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1 Introduction

Supergravity, being the supersymmetric extension of Einstein’s general relativity, is deeply
connected to geometry and their relation has been explored in several directions. A partic-
ularly important role is played by superspaces and supermanifolds, whose properties can be
described in terms of the usual vielbein V a and its supersymmetric partner ψα, which can
be merged in a single object, the supervielbein VA = (V a, ψα). The basic geometric struc-
ture can be completed by including the spin connection ω[ab], the gauge field associated with
the local Lorentz group, the latter playing an important role in the forthcoming sections.

To define meaningful supergravity models with a suitable amount of supersymmetry,
one has to specify the spectrum of necessary degrees of freedom (d.o.f.) for the quantum
field theory. To this end, a very constructive technique is that of Free Differential Alge-
bras (FDAs), discussed in several books and papers [1–4] and based on the mathematical
construction by D. Sullivan [5].

As we will review in more detail in the main text, the construction of a FDA starts by
considering a Lie superalgebra g, associated with a Lie supergroup G and described in terms
of its structure constants fABC . The algebraic structure can be equivalently expressed in
terms of its dual Maurer-Cartan (MC) equations.

In particular, for supergravity theories, one typically considers a subalgebra h reductive
in the ambient Lie algebra g, in such a way that the one forms dual to the generators of
translations and supersymmetries can be identified with the supervielbein of the coset G/H
and satisfy

dVA = −1
2f

A
BCVB ∧ VC , d2 = 0 . (1.1)

The latter describe the vacuum structure of the supergravity theory both for flat super-
spaces and for curved rigid supermanifolds. Out of the vacuum these provide the building
blocks (i.e., the curvatures) for the study of dynamics.

In this framework, d is a nilpotent operator and one can study its cohomology
H• (g, h; C), also known as the Chevalley-Eilenberg (CE) cohomology [6, 7], on the space of
super differential forms (hereafter named superforms) Ω•(g, h; C) with constant coefficients.
When H• (g, h; C) is not empty, one can introduce new superforms A(p) whose differentials
are exactly the cocycles in H• (g, h; C). One can repeat this procedure on complex valued
polynomials on VA and A(p) and, by iterating the construction, one has two possible out-
comes: either the algorithm ends in a finite number of steps or one has to introduce an
infinite number of p-forms.

The obtained forms A(p) can be interpreted as new potentials to be added to the theory
in order to complete the spectrum. In diverse contexts, the full set of superforms, together
with their exterior derivatives, has been shown to describe the vacuum configuration of the
given supergravity theory. In such cases, their dynamics can be derived from a suitably
constructed Lagrangian [1].

The study of FDA cohomologies may involve the presence of several forms in different
representations and can lead to unhandleable problems by brute force computations. In
the present work, we make use of a technique, based on the Molien-Weyl formula [8–10],
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to compute invariant polynomials and cohomology groups in various cases, associated with
the local description of both flat and curved rigid supermanifolds.

The Molien-Weyl formula is a powerful tool which allows to compute the number of
invariant form polynomials in terms of the Hilbert-Poincaré series P (t) =

∑
n bnt

n. As we
will discuss in the main text, the parameter t is associated with a chosen scaling of the fields
(form degree, weight under scaling, R-symmetry weight, etc.), whereas the coefficients bn
count the number of invariants at fixed t, that is, bn will be then related to the dimension
of cohomology groups, analogously to Betti numbers in the de Rham case.

The invariant polynomials computed in this way are written in terms of the super-
vielbein VA = (V a, ψα), whose components respectively transform under the vector and
spinor representations of the Lorentz group, and possibly of the added superforms A(p).
Moreover, in the case of extended supergravities, one should add more labels to the spinor
1-forms by considering representations of the R-symmetry group. At last, the Molien-Weyl
formula also takes into account the commuting/anticommuting nature of the d.o.f.: as an
example, the vielbeins are anticommuting one forms (with respect to the wedge product),
while the gravitini ψα are commuting ones.

The paper is organized as follows: in section 2 we introduce the necessary mathemat-
ical tools and discuss their use in relation to various vacuum supergravity theories. In
particular, we consider D = 4 (section 3), D = 6 (section 4), D = 10 (section 5), D = 11
(section 6) and D = 12 (section 7) flat and curved spacetimes, with different amounts of
supersymmetry (labeled by N).

In section 8, we instead discuss the application of the aforementioned techniques to the
study of filtered deformations, which can be put in relations with the Killing superalgebra
of supergravity backgrounds. At last, section 9 is devoted to a final discussion and future
developments.

2 Theoretical framework

2.1 Molien-Weyl formula

Let G be a finite group and ρR a representation on a finite dimensional vector space V
(over R or C), namely for each g ∈ G, ρR(g) acts on V as a matrix in the representation R.

Through the use of the Hilbert-Poincaré series, the G-invariant polynomials are com-
puted by means of the Molien formula (see, e.g., [9–12])

P (V G, t) = 1
|G|

∑
g∈G

1
det(1− tρR(g)) =

∑
n≥0

bnt
n , (2.1)

where V G is the vector space of the G-invariant polynomials and bn the dimension of the
subspaces of invariant polynomials at order n. Let us now consider a graded vector space
V = V0⊕V1, where V0 is the bosonic subspace and V1 is the fermionic one, with associated
representations ρ0 and ρ1. The Molien formula can then be rewritten as follows:

P (V G, u, t) = 1
|G|

∑
g∈G

det(1− uρ1(g))
det(1− tρ0(g)) , (2.2)
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where we introduced two different parameters u and t to parametrize the representations ρ0
and ρ1 in the V0 and V1 subspace, respectively. Interestingly, the sum in (2.2) can actually
be restricted to the conjugacy classes of the finite group G.

If we consider a continuous Lie group, instead of a finite group, the sum is replaced by
an integral as follows:

P (V G, u, t) =
∫
Gc

det(1− uρ1(g))
det(1− tρ0(g)) dµG , (2.3)

where Gc is the maximal compact subgroup of G and dµG is the corresponding Haar mea-
sure normalized such that

∫
Gc

dµG = 1. Since the integrand is invariant under conjugation,
one should only integrate on the abelian Cartan subgroup: this is the content of the Weyl
integration formula [10, 12], which allows to rewrite the above formula as

P (V G, u, t) =
∫
Tc

det(1− uρ1(gc))
det(1− tρ0(gc))

φ(gc)dνc , (2.4)

where the integration is restricted to gc, namely to the elements of the abelian Cartan
subgroup Tc. Notice that this step requires the restriction to the component connected to
the identity of the chosen Lie group G. The measure dµG = φ(gc)dνc is split into φ(gc),
which is written in terms of the positive roots of G, and dνc, the integration measure over
the Cartan subgroup. The integration over the Cartan subgroup can be performed by
introducing a complex coordinate zi (i = 1, . . . , rkG), defined on the unit circle |zi| = 1,
for each Cartan generator. Consequently, by using the residue theorem one obtains

P (V G, u, t) =
∮
|zi|=1

det(1− uρ1(gc(zi)))
det(1− tρ0(gc(zi)))

φ(zi)
rkG∏
i=1

dzi
2πizi

, (2.5)

with

φ(zi) =
∏
~α∈∆+

(
1−

rkG∏
i=1

zαii

)
, (2.6)

where ~α represents an element of the finite set of positive roots ∆+ and αi are the com-
ponents of ~α in terms of the Cartan generators in the Chevalley basis. Concerning the
integrand, we use the following notion: given a certain representation ρR of the group, we
can express the character of the representation as

χR(zi) = Tr [ρR(gc(zi))] , (2.7)

where gc(zi) is an element of the Cartan subgroup Gc. For finite dimensional represen-
tations, χR(zi) can be expressed as the sum of monomials m(~λ; zi) =

∏rkG
i=1 z

λi
i , where

λi ∈ ∆R are the weights of the representation R (we take into account both vanishing and
nonvanishing ones), in the following way:

χR(zi) =
∑
~λ∈∆R

rkG∏
i=1

zλii =
∑
~λ∈∆R

m(~λ; zi) . (2.8)
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One can then construct the plethystic exponential as follows (the subscript “B” indicates
that we are dealing with bosonic variables):

PEB[χR(zi)t] = Exp

− ∑
~λ∈∆R

∞∑
n=0

1
n
tn

rkG∏
i=1

znλii

 = 1∏
~λ∈∆R

(1− tm(~λ; zi))
, (2.9)

corresponding to the denominator in (2.5),

PEB[χR(zi)t] = 1
det(1− tρR(gc(zi)))

. (2.10)

This formula is suitable for a conventional vector space and its representations. However,
for fermionic(anticommuting) d.o.f. it has to be modified as (see [13])

PEF [χR(zi)t] = Exp

 ∑
~λ∈∆R

∞∑
n=0

1
n
tn

rkG∏
i=1

znλii

 =
∏

~λ∈∆R

(1−tm(~λ; zi)) = det(1−tρR(gc(zi))) ,

(2.11)
where the minus sign in the definition of the plethystic exponential (2.10) has been removed.

In general, one can add different representations R = ⊕NI=1RI and, by distinguishing
the statistic nature of the vector space, the integrand of (2.5) can be rewritten as

PE[t1, . . . , tN ](z1 . . . zrkG) =
N∏
I=1

PE [χRI (zi)tI ] , (2.12)

where we used different parameters t1, . . . , tN for each representation RI . Here and in
the following, we will omit the B, F subscripts, as the statistics of the variables under
consideration will be understood from the context.

Putting all together, we get

P (V G, t1, . . . , tN ) =
∮
|zi|=1

PE[t1, . . . , tN ](z1 . . . zrkG)
∏
~α∈∆+

(
1−

rkG∏
i=1

zαii

) rkG∏
i=1

dzi
2πizi

.

(2.13)
The left-hand side is expressed as a series in the parameters t1, . . . , tN ,

P (V G, t1, . . . , tN ) =
∑

nI ,I=1,...,N
bn1,...,nN

N∏
I=1

tnII , (2.14)

where the coefficients bn1,...,nN ∈ ZN count the dimensions of each subspace at fixed power∏N
I=1 t

nI
I . The signs of the b’s coefficients is related to the Grassmanality of the correspond-

ing invariant polynomial (i.e., negative signs correspond to anticommuting expressions).
Notice that in general there might be no bound on the powers of the t’s and, being the b’s
integer numbers, there might be cancellations among terms of fixed power

∏N
I=1 t

nI
I .
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2.2 Free differential algebras

It is a well-known fact that Lie algebras can be equivalently expressed in terms of 1-forms
dual to the algebra generators TA and satisfying the MC equations. The latter can naturally
be extended to include higher p-forms (p > 1)

dσi(p) +
∑ 1

n
Cii1...inσ

i1
(p1) ∧ . . . ∧ σ

in
(pn) = 0, p+ 1 = p1 + . . .+ pn , (2.15)

where p, p1, . . . , pn are the degrees of the respective forms and the indices i, i1, . . . , in run on
irreducible representations (irreps) of the (super)group G. The coefficients Cii1...in are gen-
eralized structure constants satisfying generalized Jacobi identities, whose (anti)symmetry
properties depend on the bosonic or fermionic nature of the forms σi1 , . . . , σin .

Clearly, when p = p1 = p2 = 1 and i, i1, i2 belong to the adjoint representation of
G, (2.15) reduces to the ordinary MC equations.

The equations (2.15), together with their generalized Jacobi identities, define a FDA.
FDAs can be reformulated in terms of Ln ⊂ L∞-algebras, or Strongly Homotopy Lie Alge-
bras (see [14, 15]). These generalizations of Lie algebras are proving to be essential in many
contexts of physics, such as higher gauge theories and closed String Field Theories. Their
relation with FDAs was unveiled, e.g., in [15, 16] (see also [17] for a physically-oriented
review).

Moreover, a dual formulation of FDAs, based on a generalized Lie derivative “along an-
tisymmetric tensors” has been developed in [18–21] and leads to nonassociative extensions
of Lie (super)algebras.

Interestingly, these generalized algebras can be obtained starting from standard Lie al-
gebras, as shown in [1, 3–5], and their construction relies on the existence of CE cohomology
classes within the algebra [6]. Indeed, suppose that there exist a p-form

Ωi
(p)(σ) = Ωi

A1...Apσ
A1 . . . σAp , (2.16)

with i running in an irrep of the algebra and Ωi
A1...Ap

constants. Furthermore, suppose
that it is covariantly closed, but not exact, i.e.,

∇Ωi
(p) ≡ dΩi

(p) + σA ∧D(TA)ijΩ
j
(p) = 0 , Ωi

(p) 6= ∇Φi
(p−1) . (2.17)

Then Ωi
(p) is said to be a representative of a Chevalley cohomology class in the Di

j irrep
of the algebra: here ∇ is the coboundary operator satisfying ∇2 = 0 (∇2 is proportional
to the curvature 2-form, which is zero on a Lie group).

The existence of Ωi
(p) allows for the extension of the original Lie algebra to the FDA

defined by the following relations:

dσA + 1
2f

A
BCσ

B ∧ σC = 0 ,

∇σi(p−1) + Ωi
(p)(σ) = 0 , (2.18)

where the second expression in (2.18) should be intended as defining the new (p− 1)-form
σi(p−1), which cannot be expanded in the basis of the 1-forms σA, but which can be added to
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the set of MC forms {σA}, thus enlarging the MC expression of the algebra to a FDA. The
consistency of the above relations, namely the nilpotency of ∇, is guaranteed by ∇Ωi

(p) = 0.
Notice that if we choose a different representative of the CE cohomology class, differing

from Ωi
(p) by the addition of an exact term, the FDA structure remains unaltered through

the redefinition σi(p−1) → σi(p−1) + Φi
(p−1).

This procedure can be repeated on the obtained FDA, now spanned by σA and σi(p−1),
by looking for polynomials in these fields,

Ωi
(q)(σ

A, σi(p−1)) = Ωi
A1...Ari1...isσ

A1 ∧ . . . ∧ σAr ∧ σi1(p−1) ∧ . . . ∧ σ
is
(p−1) , (2.19)

satisfying the cohomology conditions (2.17). If such polynomials exists, one can extend the
FDA to a new one by iterating the construction above.

The dynamics of the added p-forms is obtained, as for ordinary Lie algebras, by consid-
ering nonvanishing curvatures. For example, in this construction, D = 11 supergravity [1, 3]
is based on a deformation of the FDA described by the fields V, ω, ψ,A(3) in such a way
that all curvatures are different from zero. In particular, the 3-form A(3) is introduced to
take into account the 4-form cohomology class of siso(1|11)/so(11).

Finally, a “resolution”, also referred to as “trivialization”, of a FDA can be obtained by
expressing the p-forms, constructed in the above mentioned way, as products of 1-forms, at
the price of introducing new 1-form fields (without losing, however, the on-shell matching
of bosonic and fermionic physical d.o.f.). This effectively reduces the FDA structure to
a larger, but standard Lie algebra. This possibility was first considered in the seminal
reference [3] for D = 11 supergravity, whereas recent developments can be found in [22–25]
(see also [26] for related studies in lower dimensions and further developments in D = 11).

