research diverges from this intermediate step. However,
reporting some of the physically similar and comparable outcomes pertaining to
single tracks is beneficial and essential.

Substrate

Deposited
material

Width (W)

Heigth (H)

Depth (Dtrack)

Fig. 6.1 Geometrical features of the msingle track; Depth (Dtrack), Width (W ), Height (H).
Image adapted from Piscopo et al. [109]

Kumar et al. [110] developed a mathematical model to predict the H of layers
deposited using a specific technique. This model incorporated both the essential
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material and build parameters that influence the H. Parameters not directly included
in the model due to their complexity were validated using regression analysis, with
titanium as the reference material. Though the validation was primarily for v the
model applies to other significant build parameters, such as P and Qp. The accuracy
of this model in predicting the height of the deposited layer has an error margin close
to 10 %

Sun et al. [111] explored the intricate relationship between process parameters
and outcomes in laser cladding of Ti6Al4V using an Nd: YAG laser. Their findings
indicate that while increased laser power expands layer width, a rise in scanning
speed diminishes various metrics, except the W and H ratio. The powder feed
rate displayed a contrasting influence on the depth and dimensions of the layer.
The RSM emerged as an effective method to predict cladding geometry, with its
developed model ensuring impressive accuracy of predictions within a 7 % error
margin. This research underscores the potential of the model for enhancing precision
and efficiency in laser cladding processes.

El Cheikh et al. [112] successfully applied multiple regression analysis to
uncover the relationships between various process parameters and the cross-sectional
properties of the clad, such as H and W . The high degree of correlation and residual
analysis confirmed the efficacy of this statistical approach. The study reveals that H
is mainly determined by energy intake per unit mass and the mass-to-length ratio
of the powder. Although equations were developed to predict certain aspects of
effective powder utilization, they needed to provide a comprehensive geometric
understanding of the clad. The study concludes that the primary governing factor for
clad geometry is surface tension on the molten pool rather than powder distribution
in the jet.

Ocelík et al. [113] provide an in-depth study on side laser cladding, focusing
on grey and compacted graphite cast iron substrates. Using combined parameters
such as Qp/v and P/v, the study finds that the process is robust across a range of
laser power and powder feeding rates. A strong linear correlation is established
between the feeding rate (Qp) and H, supported by a high regression coefficient. The
research also shows that side cladding achieves up to 90 % powder efficiency, higher
than coaxial cladding. The study contributes to developing predictive models for
optimizing laser cladding processes.
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In the study conducted by Toyserkani et al. [114], the influence of E and powder
F , defined as the Qp divided by v times D, on the dimensions of the deposited track
was examined. Notably, an increase in E resulted in elevations in both the H and
width W of the deposited track. Conversely, a rise in F led to an increase in H but a
decrease in W . In this context, F measures the powder density, influencing material
deposition rates. These observations provide valuable guidance for optimizing
process parameters in Directed Energy Deposition.

Building on the empirical relationships established by Toyserkani et al., Piscopo
et al. [109] utilized this model to develop a thermal DED-LB/Powder model using the
finite element method. This new model accounted for various physical characteristics
of the process and demonstrated a reasonably accurate forecast for track geometry
and temperatures, thus expanding the applicability of Toyserkani’s findings.

In summary, extensive studies on single tracks have yielded predictive models
to understand their geometric characteristics such as H, width W , and Dtrack. An
increase in P generally leads to an expansion in W . On the contrary, a rise in
scanning speed typically diminishes various geometric metrics, except for W/H. An
increase in powder feeding rate also exhibits a contrasting influence on W and Dtrack.
Importantly, these insights corroborate the initial hypotheses outlined in Chapter 2
of this research, thereby validating the adopted approach.

6.2 Linking between process parameters (predictors)
and responses

In the progression from the literature review on single-track experiments to more
comprehensive studies that correlate process parameters with responses such as
layer thickness and microstructures, it becomes evident that DED-LB/Powder can be
broadly categorized into two major types of machines. The first category consists
of systems that incorporate a feedback loop for layer height control, adjusting
parameters in real time to ensure optimal deposition. The second category lacks
such a feedback mechanism, relying solely on pre-defined parameters without the
capacity for real-time adjustments. This distinction is crucial, as it influences the
geometric accuracy of the fabricated parts and their material properties, including
micro-hardness and grain structure. Understanding the capabilities and limitations
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of these two machine categories is instrumental in optimizing DED-LB/Powder
processes.

The study by Shim et al. [35] delves into the intricacies of optimizing the slicing
thickness in DED-LB/Powder manufacturing by adapting to actual deposited layer
heights and various processing parameters. The authors carried out 31 sets of experi-
ments, examining how changes in E and Qp affect the height of the deposited layer.
Their adaptive method yielded better geometric accuracy by automatically adjusting
the slicing thickness based on the specific conditions, effectively minimizing errors
due to under or over-deposition. While the feedback control method demonstrated
superior geometric fidelity, it introduced variances in material properties, specifically
micro-hardness, due to fluctuating energy input. Conversely, the conventional and
adaptive methods maintained more uniform material properties but suffered from
geometric inconsistencies, particularly under high-energy scenarios. Closed-loop
control systems were suggested to overcome these limitations. The study illuminates
the nuanced relationship between processing parameters and geometric and material
outcomes in DED, providing a foundation for further advances in closed-loop control
systems.

In the study by Webster et al. [37], a specialized energy density metric, GED,
was introduced to explore its utility in parameter optimization for DED processes.
These metrics serve as a compound variable that incorporates both laser power and
powder mass flow rate, designed to predict melt pool dimensions. Although the
investigation identifies a linear relationship between GED and the size of the melting
pool for laser power and an exponential relationship for Qp, the study claims that
GED is not a consistent predictor of the dimensions of the melting pool or the height
of the clad under varying process conditions. This observation challenges the validity
of commonly used energy density metrics in DED and highlights the imperative for
further empirical investigation.

One of the significant challenges in DED is the dynamic nature of the process pa-
rameters during deposition. Since metallic components under repair or construction
typically have limited thermal diffusivity, they experience an increase in temperature
until a steady state is reached. This increase in temperature poses a challenge to
maintaining component quality and consistency. Consequently, adaptive tuning of
process parameters during deposition, based on real-time temperature monitoring,
has been identified as a critical approach for ensuring component integrity.
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Consistent with this, Seltzer et al. [115] provided evidence that there is inherent
variability in the geometry and temperature of the building during DED-based repair.
They employed a camera system to monitor melt pool geometry and an optical
profilometer for verification. Comparing these experimental results with numerical
simulations, they demonstrated the feasibility of real-time parameter adjustments
through feedback control systems to improve repair quality.

Similarly, Reutzel et al. [116] underscored the crucial role of sensing and control
systems in the regulation of process variables such as the geometry of the melt pool,
the temperature and the height of the build of the layer. They emphasized that these
variables are directly related to the final quality of the components, affecting the
dimensions, microstructure, and material properties. Both sets of research emphasize
the need for real-time monitoring and parameter adaptation in DED. They highlight
the intricate balance of variables that affect component quality and advocate for more
research into advanced control mechanisms to further optimize the process.

Boisselier et al. [117] conducted an exhaustive study that is particularly relevant
to the technique and material under consideration in this work. Focusing on AISI
316L stainless steel and using a coaxial laser cladding nozzle, they explored the
critical role of powder characteristics in the DED process. Their findings revealed the
necessity of thorough powder characterization—encompassing grain size, shape, and
chemical composition—before applying DED. They used three different batches of
AISI 316L powder and found that each batch produced different results in terms of de-
position quality, requiring specific adjustments to process parameters. This research
underscores the importance of tightly controlling powder characteristics, which is an
unamangable parameter, to optimize flowability and laser-powder interaction and
attain high-quality, defect-free components.