2.3 The work plan

In this section, we explain the interplay between the ingredients introduced above. As
we have explained, a FDA is obtained from a standard Lie algebra, if one is capable of
computing elements in the cohomology, thus closed but not exact cocycles. This is where
the Molien-Weyl formula comes into play. A detailed explanation of the procedure is given
below.

Given a Lie supergroup G, let us consider linear representations of (a subset H ′ of) its
isotropy subgroup H (we will always assume H to be reductive in G) on the coset space
G/H. In the present paper,1 the algebra g will be the vector space r ⊕ so ⊕ V ⊕ S, i.e.,
R-symmetry plus Lorentz plus super-translations, equipped, in the flat case, with the usual
brackets of super-Poincaré (with R-symmetry), the subalgebra h of g will always be chosen
to be h = r ⊕ so, i.e. R-symmetry plus Lorentz algebras, whereas h′ = r′ ⊕ so, with r′ a
subalgebra of r. We will denote by Ω• (g;T (h/h′)) the space of cochains with values in
the tensor algebra T (h/h′) of h/h′.2 The natural action of the CE differential is defined
as usual: by denoting with Yi the generators of g and by Y i the (parity changed) dual

1In the following sections, we will consider cases with h′ ( h only in flat rigid superspaces.
2Notice that in those cases in which h′ = h, we have Ω• (g, h;T (h/h′))' Ω• (g, h; C)⊗ C∞; for this

reason, when h′ = h we will consider the usual relative cochains Ω• (g, h; C) instead.
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generators of g∗, we have

d (f ⊗ Ya1 ∧ . . . ∧ Yap) = −Yai ∧Ya1 ∧ . . .∧Yap⊗ (Yaif) +d (Ya1 ∧ . . . ∧ Yap)⊗f , (2.20)

where ai = 1, . . . , dim g and f ∈ T (h/h′). In particular, the first term encodes the g-action
on the tensor algebra T (h/h′), which we define in a moment, whereas the second one
encodes the Maurer-Cartan equations. The g-action on T (h/h′) is defined to be the adjoint
one when one acts with elements in r, while it is defined to be trivial when acting with
other elements of g, that is, given f ∈ h/h′ (then extended to general elements in T (h/h′)),

Yi (f) := 0 , if Yi /∈ r ,

Yi (f) := [Yi, f ] , if Yi ∈ r .

Notice that, a priori, one could have [Yi, f ] /∈ h/h′, but, in all cases considered in the
following, we always have [Yi, f ] ∈ h/h′, since the Lie algebra r is a direct sum r = r′⊕ r/r′,
with r′ and r/r′ Lie algebras. This lifts T (h/h′) to a g-module: given a 0-cochain with
values in h/h′ = r/r′, we have

Yi (Yjf)− Yj (Yif) = 0 = [Yi,Yj ] f , if Yi ∨ Yj /∈ r , (2.21)

which can be verified on the l.h.s. by definition and on the r.h.s. by recalling that if
Yi ∨ Yj /∈ r, then [Yi,Yj ] /∈ r. We therefore have

Yi (Yjf)− Yj (Yif) = [Yi,Yj ] f , if Yi,Yj ∈ r , (2.22)

by definition.
Notice that the h-horizontal and h-invariant forms represent a subcomplex of

Ω• (g;T (h/h′)) and it is therefore consistent to perform a quotient by the subalgebra h

(thus restricting to h-horizontal and h-invariant forms), thus leading to relative cochains
Ω• (g, h;T (h/h′)), equipped with a covariant differential whose action on T (h/h′) is trivial.
In particular, since the g-action was non-trivial only w.r.t. the generators in r, after the
quotient by h (which contains r), the action of the covariant differential on T (h/h′) becomes
trivial. With a slight abuse of notation, we can then select the coefficients of the genera-
tors of T (h/h′) from the relative cochains Ω• (g, h;T (h/h′)), which are polynomials in the
basis of (V )∗ , (S)∗ and r/r′, so that de facto we will deal with forms with non-contracted
R-symmetry indices. We observe that the Molien-Weyl formula automatically selects all
the invariants in a given representation. In our case, since we are considering the tensor
algebra T (h/h′), we derive all the invariants with free R-symmetry indices.

As we will see in the specific examples, the interest in doing so originates from the
necessity of introducing and describing fields in some (R-symmetry) representation, as
emerging from cohomological constructions (and their extensions). The most notable ex-
amples of such theories are D = 6, N = (4, 0) supergravity and type IIB supergravity (to
be discussed later on), where either the R-symmetry is global, i.e. not gauged by any con-
nection, or the higher forms do not transform under h′. The above discussion is then well
suited to the description of such symmetries, where effectively there is no gauge connection
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in the covariant derivatives acting on h′ invariant differential forms, without necessarily
restricting to them.

The Hilbert series computes the dimensions of the space of H ′ ⊆ H-invariant polyno-
mials, which are expressions written in terms of the 1-forms V, ψ, spanning the coset space
G/H, with associated scaling weights u, t, respectively. It takes the following form:

P (Ω•
(
g, h;T

(
h/h′

))
, t, u, . . .) = 1 + b1t+ b2u+ b3t

2 + b4tu+ b5u
2 + . . . , (2.23)

where . . . indicates the possible dependence of the Hilbert series on unintegrated variables
and the coefficients b1, b2, . . . indicate the number of independent invariant polynomials
constructed with the 1-forms at our disposal and their irreducible representation (the sign
included in such coefficients specify the commutation (+) or anticommutation (−) property
of the invariants). The explicit form of such polynomials in terms of V, ψ can be inferred
by inspecting the corresponding powers in u, t.

As the building 1-forms V, ψ are constrained to satisfy the MC equations, the corre-
sponding scaling weights are not unrelated. In general, if α is a generic index in a repre-
sentation of H, under which the gravitini transform, the corresponding MC equations read

∇V a ≡ dV a + ωabV
b = faαβψ

αψβ ,

∇ψα ≡ dψα + ωαβψ
β = fαbβV

bψβ , (2.24)

where ωab and ωαβ are the spin connections for the vector and spinor representations,
respectively.

Let us now distinguish two possible cases.

Flat rigid superspaces: fαbβ = 0. A convenient choice of relation between the weights
u of the vielbein and t of the gravitino, compatible with the MC equations and avoiding
attributing a scale to the differential d, is u = t2. If

P (Ω•
(
g, h;T

(
h/h′

))
, t, u(t)) = lim

u→u(t)
P (Ω•

(
g, h;T

(
h/h′

))
, t, u) =

∑
n

bnt
n , (2.25)

that is the Hilbert-Poincaré series evaluated with u = u(t) ab initio coincides with the one
where u = u(t) is plugged in only after the Molien-Weyl integration, then the series auto-
matically selects, out of all the possible invariant polynomials, only those which correspond
to cohomology classes and, therefore, to nonexact cocycles.

In order to understand why this is the case, we have to rewrite the above expression
in a different manner, that is3

P (Ω•
(
g, h;T

(
h/h′

))
, t, u(t)) = TrH [(−1)F tKρ(g)] , (2.26)

where H(Ω•(g, h; C)) is the CE cohomology, K is the dimension operator that counts the
dimension of the MC forms (e.g., K[ψα] = 1), F is the fermionic charge operator and ρ

denotes the representation of h′ on the vector space g/h. The formula computes the trace
of the group element in the suitable representation (see the previous discussion for the

3The present exposition is adapted from [27].
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explicit computation of the trace). Now, since both K and F define a grading and since
the differential must respect it, the cohomology H is filtered according to those gradings,
H = ⊕n,fHn,f , where Hn,f denote the cohomology groups with fermionic number f and
dimension n. Then, (2.26) becomes

P (Ω•
(
g, h;T

(
h/h′

))
, t, u(t)) =

∑
n

tn
∑
f=0,1

(−1)fTrHn,f [ρ(1)] (2.27)

and therefore the numbers bn are computed by
∑
f=0,1(−1)fTrHn,f [ρ(1)]. The claim is that

bn =
∑
f=0,1

(−1)fTrFn,f [ρ(1)] , (2.28)

where Fn,f are the spaces of graded cochains of Ωn (g, h;T (h/h′)). This means that the
computation of bn can be done by summing over all possible representatives. To prove this
claim, observe that

TrFn,f = TrZn,f + TrFn,f/Zn,f = TrHn,f + TrBn,f + TrBn,f+1 , (2.29)

where Z = Ker d and B = Im d and, therefore, the last two addenda of (2.29) drop out from
the alternating sum (2.28). This implies that the integration performed in the Molien-Weyl
formula is over the space F and this is enough to select the cohomology.

Curved rigid superspaces: fαbβ 6= 0. In this case, the presence of a cosmological
constant in the associated supergravity theory forces the attribution of a scale to the
differential ∇, or to the structure constants. In the following, we will opt for the former
case, as it will ease the interpretation of the resulting Hilbert series in terms of form
numbers. A consistent choice of the scaling weights is the following: u = t and [∇] = t.
Notice, in particular, that, due to the latter constraint, different invariant polynomials
corresponding to different powers in the Hilbert-Poincaré series, might be related by ∇.
This implies that the argument given above for the flat rigid superspaces does not apply
for the curved ones.

Despite this, the Molien-Weyl formula greatly simplifies the quest of finding elements of
the cohomology group, as it allows to restrict the number of possible invariant polynomials
to check.

Independently of the structure of the rigid superspaces, to any class ω(p) computed in
the above mentioned ways, one can associate a (p − 1)-form A(p−1), whose scaling can be
inferred from the one of ω(p). We denote with A1 the FDA obtained from Ω• (g, h;T (h/h′))
by introducing the potential A(p−1). Depending on the commutation/anticommutation
property of A(p−1), one divides/multiplies the Hilbert series by an appropriate plethystic
polynomial, accounting for the addition of the new field. This procedure yields a new
series, to be denoted by P (A1, t, u(t)), describing new cocycles and written in terms of V , ψ,
A(p−1). This procedure can go on iteratively and there are two possible outcomes: either the
Hilbert series trivializes after a finite number of steps n, namely P (H(An), t, u(t)) = 1, or
one is forced to introduce an infinite number of additional forms to completely trivialize it.
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We finally remark that in the following we will work in Euclidean signature. This is
motivated by the fact that determining roots and weights of the various representations
will require us to consider algebras (and cosets obtained by quotients of algebras) over the
complex field C. Let us emphasize that our construction and results will not depend on
the signature, as we focus on cohomology at the algebraic level, without considering the
dynamics of the models analyzed.

3 D = 4 spacetime dimensions

In this section, we will focus on the study of the cohomology groups for superspaces with
four bosonic dimensions, with various amounts of supersymmetry. We will first discuss flat
cases and only then describe our results of curved supermanifolds.

3.1 Flat rigid superspaces

As discussed in section 2.3, the Molien-Weyl formula for flat rigid superspaces automatically
selects all the cohomologies out of the invariant polynomials computed by the Hilbert-
Poincaré series.

3.1.1 N = 1 supersymmetry

Let us start this analysis by considering the simplest case: D = 4, N = 1 flat superspace,
corresponding to the coset space G/H = sISO(1|4)/SO(4). The algebra associated with
sISO(1|4) is the super-Poincaré one in D = 4, which contains 4 translation generators, 4
supersymmetry generators, and the Lorentz subalgebra.

The coset can be dually described in terms of the supervielbein (Vαα̇, ψα, ψ̄α̇), satisfying

dVαα̇ = ψαψ̄α̇ , dψα = 0 , dψ̄α̇ = 0 , (3.1)

where α, α̇ are indices transforming in the spinorial representation of each of the two su(2,C)
factors in so(4), whereas (αα̇) is a vector index. In this notation, ψα is associated with
the chiral component of the gravitino and ψ̄α̇ with its antichiral complex conjugate, while
V αα̇ is defined in terms of the usual bosonic vielbein V a as V αα̇ = − i

2 γ̄
α̇α
a V a, γαα̇a being

the Pauli matrices.4

Moreover, notice that we are using the differential d, as the spin connection vanishes
for flat spacetimes.

Since we want to consider invariant polynomials written in terms of the supervielbein
spanning the coset space G/H, we need to start from the characters associated with the
vielbein and gravitini. These can be computed as explained in section 2 and read

χV (z, w) =
(
z + 1

z

)(
w + 1

w

)
, χψ(z) =

(
z + 1

z

)
, χψ̄(w) =

(
w + 1

w

)
, (3.2)

4In Lorentzian signature, one usually defines γaαα̇ = (1, γi) and γ̄aα̇α = εαβεα̇β̇γa
ββ̇

= (1,−γi), with
ε12 = ε12 = 1. The Euclidean case is easily obtained by considering γi → iγi and the new matrices satisfy
the following completeness relation:

γaαα̇γ
b
ββ̇δab = 2εαβεα̇β̇ .
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whose corresponding plethystic polynomials are

PE[χV u] = (1− uzw)
(

1− u w
z

)(
1− u z

w

)(
1− u

zw

)
,

PE[χψt] =
[
(1− tz)

(
1− t

z

)]−1
, PE[χψ̄t] =

[
(1− tw)

(
1− t

w

)]−1
. (3.3)

The other needed ingredient for the computation of the Molien-Weyl formula is the inte-
gration measure. Depending on the choice of the latter, one can in general select invariants
with respect to different subsets of the subgroup H. We are here interested in invariants
under the full Lorentz group SO(4): the invariant measure associated with a single SU(2)
factor is given by

dµSU(2) = (1− w2) dw

(2πi)w , (3.4)

while the full measure is easily obtained as

dµSU(2)×SU(2) = (1− w2)(1− z2) dw

(2πi)w
dz

(2πi)z . (3.5)

The Hilbert-Poincaré polynomial for the case g/h = g/h′ = siso(1|4)/so(4) is then given by

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) =

∮
|z|=1

∮
|w|=1

PE[χV u]PE[χψt]PE[χψ̄t]dµSU(2)×SU(2)

= 1− t2(1− u)2u+ u4 . (3.6)

As explained in section 2.3, each monomial indicates the weight of the invariant polyno-
mials belonging to the respective vector subspace, whereas the coefficient is the dimension
of the invariant vector subspace and tells how many independent polynomials there
are. Finally, the sign corresponds to their parity, i.e., their commuting/anticommuting
properties. We list below all the possible independent invariant polynomials corresponding
to such polynomial:

−t2u : ω(3) = V αα̇ψαψ̄α̇ ,

2t2u2 : ω
(4)
1 = V αβ

2 ψαψβ , ω
(4)
2 = V α̇β̇

2 ψ̄α̇ψ̄β̇ ,

−t2u3 : ω(5) = V αα̇
3 ψαψ̄α̇ ,

u4 : ω(4) = V4 , (3.7)

where we defined V αβ
2 = 1

2εα̇β̇V
αα̇ ∧ V ββ̇ , V α̇β̇

2 = 1
2εαβV

αα̇ ∧ V ββ̇ , V αα̇
3 = 1

3!(V ∧ V ∧ V )αα̇,
and V4 = 1

4!V
αα̇εαβV

ββ̇εβ̇γ̇V
γγ̇εγδV

δδ̇εα̇δ̇.
The fact that the vielbein and gravitino satisfy the MC equations (3.1) requires a

relation between the scaling weights u and t introduced by the plethystic polynomials. In
particular, as argued above, we consider the compatibility choice u(t) = t2. Hence, the
Hilbert-Poincaré polynomial (3.6) boils down to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1− t4 + 2t6 . (3.8)
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The resulting series indicates the presence of three cohomology classes out of the invariant
polynomials in (3.7): these are ω(3), ω(4)

1 , ω(4)
2 , as one can prove that

dω(4) = ω(5) , dω(5) = 0 . (3.9)

As explained in section 2.3, one now has to add to the complex of differential forms some
new potentials, which, through their exterior derivatives, trivialize the corresponding co-
homology. In particular, we can add an even potential B(2) and two odd potentials A(3)

i

satisfying
dB(2) = ω(3) , dA(3)

i = ω
(4)
i , i = 1, 2 , (3.10)

where B(2) and A(3)
i carry dimensions t4 and t6, respectively. These new generators enlarge

the (bosonic) dimension of the superspace we are representing SO(4) on.
The physical interpretation of these objects can be related to the construction of Wess-

Zumino terms for the Green-Schwarz superstring in D = 4, see [16, 28–31].
In particular, one can define the following Wess-Zumino couplings

ΓWZ ∼
∫
M(3)

ω(3) =
∫
∂M(3)

B(2), ΓWZ,i ∼
∫
M(4)

ω
(4)
i =

∫
∂M(4)

A
(3)
i , (3.11)

whereM(3),M(4) are manifolds with a boundary.
The new series describing the number of invariants written in terms of V , ψ, ψ̄, B(2),

and A(3)
i is

P (A3, t, t
2) = (1− t4 + 2t6)(1− t6)2

(1− t4) , (3.12)

where the factor 1
(1−t4) corresponds to the contribution of the commuting potential B(2)

and (1− t6)2 comes from the anticommuting A(3)
i forms.

The denominator can be expanded as a geometric series and takes into account all
possible powers of B(2), while (1− t6)2 determines the powers of A(3)

i , A(3)
1 ∧A

(3)
2 . However,

by expanding the new Hilbert series in terms of t, we get, for the few first terms,

P (A3, t, t
2) = 1 + 2t10 − 3t12 + 2t14 − 4t16 + 4t18 − 4t20 +O

(
t21
)
, (3.13)

showing that there are new cohomology classes created by the new potentials. For example,
2t10 corresponds to the two classes ω(3) ∧A(3)

i −B(2) ∧ ω(4)
i for i = 1, 2.

To proceed with the FDA construction, we should now add other potentials to com-
pensate for the (infinite number of) cohomology classes. The above computation shows
that, in fact, one needs an infinite number of superforms to trivialize the FDA series. The
dimension of each space at fixed power of t can be obtained by means of the Poincaré-
Birkhoff-Witt theorem [27, 32], which trivializes the polynomial in the following way:

P (A∞, t, t2) = P (Ω• (g, h;T (h/h′)) , t, t2)∏
p≥1(1− t2p)N(p) = 1 , (3.14)

where N(p) is given by
N(p) =

∑
n|p

µ

(
p

n

)
(sn1 + sn2 + sn3 ) (3.15)
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and n|p are the divisors of p and the sum is extended to the entire set of the divisors of each
p, µ(x) is the Möbius function and ui are the three roots of the polynomial (1−s/2+s3/2)
(which is related to the original equation as (1 − t4 + 2t6) = 2t6(1 − s/2 + s3/2) with
s = t−2). With a simple computation, one gets the first terms of N(p) as

N(p) = (0, 1,−2, 0,−2, 3,−2, 4,−4, 7,−10, 11,−18, 27,−34, 50,−74,
106,−154, 217,−318, 471,−674, 978,
−1440, 2111,−3084, 4511,−6642, 9791, . . .) . (3.16)

As an example of the above formula, we see that the first cohomology classes require the
introduction of one commuting potential B(2) with dimension t4 and two anticommuting
potentials A(3)

i with dimension t6, matching the above results. The next necessary forms
to be added are two anticommuting potential C(5) with dimension t10 and so on.

Let us build explicitly the representatives for the first classes displayed in (3.13). We
start from B(2), A(3)

i , V a, ψ, ψ̄ and the first terms in the series are the following cocycles:

2t10 : ω
(6)
1 =ω(3)∧A(3)

1 , ω
(6)
2 =ω(3)∧A(3)

2 ,

−3t12 : ω
(7)
1 =ω

(4)
1 ∧A

(3)
1 , ω

(7)
2 =ω

(4)
2 ∧A

(3)
2 , ω

(7)
3 =ω

(4)
2 ∧A

(3)
1 +ω

(4)
1 ∧A

(3)
2 ,

2t14 : ω
(8)
1 =ω

(4)
1 ∧B

(2)∧B(2) , ω
(8)
2 =ω

(4)
2 ∧B

(2)∧B(2) . (3.17)

The powers of B(2)’s are coming from the fact that B(2) is a commuting 2-form and there-
fore, in principle, we can consider higher powers of them.

It is worth mentioning that forms with degree higher than 4 are pure soul [33], i.e.,
their pull-back on spacetime is zero independently of their embedding in superspace. These
higher form cocycles are perfectly well-defined from an algebraic point of view, but their
physical interpretation is yet to be fully understood. Nonetheless, a possible application
can be suggested in terms of nonfactorized actions [34, 35], that is functionals that cannot
be expressed in terms of the pull-back of Lagrangian densities. For example, one could
consider ω(p) ∧ ?ω(p), which makes sense ∀p ∈ N, once integrated on a given metric-
supermanifold [36].

3.1.2 N = 2 supersymmetry

Let us now increase the number of supersymmetry generators and let us consider
the coset superspace (U(2) n sISO(2|4))/(SO(4)×U(2)), spanned by the supervielbein
Vαα̇, ψ

A
α , ψ̄α̇,A.5 The following MC equations hold

∇Vαα̇ = ψAα ψ̄α̇A , ∇ψAα = 0 , ∇ψ̄α̇A = 0 . (3.18)

where A = 1, 2 is a U(2) R-symmetry index transforming in the [0, 1/2] and [1/2, 0] repre-
sentations for the gravitini ψAα and ψ̄α̇A respectively. Let us notice that, due to the absence
of a U(2)-invariant tensor, the position of the indices for the chiral gravitini is fixed. As in
the N = 1 case, the SO(4) indices can be split in terms of SU(2) indices.

5The action of the R-symmetry group realises only on the even forms as shown, e.g., in [37].
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The covariant derivative is nilpotent ∇2 = 0, despite containing the gauge connection
associated with the U(2) factor. In fact, the square of the covariant derivative would
in general close on the curvature of the subalgebra we are modding out, which however
vanishes in the present case.

The characters of the supervielbein are

χV (z, w) =
(
z + 1

z

)(
w + 1

w

)
,

χψ(z1, z2, z) = z1

(
z2 + 1

z2

)(
z + 1

z

)
,

χψ̄(z1, z2, w) = 1
z1

(
z2 + 1

z2

)(
w + 1

w

)
, (3.19)

where z, w parametrize the Lorentz group, z2 is related to SU(2) ⊂ U(2) and z1
parametrizes the additional U(1) R-symmetry factor. Let us now consider different sets of
invariant polynomials.

• Taking g/h = (u(2)nsiso(2|4))/(so(4)⊕u(2)) and h′ = so(4)⊕u(1), we get the following
Hilbert-Poincaré polynomial:

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2, z2) = 1 + t2

1− t2 − t
4
(
z2

2 + 1 + 1
z2

2

)
. (3.20)

The first term in the above expression reproduces the SU(2)-invariant polynomials, which
will be carefully analyzed below, whereas the second term corresponds to a Lorentz-
invariant polynomial in the SU(2) triplet representation, whose form is

ω(3)A
B = ψ̄α̇BV

αα̇ψAα −
1
2δ

A
B ψ̄α̇CV

α̇αψCα . (3.21)

Notice that ω(3)1
1 = −ω(3)2

2. Furthermore, from section 2.3, we know that these forms
actually correspond to cohomology classes once the MC equation hold, as it can be checked
in this case. One can then introduce three even 2-forms satisfying

dA(2)A
B + ω(3)A

B = 0 . (3.22)

The FDA polynomial obtained in this way is actually a series, analogously to what we have
obtained in the N = 1 case.

• Let us now consider h′ = so(4)⊕ su(2). In this case, the Hilbert-Poincaré series reads

P (Ω•
(
g, h;T

(
h/h′

))
, t, u, z1) = 1− t2(u+ u3) + u4

(1− t2z2
1)(1− t2

z2
1
)
. (3.23)

The above series has the following generators:
1

(1− t2z2
1)(1− t2

z2
1
)

: ω
(2)
1 = εABε

αβψAαψ
B
β , ω

(2)
2 = εABεα̇β̇ψ̄α̇Aψ̄β̇B ,

−t2u : ω(3) = V αα̇ψAα ψ̄α̇A ,

−t2u3 : ω(5) = V αα̇
3 ψAα ψ̄α̇A ,

u4 : ω(4) = V4 , (3.24)
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where εAB is the SU(2)-invariant tensor. When the MC are satisfied, one can choose, as
explained, u(t) = t2 and the series reduces to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2, z1) = 1− t4

(1− t2z2
1)(1− t2

z2
1
)
, (3.25)

as anticipated in the previous point. The MC equations select, out of all the invariant
polynomials, only the cohomologies: one can indeed prove that

dω(2)
1 = 0 , dω(2)

2 = 0 , dω(3) = ω
(2)
1 ∧ ω

(2)
2 , dω(4) = ω(5) . (3.26)

The associated FDA is obtained by including two independent 1-forms, A(1)
1 and A(1)

2 , such
that

dA(1)
1 = ω

(2)
1 , dA(1)

2 = ω
(2)
2 , (3.27)

leading to the following series:

P (A2, t, t
2, z1) = 1− t4

(1− t2z2
1)(1− t2

z2
1
)
(1− t2z2

1)
(

1− t2

z2
1

)
= 1− t4 . (3.28)

This corresponds to the following cohomology class:

ω̃(3) = A
(1)
1 ∧ ω

(2)
2 +A

(1)
2 ∧ ω

(2)
1 − 2ω(3) . (3.29)

The addition of a commuting 2-form B(2) completely trivialises the Hilbert series:

P (A3, t, t
2, z1) = 1− t4

1− t4 = 1 . (3.30)

• At last, let us consider h′ = so(4)⊕ u(2). The Hilbert-Poincaré series in this case is

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2(u+ u3) + u4

(1− t4) , (3.31)

where the only change, compared with the previous case, is in the denominator. When the
MC equations are implemented we get

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1 . (3.32)

Therefore, there are no invariant cocycles in the cohomology in the present case.

3.1.3 N = 4 supersymmetry

Let us now further increase the amount of supersymmetry to N = 4, due to the im-
portant relation between D = 6, N = (2, 0) and D = 4, N = 4 super Yang-Mills
(see, e.g., the original paper [38]). In the latter theory, the reality condition on the
scalar fields of the vector supermultiplet, necessary for the matching of bosonic and
fermionic degrees of freedom, reduces the R-symmetry group from U(4) to SU(4). For
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this reason, let us consider here a supervielbein spanning the cotangent space of the coset
(SU(4) n sISO(4|4))/(SO(4)× SU(4)) satisfying

∇Vαα̇ = ψAα ψ̄α̇A , ∇ψAα = 0 , ∇ψ̄α̇A = 0 . (3.33)

The covariant differential behaves as in the N = 2 case and the index A = 1, . . . , 4 of ψAα
and ψ̄α̇A transforms in the [0, 0, 1] and [1, 0, 0] representations. The characters associated
with the supervielbein are

χV (z, w) =
(
z + 1

z

)(
w + 1

w

)
,

χψ(z1, z2, z3, z) =
(
z1 + z2

z1
+ z3
z2

+ 1
z3

)(
z + 1

z

)
,

χψ̄(z1, z2, z3, w) =
(
z3 + z2

z3
+ z1
z2

+ 1
z1

)(
w + 1

w

)
, (3.34)

where z and w parametrize the two SU(2) factors in the Lorentz group, whereas z1, z2,
and z3 refer to the SU(4) group. The measure for the latter is

dµSU(4) =
(

1− z
2
1
z2

)(
1− z1z2

z3

)
(1−z1z3)

(
1− z2

2
z1z3

)(
1− z2z3

z1

)(
1− z

2
3
z2

)
dz1dz2dz3

(2πi)3z1z2z3
.

(3.35)
As we have done in the N = 2 case, we will consider different sets of invariant polynomials.

• The cohomology invariants under the Lorentz group are found by inspecting the fol-
lowing Hilbert series (where g/h = (su(4) n siso(4|4))/(so(4)⊕ su(4)) and h′ = so(4)):

P (Ω•
(
g,h;T

(
h/h′

))
, t, t2,z1,z2,z3) = 1+2

(
z1
z3

+ z3z1
z2

+z2 + 1
z2

+ z2
z1z3

+ z3
z1

)
t2

+ 3
z2

1z
2
2z

2
3

(
z4

3z
4
1 +z2

2z
4
1 +z2z

2
3z

4
1 +z2

2z
3
3z

3
1 +z3

3z
3
1 +z3

2z3z
3
1 +z2z3z

3
1 +z2z

4
3z

2
1 +z3

2z
2
1 (3.36)

+z4
2z

2
3z

2
1 +2z2

2z
2
3z

2
1 +z2

3z
2
1 +z3

2z
3
3z1 +z2z

3
3z1 +z4

2z3z1 +z2
2z3z1 +z4

2 +z2
2z

4
3 +z3

2z
2
3

)
t4 +O

(
t5
)

at order t4. The first term corresponds to cohomologies which are invariant under SO(4)×
SU(4), which will be analyzed below, whereas all other terms are only invariant under the
Lorentz group. For example, the second term corresponds to two independent cohomologies
transforming in the 4 and 4̄-antisymmetric representations, respectively, and taking the
following form:

ω
(2)[AB]
1 = εαβψAαψ

B
β , ω

(2)
2 [AB] = εα̇β̇ψ̄Aα̇ψ̄Bβ̇ . (3.37)

These objects can be trivialized by introducing two sets of corresponding 1-form,

dA(1)[AB] = ω
(2)[AB]
1 , dA(1)

[AB] = ω
(2)
2 [AB] , (3.38)

which can be understood as the N = 4 gauge 1-forms in the gravitational supermultiplet.
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• The integration over the full subgroup SO(4) × SU(4) yields the following series (we
have h′ = so(4)⊕ su(4)):

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2(u+ u3) + u4

(1− t4) , (3.39)

corresponding to the invariant expressions
1

1− t4 : ω
(4)
1 =

(
εαβψAαψ

B
β

) (
εα̇β̇ψ̄α̇Aψ̄β̇B

)
,

−t2u : ω(3) = V αα̇ψAα ψ̄α̇A ,

−t2u3 : ω(5) = V αα̇
3 ψAα ψ̄α̇A ,

u4 : ω
(4)
2 = V 4 . (3.40)

However, by implementing the MC equations, the Hilbert series reduces to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1 , (3.41)

signalling the absence of nontrivial cohomology classes, as it can be confirmed by the
following relations that (3.40) indeed satisfy:

dω(3) = ω
(4)
1 , dω(4)

1 = 0 ,

dω(4)
2 = ω(5) , dω(5) = 0 . (3.42)

In D = 4 the supermultiplet for N = 4 and N = 3 super Yang-Mills coincide; therefore
their analyses are expected to be related. On the other hand, we do not expect such relation
in the supergravity cases, thus we briefly comment on this for the sake of completeness.