Aversa et al. [118] presented an in-depth investigation into the microstructure and
composition of 316L stainless steel fabricated using DED-LB/Powder. Their work
emphasized the formation of large columnar grains and complex microstructures
containing γ-dendrites and δ -ferrite, which arise due to the unique thermal history
of L-DED. They also focused on the occurrence of non-metallic particles rich in Si,
Mn, and O, providing insights into their formation mechanisms during solidification.
Their study further revealed the role of processing conditions, specifically building
atmosphere, in influencing oxide formation and elemental pickup. Aversa et al. found
that using a nitrogen-filled build chamber was more effective in limiting material
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oxidation than only using a shielding gas. Their findings also demonstrated that
the mechanical properties of the fabricated samples were influenced by the nitrogen
atmosphere, leading to improved yield strength and elongation. Their meticulous
examination of the microstructure and composition of DED-LB/Powder/AISI316L
stainless steel makes their research particularly relevant for understanding the impli-
cations of processing conditions on material properties.

The next step of the previous work, always conducted by Aversa et al. [119],
relates to optimizing process parameters for DED-LB/Powder/AISI316L stainless
steel samples. They used nitrogen as the carrier and shielding gas, maintaining a
flow rate of 3 L·min−1. Single Scan Tracks (SSTs) were initially produced to refine
parameter combinations. Subsequently, they were analyzed using optical microscopy
and image analysis software. On the basis of these initial results, bulk samples were
manufactured and examined for defects, geometrical characteristics, and mechanical
properties using various techniques, including SEM and EBSD. The samples were
also subjected to tensile tests and the results were evaluated using the Voce flow
stress model. These comprehensive analyzes provided information on how different
building parameters impact the mechanical properties, microstructure, and defect
density of the samples.

6.3 Conclusions and implications for current research

In both academic and industrial landscapes, DED systems are inherently complex,
continuously evolving in terms of reliability and sophistication year after year.
Finding common ground among various studies is a highly challenging, if not nearly
impossible, endeavor. However, specific fundamental physical processes are starting
points for characterizing, developing, or improving a process. A unifying thread in
the literature reviewed is a meticulous engineering-based methodological approach,
which serves as a minimum common denominator among these studies.

This dissertation commences with the foundation laid by the literature review
outlined in the preceding section, setting the stage for a methodological approach.
Given the complexities of replicating precise results from other researchers, this
work adopts an inherently experimental approach. Starting from basic hypotheses,
the aim is to identify a window of process parameters and relationships that permit
for consistent construction through the analyzed DED technique. Furthermore, the
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findings of the cited publications have been leveraged to benchmark the test results,
confirming that the research is progressing in the right direction. This methodology
not only validates the reliability of the outcomes but also adds a layer of robustness,
bridging the gap between academic research and industrial applicability.

In order to facilitate comparison of the results of this work with others in the
field, rigorous adherence to established standards has been maintained, particularly
concerning the Guide to the Expression of Uncertainty in Measurement (GUM). By
diligently applying the GUM recommendations, it is anticipated that this research
will not only stand on solid methodological ground but also serve as a reliable
reference point for future studies, allowing meaningful comparisons and validations.



Chapter 7

Conclusions

In this work, rigorous mathematical modeling of the hypothesis followed by an
extensive experimentation phase has comprehensively investigated the Laser Beam
metal Powder Directed Energy Deposition (DED-LB/Powder) process. The study
delves into three primary mechanisms: powder stream, melt pool, and track forma-
tion/solidification process.

Significant focus has been placed on characterizing the powder feeder system
through a Design of Experiment (DoE) approach, which led to the determination of
a response surface. Subsequently, a mathematical model was developed to quantify
the amount of powder to flow in the powder streaming process to achieve the desired
layer heights in the manufactured components.

Optimization of carrier gas levels was performed to ensure consistent growth
(low process variability) of the specimens within the operating boundaries delineated
by the response surface of the powder stream. A factor screening exercise was
conducted to assess the validity of the proposed equation, considering parameters
such as specific energy (E), powder surplus (κ), overlap efficiency (Oe), and layer
height (∆Z). This screening assessed the quality of the proposed equation and
examined various output variables, such as specimen height relative to the target,
density, porosity, and microhardness.

These meticulous evaluations generalize the findings, making them applicable
and adaptable to various DED-LB/Powder systems. By fulfilling the initial research
questions, this thesis provides a comprehensive understanding of the DED-LB
process and paves the way for future research in this burgeoning field. The results of
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this research endeavor are comprehensively synthesized and scrutinized, focusing on
addressing the initial research questions:

RQ1: To what extent can a specimen be deposited to meet specified proper-
ties leveraging on process parameters utilizing a DED system?
In response to the first research question, the present study underscores the necessity
for a rigorous mathematical framework. The latter should integrate key processes,
including powder stream manipulation, track formation, and solidification. Notably,
the overlay of tracks requires meticulous attention to ensure reliable material de-
position, irrespective of variable process parameters such as applied energy. In the
powder feeder system under examination, two principal variables—carrier gas flow
rate (Vcg) and rotational speed of the perforated disk—merit particular attention.
The observed response surface contradicts intuitive expectations; an increase in Vcg

correlates with a reduced powder stream. Moreover, not all Vcg levels demonstrated
efficacy in achieving proper material deposition. Suboptimal growth, defined as
failure to attain the predetermined target height, was observed at Vcg levels below
5 L·min−1. This phenomenon is potentially attributable to multiple factors, including
but not limited to the morphological characteristics of the flow at the standoff point.

RQ2: How do deposition behaviors vary under diverse conditions when
employing DED-LB, and which factors determine its robustness?
In addressing the second research question related to the variability in deposition
behaviors under distinct conditions for DED-LB and the factors determining its
robustness, the mathematical methodology formulated in response to the first research
question was subjected to a factor screening analysis. Four key variables - E, κ , Oe,
and ∆Z - were examined for their effects on deposition robustness. After the factor
screening analysis, the following key findings were delineated to further elaborate
on the methodology adopted:

• Height - Regression surfaces, one for each Oe strategy, optimized for the
study displayed average values approximating 100 % of the targeted height.
This outcome is of paramount significance as it provides initial geometric
validation for the adopted methodology. By considering the influence of
additional variables such as E, κ , and Oe, it becomes feasible to fine-tune the
process parameters within the explored ranges to achieve the desired target
height. Therefore, the first geometric requirement is satisfactorily met and is
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intrinsically influenced by optimizing the powder stream process, particularly
the carrier gas flow rate levels;

• Density - The factors investigated were found to be insignificant in differ-
entiating core density variations among the samples. The latter indicates no
substantial differences within and between groups and across the boundary
conditions set for the ANCOVA. Moreover, the overall density of the sample
size exceeded that of the powder, suggesting that some of the inherent porosity
of the powder is lost during the deposition process. These results serve as
invaluable insights regarding the methodology employed. Specifically, they
imply that even when process parameters such as specific energy are varied
(within the processability windows of the material), the specimens fabricated
using this approach exhibit indistinguishable differences. This finding serves
as a robust foundation for evaluating subsequent mechanical characteristics;

• Porosity – The analysis was assessed through optical microscopy of a speci-
men cross-section, leading to challenges such as data non-normality and the
absence of a negative correlation with density. Given that only a small cluster
of data exhibited behavior consistent with the underlying physics of the issue,
porosity measurements obtained through this technique are not recommended
for refined analyses. Instead, this approach should be employed for qualitative
assessments, considering only a single cross-sectional plane of the specimen;

• Hardness - Given the limited coefficient of determination and predictive re-
liability of the model for the hardness, it is evident that the analysis may not
yield precise outcomes for this specific response variable. However, several
critical insights into microhardness were observed. Firstly, doubling the num-
ber of layers (Oe=50 %) while keeping specific energy and powder constant
decreased the sample’s microhardness. This finding aligns with thermal cycle
theories and the consequent grain growth. Secondly, a variance in microhard-
ness within the specimen was noted, depending on the height (along the Z-axis
of construction). Specifically, the upper layers exhibited greater microhardness
compared to the lower layers, which is attributable to the fewer thermal cycles
the upper layers undergo relative to the layers constructed earlier.