Comments on N = 3 supersymmetry. In this case, the spinors ψAα and ψ̄Aα̇ trans-
form in the representation 3 and 3̄ of SU(3). By computing the Molien-Weyl formula for
SO(4) invariant quantities, one gets the following series (denoting by z1 and z2 the param-
eters associated with SU(3) and considering g/h = (su(3) n siso(3|4))/(so(4)⊕ su(3)) and
h′ = so(4)):

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2, z1, z2) = 1 +

(
z2z

2
1 + z2

1 + z2
2z1 + z1 + z2

2 + z2
)

z1z2
t2 (3.43)

+
(
z2

2z
4
1 + z4

1 + z2
2z

3
1 + z2z

3
1 + z4

2z
2
1 + z3

2z
2
1 + z2z

2
1 + z2

1 + z3
2z1 + z2

2z1 + z4
2 + z2

2
)

z2
1z

2
2

t4 +O
(
t5
)

at order t4. The second term is easily understood, since there are two independent sets of
cohomology representatives that we can build, namely

ω(2)[AB] = εαβψAαψ
B
β , ω̄

(2)
[AB] = εα̇β̇ψ̄Aα̇ψ̄Bβ̇ , (3.44)

which transform in the representations 3 and 3̄. This is due to the properties of the SU(3)
representations, 3 ∧ 3 ∼ 3̄. Indeed, the expression in (3.43) proportional to t2 is the sum
of the characters of representations 3 and 3̄, which read

χψ(z1, z2) = z2 + z1
z2

+ 1
z1
, χψ̄(z1, z2) = z1 + z2

z1
+ 1
z2
. (3.45)
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Computing the third term in the expansion of (3.43), we get the following character:

z2
1
z2

2
+ z2

1 + z1
z2

+ z1 + z2
2
z2

1
+ z2

2 + z2 + 1
z2

1
+ 1
z2

+ 1
z2

2
+ z2
z1

+ 1
z1
, (3.46)

which can be rewritten as

χψ(z1, z2)2 + χψ̄(z1, z2)2 − χψ̄(z1, z2)− χψ(z1, z2) , (3.47)

corresponding to the invariants

ω(2)[AB]∧ω(2)[CD] , ω̄
(2)
[AB]∧ ω̄

(2)
[CD] , ω̄

(2)
[AB]∧ω

(2)[CD] , ω(3)A
B = ψAαV

αα̇ψ̄Bα̇ . (3.48)

The last two invariants are related by acting with ∇ on ω(3)A
B. In addition, from the first

two invariants one has to subtract the reducible parts denoted by −χψ̄(z1, z2)− χψ(z1, z2)
in the character. Therefore, the Molien-Weyl formula provides the complete spectrum of
R-symmetry covariant expressions from which one can easily read those corresponding to
cohomology representatives. Let us mention, here, that the physical relevance of such
covariant expressions should be understood in the framework of gauge hierarchies [39],
whose analysis under the Molien-Weyl perspective will be subject of future investigations.

3.2 Curved cases

We now focus on the study of cohomologies related to supergravities with negative cosmo-
logical constant, with various degrees of supersymmetry.

3.2.1 N = 1 supersymmetry

Let us start with the simplest curved supercoset OSp(1|4)/SO(4),6 whose supervielbein
satisfies the following MC equations:

∇V αα̇ = ψ̄α̇ψα , ∇ψα = Vαα̇ψ̄
α̇ , ∇ψ̄α̇ = V αα̇ψα . (3.49)

As the Lorentz group is unchanged with respect to the flat case, we can still work with two
component spinors. However, the covariant differential ∇ now contains the spin connection
and it is only nilpotent when acting on polynomials invariant under the whole subgroup
H, which we are quotienting by. The characters and plethystic polynomials associated
with the supervielbein are as in (3.2) and (3.3). The only different ingredient, compared
to the flat case, is the choice of scaling weight relation u(t) = t. Moreover, as discussed
in section 2.3, for consistency one has to attribute a weight to the differential [∇] = t.
The Hilbert-Poincaré polynomial then reads (we are considering g/h = osp(1|4)/so(4) and
h′ = h = so(4))

P (Ω•
(
g, h;T

(
h/h′

))
, t, t) = 1− t3 + 3t4 − t5 , (3.50)

6This is clearly not the only possible case, as one could, for instance, study SU(2, 2|1)/span(iso(4)K ⊕
u(1) ⊕ D ⊕ S), where S are eight superconformal generators, D is the dilatation generator and u(1) is the
generator of the remaining U(1) factor. The Lie algebra iso(3, 1)K includes the Lorentz transformations
SO(3, 1) and the 4 generators of the special conformal transformations.
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which corresponds to the following invariants:

−t3 : ω(3) = V αα̇ψαψ̄α̇ ,

3t4 : ω
(4)
1 = V αβ

2 ψαψβ , ω
(4)
2 = V α̇β̇

2 ψ̄α̇ψ̄β̇ , ω
(4)
3 = V4 ,

−t5 : ω(5) = V αα̇
3 ψαψ̄α̇ .

We will now show how these polynomials are related by the differential:

∇ω(3) = 2
(
ω

(4)
1 − ω

(4)
2

)
, ω(5) = 1

3!∇ω
(4)
1 , ∇

( 1
3!ω

(4)
1 + 1

3!ω
(4)
2 − 2ω(4)

3

)
= 0 .
(3.51)

The first relation shows that ω(3) is not closed, the second one shows that ω(5) is exact,
whereas the last one shows that ω(4) = 1

3!ω
(4)
1 + 1

3!ω
(4)
2 − 2ω(4)

3 is closed, but not exact. The
latter is therefore the only nonexact cocycle among the invariants written above. Then the
Hilbert-Poincaré polynomial for the cohomology reads 1 + t4.7

To obtain the FDA structure, we should introduce a new 3-form accounting for the
cocycle dA(3) = ω(4) and consider a new FDA polynomial

P (H•(A1), t, t) = (1 + t4)(1− t4) = 1− t8 . (3.52)

This polynomial is obtained from the one relative to the cohomology, i.e. 1 + t4, by multi-
plying by 1−t4, which takes into account the odd potential A(3) with weight 4. One should
a priori compute the Hilbert-Poincaré series through the MW formula, by including the
potential A(3). Since A(3) is a scalar by construction, it contributes the MW integration
formula with a (1− t4) factor. This yields the Hilbert series

P (A1, t, t) =
(
1− t3 + 3t4 − t5

) (
1− t4

)
, (3.53)

which reduces, in virtue of (3.51), to (3.52). Thus the polynomial relative to the cohomol-
ogy of the FDA A1 can be directly computed from the initial cohomology polynomial by
multiplying by the factor corresponding to A(3), as anticipated. The new resulting coho-
mology class is ω(7) = A(3) ∧ ω(4). We can then add a new (commuting) 6-form A(6) such
that its MC equation reads

dA(6) = ω(7) . (3.54)

Thus, the Hilbert series is completely trivialized.

3.2.2 N = 2 supersymmmetry

We again increase the amount of supersymmetry and consider the supercoset space
OSp(2|4)/(SO(4)× SO(2)). The associated supervielbein satisfies the following MC equa-
tions:

∇V αα̇ = ψ̄α̇Aψ
αA , ∇ψAα = Vαα̇ψ̄

α̇A , ∇ψ̄α̇A = V αα̇ψαA , (3.55)
7Let us notice that the obtained result is consistent with theorems by Fuks and Greub-Halperin-

Vanstone [7, 40], which allows us to write the Hilbert series for coset spaces, in the case of equal-rank
algebras.
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where the covariant derivative ∇ may contain both spin connection and SO(2) gauge con-
nection, depending on the field it is acting on. The associated Hilbert-Poincaré series reads
(we are taking g/h = osp(2|4)/(so(4)⊕ so(2)) and h′ = h = so(4)⊕ so(2))

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− 2t2

(
u2 − u+ 1

)
u+ u4

(1− t2)2 , (3.56)

which corresponds to the following generator invariants:
1

(1− t2)2 : ω
(2)
1 = εABε

αβψAαψ
B
β , ω

(2)
2 = εABεα̇β̇ψ̄α̇Aψ̄β̇B ,

−2t2u : ω
(3)
1 = V αα̇ψαAψ̄α̇Bδ

AB , ω
(3)
2 = V αα̇ψαAψ̄α̇Bε

AB ,

+2t2u2 + u4 : ω
(4)
1 = V αβ

2 ψαAψβBδ
AB , ω

(4)
2 = V α̇β̇

2 ψ̄α̇Aψ̄β̇Bδ
AB , ω

(4)
3 = V4 ,

−2t2u3 : ω
(5)
1 = V αα̇

3 ψαAψ̄α̇Bδ
AB , ω

(5)
2 = V αα̇

3 ψαAψ̄α̇Bε
AB . (3.57)

When the MC equations hold, we are left with

P (Ω•
(
g, h;T

(
h/h′

))
, t, t) = 1− 2t3 + 3t4 − 2t5

(1− t2)2 = 1 + 2t2−2t3 + 6t4−6t5 +O
(
t6
)

(3.58)

and the above generators are in general no longer independent. For instance, ω(5)
2 =

1
12ω

(3)
1 ∧ ω

(2)
2 . We find the following relations:

∇
(
ω

(2)
1 −ω

(2)
2

)
= 0, 1

4∇
(
ω

(2)
1 +ω

(2)
2

)
=ω

(3)
2 , ∇ω(3)

1 = 1
2ω

(2)
1 ∧ω

(2)
2 +2

(
ω

(4)
1 −ω

(4)
2

)
,

∇
(
ω

(4)
3 −

1
12
(
ω

(4)
1 +ω

(4)
2

)
+ 1

48ω
(2)
1 ∧ω

(2)
2

)
= 0 , ∇ω(4)

3 =ω
(5)
1 ,

ω
(3)
2

(
ω

(2)
1 +ω

(2)
2

)
=∇

(
−24ω(4)

3 +2
(
ω

(4)
1 +ω

(4)
2

))
. (3.59)

These relations imply cancellations order by order in the polynomial. The resulting series
properly selects the cohomologies and reduces to

P (H•
(
g, h;T

(
h/h′

))
, t, t) = 1 + t4

1− t2 . (3.60)

The two cohomologies described here can be read from (3.59),

ω̃(2) := ω
(2)
1 − ω

(2)
2 , ω̃(4) := ω

(4)
3 −

1
12(ω(4)

1 + ω
(4)
2 ) + 1

48ω
(2)
1 ∧ ω

(2)
2 . (3.61)

Notice that a priori one could also consider any power of ω(4), but it is possible to show
that they do not give rise to new cohomology classes, as powers of ω(4) can be expressed
as combinations of ω(4) itself and powers of ω(2). One can then add a 1-form potential
A(1), the well-known graviphoton, such that ∇A(1) = ω̃(2) and a 3-form A(3) satisfying
∇A(3) = ω̃(4). The series then becomes

P (H•(A2), t, t) = 1 + t4

1− t2 (1− t2)(1− t4) = 1− t8, (3.62)

implying the presence of an additional 7-form cocycle built in terms of these new potentials.
The addition of a 6-form potential completely trivializes the polynomial.
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3.2.3 N = 4 supersymmetry

To end this section, let us now consider the curved supercoset OSp(4|4)/(SO(4)× SO(4)).
In this case, the SU(4) R-symmetry group of the flat rigid case breaks down to SO(4), due
to the gravitino mass terms or, equivalently, to the presence of the cosmological constant.

The supervielbein satisfies the MC equations

∇V αα̇ = ψ̄α̇
AȦ
ψαAȦ , ∇ψAȦα = Vαα̇ψ̄

α̇AȦ , ∇ψ̄AȦα̇ = Vαα̇ψ
αAȦ , (3.63)

where A = 1, 2, Ȧ = 1, 2 are the R-symmetry so(4) ∼ su(2) × su(2) indices. The
computation of the Hilbert-Poincaré series with g/h = osp(4|4)/(so(4) ⊕ so(4)) and
h′ = h = so(4)⊕ so(4) yields

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2(u− 1)2u− 2t4

(
u3 + u

)
− t6(u− 1)2u+ u4 + 2t8u2

(1− t4)4 ,

(3.64)
corresponding to the following invariant generators:

1
(1− t4)4 : ω

(4)
1 = εαβεγδεABεCDεȦĊεḂḊψ

αAȦψβBḂψγCĊψδDḊ ,

ω
(4)
2 = εα̇β̇εγ̇δ̇εABεCDεȦĊεḂḊψ̄

α̇AȦψ̄β̇BḂψ̄γ̇CĊψ̄δ̇DḊ ,

ω
(4)
3 = εαβεγ̇δ̇εABεCDεȦĊεḂḊψ

αAȦψβBḂψ̄γ̇CĊψ̄δ̇DḊ ,

ω
(4)
4 = εαβεγ̇δ̇εACεBDεȦḂεĊḊψ

αAȦψβBḂψ̄γ̇CĊψ̄δ̇DḊ ,

−t2u : ω(3) = V αα̇ψAȦα ψ̄α̇AȦ ,

2t2u2 : ω
(4)
5 = V αβ

2 ψαAȦψ
AȦ
β , ω

(4)
6 = V α̇β̇

2 ψ̄α̇AȦψ̄
AȦ
β̇

,

−t2u3 : ω
(5)
1 = V αα̇

3 ψαAȦψ̄
AȦ
α̇ ,

−2t4u : ω
(5)
2 = V αα̇ψAȦα ψ̄BḂα̇ ψCĊβ ψDḊγ εβγεABεCDεȦĊεḂḊ ,

ω
(5)
3 = V αα̇ψAȦα ψ̄BḂα̇ ψ̄CĊ

β̇
ψ̄DḊγ̇ εβ̇γ̇εABεCDεȦĊεḂḊ ,

−2t4u3 : ω
(7)
1 = V αα̇

3 ψAȦα ψ̄BḂα̇ ψCĊβ ψDḊγ εβγεABεCDεȦĊεḂḊ ,

ω
(7)
2 = V αα̇

3 ψAȦα ψ̄BḂα̇ ψ̄CĊ
β̇
ψ̄DḊγ̇ εβ̇γ̇εABεCDεȦĊεḂḊ ,

−t6u : ω
(7)
3 = V αα̇ψAȦα ψ̄BḂα̇ ψCĊβ ψDḊγ ψ̄EĖ

β̇
ψ̄FḞγ̇ εβγεβ̇γ̇εACεBEεDF εȦĊεḂĖεḊḞ ,

2t6u2 : ω
(8)
1 = V αβ

2 ψAȦα ψBḂβ ψCĊγ ψDḊδ ψ̄EĖ
β̇
ψ̄FḞγ̇ εγδεβ̇γ̇εACεBEεDF εȦĊεḂĖεḊḞ ,

ω
(8)
2 = V α̇β̇

2 ψ̄AȦα̇ ψ̄BḂ
β̇

ψCĊα ψDḊβ ψ̄EĖγ̇ ψ̄FḞ
δ̇
εαβεγ̇δ̇εACεBEεDF εȦĊεḂĖεḊḞ ,

−t6u3 : ω(9) = V αα̇
3 ψAȦα ψ̄BḂα̇ ψCĊβ ψDḊγ ψ̄EĖ

β̇
ψ̄FḞγ̇ εβγεβ̇γ̇εACεBEεDF εȦĊεḂĖεḊḞ ,

2t8u2 : ω
(10)
1 = V αβ

2 ψAȦα ψBḂβ ψ̄CĊγ̇ ψ̄DḊ
δ̇

ψEĖγ ψFḞδ ψ̄LL̇α̇ ψ̄MṀ
β̇
×

× εγ̇δ̇εγδεα̇β̇εABεḂĊεCDεḊĖεEF εḞ L̇εLM εṀȦ ,

ω
(10)
2 = V α̇β̇

2 ψ̄AȦα̇ ψ̄BḂ
β̇

ψCĊγ ψDḊδ ψ̄EĖγ̇ ψ̄FḞ
δ̇
ψLL̇α ψMṀ

β ×

× εγδεγ̇δ̇εαβεABεḂĊεCDεḊĖεEF εḞ L̇εLM εṀȦ ,

u4 : ω
(4)
7 = V4 . (3.65)
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When the MC equations hold, the generators in (3.65) are no longer independent. As
explained in the N = 2 case, this implies order by order cancellations among the invariant
polynomials such that the resulting series counting cohomology classes reads