The present study furnishes a nuanced understanding of the interdependencies be-
tween the various process parameters and their subsequent impact on the mechanical
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and geometrical attributes of the samples. Importantly, the hypotheses postulated
were validated; no discernible disparities were observed in the specimens from
either geometrical or mechanical viewpoints, thereby affirming the methodological
robustness of the study. These insights are vital for further refining AM procedures
and producing high-quality end-products. The established relationships between
process parameters and mechanical attributes also provide a basis for designing and
manufacturing components with tailored properties.

7.1 Limitations and Future Research

The present study has sought to provide a comprehensive understanding of the rela-
tionships between various process parameters and the resulting material properties in
additive manufacturing, specifically focusing on Direct Energy Deposition with Laser
Beam and Powder (DED-LB/Powder) using AISI 316L. While the models developed
offer promising avenues for optimizing geometric features and core properties, it
is crucial to acknowledge the inherent limitations and scopes for future research.
This contextualization not only affords the current findings their due weight but also
charts a roadmap for subsequent scholarly investigations. The discussion elaborates
on these limitations and suggests avenues for future research to bridge existing gaps.

Geometric Features and Core Properties: The models in this study are pri-
marily designed to evaluate the geometric features and properties of the core bulk
of samples. These models are particularly suited for parts produced through DED-
LB/Powder and intended for subsequent machining processes. Surface finish is not
incorporated into the current models, as any surface imperfections are assumed to be
corrected through post-processing methods like machining. Porosity Assessment:
No model is currently available for evaluating specific attributes of porosity, such
as size or type (e.g., lack of fusion, gas entrapment, or keyhole formation). Future
studies should consider using advanced measurement techniques like computed
tomography scanning for a more comprehensive understanding of porosity.

Uniform Substrates of Similar Material: The research results are derived from
samples deposited onto uniform substrates made of the same material, AISI 316L, as
the samples. This could limit the immediate applicability to real-world components
involving different or irregular substrate conditions.
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Process Parameters and Material Specificity: The models are tailored for a
specific range of specific energy and are based on the use of AISI 316L. However,
the methodology itself can be generalized to various types of powders. Although
individual calibration would be necessary, the investigation methods are universal
and can be applied to any material system. Material Specificity: While the current
model is developed for AISI 316L, the procedural framework is versatile and could
be applied to any powder type. The investigative methods are universal, thus offering
a foundational base for their application across diverse material systems. These
limitations provide valuable context for the applicability of the current models and
methodologies. The findings of this study open multiple avenues for future research
to explore, refine, and expand upon the models and methodologies currently em-
ployed. Enhanced Predictive Models: The initial models have shown promise in
mapping the relationships between process parameters and deposition quality. A
natural progression would be to further explore the limits of process windows and
assess deposition quality within these windows using the proposed methodology.
In cases where systems exhibit optimizable responses—variations that lead to no-
table improvements—optimization techniques such as gradient-based methods in an
experimental setting could be employed.

Advanced Porosity Assessment: Given the limitations of the optical microscopy-
based approach for porosity evaluation, future studies could consider utilizing more
advanced tools like CT scanners. This would enable a refined correlation analysis
with the density data already obtained, possibly leading to more accurate predic-
tive models for porosity. Mechanical Properties: Although density does not vary
significantly with the changing input parameters, the same cannot be said for me-
chanical properties, which are affected by factors like energy input and thermal
cycles. Particular attention should be paid to the junction area between the deposited
material and the substrate to understand how these parameters influence mechanical
characteristics.

Comparative Studies: As a further step, the research could be expanded to
compare the findings of this study with results obtained using other Direct Energy
Deposition methods, such as wire-based systems.

Material Versatility: While the current study focuses solely on AISI 316L,
the methodologies are universal and can be adapted for any powder type, making
the approach highly versatile. This roadmap sets the stage for a comprehensive



140 Conclusions

and multifaceted exploration of additive manufacturing technologies, pushing the
boundaries of current knowledge and capabilities.
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Appendix A

Parametric Statistical Tests

A.1 t-test in hypothesis testing

In statistical analysis, the t-test is employed to ascertain whether the mean of a spe-
cific population significantly deviates from a hypothesized value. This methodology
is particularly advantageous when the population variance is unknown, distinguish-
ing it from the Z-test, necessitating knowledge of this variance. Instead, the t-test
utilizes sample variance as an estimate. The t-test can be classified as follows [120]:

• One-Sample t-test: evaluates if the mean of a single population is statistically
equivalent to a predefined value;

• Two-Sample t-test: determines whether there is a statistically significant
difference between the means of two independent populations;

• Paired t-test: assesses if the mean difference between paired observations is
statistically equivalent to a hypothesized value;

• t-test in regression: In advanced statistical contexts, this variation of the
t-test evaluates whether specific coefficients in a regression equation differ
significantly from zero.

For the effective application of the t-test, certain assumptions must be met. Both
populations under comparison must exhibit independence and be approximately
normally distributed. Furthermore, these populations should display homogeneity of
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variances. The veracity of these assumptions can be assessed using NPP. Despite its
sensitivity to deviations from normality, the robustness of the t-test is noteworthy,
particularly with larger sample sizes. However, alternative statistical tests might
be more appropriate in cases of smaller sample sizes accompanied by significant
deviations from normality. In certain contexts, the t-test quantifies the magnitude of
deviation of an estimated value from an expected value relative to variability. Some
literature posits that, given random sampling, the t-test might retain its validity even
without strict adherence to the normality assumption. Such versatility has entrenched
the t-test as a fundamental tool in diverse research domains.

A.2 ANOVA

This paragraph introduces the core principles of ANOVA, preparing the groundwork
for subsequent chapters. The objective is to equip readers with a foundational grasp
of this statistical method, paving the way for in-depth analyses and results.

The elegance of ANOVA lies in its ability to provide a unified framework for
multiple comparisons without inflating the Type I error rate. Where multiple t-tests
would compound the risk of false positives, ANOVA controls for this risk, ensuring
that the overall error rate remains consistent. This statistical rigor is combined with
efficiency, as ANOVA’s comprehensive approach avoids the complexity and potential
inconsistencies that might arise from performing and interpreting multiple individual
tests. In addition to its primary function of testing the equality of means, ANOVA
can be extended and adapted to various complex designs, such as repeated measures
and factorial ANOVA, making it a versatile tool in the statistical toolkit.

ANOVA validity lies in the following assumptions:

• Observations within and between groups must be independent;

• Populations from which samples are drawn must be normally distributed;

• Homoscedasticity of the variances within each group.

When these assumptions, especially the normal distribution of responses, are not
met, it becomes essential to adopt corrective measures. One fundamental approach
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to address this issue is through data transformation. The importance of data transfor-
mation is accentuated as it addresses challenges related to non-normal distributions.
By leveraging appropriate transformations, variance can be stabilized, ensuring the
robustness of subsequent ANOVA analyses. This work will exploit the Box-Cox
transformation, a pivotal technique for managing non-normally distributed data
[121].

Suppose we have k groups, or treatments (factor levels), with ni observation for
each group. There are an overall of N observations, and the sample mean of the ith

group is:

ȳi =
1
ni

ni

∑
j=1

yi j (A.1)

and the overall sample mean is:

¯̄y =
1
N

k

∑
i=1

ni

∑
j=1

yi j (A.2)

ANOVA facilitates the simultaneous analysis of three or more means by partitioning
the total variance in a dataset into two distinct components: between-group variance
and within-group variance, which is equal to, say:

yi j = ¯̄y+(ȳi − ¯̄y)+(yi j − ȳi) (A.3)

where the first term in brackets is the difference between groups, while the second
term is the difference within groups, the effect model is a more straightforward way
to express the latter relationship equation:

yi j = ¯̄y+ τi + εi j (A.4)

where τi is the deviation from the overall sample means when a treatment is applied,
and εi j is the random error component. The equation can be manipulated to obtain:

yi j − ¯̄y = τi + εi j (A.5)
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Since we are interested in evaluating if the treatment has an effect on the response,
the null and the alternative hypotheses become:

H0 : τ1 = τ2 = · · ·= τi = 0

HA : τi ̸= 0 for at least one treatment level

The decomposition of the sum of squares (SS) can be obtained:

SSTotal = SSTreatment +SSError (A.6)

where the SSTotal, SSTreatment, and SSError are, respectively, the total, the treatment,
and the error sum of squares and are computed as:

SSTotal = ∑
i

∑
j
(yi j − ¯̄y)2

SSTreatment = ∑
i

∑
j
(ȳi − ¯̄y)2 (A.7)

SSError = ∑
i

∑
j
(ȳi j − ȳi)

2

The mean square (MS) determines the division of each SS by its degrees of freedom:

MSTreatment =
SSTreatment

k−1
(A.8)

MSError =
SSError

N − k

where the treatment mean square (MSTreatment) measures the variability of the sample
means between each treatment, and mean squared error (MSError) measure the
variability within the groups [69]. Finally the F-test is performed:

F =
MSTreatment

MSError
(A.9)

By comparing with a F-distribution with k−1 and N − k degrees of freedom, and
the null hypothesis could be rejected if F is larger than the F critic value (right of
the 5% tail for 95% SL) [122]. These findings can be summarized in Table A.1.