P (Ω•
(
g, h;T

(
h/h′

))
, t, t) = 1 + t4

(1− t4)2 . (3.66)

In particular, from the numerator, we see that there are two 4-form cocycles, ω(4)
1 and ω(4)

2 ,
which can then be trivialized to build the FDA by introducing A(3)

1 and A(3)
2 (dA(3)

1 = ω
(4)
1 ,

dA(3)
1 = ω

(4)
2 ). This procedure modifies (3.66) as

P (H•(A2), t, t) = 1 + t4

(1− t4)2 (1− t4)2 = 1 + t4 , (3.67)

which shows that the introduction of the 3-forms A(3)
1 and A(3)

2 does not trivialize the FDA
yet. In particular, we have a 4-form cocycle ω(4)

3 , whose trivialization requires a new 3-form
A

(3)
3 such that ω(4) = dA(3). Including the 3-form A

(3)
3 , the FDA series becomes

P (H•(A3), t, t) = (1 + t4)(1− t4) = 1− t8 . (3.68)

Again, the FDA is not trivialized yet, as we are left with a 7-form cocycle ω(7), which can
be trivialised by a new even 6-form generator B(6), with weight t8, such that

dB(6) = ω(7) . (3.69)

This procedure completely trivializes the Hilbert-Poincaré polynomial

P (H•(A4), t, t) = 1− t8

1− t8 = 1 . (3.70)

4 D = 6 spacetime dimensions

In this section, we move on to the study of cocycles and FDAs for various vacuum super-
gravity theories in D = 6, with different amount of supersymmetry.

4.1 Flat rigid superspaces

Let us focus, here, on different flat rigid superspace cases, in which the Molien-Weyl formula
directly selects all the cohomologies out of the invariant polynomials computed by the
Hilbert-Poincaré series.

4.1.1 N = (4, 0) supersymmetry

We start by computing the relevant cohomology classes for the flat D = 6, N = (4, 0) case.
In the literature, different nomenclatures are used for the various six-dimensional super-
gravity theories. In particular, by N = (4, 0), which is also known in “American” notation
as N = (2, 0) theory, we denote the chiral model with R-symmetry group USp(4) ∼ SO(5),
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whose real dimension is 10. The computation of the Molien-Weyl integration formula sim-
plifies if we choose the following convenient representation of SO(6)×USp(4) onto to coset
space (USp(4) n sISO((4, 0)|6))/(SO(6)×USp(4)):

V[αβ] , ψAα , (4.1)

where the index A = 1, . . . , 4 runs over the USp(4) representation (with symplectic struc-
ture CAB) and the indices α, β, . . . = 1, . . . , 4 run over the SU(4) fundamental representa-
tion.

The MC equations are

∇V[αβ] = ψAαψ
B
β CAB , ∇ψAα = 0 , (4.2)

with ∇ nilpotent. We now introduce the various ingredients, needed for the computation
of the Hilbert-Poincaré polynomial: to this end, let us consider the characters of the SU(4)
antisymmetric representation of V[αβ] and of the spinors ψAα , which read, respectively,

χV (z1, z2, z3) = z2 + z1z2
z3

+ z3
z1

+ z1
z3

+ z3
z1z2

+ 1
z2
,

χψ(z1, z2, z3, z, w) =
(
z1 + z2

z1
+ z3
z2

+ 1
z3

)(
w + 1

w
+ z + 1

z

)
. (4.3)

Here z and w parametrize the two torus U(1) × U(1) for the two Cartan generators of
USp(4), while z1, z2, z3 are the parameters of the three torus U(1)×U(1)×U(1) of SU(4).
The associated plethystic polynomials read

PE[χV u] = (1− uz2)
(

1− uz1z3
z2

)(
1− uz3

z1

)(
1− uz2

z1z3

)(
1− uz1

z3

)(
1− u

z2

)
,

PE[χψt] = 1∏4
i=1 ∆i

, with

∆1 = (1− twz1)
(

1− tz1
w

)
(1− tzz1)

(
1− tz1

z

)
,

∆2 =
(

1− tz2
wz1

)(
1− twz2

z1

)(
1− tz2

zz1

)(
1− tzz2

z1

)
,

∆3 =
(

1− twz3
z2

)(
1− tz3

wz2

)(
1− tzz3

z2

)(
1− tz3

zz2

)
,

∆4 =
(

1− tw

z3

)(
1− t

wz3

)(
1− tz

z3

)(
1− t

zz3

)
. (4.4)

At last, let us consider the integration measure of USp(4)

dµUSp(4) = (1− w2)(1− z2)(1− wz)
(

1− w

z

)
dzdw

(2πi)2zw
(4.5)

and that of SU(4), given in (3.35).
The Hilbert-Poincaré series for g/h = (usp(4) n siso((4, 0)|6))/(so(6) ⊕ usp(4)) and

h′ = h = so(6)⊕ usp(4) then reads

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2(u+ u5) + u6

1− t4 . (4.6)
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The different elements correspond to the following invariant expressions:

1
1− t2 : ω(4) = ψAαψ

B
β ψ

C
γ ψ

D
δ ε

αβγδCABCCD ,

−t2u : ω(3) = Vαβψ
C
γ ψ

D
δ CCDε

αβγδ ,

−t2u5 : ω(7) = V
[αβ]

5 ψCαψ
D
β CCD ,

u6 : ω(6) = V6 , (4.7)

where we defined

V
[αβ]

5 = 1
5!Vα1β1Vα2β2Vα3β3Vα4β4Vα5β5ε

α1α2β1β2εα3α4α5αεβ3β4β5β ,

V6 = 1
6!Vα1β1Vα2β2Vα3β3Vα4β4Vα5β5Vα6β6ε

α1α2β1β2εα3α4α5α6εβ3β4β5β6 .

Note that, due to antisymmetrizations, the combination CABCCD can be rewritten as
εABCD = CABCCD − CCBCAD − CADCCB and, therefore, there is a single nontrivial ex-
pression at level 1/(1 − t2). The 4-form ω(4), is closed, not exact and invariant under
Lorentz and R-symmetry transformations. However, by imposing the MC equations (4.2),
thus setting u = t2, we get

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1 . (4.8)

indicating that there are no cohomology classes. This follows from the following relations

dω(3) = ω(4) , dω(6) = ω(7) , (4.9)

that show that the cohomology is indeed trivial.
However, to make contact with the associated supergravity theory (see, e.g., [1, 41]),

we should take into account that the gravitational multiplet of this theory also includes
five 2-forms BAB (in the 2-times antisymmetric traceless irrep of USp(4)) with selfdual
field strengths, which also contribute to the FDA, through

dBAB = ψ[A
α ψ

B]0
β Vγδε

αβγδ , (4.10)

where with [AB]0 we denote tracelessness in the antisymmetric indices [AB], that is
K[AB]0 = K[AB]− 1

4CABCCDKCD. To recover this object with the Molien-Weyl formula, one
has to compute the number of Lorentz-invariant polynomials only, i.e., without integrating
on the USp(4) parameters. Indeed, in this case (h′ = so(6)), one gets

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2, z, w) = 1− t4

(
1 + wz + w

z
+ z

w
+ 1
wz

)
, (4.11)

which corresponds exactly to the invariant (4.10), with scale t4, in the traceless represen-
tation of USp(4).
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4.1.2 N = (2, 2) supersymmetry

Another D = 6 flat rigid superspace case that we wish to study is the N = (2, 2) case, which
is a non-chiral theory with R-symmetry group SU(2)× SU(2). In this case, the associated
coset space is ((SU(2)× SU(2))n sISO((2, 2)|6))/(SO(6)× SU(2)× SU(2)), which features
two spinor fields with opposite chiralities. The corresponding MC equations read

∇V[αβ] = ψAαψ
B
β CAB + εαβγδ ψ

ĀγψB̄δCĀB̄ , ∇ψAα = 0 , ∇ψĀα = 0 , (4.12)

where ∇ is a nilpotent operator and ψAα are 8 spinors with left chirality (with A,B, . . . =
1, 2), whereas ψĀα are the other 8 spinors with right chirality (with Ā, B̄, . . . = 1, 2).

The ingredients needed for the computation of the Molien-Weyl formula receive slight
modifications with respect to the ones in section 4.1.1. In particular, even if the charac-
ter associated with V[αβ] remains unaltered, those of the spinors ψA and ψĀ now read,
respectively,

χψA(z1, z2, z3, w) =
(
z1 + z2

z1
+ z3
z2

+ 1
z3

)(
w + 1

w

)
,

χψĀ(z1, z2, z3, z) =
(
z3 + z2

z3
+ z1
z2

+ 1
z1

)(
z + 1

z

)
, (4.13)

as the two spinors have opposite chirality-independent R-symmetry characters. More-
over, the integration measure on the R-symmetry group now becomes the one given
in (3.5). Then, the computation of the Molien-Weyl formula for g/h = ((su(2) ⊕ su(2)) n
siso((2, 2)|6))/(so(6)⊕ su(2)⊕ su(2)) and h′ = h = so(6)⊕ su(2)⊕ su(2) gives

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− 2t2u+ t4u2 + t4u4 − 2t2u5 + u6

1− t4 . (4.14)

We are now able to list all possibile invariants described by the Hilbert series, namely

t4 : ω(4) = CABψ
A
αψ

B
β CC̄D̄ψ

αC̄ψβD̄ ,

−2t2u : ω
(3)
1 = V[αβ]ε

αβγδCABψ
A
γ ψ

B
δ ,

ω
(3)
2 = V[αβ]CĀB̄ψ

αĀψβB̄ ,

t4u2 : ω(6) = ω
(3)
1 ∧ ω

(3)
2 ,

t4u4 : ω(8) = V αβδγ
4 εδγσρ

(
CABψ

A
αψ

B
β

) (
CC̄D̄ψ

ρC̄ψσD̄
)
,

−2t2u5 : ω
(7)
1 = V

[αβ]
5 CABψ

A
αψ

B
β ,

ω
(7)
2 = V

[αβ]
5 εαβσρCĀB̄ψ

σĀψρB̄ ,

u6 : ω(6) = V 6 , (4.15)

where we defined V αβγδ
4 = 1

4!Vα1β1Vα2β2Vα3β3Vα4β4ε
α1α2β1β2εα3α4αβεβ3β4γδ.

The cocycles are then obtained by imposing the MC equations: by doing so, we get

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1− t4 , (4.16)
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which implies that the only cohomology class is

ω̃(3) = ω
(3)
1 − 4ω(3)

2 = V[αβ]
(
εαβγδCABψ

A
δ ψ

B
γ − 4CĀB̄ψ

αĀψβB̄
)
, (4.17)

as dω(3)
1 = 4dω(3)

2 , we have dω̃(3) = 0. The expression in (4.17) is the usual 3-form
cocycle needed for the Green-Schwarz Wess-Zumino term by integrating it over D = 3
supermanifold [42].

Notice that this model is crucially different form the N = (4, 0) we have previously
considered, in which case, in fact, the 3-form ω(3) in (4.7) is not closed. Here, in the
N = (2, 2) model, the closure of ω̃(3) is due to Fierz and Schouten identities. One can then
add a (commuting) 2-form gauge potential B(2) such that

dB(2) = ω̃(3) , (4.18)

which trivializes the Hilbert polynomial,

P (A1, t, t
2) = 1− t4

1− t4 = 1 . (4.19)

Let us conclude our study by mentioning that, as far as the FDA of the associated D = 6
supergravity theory is concerned, the supergravity multiplet should include, besides the
supervielbein, the 2-form gauge potential trivializing ω̃(3), the appropriate spin-1/2 fields
and a scalar, also four gauge 1-forms such that

dAAB̄ = ψAαψ
B̄α . (4.20)

The latter do not appear in the above discussion as they are not R-symmetry invariant.
Really, in order to find these objects within our approach, one should consider h′ = so(6),
which indeed allows the explicit computation of Lorentz-invariant expressions (and, in
particular, cocycles) with free R-symmetry indices.

4.1.3 N = (2, 0) supersymmetry

Let us analyze here the N = (2, 0) case, which is a chiral theory with SU(2) R-symmetry
group, whose corresponding coset space is (SU(2) n sISO((2, 0)|6))/(SO(6)× SU(2)).

The character of the vector representation of the vielbein remains unaltered with re-
spect to the one in section 4.1.1, whereas the one of the gravitini becomes

χψ(z1, z2, z3, w) =
(
z1 + z2

z1
+ z3
z2

+ 1
z3

)(
w + 1

w

)
. (4.21)

In addition, the integration measure related to the R-symmetry group in the case at hand
has to be changed with respect to the one in section 4.1.1 to the one given in (3.4).

The resulting Hilbert-Poincaré polynomial is

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2(u+ u5) + u6 , (4.22)

where now g/h = (su(2) n siso((2, 0)|6))/(so(6) ⊕ su(2)) and h′ = h = so(6) ⊕ su(2). Let
us observe that the expression on the right-hand side of (4.22) is just the numerator of
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the N = (4, 0) case, given in (4.6); the reason is that the expressions for the invariants in
(4.7) remain unaltered in the present case, except for the fact that CAB is replaced by the
symplectic matrix for SU(2), which here, with a little abuse of notation, we denote in the
same way as CAB. The denominator is absent, since there is no quartic invariant ω(4)

1 as
in (4.7), which now vanishes, due to the following Schouten identity:

CABCCD − CCBCAD − CADCCB = 0 , (4.23)

with A,B,C,D = 1, 2. Notice also that we could have easily guessed the expression
of (4.22) from that of (4.14) by “switching off” the invariants built out of one of the two
SU(2) symplectic matrices C.

By imposing the MC equations, we get

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1− t4 , (4.24)

indicating that there is a single cohomology class, corresponding to ω(3) of section 4.1.1 (but
where now CAB denotes the symplectic matrix for SU(2)). In fact, this is the class needed
to construct the Wess-Zumino term (D1-brane). In a purely supergravity context, this can
be understood since the corresponding supergravity multiplet includes one antisymmetric
2-form B(2) with selfdual field strength, which is naturally interpreted as a trivialization
of the 3-cycle ω(3): dB(2) = ω(3).

4.2 Curved case N = 2, AdS3 × S3

In this section we explore the D = 6, N = 2 curved case, considering the supercoset
OSp(4|2)/SO(3). Its bosonic sector is described by the Cartesian product AdS3 × S3 and
it has eight supersymmetries. We use the following notation for the supervielbein:

V αβ , Aab , ψαaȧ , (4.25)

where α, β = 1, 2 are Sp(2) indices, a, b = 1, 2 are SO(3) ⊂ SO(4) indices and ȧ = 1, 2 is
an index of the gauged subgroup SO(3) ⊂ SO(4). The associated MC equations are

∇V αβ = ψαaȧψ
β

bḃ
εabεȧḃ + (V ∧ V )αβ ,

∇Aab = ψαaȧψ
β

bḃ
εαβε

ȧḃ + (A ∧A)ab ,

∇ψαaȧ = V α
βψ

β
aȧ +A b

a ψ
β
bȧ . (4.26)

In order to apply the Molien-Weyl formula, we need the characters

χV (z) =
(
z2 + 1 + 1

z2

)
,

χA(w) =
(
w2 + 1 + 1

w2

)
,

χψ(x, z, w) =
(
xwz + xw

z
+ wz

x
+ xz

w
+ x

wz
+ z

wx
+ w

xz
+ 1
xwz

)
. (4.27)
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and the integral measure (3.4). One can then prove that, setting u(t) = t, the following
Hilbert series emerges (we are considering g/h = osp(4|2)/so(3) and h′ = h = so(3)):

P (Ω•
(
g,h;T

(
h/h′

))
, t, t,z,w) =

(1− t4)(1−z2t)(1− t)(1− t
z2 )(1−w2t)(1− t)(1− t

w2 )
(1− t2)2(1− t2w2)(1− t2

w2 )(1− t2z2)(1− t2

z2 )

= 1− t
((

1+ 1
w2 +w2

)
+
(

1+ 1
z2 +z2

))
+

+ t2
((

1+ 1
w2 +w2

)
+
(

1+ 1
z2 +z2

)
+
(

1+ 1
w2 +w2

)(
1+ 1

z2 +z2
)

+2+w2 + 1
w2 +z2 + 1

z2

)
+O(t3) . (4.28)

From the numerator in the first expression one can see that both V and A and any of
their products are invariant; from the denominator one can see that the bilinears of the
form ψαaȧψ

β

bḃ
εȧḃ and any of their products are invariant. Finally, the factor (1 − t4) in the

numerator keeps track of a Schouten identity for quadrilinears in ψ.
The computation of the cohomology classes is greatly simplified thanks to the above

formula, which directly identifies SO(3)-invariant forms in the coset. The explicit con-
struction of these objects can be performed analogously to what has been done for curved
superspaces in previous sections.

5 D = 10 spacetime dimensions

5.1 N = 1 type I flat rigid superspace

Let us now apply the Molien-Weyl formula to the D = 10, N = 1 superspace case, in order
to compute the Lorentz-invariant cocycles. The coset space is G/H = sISO(1|10)/SO(10),
which can be dually described in terms of the supervielbein (V a, ψα), satisfying the follow-
ing MC equations:8

dV a = i

2 ψ̄γ
aψ , dψ = 0 , (5.1)

where d is nilpotent and the γa’s are 16× 16 gamma matrices in ten dimensions.
The characters for the 10-dimensional vector representation and 16-dimensional

spinorial representations of SO(5), which has rank 5 and corresponds to the Dynkin label
D5, read

χV (z1, . . . , z5) = z1
z2

+ z1 + z3
z2

+ z4z5
z3

+ z5
z4

+ z2
z3

+ z4
z5

+ z3
z4z5

+ z2
z1

+ 1
z1
, (5.2)

χψ(z1, . . . , z5) = z4z1
z3

+ z5z1
z2

+ z1
z4

+ z3z1
z2z5

+ z4
z2

+ z4 + z2z5
z3

+z5
z3

+ z3
z2z4

+ z3
z4

+ z2
z5

+ 1
z5

+ z2z4
z3z1

+ z5
z1

+ z2
z4z1

+ z3
z5z1

, (5.3)

8Here a, b, . . . = 0, 1, . . . , 9 are vector indices, while α = 1, . . . , 16 is a spinorial index; we use the minimal
irreducible representation, namely ψα is a Majorana-Weyl spinor in D = 10. For simplicity, in the following,
we will frequently omit writing the spinorial index.
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where z1, . . . , z5 represent the Cartan generators, which one has to integrate on within
the Molien-Weyl formula. Given the above expression of the characters, we compute the
plethystic exponentials

PE[χV u] =
10∏
i=1

(1− χV,iu) , PE[χψt] =
16∏
i=1

1
(1− χψ,it)

, (5.4)

where χV,i and χψ,i are the i-th components of the characters (5.2) and (5.3), respectively.
In order to implement the Molien-Weyl formula, we also need the invariant measure

associated with SO(10), which is given by

dµSO(10) = 1
z7

1z
7
2z

7
3z

7
4z

7
5

(
z2

1−z2
)

(z2−1)(z1−z3)(z1z2−z3)(z1z3−z2)
(
z1z3−z2

2

)(
z3−z2

4

)
×(z1z4−z5)(z1z5−z4)(z1z5−z2z4)(z1z4−z2z5)(z2z5−z3z4)(z2z4−z3z5)
×(z2−z4z5)(z1z3−z4z5)(z1z4z5−z3)(z1z4z5−z2z3)(z1z3−z2z4z5)

×
(
z2z4z5−z2

3

)(
z3−z2

5

) 1
(2πi)5 dz1dz2dz3dz4dz5 . (5.5)

The overall factor 1
z7
1z

7
2z

7
3z

7
4z

7
5
in the above expression contains also the integration measure

on the Cartan subalgebra.
Now, considering g/h = siso(1|10)/so(10) and h′ = h = so(10), one can compute the

Hilbert-Poincaré polynomial, which results to be

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− t2

(
u+ u5 + u9

)
+ u10 . (5.6)

Then, implementing the MC equations (5.1), the polynomial (5.6) boils down to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1− t4 − t12 , (5.7)

which has the following interpretation in terms of cocycles:

−t4 : ω(3) = i

2 ψ̄γaψ V
a ,

−t12 : ω(7) = i

5! ψ̄γa1...a5ψV
a1 ∧ · · · ∧ V a5 , (5.8)

where γa1...a5 = γ[a1 . . . γa5]. The closure of the two invariants above relies in the following
4ψ Fierz identities:

ψ̄γaψψ̄γaψ = 0 , ψ̄γaψψ̄γabcdeψ = 0 . (5.9)

In order to build the FDA, we now have to add new forms to compensate the two cocycles
in (5.8), that is

dB(2) = ω(3) , dB(6) = ω(7) , (5.10)

with scales t4 and t12, respectively. The form B(2) is interpreted as the well-known Kalb-
Ramond 2-form ofN = 1,D = 10 supergravity, which couples to the fundamental string F1.
Indeed, the cocycle ω(3) corresponds to the usual Wess-Zumino term. On the other hand,
the cocycle ω(7) does not have a straightforward interpretation. However, let us mention
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thatN = 1,D = 10 supegravity is an anomalous theory, since there is only a chiral gravitino
ψα, therefore the 6-form B(6) couples to a six-dimensional worldvolume (M5-brane) which
might correspond to the anomaly inflow. However, we can at least say that ω(7) is the
Hodge-dual on spacetime of the ω(3) form, associated with the magnetic dual of F1.

Taking (5.10) into account, the polynomial (5.7) is modified as follows:

P (A2, t, t
2) = 1− t4 − t12

(1− t4)(1− t12) = 1− t16 +O
(
t20
)
. (5.11)

In particular, we have the cocycle9

ω(9) = 1
2
(
B(2) ∧ ω(7) − ω(3) ∧B(6)

)
. (5.12)

The latter can then be removed by the inclusion of a new 8-form B(8), which scales as t16.
One can then prove that there are still new cocycles at the next level and that, actually,
one is left with an infinite series, which means giving rise, in principle, to an infinite series
of higher-degree differential forms.

5.2 N = 2 type IIA flat rigid superspace

We will now move on to the application of the Molien-Weyl formula to the D = 10,
N = 2 type IIA flat rigid superspace case. We therefore consider the coset super-
space G/H = ((U(1)L ×U(1)R) n sISO(2|10))/(SO(10)×U(1)L ×U(1)R)), whose asso-
ciated supervielbein satisfies

∇V a = i

2
(
ψ̄Lγ

aψL + ψ̄Rγ
aψR

)
, ∇ψL = 0 , ∇ψR = 0 , (5.13)

where ψL/R = ±γ11ψL/R refer to the two Majorana-Weyl spinors of opposite chirality.
The application of the Molien-Weyl formula to the present case yields the following

Hilbert series:

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1− 2t2u+

(
t4 + t2

)
u2 − 2t4u3 +

(
t6 + 2t4 + t2

)
u4

(1− t2)(1− t4)

− 2
(
t6 + t4 + t2

)
u5

(1− t2)(1− t4) (5.14)

+
(
t6 + 2t4 + t2

)
u6 − 2t4u7 +

(
t4 + t2

)
u8 − 2t2u9 + u10

(1− t2)(1− t4) ,

where we have considered g/h = ((u(1)L ⊕ u(1)R) n siso(2|10))/(so(10) ⊕ u(1)L ⊕ u(1)R)
and h′ = h = so(10) ⊕ u(1)L ⊕ u(1)R. When we implement the MC equations (5.13), the
above polynomial reduces to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1− t4 + t6

1− t2 . (5.15)

9The class corresponding to t16 actually emerges from the trivialization of one of the two classes pre-
viously discussed. In fact, for example, ω(9) = B(2) ∧ ω(7) is already closed and nonexact. What happens
when we introduce both trivializers is that the two nonexact closed forms B(2) ∧ ω(7) and B(6) ∧ ω(3) differ
by an exact term.
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Let us now analyze the cocycles. The factor 1/(1 − t2) is given in terms of a commuting
2-form which is compensated by a 1-form C(1),10

ω(2) = −ψ̄RψL = dC(1) , (5.16)

where C(1) is interpreted as the Ramond-Ramond potential which couples to the D0-brane.
Note that the term t6 at numerator in (5.15) arises from cancellations in the series

expansion of (5.14). It corresponds to a (t2)3 contribution, that is ω(2) ∧ ω(2) ∧ ω(2).
By including C(1), the Hilbert-Poincaré series gets modified as follows:

P (A1, t, t
2) = 1− t4 + t6

1− t2 (1− t2) = 1− t4 + t6 . (5.17)

This polynomial leads to an infinite-dimensional FDA: let us consider the first steps in the
trivialization of the Hilbert series.

We start by compensating the −t4 term, which corresponds to the 3-form cocycle

ω(3) = −i
(
ψ̄LγaψL − ψ̄RγaψR

)
V a , (5.18)

by means of a 2-form B(2), that is

ω(3) = dB(2) . (5.19)

Such 2-form corresponds to the Kalb-Ramond form of N = 2 supergravity and it couples
to the F1-string [43]. The inclusion of B(2) further modifies the FDA series as follows:

P (A2, t, t
2) = 1− t4 + t6

1− t4 = 1 + t6 + t10 +O
(
t13
)
, (5.20)

where new cocycles appear. In particular, we have

ω(4) = −ω(3) ∧ C(1) + 1
2
(
ψ̄LγabψR + ψ̄RγabψL

)
V aV b , (5.21)

which can be compensated by a 3-form potential C(3),

ω(4) = dC(3) . (5.22)

The C(3) field is precisely the Ramond-Ramond charge appearing in the type IIA super-
gravity spectrum.

Let us mention here, that ω(4) can be seen as emerging from the dimensional reduction
of the 4-form cocycle of the D = 11 case that will be derived in section (6), whereas C(3)

arises from the dimensional reduction of the 3-form gauge potential appearing in D = 11
supergravity.

We have therefore recovered the higher-form gauge potentials of type IIA supergravity,
namely C(1), B(2), and C(3) (see, e.g., [44]).

With the inclusion of C(3), the series becomes

P (A3, t, t
2) = 1− t4 + t6

1− t4 (1− t6) = 1 + t10 − t12 +O
(
t13
)
, (5.23)

producing an infinite number of cocycles and associated trivializing forms.
10Let us mention that in applying our method we do not see the 0-form dilaton field actually appearing

in the theory.
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5.3 N = 2 type IIB flat rigid superspace

In this section, we apply the Molien-Weyl integral method to the D = 10, N = 2 type
IIB flat rigid superspace case, computing Lorentz-invariant cocycles. We consider the
coset superspace G/H = (SO(2) n sISO(2|10))/(SO(10)× SO(2)). In this case, the MC
equations are

∇V a = i

2 ψ̄
AγaψA , ∇ψA = 0 , (5.24)

where A = 1, 2 is the SO(2) R-symmetry index.
The result of the Molien-Weyl computation (with g/h = (so(2)n siso(2|10))/(so(10)⊕

so(2)) and h′ = h = so(10)) is

P (Ω•
(
g,h;T

(
h/h′

))
,t,u,w)= 1

1−t4
(

1−ut2
(
w2+ 1

w2 +1
)

+u2t4
(
w2+ 1

w2 +1
)

−u3
(
t2+t6

)
+u4t4

(
w2+ 1

w2 +2
)
−u5

(
t2+t6

)(
w2+ 1

w2 +1
)

+u6t4
(
w2+ 1

w2 +2
)
−u7

(
t2+t6

)
+u8t4

(
w2+ 1

w2 +1
)

−u9t2
(
w2+ 1

w2 +1
)

+u10
)

(5.25)

where the parameter w is related to SO(2). Let us give the explicit form of some of the
terms appearing in the above expression:

1
1− t4 : ω(4) = ψ̄AγaψBψ̄Aγ

aψB ,

−ut2
(
w2 + 1

w2 + 1
)

: ω(3)|AB = i

2V
aψ̄(Aγaψ

B)= i

2V
aψ̄(Aγaψ

B)0 + i

4δ
ABV aψ̄CγaψC ,

+u2t4
(
w2 + 1

w2 + 1
)

: ω(6)|AB = V aV bεCDψ̄
Cγabcψ

Dψ̄(AγcψB) ,

−t2u3 : ω(5) = εABψ̄
Aγabcψ

BV aV bV c ,

−t6u3 : ω(9) = δADεBCδEF ψ̄
AγaψBψ̄CγbψDψ̄Eγabcdeψ

FV cV dV e ,

u10 : ω(10) = εa1...a10V
a1 ∧ · · · ∧ V a10 , (5.26)

where with (AB)0 we denote tracelessness in the symmetric indices (AB). Implementing
the MC equations (5.24), the Hilbert-Poincaré polynomial (5.25) boils down to

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2, w) = 1− t4

(
w2 + 1

w2

)
. (5.27)

The second term in the above expression indicates the presence of a 3-cocycle in the sym-
metric traceless representation of SO(2), with two independent components. The explicit
form of this object is

ω(3)|(AB)0 = i

2V
aψ̄(Aγaψ

B)0 , (5.28)

which can by trivialized by introducing two corresponding 2-forms

dB(2)|(AB)0 = ω(3)|(AB)0 . (5.29)
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These actually correspond to the Kalb-Ramond and Ramond-Ramond 2-forms appearing
in the type IIB supergravity spectrum. To compare with the relevant literature, see for
example [45, 46], it is sufficient to rearrange the independent components in a representa-
tion of U(1) and to multiply the resulting FDA structure by the coset representatives of
SU(1, 1)/SO(2), describing the dilaton and the Ramond-Ramond 0-form. In the vacuum,
where the scalar fields are constant, this “dressing” can automatically be avoided.