154 Parametric Statistical Tests

Table A.1 ANOVA Table

Source d f SS MS F

Treatment k−1 SSTreatment MSTreatment
MSTreatment

MSError
Error N − k SSError MSError
Total N −1 SSTotal

A.2.1 ANCOVA

Analysis of Covariance (ANCOVA) is a sophisticated statistical technique that en-
hances the precision of experimental outcomes by adjusting for potential confounders.
It elegantly melds principles intrinsic to both analysis of variance and regression
analysis.

In empirical studies, it is common to encounter scenarios where a primary
response variable exhibits a linear association with another variable. ANCOVA
combines features from both analysis of variance and regression, making it a unique
and powerful tool for researchers. This method is similar to blocking in experimental
design. When researchers can directly control or block certain variables to reduce
their influence, they do so. But blocking these variables, e.g. boundary conditions, is
sometimes impossible. That’s when ANCOVA comes in handy, allowing researchers
to measure and adjust for these uncontrollable variables, known as covariates.

The ANCOVA model for a single-factor experiment with one covariate is articu-
lated as:

yi j = ¯̄y+ τi + γ(xi j − ¯̄x)+ εi j (A.10)

within this model, yi j is the response observation corresponding to a specific treat-
ment, xi j is the covariate measurement related to the yi j, ¯̄y is the overall mean, τi is
the effect associated with a specific treatment, γ is the regression coefficient, and
εi j is the random error component. Furthermore, compared to the Taguchi method,
which treats disturbance variables as being on just two discrete levels (low and
high), ANCOVA offers a more robust approach. It views disturbance variables as
continuous, capturing a wider range of potential influences. This makes the results
more precise and provides a clearer picture of the underlying processes. In short,
ANCOVA provides a reliable alternative for research situations where blocking is
nott feasible, ensuring accuracy and clarity in findings [71].



Appendix B

Uncertainty estimation

B.1 Powder sample estimation

This appendix provides an in-depth analysis of uncertainty estimation for a sample of
AISI 316L powder. In the domain of measurement, inherent uncertainties invariably
manifest. This research diligently seeks to quantify such uncertainties, conforming to
the criteria stipulated by the Guide to the Expression of Uncertainty in Measurement
(GUM) [123].

For the mass measurement, a singular reading was obtained. Owing to the ab-
sence of multiple measurements, statistical analysis to ascertain variability was not
feasible. Consequently, based on established norms and references, the uncertainty
was classified as Type B. In contrast, the procedure for volume measurement was
divergent. Multiple observations were procured utilizing a pycnometer, which per-
mitted the categorization of the uncertainty as Type A, derived from the observed
dispersion of results. The endeavor then transitioned to the computation of the com-
bined uncertainty, integrating uncertainties from mass and volume measurements.

In this process, there was a consideration to employ the Welch-Satterthwaite
formula. However, given the inherent nature of the Type B uncertainty associated
with the mass measurement, its degrees of freedom are theoretically infinite. Con-
sequently, this research utilized the degrees of freedom associated with the volume
measurement to ensure a conservative stance in the combined uncertainty estimation.
By adopting this method, the integrity of the Type B uncertainty remains unaltered.
After this, the task was to derive a coverage factor, reflecting the confidence en-
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veloping these measurements. A 95 % confidence level was employed, and specific
methodologies were adopted to ascertain this factor.

The computational framework supporting this research was a bespoke MATLAB
code. Such software facilitated intricate data analysis and fortified the reliability and
precision of the uncertainty determinations. It merits noting that ancillary factors,
including but not limited to temperature and pressure, were meticulously accounted
for in the analysis, underscoring the rigor of the adopted methodology.



Appendix C

BCs system

C.1 Boundary condition system Sender

1 // Boundary condition system Sender

2 #include <Wire.h>

3 #include <Adafruit_BME280.h>

4 #include "max6675.h"

5 #include <SPI.h>

6 #define RXp2 16

7 #define TXp2 17

8 #include <Wire.h>

9 #include <Adafruit_BME280.h>

10 #include "max6675.h"

11 #include <SPI.h>

12 #define RXp2 16

13 #define TXp2 17

14

15 int thermoDO = 19;

16 int thermoCS = 23;

17 int thermoCLK = 5;

18

19 MAX6675 thermocouple(thermoCLK , thermoCS , thermoDO);

20 Adafruit_BME280 bme;

21

22 int x;
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23 int k = 0;

24 int counter = 1;

25 int counter_TC = 1;

26 int var = 0;

27 float T;

28 float P;

29 float H;

30 double TC;

31 float T_avg = 0;

32 float P_avg = 0;

33 float H_avg = 0;

34 float TC_avg = 0;

35

36 void setup() {

37 pinMode (26, INPUT);

38 Wire.begin();

39 Serial.begin (115200);

40 Serial2.begin (9600 , SERIAL_8N1 , RXp2 , TXp2);

41 bme.begin(0x76);

42 }

43 void loop() {

44 x = digitalRead (26);

45 if (x == 1)

46 {

47 T = bme.readTemperature ();

48 P = bme.readPressure ();

49 H = bme.readHumidity ();

50 TC = thermocouple.readCelsius ();

51 // Serial.println(TC);

52 if (counter_TC == 1)

53 {

54 TC_avg = TC;

55 }

56 if (counter_TC != 1)

57 {

58 TC_avg = (TC_avg + TC) / 2;

59 }

60 counter_TC = counter_TC + 1;
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61

62 if (counter == 1)

63 {

64 T_avg = T;

65 P_avg = P;

66 H_avg = H;

67 }

68 else

69 {

70 T_avg = (T_avg + T) / 2;

71 P_avg = (P_avg + P) / 2;

72 H_avg = (H_avg + H) / 2;

73 }

74 counter = counter + 1;

75 counter_TC = counter_TC + 1;

76 var = var +1;

77 k = 1;

78 if (var == 10)

79 {

80 // Serial.print (" Thermocouple Temperature: ");

81 Serial.println(TC_avg ,1);

82 var = 0;

83 counter_TC = 1;

84 }

85 }

86 if (x == 0 && k == 1)

87 {

88 Serial2.print("Average Temperature:");

89 Serial2.print(T_avg);

90 Serial2.print(" C ");

91 Serial2.print("Average Pressure:");

92 Serial2.print(P_avg);

93 Serial2.print(" Pa ");

94 Serial2.print("Average Humidity:");

95 Serial2.println(H_avg);

96 Serial2.print(" % ");

97 k = 0;

98 }
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99 delay (1000);

100 }

C.2 Boundary condition system Reciver

1 // Boundary condition system Receiver

2 #include <Wire.h>

3 #include <WiFi.h>

4 #define RXp2 16

5 #define TXp2 17

6

7 const int output26 = 26;

8

9 WiFiServer server (80);

10 String header;

11 String testo;

12 int flag = 0;

13

14 const char* ssid = "ESP32 -Access -Point";

15 const char* password = "123456789";

16

17

18

19 void setup() {

20 Serial.begin (115200);

21

22 Serial2.begin (9600 , SERIAL_8N1 , RXp2 , TXp2);

23

24 pinMode(output26 , OUTPUT);

25 digitalWrite(output26 , LOW);

26

27 WiFi.softAP(ssid , password);

28 IPAddress IP = WiFi.softAPIP ();

29 Serial.print("AP IP address: ");

30 Serial.println(IP);

31 server.begin();
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32

33

34 }

35 void loop() {

36 Serial.println("TEST");

37 WiFiClient client = server.available ();

38 if (client) { // If a new client connects ,

39 Serial.println("New Client."); // print a message

out in the serial port

40 String currentLine = ""; // make a String to hold

incoming data from the client

41 while (client.connected ()) { // loop while the

client ’s connected

42 if (client.available ()) { // if there ’s bytes to

read from the client ,

43 char c = client.read(); // read a byte , then

44 Serial.write(c); // print it out the serial

monitor

45 header += c;

46 if (c == ’\n’) { // if the byte is a newline

character

47 if (currentLine.length () == 0) {

48 client.println("HTTP /1.1 200 OK");

49 client.println("Content -type:text/html");

50 client.println("Connection: close");

51 client.println ();

52

53 if (header.indexOf("GET /START") >= 0) {

54 Serial.println("START");

55 flag = 1;

56 digitalWrite(output26 , HIGH);

57 }

58 else if (header.indexOf("GET /STOP") >= 0) {

59 Serial.println("STOP");

60 flag = 0;

61 digitalWrite(output26 , LOW);

62 testo = Serial2.readString ();

63 }
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64

65 // Display the HTML web page

66 client.println("<!DOCTYPE html ><html >");

67 client.println("<head ><meta name=\"viewport\"

content =\"width=device -width ,

initial -scale =1\">");

68 client.println("<link rel=\"icon\"

href=\"data:,\">");

69 // CSS to style the on/off buttons

70 // Feel free to change the background -color

and font -size attributes to fit your

preferences

71 client.println("<style >html { font -family:

Helvetica; display: inline -block; margin:

0px auto; text -align: center ;}");

72 client.println(".button { background -color:

#4CAF50; border: none; color: white;

padding: 16px 40px;");

73 client.println("text -decoration: none;

font -size: 30px; margin: 2px; cursor:

pointer ;}");

74 client.println(".button2 {background -color:

#555555;} </ style ></head >");

75

76 // Web Page Heading

77 client.println("<body ><h1>ESP32 Web

Server </h1>");

78

79 if (flag == 0) {

80 client.println("<p><a

href=\"/START\"><button

class=\"button\">START </button ></a></p>");

81 } else {

82 client.println("<p><a

href=\"/STOP\"><button class=\"button

button2\">STOP </button ></a></p>");

83 }

84
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85 if (flag == 0) {

86 client.println("<p> Bc’s </p>");

87 client.println("<p>" + testo + "</p>");

88 }

89

90 client.println("</body ></html >");

91 client.println ();

92 break;

93 }

94 else { // if you got a newline , then clear

currentLine

95 currentLine = "";

96 }

97 }

98 else if (c != ’\r’) { // if you got anything

else but a carriage return character ,

99 currentLine += c; // add it to the end of the

currentLine

100 }

101 }

102 }

103 // Clear the header variable

104 header = "";

105 // Close the connection

106 client.stop();

107 Serial.println("Client disconnected.");

108 Serial.println("");

109 }

110

111

112 }

C.2.1 Boundary condition system thermocouple

The substrate temperature is an unmanageable parameter that needs to be mon-
itored, as this could affect the quality of the molten pool process. The K-type
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Fig. C.1 BCs monitoring system sketch

(chromel–alumel) thermocouple probe and a MAX6675 were selected to acquire
the temperature as a covariate. The MAX6675 is an amplifier that performs cold-
junction compensation and treats the signal from the thermocouple. The latter can
reach temperatures of 0 ◦C–1024 ◦C, and has an accuracy of 8 LSBs (12-bit). The
thermocouple has a gain of 41 µV·◦C−1 and shows a linear characteristic between
0 ◦C and 700 ◦C:

VOUT = (41µV) · (TR −TAMB) (C.1)

where VOUT corresponds to the amplifier output voltage in µV, TT is the temperature
measured by the thermocouple, and TAMB is the room temperature, both in ◦C. The
monitoring system is qualitatively represented in Fig. C.1, and since it must be
installed inside the construction chamber, it is plugged into an IP55 box, except for
the sensors.
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The system was calibrated using a thermostatic bath of distilled water under two
conditions: 0 ◦C (melting ice) and 100 ◦C (boiling water). It should be noted that
distilled water boils at 100 ◦C only under standard conditions (101.325 kPa), so a
function that combines pressure and boiling temperature must be used to overcome
this problem. Physics comes to aid with the Clapeyron equation for vaporization of
a liquid [89]:

TB =

(
1
T0

−
R̄ · ln p

p0

∆Hvap

)
(C.2)

where TB is the boiling point at the pressure p, R is the ideal gas constant, p
is the vapor pressure of the water, p0 is 101.325 kPa for the water, T0 is equal to
100 ◦C, and ∆Hvap is the enthalpy of vaporization of the water. Furthermore, the
semiempirical Antoine equation is most manageable based on experimental data and
is derived from Claperyon’s equation. Several Antoine equations are available in the
literature with different parameter numbers (2 to 4). In this case, the three-parameter
Antoine equation with a validity range between 0 and 100 ◦C is necessary. The
formula used is the following:

T =
B

A− log10 p
−C (C.3)

where p is the vapour pressure in mmHg, T is the boiling temperature in ◦C and A =
7.96681, B = 1668.21, and C=228 are the water Antoine constants.

The calibration of the system was carried out in a single day with four replications;
to be more precise, the measurement was carried out alternatingly from the melting
ice to the boiling water, with respect to the dynamic response time of the sensor as
reported in Table C.1, where WIT is the ideal temperature of the water, BT is the
actual temperature of the bath, and in the last column there are the related measures.

The data indicate that the boiling water temperature at the measured pressure may
be considered to be constant for the resolution of the system since the calibration was
carried out in a short time. The linear regression resulted in the following equation:

Output/◦C = 3.725+1.00443 · input/◦C (C.4)

The regression model yields a standard deviation of 0.28 and an R2 of almost100 %.
As Fig. C.2 shows, to obtain the expected value, a roto-translation of the real
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Table C.1 Thermocouple calibration data

Test WIT /◦C Pressure/Pa BT/◦C Measurement/◦C

1 0 98779.8 0.00 3.63
2 100 98779.1 99.45 102.85
3 0 98779.5 0.00 3.63
4 100 98779.8 99.46 103.83
5 0 98777.5 0.00 3.78
6 100 98801.6 99.46 104.08
7 0 98799.0 0.00 3.58
8 100 98799.2 99.45 103.15
9 0 98799.3 0.00 4.03

10 100 98793.8 99.45 104.20

thermocouple interpolation was performed:

qi =
(qo −b)

m
(C.5)

where qi is the expected value, qo is the experimental value, b is 3.725, and m is
1.00443. Note that the model result was rounded to reflect the resolution of the
thermocouple and the standard deviation of the regression.