The polynomial of the associated FDA is

P (A1, t, t
2, w) =

1− t4
(
w2 + 1

w2

)
(1− t4w2)(1− t4

w2 )
= 1− t8 +O

(
t12
)
, (5.30)

leading to an additional cocycle in the trivial SO(2) representation. This corresponds to a
5-form ω(5) which can be compensated by the inclusion of a 4-form gauge potential C(4).
The latter shall correspond to the Ramond-Ramond 4-form with selfdual field strength.
Then, due to the inclusion of the 4-form C(4), the Hilbert series becomes

P (A2, t, t
2, w) =

1− t4
(
w2 + 1

w2

)
(1− t4w2)(1− t4

w2 )(1− t8)

= 1− t12
(
w2 + 1

w2

)
− t16

(
w4 + 1

w4 + 1
)

+O
(
t20
)
, (5.31)

signalling the presence of an odd 7-form cocycle ω(7)|(AB)0 in the symmetric traceless repre-
sentation of SO(2) (corresponding to the Hodge-dual on spacetime of the 3-form introduced
above), together with an odd singlet 9-form cocycle ω(9) in the trivial SO(2) representation
and other two odd 9-form cocycles ω(9)|(AB)0(CD)0 at order t16, which form a doublet giving
rise to the dual description of the scalar fields of type IIB supergravity. Let us mention
here that ω(7)|(AB)0 may be seen as corresponding to a doublet of SU(1, 1)/SO(2) and that
the 6-form gauge potentials B(6)|(AB)0 trivializing it couple to the D5-brane/NS5-brane.
On the other hand, the trivializer of the singlet 9-form cocycle ω(9) is a 8-form B(8) which
couples to the D7-brane (see, e.g., [43, 47, 48]).

6 D = 11 spacetime dimensions

In this section, we apply the Molien-Weyl formula to the D = 11, N = 1 superspace case,
showing that, starting from the analysis of the coset space G/H = sISO(1|11)/SO(11),
one can reproduce the whole FDA describing the vacuum structure underlying D = 11
supergravity [3, 49] (see also [1]).

The coset space can be dually described in terms of the supervielbein (V a, ψα), satis-
fying the MC equations11

dV a = i

2 ψ̄Γaψ , dψ = 0 , (6.1)

where d is the nilpotent differential operator and the capital Greek letter Γ denote the
D = 11 Dirac matrices.

11Here, a, b, . . . = 0, 1, . . . , 10 are vector indices, α = 1, . . . , 32 a spinorial index, and ψα is a Majorana
gravitino. For simplicity, in the following we will frequently omit writing the spinorial index.
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We will now compute all possible Lorentz-invariant combinations of V a, ψα with the
Molien-Weyl formula. To this end, we recall that SO(11) has rank 5 and that its Dynkin
label is B5.

Two key ingredients needed for this analysis are the character χV (z1, . . . , z5) of the
11-dimensional vectorial representation of V a and the character χψ(z1, . . . , z5) of the 32-
dimensional spinorial representation of ψα, namely

χV (z1, . . . , z5) = 1 + z2
5
z4

+ z1 + z2
z1

+ z3
z2

+ z4
z3

+ 1
z1

+ z1
z2

+ z2
z3

+ z3
z4

+ z4
z2

5
, (6.2)

χψ(z1, . . . , z5) = z5z1
z2

+ z5z1
z3

+ z3z5z1
z2z4

+ z5z1
z4

+ z3z1
z2z5

+ z4z1
z2z5

+ z4z1
z3z5

+ z1
z5

+z5
z2

+ z2z5
z3

+ z5
z3

+ z2z5
z4

+ z3z5
z2z4

+ z3z5
z4

+ z5
z4

+ z5 + z2
z5

+ z3
z2z5

+z3
z5

+ z4
z2z5

+ z2z4
z3z5

+ z4
z3z5

+ z4
z5

+ 1
z5

+ z2z5
z3z1

+ z2z5
z4z1

+ z3z5
z4z1

+z5
z1

+ z2
z5z1

+ z3
z5z1

+ z2z4
z3z5z1

+ z4
z5z1

. (6.3)

From those characters one can compute the plethystic exponentials

PE[χV u] =
11∏
i=1

(1− χV,iu) , PE[χψt] =
32∏
i=1

1
(1− χψ,it)

, (6.4)

where χV,i and χψ,i are the i-th components of the characters (6.2) and (6.3), respectively.

To implement the Molien-Weyl formula, we also need the invariant measure associated
with SO(11). We get

dµSO(11) = 1
z8

1z
8
2z

8
3z

8
4z

9
5

(1−z1)(1−z2)(z1−z2)
(
z2

1−z2
)

(z1−z3)(z2−z3)(z1z2−z3)(z2−z1z3)

×
(
z2

2−z1z3
)

(z2−z4)(z3−z4)(z1z3−z4)(z3−z1z4)(z2z3−z1z4)(z1z3−z2z4)

×
(
z2

3−z2z4
)(
z3−z2

5

)(
z4−z2

5

)(
z1z4−z2

5

)(
z4−z1z

2
5

)(
z2z4−z1z

2
5

)(
z1z4−z2z

2
5

)
×
(
z3z4−z2z

2
5

)(
z2z4−z3z

2
5

)(
z2

4−z3z
2
5

) 1
(2πi)5 dz1dz2dz3dz4dz5 , (6.5)

where the overall factor 1
z8
1z

8
2z

8
3z

8
4z

9
5
also contains the integration measure on the Cartan

subalgebra.
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The Hilbert-Poincaré series with g/h = siso(1|11)/so(11) and h′ = h = so(11) is in the
form

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) =

∮
|zi|=1,i=1,...,5

PE[χV u]PE[χψt]dµSO(11) , (6.6)

which, after the residue integration, gives

P (Ω•
(
g,h;T

(
h/h′

))
, t,u) = 1

1− t4
(
1+ t4u8− t4u7 + t4u4− t4u3 + t2u10− t2u9 + t2u2− t2u

−
(
−t6− t4− t2

)
u6−

(
t6 + t4 + t2

)
u5−u11

)
. (6.7)

Let us now give an interpretation to some of the above terms:

1
1− t4 : ω

(4)
1 = ψ̄Γabcdeψψ̄Γabcdeψ ,

−t2u : ω(3) = i

2 ψ̄ΓaψV a ,

t2u2 : ω
(4)
2 = 1

2 ψ̄ΓabψV aV b ,

−t4u3 : ω(3) ∧ ω(4)
2 = i

4 ψ̄Γ[aψψ̄Γbc]ψV aV bV c ,

u11 : ω(11) = εa1...a11V
a1 ∧ · · · ∧ V a11 . (6.8)

The factor 1/(1− t4) stands for the powers of the invariant expression ψ̄Γabcdeψψ̄Γabcdeψ,
which is commuting and therefore it can appear with any power. Notice that, in prin-
ciple, one could consider other two expressions at the same scale level: ψ̄Γaψψ̄Γaψ and
ψ̄Γabψψ̄Γabψ. However, these expressions are not independent, precisely because of the
following 3ψ relation:

AΓaψψ̄Γaψ +B Γabψψ̄Γabψ +C Γabcdeψψ̄Γabcdeψ = 0 , A− 10B − 6 · 5!C = 0 . (6.9)

In particular, the latter yields the 3ψ Fierz identities

5Γaψψ̄Γaψ + 1
2Γabψψ̄Γabψ = 0 ,

6Γaψψ̄Γaψ + 1
5!Γabcdeψψ̄Γabcdeψ = 0 , (6.10)

showing that we are left with a single independent 4ψ invariant.
Then, implementing the MC equations, we finally get

P (Ω•
(
g, h;T

(
h/h′

))
, t, t2) = 1 + t6 , (6.11)

where the t6 stands for ω(4)
2 = 1

2 ψ̄ΓabψV aV b. Thus, as it is well-known (see, e.g., [1, 3]), in
the present case the collection of invariants reduces to one cohomology class only.

In order to construct the FDA, we have to add a 3-form A(3) scaling with t6, in such
a way that

dA(3) = ω
(4)
2 . (6.12)
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Then, the resulting polynomial becomes

P (A1, t, t
2) = (1 + t6)(1− t6) = 1− t12 . (6.13)

This means that the FDA is not complete: indeed, one can immediately see, that there is
a new cohomology class

ω(7) = 15A(3) ∧ ω(4)
2 + i

2 ψ̄Γa1...a5ψV
a1 ∧ · · · ∧ V a5 , (6.14)

whose closure in fact relies on the 3ψ Fierz identity

Γ[a1a2ψψ̄Γa3a4]ψ + 1
3Γa1...a5ψψ̄Γa5ψ = 0 . (6.15)

To cancel the class (6.14), one needs to introduce a further commuting potential B(6) such
that dB(6) = ω(7). Therefore, the final expression for the Hilbert-Poincaré series is

P (A2, t, t
2) = (1 + t6)(1− t6)

1− t12 = 1− t12

1− t12 = 1 . (6.16)

Therefore, we have recovered the full FDA describing the vacuum structure underlying
D = 11 supergravity by using the Molien-Weyl integral method.

7 D = 12 spacetime dimensions

In this section, we focus on the computation of invariants and cocycles for 12-dimensional
theories. This number of dimensions is needed for any hypothetical nonperturbative com-
pletion of type IIB superstrings.

However, the standard signature (11, 1) would produce, through dimensional reduction,
higher spins in the 4-dimensional theory. As it is known, a finite number of higher-spin
particles are problematic from a QFT point of view. A solution to this problem is achieved
by instead considering a (10, 2) signature. In this case, Majorana-Weyl spinors exist and the
compactified theory can be argued to be well-behaved. The low energy description of such
a hypothetical “Father” theory, F-theory, is 12-dimensional supergravity. In the flat case,
the construction of an action principle for such a theory has been proven to be challenging
both in the component approach and with the known superspace techniques [50–52]. There
is a twelve dimensional theory using the MacDowell-Mansouri-like construction for N = 1
supergravity in 10 + 2 dimensions presented in [53]. In this framework, we hope that the
construction of invariants and cocycles, which as we shall see exactly coincide in this case,
will help on this matter.

In this case, the Lorentz symmetry is described by SO(12) and we are dealing with the
coset space G/H = sISO(1|12)/SO(12). This superspace can be dually described in terms
of the supervielbein (V a, ψ), where a, b, . . . = 0, 1, . . . , 11 and ψ is a Majorana-Weyl spinor,
satisfying the following MC equations (due, in particular, to the properties of the gamma
matrices in D = 12):

dV a = 0 , dψ = 0 , (7.1)
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where d is nilpotent. We write the vectorial representation of the vielbein V a,

χV (z1, . . . , z6) = z1
z2

+ z1 + z3
z2

+ z4
z3

+ z5z6
z4

+ z6
z5

+ z2
z3

+ z3
z4

+ z5
z6

+ z4
z5z6

+ z2
z1

+ 1
z1
, (7.2)

and the spinorial representation of ψ,

χψ(z1, . . . ,z6) = z5z1
z2

+ z5z1
z4

+ z6z1
z3

+ z3z6z1
z2z4

+ z4z1
z2z5

+ z1
z5

+ z3z1
z2z6

+ z4z1
z3z6

+ z2z5
z3

+ z5
z3

+ z3z5
z2z4

+ z3z5
z4

+ z6
z2

+ z2z6
z4

+ z6
z4

+z6 + z3
z2z5

+ z3
z5

+ z2z4
z3z5

+ z4
z3z5

+ z2
z6

(7.3)

+ z4
z2z6

+ z4
z6

+ 1
z6

+ z2z5
z4z1

+ z5
z1

+ z2z6
z3z1

+ z3z6
z4z1

+ z2
z5z1

+ z4
z5z1

+ z3
z6z1

+ z2z4
z3z6z1

,

where z1, . . . , z6 are the integration variables related to the Cartan’s of SO(12) (we recall
that SO(12) has rank 6 and its Dynkin label is D6). The integration measure is given by

dµSO(12) = 1
z9

1z
9
2z

9
3z

9
4z

9
5z

9
6

(1−z2)
(
z2

1−z2
)

(z1−z3)(z1z2−z3)(z2−z1z3)
(
z2

2−z1z3
)

×(z2−z4)(z1z3−z4)(z3−z1z4)(z2z3−z1z4)(z1z3−z2z4)
(
z2

3−z2z4
)(
z4−z2

5

)
×(z1z5−z6)(z5−z1z6)(z2z5−z1z6)(z1z5−z2z6)(z3z5−z2z6)(z2z5−z3z6)
×(z4z5−z3z6)(z3z5−z4z6)(z3−z5z6)(z1z4−z5z6)(z4−z1z5z6)(z2z4−z1z5z6)
×(z1z4−z2z5z6)(z3z4−z2z5z6)(z2z4−z3z5z6)

(
z2

4−z3z5z6
)(
z4−z2

6

)
. (7.4)

Consequently, as usual, we construct the plethystic polynomials using u to parametrize the
powers of V a and t as the parameter for ψ. Given that the MC equations (7.1) in the flat
case are completely trivial, the result of the Molien-Weyl computation immediately gives
us the cocycles. Considering g/h = siso(1|12)/so(12) and h′ = h = so(12), the final result
for the Hilbert-Poincaré series is

P (Ω•
(
g, h;T

(
h/h′

))
, t, u) = 1 + t2

(
u10 + u6 + u2)+ t4

(
u8 + u6 + u4)+ t6u6 + u12

1− t4 .

(7.5)
Here one could then consider u = t2, even though it is not prescribed by the MC equations.
However, since all terms have positive coefficients, there is no cancellation between terms,
which is equivalent as saying that the differential is trivial.