Input/°C

O
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pu
t/°

C

0

104.17

0 100
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real

Fig. C.2 Thermocouple calibration
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Powder feeder characterization

Table D.1 Powder feeder experiment Data

Std. ω/ VAr/ Qp/ TA/ p/ HA/
Order rpm L·min−1 g·min−1 ◦C Pa g·m−3

1 2 2 2.44 25.7 98052 11.0
2 2 4 1.29 25.5 98096 11.1
3 2 6 0.73 25.5 98105 11.2
4 2 8 0.28 27.3 98283 10.7
5 6 2 6.59 26.3 97968 10.6
6 6 4 4.59 25.4 98126 11.2
7 6 6 2.28 25.9 98018 10.9
8 6 8 1.23 27.6 98268 10.9
9 10 2 11.43 26.2 97948 10.4
10 10 4 8.49 25.5 98111 11.2
11 10 6 5.15 25.9 98039 11.0
12 10 8 2.76 28.0 98238 10.9
13 14 2 15.20 26.3 98006 11.0
14 14 4 12.49 25.9 98034 10.9
15 14 6 7.07 25.6 98093 11.1
16 14 8 4.07 27.0 98307 10.6
17 18 2 20.82 25.3 98138 11.2
18 18 4 16.30 25.7 98066 11.1
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Table D.1 – continued from previous page

Std. ω/ VAr/ Qp/ TA/ p/ HA/
Order rpm L·min−1 g·min−1 ◦C Pa g·m−3

19 18 6 9.16 26.3 98004 10.4
20 18 8 5.27 27.9 98242 10.9
21 22 2 25.02 29.22 98641 12.4
22 22 4 15.37 29.05 98639 12.2
23 22 6 8.34 28.98 98649 12.3
24 22 8 5.14 29.12 98641 12.2
25 2 2 1.76 26.2 98020 11.0
26 2 4 1.37 25.6 98073 11.1
27 2 6 0.75 25.4 98117 11.2
28 2 8 0.26 26.8 98303 10.6
29 6 2 7.59 25.9 98040 11.0
30 6 4 4.14 25.3 98138 11.2
31 6 6 2.47 25.5 98100 11.1
32 6 8 1.42 27.9 98245 11.0
33 10 2 11.35 25.2 98142 11.2
34 10 4 8.29 26.3 97968 10.4
35 10 6 4.86 25.6 98080 11.1
36 10 8 2.52 27.7 98257 10.9
37 14 2 18.89 26.3 98011 10.5
38 14 4 10.48 26.3 97999 10.4
39 14 6 6.75 25.6 98091 11.1
40 14 8 4.31 26.6 98312 10.5
41 18 2 22.82 25.9 98043 11.0
42 18 4 16.24 26.3 97977 10.6
43 18 6 8.67 26.3 97983 10.3
44 18 8 4.47 27.5 98272 10.8
45 22 2 19.46 29.4 98611 12.4
46 22 4 15.69 29.2 98634 12.3
47 22 6 7.15 29.4 98621 12.2
48 22 8 5.45 29.1 98651 12.3
49 2 2 2.55 26.1 98014 10.9
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Table D.1 – continued from previous page

Std. ω/ VAr/ Qp/ TA/ p/ HA/
Order rpm L·min−1 g·min−1 ◦C Pa g·m−3

50 2 4 1.50 25.6 98082 11.1
51 2 6 1.00 25.8 98041 11.0
52 2 8 13.99 28.0 98235 11.0
53 6 2 6.73 25.5 98108 11.1
54 6 4 4.65 26.2 97971 10.6
55 6 6 2.65 26.0 98016 10.9
56 6 8 1.00 27.1 98291 10.7
57 10 2 11.72 26.3 97956 10.4
58 10 4 8.11 26.3 97989 10.3
59 10 6 5.09 25.7 98069 11.1
60 10 8 2.92 27.7 98250 10.9
61 14 2 17.71 26.3 98000 10.5
62 14 4 12.89 26.0 98005 10.9
63 14 6 7.00 25.7 98072 11.1
64 14 8 4.07 27.2 98291 10.7
65 18 2 21.87 25.3 98126 11.2
66 18 4 16.09 26.3 97980 10.7
67 18 6 9.34 25.8 98051 11.0
68 18 8 4.72 27.8 98243 10.9
69 22 2 25.06 29.1 98648 12.2
70 22 4 14.61 28.9 98657 10.4
71 22 6 8.66 29.2 98635 12.2
72 22 8 4.03 29.5 98609 12.4



Appendix E

Melt Pool and Track Formation:
Modeling and Experiments

Table E.1 Optimization of carrier gas flow level experiment Data

Std. Run VAr/
κ

Height/ TA/ HA/
Order Order L·min−1 % ◦C g·min−1

3 1 5 1.50 85.15 24.58 10.9
5 2 6 1.25 103.95 26.11 10.6
16 3 7 1.00 106.70 26.36 10.6
26 4 7 1.25 105.80 26.54 10.2
25 5 7 1.00 106.45 26.83 10.1
20 6 5 1.25 96.70 27.01 10.1
27 7 7 1.50 110.35 27.10 10.2
9 8 7 1.50 112.90 27.24 10.1
12 9 5 1.50 102.90 27.36 10.1
23 10 6 1.25 106.15 27.47 10.0
21 11 5 1.50 101.40 27.57 9.9
11 12 5 1.25 94.50 27.62 9.8
6 13 6 1.50 126.55 27.80 9.8
4 14 6 1.00 115.40 27.94 9.8
1 15 5 1.00 113.75 27.93 9.8
18 16 7 1.50 134.85 28.01 9.7
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Table E.1 – continued from previous page

Std. Run VAr/
κ

Height/ TA/ HA/
Order Order L·min−1 % ◦C g·min−1

24 17 6 1.50 129.60 28.12 9.7
10 18 5 1.00 114.55 28.24 9.8
2 19 5 1.25 122.05 28.26 9.7
19 20 5 1.00 114.70 28.34 9.7
17 21 7 1.25 137.00 28.44 9.6
14 22 6 1.25 123.05 28.63 9.6
15 23 6 1.50 124.90 28.69 9.7
8 24 7 1.25 138.25 28.79 9.7
13 25 6 1.00 127.70 29.01 9.7
22 26 6 1.00 123.25 29.11 9.6
7 27 7 1.00 134.05 29.13 9.7
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Table E.2 Factor screening experiment Arrangement

Std. Run
Block

Pos. E/ ∆Z/
Oe κ

Order Order Substrate J·mm−2 mm

25 1 3 11 46 0.4 0.0 1.4
35 2 3 9 60 0.6 0.0 1.4
31 3 3 2 60 0.6 0.0 1.4
36 4 3 8 46 0.6 0.5 1.25
34 5 3 12 60 0.4 0.5 1.25
28 6 3 3 46 0.6 0.5 1.25
29 7 3 7 46 0.4 0.0 1.4
33 8 3 1 46 0.4 0.0 1.4
27 9 3 6 60 0.6 0.0 1.4
26 10 3 5 60 0.4 0.5 1.25
32 11 3 10 46 0.6 0.5 1.25
30 12 3 4 60 0.4 0.5 1.25
38 13 4 3 46 0.4 0.5 1.4
41 14 4 8 60 0.4 0.0 1.25
46 15 4 7 46 0.4 0.5 1.4
42 16 4 10 46 0.4 0.5 1.4
48 17 4 1 60 0.6 0.5 1.4
45 18 4 11 60 0.4 0.0 1.25
44 19 4 5 60 0.6 0.5 1.4
43 20 4 9 46 0.6 0.0 1.25
39 21 4 12 46 0.6 0.0 1.25
47 22 4 2 46 0.6 0.0 1.25
40 23 4 4 60 0.6 0.5 1.4
37 24 4 6 60 0.4 0.0 1.25
4 25 1 1 60 0.6 0.5 1.25
8 26 1 8 60 0.6 0.5 1.25
5 27 1 4 60 0.4 0.0 1.4
3 28 1 10 46 0.6 0.0 1.4
2 29 1 12 46 0.4 0.5 1.25

10 30 1 9 46 0.4 0.5 1.25
7 31 1 7 46 0.6 0.0 1.4
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Table E.2 – continued from previous page

Std. Run
Block

Pos. E/ ∆Z/
Oe κ

Order Order Substrate J·mm−2 mm

11 32 1 6 46 0.6 0.0 1.4
6 33 1 2 46 0.4 0.5 1.25
9 34 1 5 60 0.4 0.0 1.4
1 35 1 3 60 0.4 0.0 1.4

12 36 1 11 60 0.6 0.5 1.25
16 37 2 6 46 0.6 0.5 1.4
19 38 2 3 60 0.6 0.0 1.25
14 39 2 2 60 0.4 0.5 1.4
15 40 2 12 60 0.6 0.0 1.25
20 41 2 11 46 0.6 0.5 1.4
24 42 2 8 46 0.6 0.5 1.4
17 43 2 10 46 0.4 0.0 1.25
18 44 2 4 60 0.4 0.5 1.4
13 45 2 9 46 0.4 0.0 1.25
23 46 2 1 60 0.6 0.0 1.25
21 47 2 5 46 0.4 0.0 1.25
22 48 2 7 60 0.4 0.5 1.4
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Table E.3 Factor screening experiment Data

Heigth/ Density/ Porosity/ Hardness/ TT / TA/ HA/
% g·cm−3 % (HV/0.5/15) ◦C ◦C g·m−3

101.16 7.928 1.032 166 24.6 25.3 6.4
99.16 7.926 0.051 165 * 25.9 6.4

101.25 7.933 0.084 167 21.2 26.3 6.2
98.63 7.936 0.033 169 18.9 26.5 6.2

103.92 7.939 0.017 166 18.8 26.5 6.2
97.79 7.916 0.021 167 23.1 26.5 6.2
99.78 7.909 1.305 170 19.0 26.6 6.2

101.68 7.924 0.050 172 19.9 26.9 6.2
98.28 7.926 0.009 166 22.9 26.8 6.2

105.28 7.934 0.069 161 20.0 27.1 6.2
99.35 7.928 0.329 170 22.8 27.2 6.2

106.03 7.936 0.024 160 21.4 27.1 6.3
104.08 7.949 0.016 165 * 24.9 6.2
100.13 7.922 1.116 167 17.8 25.4 6.2
103.81 7.941 0.025 164 14.2 25.6 6.1
105.56 7.939 0.016 167 18.7 25.7 6.1
102.21 7.929 0.021 168 18.4 25.8 5.9
101.78 7.919 0.767 164 17.3 26.1 5.9
102.58 7.930 0.045 171 20.6 26.2 5.8
99.14 7.914 0.195 172 16.9 26.2 5.8
98.28 7.925 0.036 169 16.0 26.1 5.8
97.92 7.930 0.028 168 15.8 26.2 5.8

102.57 7.923 0.010 162 17.1 26.2 5.9
103.03 7.912 0.015 166 19.1 26.6 5.9
100.20 7.916 0.032 164 16.6 26.3 5.9
100.19 7.915 0.012 159 21.5 26.6 5.9
103.79 7.924 0.053 168 22.2 26.9 5.9
98.88 7.917 0.064 170 17.4 27.0 6.1

105.89 7.895 0.016 167 18.6 27.1 6.0
106.40 7.882 0.011 161 18.0 27.2 5.9
97.88 7.895 0.062 167 20.9 27.4 6.1
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Table E.3 – continued from previous page

Heigth/ Density/ Porosity/ Hardness/ TT / TA/ HA/
% g·cm−3 % (HV/0.5/15) ◦C ◦C g·m−3

98.34 7.913 0.018 168 15.1 27.7 6.1
105.61 7.897 0.034 164 22.0 27.9 6.2
105.65 7.883 1.670 170 22.0 28.0 6.1
102.01 7.907 0.037 163 22.2 27.9 6.2
101.39 7.902 0.045 163 20.0 28.1 6.3
98.59 7.890 0.014 161 * 25.5 7.8
95.44 7.960 0.012 163 16.3 26.1 8.0

105.74 7.957 0.681 169 15.4 26.5 8.1
96.50 7.946 0.024 162 22.3 26.7 8.1

100.52 7.961 0.020 165 18.4 26.7 8.0
100.60 7.965 0.147 170 19.0 26.9 8.1
99.60 7.958 0.021 169 16.0 26.9 8.3

106.33 7.963 0.180 169 17.4 27.2 8.4
101.94 7.950 0.018 168 24.8 27.4 8.4
96.80 7.951 0.066 168 24.8 27.5 8.4

101.58 7.958 0.051 168 17.6 27.5 8.3
103.90 7.947 0.463 166 19.7 27.4 8.4
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Linking the process parameters

F.1 Matlab code

1 clc;
2 clear all;
3 close all;
4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %%%%%%%%%%% POWDER STREAM CHARACTERIZATION %%%%%%%%%%%%
7 % Query the user for the number of rotational speed

levels to explore
8 num_levels = input('How many levels of Rotational

Speed would you like to investigate? (suggestion:
3): ');

9 % Validate input
10 if num_levels < 2
11 error('The number of levels must be at least 2 to

perform a linear regression.');
12 end
13
14 % Query the user for the minimum and maximum omega

values
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15 omega_min = input('Enter the minimum Rotational speed
in rpm: ');

16 omega_max = input('Enter the maximum Rotational speed
in rpm: ');

17 % Calculate the omega level increment
18 delta_omega = (omega_max - omega_min) / (num_levels -

1);
19
20 % Calculate the increment between omega levels
21 omega_levels = omega_min:delta_omega:omega_max;
22
23 % Query the user for the number of replicates for

each level
24 num_replicates = input('How many replicates would you

like to perform for each level? (suggestion: 5): '
);

25
26 % Create the final omega vector based on the levels

and replicates
27 omega = repelem(omega_levels , num_replicates);
28
29 % Display the vector
30 disp('The Rotation vector is:');
31 disp(omega);
32
33 % Generate a randomized index to conduct the

experiment in randomized order
34 random_idx = randperm(length(omega));
35
36 % Reorder the omega vector using the randomized index
37 omega_randomized = omega(random_idx);
38
39 % Ask the user if they want to view the randomized

test order
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40 answer = input('Would you like to view the randomized
order for conducting the tests? (yes/no): ', 's');

41
42 if strcmpi(answer , 'yes')
43 % Display the randomized omega vector
44 disp('Execute the tests in the following order:')

;
45 disp(omega_randomized);
46 end
47
48 %%%%%%%%%%%%%%%%%%%%%% RESPONSE %%%%%%%%%%%%%%%%%%%%%%
49 % Asks the user if they want to input the Qp vector

manually
50 answer = input('Do you want to enter the Qp vector

manually? (yes/no): ', 's');
51
52 if strcmpi(answer , 'yes')
53 % If the user says 'yes ', they will input the Qp

vector manually
54 Qp = input('Please enter the Qp (in g/min) vector

manually: ');
55 else
56 % Otherwise , use the predefined Qp vector
57 Qp = [0.8 0.9 0.7 4.1 4.3 4.3 7.7 8.5 7.5];
58 % Qp = [0.7 0.8 0.6 0.7 0.7 6.6 6.5 6.7 6.6 6.6

12.5 12.4 12.6 12.5 12.5]; % Insert test values
here

59 disp('Using predefined Qp values.');
60 end
61
62 % Create a data table for regression
63 tbl = table(omega ', Qp', 'VariableNames ', {'Omega', '

Qp'});
64
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65 % Execute stepwise regression with alpha -to-enter and
alpha -to -remove at 10%

66 % Including linear and quadratic terms for omega
67 mdl = stepwiselm(tbl , 'Qp~1+ Omega+Omega ^2', '

Criterion ', 'SSE','Premove ' ,0.1);
68
69 % Display the selected model
70 disp('Optimized Model:');
71 disp(mdl);
72
73 % Display model coefficients
74 disp('Model Coefficients:');
75 disp(mdl.Coefficients.Estimate);
76 regressors = mdl.Coefficients.Estimate;
77 indices = find(abs(regressors) < 0.001); % Find the

indices of elements that are smaller than 0.001
78 regressors(indices) = 0; % Set the corresponding

elements to 0
79
80 % Create data for the plot
81 omega_range = linspace(min(omega), max(omega), 100) ';
82 tbl_predict = table(omega_range , 'VariableNames ', {'

Omega'});
83 Qp_fit = predict(mdl , tbl_predict);
84
85 % Ask the user if they want to view the regression

plot
86 plot_decision = input('Would you like to view the

regression plot? Respond with "yes" or "no": ', 's'
);

87
88 if strcmpi(plot_decision , 'yes')
89 % Display the plot
90 figure;