It is then easy to identify the contributions to (7.5): for example, the first terms are

1
1− t4 : ω

(4)
1 = ψ̄Γ̂abψψ̄Γ̂abψ ,

u2t2 : ω
(4)
2 = ψ̄Γ̂abψV aV b ,

u6t2 : ω(8) = ψ̄Γ̂a1...a6ψV
a1 ∧ · · · ∧ V a6 , (7.6)

where Γ̂ab and Γ̂a1...a6 are gamma matrices in twelve dimensions. At the moment, we do
not have a clear interpretations of those cocycles and we leave such research to future
endeavours. One possible direction is to compare with the brane scan in higher dimension,
as in [54].

– 38 –



J
H
E
P
1
2
(
2
0
2
3
)
0
8
8

8 Deformations and Spencer cohomology

In the last years, an interesting approach to classify supergravity solutions emerged [55–
63]: in particular, the Killing superalgebras of supergravity backgrounds were put into
correspondence with filtered deformations of subalgebras of the Poincaré superalgebras.
For instance, in [58] the authors proved the following theorem for D = 11 supergravity:

Theorem. The Killing superalgebra of a 11-dimensional supergravity background is a fil-
tered subdeformation of the Poincaré superalgebra.

Even though the converse is not proven, it is interesting to classify the subdeformations
of Poincaré algebras to verify, a posteriori, which correspond to Killing superalgebras of
supergravity backgrounds.

The tool to classify deformations is the (generalized) Spencer cohomology, which we
briefly describe here for the case of super-Poincaré superalgebras (see, e.g., [57, 60, 64] for
a general and exhaustive introduction). Given the Poincaré superalgebra p, we can split it
(as a vector space) by means of a Z-grading, compatible with the Z2 grading, as

p = p0 ⊕ p−1 ⊕ p−2 = so (V )⊕ S ⊕ V , (8.1)

where so (V ) is the Lorentz subspace, S collects the odd generators and V the (even)
generators of the translations. Denoting p− = p−1 ⊕ p−2 the ideal generated by the super-
translations, we define the Spencer cochains to be Lorentz-invariant cochains of p∗− (i.e.,
the cochains of p− relative to p0) with values on the whole Poincaré superalgebra (that is,
we are simply considering Chevalley-Eilenberg cochains with values in the module p, see,
e.g., [65]):

Ω• (p, p0; p) ∼=
( •∧

p∗− ⊗ p

)p0

, (8.2)

where the action is defined via the adjoint representation. The forms in p∗ inherit a Z-
grading so that a form ω ∈ S∗ has grading +1 and a form ω ∈ V ∗ has grading +2 (this
corresponds to assigning V a → t2 and ψα → t in the flat cases, as described in section 2.3);
this implies that the spaces of cochains can be decomposed according to this grading:

Ω• (p, p0; p) =
⊕
i∈Z

Ωi,• (p, p0; p) . (8.3)

The differential is defined on forms as usual (i.e., via the MC equations) and on vector
fields via the adjoint representation, that is

(dX) (Y ) = [X,Y ] , (8.4)

where with [ , ] we denote the graded Lie bracket. With this differential at hand, one can lift
the cochains to a complex and compute the cohomology. The deformations are encoded in
H2 (p, p0; p): by denoting V I = {V a, ψα} the generators of p∗− and with XĨ = {Lab, Xa, qα}
the generators of p, a form ω ∈ H2 (p, p0; p) will read as ω = ωĨIJV I∧V J⊗XĨ ; the coefficient
ωĨIJ can then be used to deform the Lie brackets Poincaré superalgebra.

We will now show how to use the Molien-Weyl formula to compute (or to simplify
the computations of) the generalized Spencer cohomology for any degree and for different
examples of flat rigid superspaces.
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8.1 Deformations of the D = 4, N = 1 Killing superalgebra and Spencer
cohomology

As discussed above, we consider the V αα̇, ψα, ψ̄α̇ forms satisfying the MC equations (3.1)
and we add the generatorsXαα̇, qα, q̄α̇, Lαβ , Lα̇β̇ of the super-Poincaré algebra, which satisfy
the equations

dXαα̇ = 0 ,
dqα = Xαα̇ψ̄

α̇ , dq̄α̇ = Xαα̇ψ
α ,

dLαβ = q(αψβ) −X(α|α̇V
α̇
β) , dLα̇β̇ = q̄(α̇ψ̄β̇) −Xα(α̇V

α
β̇) . (8.5)

These equations are derived from (8.4) and, together with (3.1), we have d2 = 0.
As in the previous sections, we shall assign a scale to the MC forms [V ] = u, [ψ] = [ψ̄] =

t, and, analogously, we will also assign the dual scales [X] = u−1, [q] = [q̄] = t−1, [L] = t0.
As discussed above, the forms under consideration belong to the space Ω• (p, p0; p).

In the following paragraphs, we compute the Lorentz-invariant objects by means of a
suitable adaptation of the Molien-Weyl formula to the present case. Besides the plethystic
polynomials for V αα̇, ψα, ψ̄α̇, we need to take into account for the transformation properties
of the generators of g under the Lorentz symmetry. Therefore, we need the factor

F (z, w) = 1
u
χX(z, w)− 1

t
χq(z)− 1

t
χq̄(w) + χL(z) + χL̄(w) , (8.6)

where χX(z, w) = χV (z, w), χq(z) = χψ(z), and χψ̄(w) = χq̄(w) are the characters of the
generators X, q, and q̄, respectively (and they coincide with the those of V , ψ, and ψ̄, since
they transform in the same way) and

χL(z) = z2 + 1
z2 + 1 , χL̄(w) = w2 + 1

w2 + 1 , (8.7)

which are the (2, 0) and (0, 2) representations. The factors 1/u and 1/t in (8.6) take into
account the scales of Xαα̇ and qα, q̄α̇, while the L’s are scaleless. Then, we can finally write
the formula for the Hilbert series in the presence of deformations,

Pdef. (Ω• (p, p0; p) , t, u) =
∮
|z|=1

∮
|w|=1

F (z, w)PE[χV u]PE[χψt]PE[χψ̄t]dµSU(2)×SU(2) ,

(8.8)
where the measure is given in (3.5) and the plethystic polynomials are given in (3.3). In this
formula, we introduce only one factor for each generator X, q, q̄, L, L̄, since we consider
only the linear sector with only one power of them.

The computation of the expression in (8.8) by means of the residues formula gives

Pdef. (Ω• (p, p0; p) , t, u) = −2t4u3 + 3t4u2 − t4 + 2t2u4 + t2u3 − 4t2u2 + 2t2u

+ t2

u
− 2u4 + 2u3 − u2 + 2u− 3 , (8.9)

where we have kept the scales of V and X separated from those of ψ, ψ̄, q, and q̄.
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Let us now list some of the above invariants:

−3 : ω
(1)
1 = Xαα̇V

αα̇, ω
(1)
2 = qαψ

α, ω
(1)
3 = q̄α̇ψ̄

α̇

t2

u
: ω

(2)
1 = Xαα̇ψ

αψ̄α̇

2u : ω
(2)
2 = V αα̇ψαq̄α̇, ω

(2)
3 = V αα̇qαψ̄α̇, (8.10)

The cohomology is easily obtained by setting u = t2:

Pdef.
(
Ω• (p, p0; p) , t, t2

)
= −2 + 2t2 − 2t6 + 2t8 . (8.11)

Notice, for example, that the first addendum −2 represents the cohomology among the
scaleless terms in (8.10). Indeed, by acting with d on the three invariant, we get

d
(
aXαα̇V

αα̇ + bqαψ
α + cq̄α̇ψ̄

α̇
)

= 0 ⇒ a+ b+ c = 0 . (8.12)

Therefore, from three invariants there emerge just two cohomology classes. In this case,
the Spencer cohomology group at scaling weight 2, H2(p−, p), is generated by the repre-
sentatives

ω̃
(2)
1 = V αα̇ψαq̄α̇ − ψαψβLαβ , ω̃

(2)
2 = V αα̇qαψ̄α̇ − ψ̄α̇ψ̄β̇L

α̇β̇ . (8.13)

This result is in agreement with the discussion in [59].

8.2 Deformations of the D = 11, N = 1 Killing superalgebra and Spencer
cohomology

In this section, we study the deformations of the Killing superalgebra for the D = 11 super-
gravity background, which was discussed in [62], giving an application of our mathematical
tools in computing the generalized Spencer cohomology for the D = 11 case. Killing su-
peralgebras are generated by the Killing spinors and Killing vectors of a given supergravity
background and the generalized Spencer cohomology [64] computes their deformations as
previously discussed.

With respect to section 6, we add the generators of the Killing superalgebra,
Xa, qα, Lab, in the vectorial, spinorial, and adjoint representations, respectively. For them,
we have the following equations:

dXa = 0 , dqα = − i2Xa(Γaψ)α , dLab = X[aVb] −
1
2 q̄Γabψ , (8.14)

which are complemented by the MC equations (6.1).
In this case, we have to introduce the following prefactor

F (z1, . . . , z5) = 1
u
χX(z1, . . . , z5)− 1

t
χq(z1, . . . , z5) + χL(z1, . . . , z5) (8.15)

in the computation of the Molien-Weyl formula for the Hilbert-Poincaré series,

Pdef. (Ω• (p, p0; p) , t, u) =
∮
|zi|=1,i=1,...,5

F (z1, . . . , z5)PE[χV u]PE[χψt]dµSO(11) , (8.16)
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where χX(z1, . . . , z5) = χV (z1, . . . , z5) and χq(z1, . . . , z5) = χψ(z1, . . . , z5) are the charac-
ters of the generators X and q, respectively, while χL(z1, . . . , z5) is the character of the
adjoint representation of SO(11). The explicit expression reads

Pdef. (Ω• (p, p0; p) , t, u) = 1
(1− t4)u(u− 1)

[
−t8u7 + t6

(
−
(
u9 − u8 + u6

))
+t4

(
u10 + u9 − u8 + u7 − u6 + 2u5 − 2u4 + u

)
+t2

(
−2u10 + u9 − u8 + u7 − 3u6 + u5 − u4 + u3 − 2u2 − 1

)
+u

(
u10 + u8 + u6 + u4 + u2 + u+ 2

)]
, (8.17)

which describes all possible invariant expressions constructed in terms of the ingredients
discussed above. Again, the factor 1/(1− t4) is related to the invariant ψ̄Γabcdeψψ̄Γabcdeψ.

In order to compute the Spencer cohomology, we finally set u = t2, obtaining

Pdef.
(
Ω• (p, p0; p) , t, t2

)
= −1− t6 + t8 , (8.18)

which describes three cohomology classes. The interpretation is the following:

−1 : ω(1) = XaV
a − q̄αψα ,

−t6 : ω(5) = (XaV
a − q̄αψα) ∧ (ψ̄ΓcdψV cV d) , (8.19)

+t8 : ω(6) = iψ̄ΓabcdeψV aV bV cV dXe+3
2(ψ̄ΓabψV aV b) ∧ (ψ̄ΓcdψLcd+10i q̄ΓcψV c) .

Then, we see that

ω(5) = 2ω(1) ∧ ω(4)
2 , ω(6) = iψ̄ΓabcdeψV aV bV cV dXe+3ω(4)

2 ∧ (ψ̄ΓcdψLcd+10i q̄ΓcψV c) ,
(8.20)

where the explicit expression of the 4-form ω
(4)
2 is, in fact, ω(4)

2 = 1
2 ψ̄ΓabψV aV b, as given

in section 6. Note that

dω(6) = −2ψ̄Γabcdeψψ̄ΓaψV bV cV dXe (8.21)

+3ω(4)
2 ∧

[
ψ̄Γcdψ

(
XcV d − 1

2 q̄Γ
cdψ

)
−5
(
ψ̄ΓcdψXcV d + q̄Γcψψ̄Γcψ

)]
= 0 ,

due to the Fierz identities (6.10) and (6.15). Observe that, in the case of the CE coho-
mology, the second cohomology class ω(6) emerges once the first class ω(4)

2 is trivialized by
adding the potential A(3), while here the second cohomology class ω(6) emerges at the first
stage of computation.

Let us end this section by commenting on the absence of 2-form cocycles: this is in
agreement with the results in [57, 58, 62]. Nontrivial Spencer cohomologies, and there-
fore possible different supergravity backgrounds, could instead be obtained by considering
different subalgebras in the definition of the filtered deformation.
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Spacetime Supersymmetry Symmetry group Cocycles

D = 4 Flat

N = 1 so(4) ω(3), ω(4)
1 , ω(4)

2 , . . .

N = 2

so(4)⊕ u(1) ω(3)A
B , . . .

so(4)⊕ su(2) ω
(2)
1 , ω(2)

2 , ω(3)

so(4)⊕ u(2)

N = 4
so(4) ω

(2)
1 , ω(2)

2 , . . .

so(4)⊕ su(4)

D = 4 Curved

N = 1 so(4) ω(4), ω(7)

N = 2 so(4)⊕ so(2) ω(2), ω(4), ω(7)

N = 4 so(4)⊕ so(4) ω
(4)
1 , ω(4)

2 , ω(4)
3 , ω(7)

D = 6 Flat

N = (4, 0) so(6)⊕ usp(4)

N = (2, 2) so(6)⊕ su(2)⊕ su(2) ω(3)

N = (2, 0) so(6)⊕ su(2) ω(3)

D = 10 Flat. Type I N = 1 so(10) ω(3), ω(7), ω(9), . . .

D = 10 Flat. Type IIA N = 2 so(10)⊕ u(1)L ⊕ u(1)R ω(2), ω(3), ω(4), . . .

D = 10 Flat. Type IIB N = 2 so(10) ω(3)|(AB)0 , ω(5), ω(7), . . .

D = 11 Flat N = 1 so(11) ω(4), ω(7)

D = 12 Flat N = 1 so(12) ω
(4)
1 , ω(4)

2 , . . .

Table 1. Cocycles in diverse dimensions and for different amounts of supersymmetry. Empty
boxes indicate that the only nontrivial cohomologies are the constants.

9 Conclusions

In this paper we have shown that the Molien-Weyl integral formula, which allows us to
derive invariant polynomials and, consequently, cohomologies, is a powerful mathemati-
cal tool to construct FDAs, simplifying the study of the underlying vacuum structure of
supergravities. After introducing the method, we have provided several applications, by
considering diverse spacetime dimensions and amounts of supersymmetry, both in the case
of flat superspaces and of curved supermanifolds. The results are displayed in table 1.

In some cases, the Hilbert-Poincaré series implies that the corresponding FDA must be
infinite dimensional. We proposed some interpretations, but a complete comprehension is
still missing and will deserve further research. We also plan to extend our study to gauge
hierarchies [39, 66–68] in the context of deformations and to the framework of integral
forms [69–73].
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We argue that the Molien-Weyl integral method could also be applied to write the
invariant polynomials in the case in which the base space is enlarged by the presence of extra
bosonic and fermionic fields. In particular, the latter may turn out to be crucial ingredients
to trivialize FDAs, yielding the hidden superalgebra(s) underlying D ≥ 4 supergravities in
vacuum, in the spirit of [3, 22–24]. Such study will be the subject of future endeavours.
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