180 Linking the process parameters

91 scatter(omega , Qp, 'b', 'filled '); % Experimental
data

92 hold on;
93 plot(omega_range , Qp_fit , 'r', 'LineWidth ', 2); %

Regression fit function
94 xlabel('Omega');
95 ylabel('Qp');
96 legend('Data', 'Regression ');
97 title('Regression ');
98 hold off;
99 end

100
101 % Calculation of the minimum and maximum omega values

in the range of interest
102 omega_min = min(omega);
103 omega_max = max(omega);
104
105 % Create a table with the minimum and maximum values

of omega
106 tbl_min_max = table ([ omega_min; omega_max], '

VariableNames ', {'Omega'});
107
108 % Predict the minimum and maximum values of Qp using

the model
109 Qp_min_max = predict(mdl , tbl_min_max);
110
111 % Extract and store the minimum and maximum values of

Qp
112 Qp_min = min(Qp_min_max);
113 Qp_max = max(Qp_min_max);
114
115 % Display the results
116 fprintf('The minimum value of Qp for the powder

feeder is: %.2f g/min\n', Qp_min);
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117 fprintf('The maximum value of Qp for the powder
feeder is: %.2f g/min\n', Qp_max);

118
119 %%%%%%%%%%%%%%%%% PROCESS PARAMETERS %%%%%%%%%%%%%%%%%%
120 % Input manually the data
121 Oe = 50; % 50 if using 50 % overlap , otherwise

without overlap with any other number
122 P = 750; % Laser Beam power in W
123 DeltaZ = 0.6; % value between 0.4 mm and 0.6 mm
124 D = 2; % Laser beam diameter in mm
125 rho = 7.896e-3; % Powder density in g/mm^3
126 H = 100; % Height of the desired layer in percentage
127
128 % Prompt user to choose between using v or E
129 choice = input('Would you like to use v or E? Enter "

v" or "E": ', 's');
130
131 if strcmpi(choice , 'v')
132 % If the user chooses 'v', prompt for its value

and set E to NaN
133 v = input('Enter the value of v in mm/min: ');
134 E = NaN; % Update E with NaN
135 elseif strcmpi(choice , 'E')
136 % If the user chooses 'E', prompt for its value

and set v to NaN
137 E = input('Enter the value of E in J/mm^2: ');
138 v = NaN; % Update v with NaN
139 else
140 error('Invalid choice. You must enter either "v"

or "E".');
141 end
142
143 % Check if v is a numeric value
144 if ~isnan(v)
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145 E = P * 60 / (v * D); % Calculate E if v is a
numeric value in J*mm ^[117]

146 if Oe == 50
147 E = E * 2; % The energy per layer is doubled

due to the increased number of passes
148 end
149 % Check if E is a numeric value
150 elseif ~isnan(E)
151 v = P * 60 / (E * D); % Calculate v if E is a

numeric value in mm*min^{-1}
152 if Oe == 50
153 v = v * 2; % The energy per layer is doubled

due to the increased number of passes
154 end
155 else
156 error('At least one of v or E must be a numeric

value.');
157 end
158
159 fprintf('The calculated value of E per layer is: %.1f

\n', E);
160
161 %%%%%%%%%%% CALCULATION OF POWDER FEED RATE %%%%%%%%%%%
162 halfFlag = 0;
163 if Oe == 50
164 halfFlag = 1;
165 k_calculated = (201.6 - H - 0.440 * E - 2.414 *

DeltaZ) / (0.448 - 0.501 * E - 0.352 * DeltaZ);
166 else
167 k_calculated = (100.0 - H - 0.440 * E - 1.844 *

DeltaZ) / (0.448 - 0.501 * E - 0.352 * DeltaZ);
168 end
169
170 % If k_calculated is less than 1, set it to 1
171 if k_calculated < 1
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172 k_calculated = 1;
173 end
174
175 Qp_calculated = k_calculated * (D * v * DeltaZ) * rho

;
176
177 if halfFlag == 1
178 Qp_calculated = 0.5 * Qp_calculated; % If

constructed with overlap , the feed rate should
be halved

179 end
180
181 % Check on Qp_calculated
182 if Qp_calculated < Qp_min || Qp_calculated > Qp_max
183 warning('The powder feeder is unable to construct

adequately with these geometric parameters.
Consider modifying DeltaZ or v.');

184 end
185
186 % Set the symbolic variable and the quadratic

equation
187 Omega_sym = sym('Omega_sym ');
188 eqn = regressors (1) + regressors (2) * Omega_sym +

regressors (3) * Omega_sym ^2 == Qp_calculated;
189
190 % Solve the equation
191 sol = solve(eqn , Omega_sym);
192
193 % Extract numerical values
194 omega_calculated = double(sol);
195
196 % Update specific layer energy
197 if Oe == 50
198 E = E * 2; % The energy per layer is doubled due

to the increased number of passes
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199 end
200
201 % Check if the equation is linear or quadratic
202 if length(omega_calculated) == 1
203 fprintf('The calculated value of Rotations is:

%.1f\n', omega_calculated);
204 else
205 fprintf('The calculated value of Rotations is:

%.1f (second root)\n', omega_calculated (2));
206 end
207
208 fprintf('The calculated value of k is: %.2f\n',

k_calculated);
209 fprintf('The calculated value of v based on the

specific energy supplied is: %.1f\n', v);
210 fprintf('The calculated value of Qp is: %.1f\n',

Qp_calculated);
211
212 %%%%%%%%%%%%%%%%%%%%%%% FIGURE %%%%%%%%%%%%%%%%%%%%%%%%
213 % Formatting Constants
214 height = 7; % Height in cm
215 width = 9; % Width in cm
216 Fontsize = 7; % Font size in pt
217 LineWidth = 0.25; % Axis and dashed line width in pt
218 tickLengthCm = 0.07; % Tick length in cm
219 cm_to_points = 72 / 2.54; % Conversion factor from cm

to points
220
221 % Create a figure with specified dimensions in

centimeters
222 figure('Units','centimeters ','Position ' ,[0 0 width

height ]);
223
224 % Scatter plot (blue points without edge)
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225 scatter(omega , Qp, 1.2* cm_to_points , 'bo', 'filled ',
'MarkerEdgeColor ', 'none');

226 hold on;
227
228 % Regression plot
229 plot(omega_range , Qp_fit , 'r', 'LineWidth ', 0.75);
230
231 % Line segments with 0.25 pt width
232 plot([ omega_calculated , omega_calculated], [0,

Qp_calculated], 'k--', 'LineWidth ', LineWidth);
233 plot([0, omega_calculated], [Qp_calculated ,

Qp_calculated], 'k--', 'LineWidth ', LineWidth);
234
235 % Additional points (green point without edge and

same size)
236 scatter(omega_calculated , Qp_calculated , 1.2*

cm_to_points , 'g', 'filled ', 'MarkerEdgeColor ', '
none');

237
238 % X and Y Labels
239 hx = xlabel('Rotation / rpm');
240 hy = ylabel('Qp / g \cdot min^{-1}');
241
242 % Font settings
243 set([hx, hy], 'FontName ', 'Helvetica Neue', 'FontSize

', Fontsize , 'Color', 'k');
244 set(gca , 'FontName ', 'Helvetica Neue', 'FontSize ',

Fontsize , 'XColor ', 'k', 'YColor ', 'k');
245
246 % Line settings for axis
247 set(gca , 'LineWidth ', LineWidth);
248
249 % Tick settings
250 set(gca , 'TickDir ', 'out');
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251 set(gca , 'TickLength ', [tickLengthCm /10, tickLengthCm
/10]) % Adjusted the tick length

252
253 % Legend with consistent font and size
254 hl = legend('Powder Feeder Tests ', 'Regression ', '

Calculated Point', 'Location ', 'northwest ');
255 set(hl, 'FontName ', 'Helvetica Neue', 'FontSize ',

Fontsize , 'TextColor ', 'k', 'Box', 'off');
256
257 % X and Y Limits
258 xlim([omega_min , omega_max ]);
259
260 % Turn off the box
261 set(gca , 'Box', 'off');
262
263 hold off;
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