
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Evaluation of X.509 Certificate Processing in Transport Layer Security Interceptors / Berbecaru, Diana Gratiela;
Sisinni, Silvia; Simone, Matteo. - ELETTRONICO. - (2024), pp. 1-6. (Intervento presentato al convegno 2024 IEEE
Symposium on Computers and Communications (ISCC) tenutosi a Paris (FRA) nel 26 - 29 June 2024)
[10.1109/ISCC61673.2024.10733685].

Original

On the Evaluation of X.509 Certificate Processing in Transport Layer Security Interceptors

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCC61673.2024.10733685

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991441 since: 2024-12-12T12:33:51Z

IEEE

On the evaluation of X.509 certificate processing
in Transport Layer Security interceptors

Diana Gratiela Berbecaru
Politecnico di Torino, Italy

Dip. di Automatica e Informatica
diana.berbecaru@polito.it

Silvia Sisinni
Politecnico di Torino, Italy

Dip. di Automatica e Informatica
silvia.sisinni@polito.it

Matteo Simone
Politecnico di Torino, Italy

Corso Duca degli Abruzzi 24, 10129
Torino (ITALY)

Abstract—The Transport Layer Security (TLS) interceptors
are applications running on client devices or on separate ma-
chines that filter TLS-protected traffic between two endpoints.
They split the original TLS channel into two TLS channels
and they might significantly impact the security obtained. They
are increasingly used and installed by numerous end users or
network administrators. It is necessary to assess X.509 certificate
processing in TLS interceptors since flaws or problems in
performing this task correctly and completely may weaken the
client’s communication security. We define X.509-related tests,
which are divided into five categories based on which part(s) of
the X.509 certificate fields or extensions get analyzed. We propose
a method for automatically generating wrong, malformed, or
unusual X.509 certificates (and chains) and configuration files
suitable for the most common web servers, like Apache or Nginx.
We deploy the generated configuration files on the TLS-aware
web servers in an experimental testbed set up for testing the
behavior of four selected TLS interceptors, two antivirus, and two
proxy applications running on different operating systems. We
report the results obtained, underlining the need to test in-depth
such applications so that they would not decrease the security
levels achieved by the clients.

Index Terms—Web PKI, X.509 certificate, TLS interception,
certificate validation

I. INTRODUCTION

Digital X.509 certificates issued by CAs (Certification Au-
thorities) in the frame of public key infrastructures have been
long used to implement security properties in applications
and security protocols. In particular, the TLS protocol [1] has
driven the continuous update of the X.509 certificate format
[2] to accommodate new extensions. TLS allows to set up
a secure channel between a client, which is an application
(like a web browser) and the destination server, such as a
web server. The security parameters, such as the cryptographic
keys for symmetric encryption and for integrity protection,
or the algorithms employed, are negotiated at the connection
establishment in the so-called TLS handshake. In this phase,
the server must authenticate through an X.509v3 certificate,
which is validated by the client to assess server’s identity.

In the last decade, due to security, administrative, business
reasons, or even governmental choices (see Sect. III), the TLS
interception model has emerged. In this model, the original
channel is split in two TLS channels where the element in
between, called TLS interceptor, will in fact negotiate separate
security parameters (keys, algorithms) with the client and

server. The TLS interceptor may be an antivirus software
running on the client platform, a control application, or an
application proxy executed on a platform separate from the
client and server (as in enterprise environments). The TLS
interceptor might thus be transparent to the user and its
presence, role, and impact on the security is not always
fully understood by the end-users. Such tools are possibly
used by millions of users, sometimes they are installed by
administrators on behalf of the employees on new computers
inside companies. Often, they are downloaded/purchased by
users, and after installation, they remain active by default.

We address the validation of X.509 certificates into TLS
interceptors (called also TLS proxies or middleboxes) placed
in between an end-to-end channel to retain visibility into
the network traffic. Besides X.509v3 specification [2], the
CA/Browser (CA/B) forum, a consortium composed of the
CAs and browser vendors define the baseline requirements
[3] that indicate, among other things, some limitations or
rules to follow to consider a certificate valid. For example,
they impose shorter validity periods (of one year) for issued
certificates, and prescribe checking extensions and revocation
data. Unfortunately, this process is still subject to flaws or mis-
interpretation. In particular, “problems in the X.509 certificate
validation process such as accepting revoked, untrusted, or
invalid certificates can cause dangerous consequences paving
the way for attacks that may weaken the client’s communi-
cation security” [4]. Inconsistencies in performing correctly
and/or completely certificate validation processing in the TLS
proxies might potentially expose users to malicious man-in-
the-middle (MITM) attacks. In presence of a middlebox, client
applications have a TLS channel but the security guarantees
offered could be lowered (as underlined also in [5]) or some
security properties could even be lost as they strongly depend
on the implementation, deployment and/or configuration of the
middlebox. Several security aspects or characteristics need to
be assessed in the TLS interceptors, as described below:

a. Trust anchor(s) management. In the TLS model, the client
relies on a certificate trust store containing all the root CA
certificates. This store is extremely important and must be
adequately managed and protected, otherwise MITM attacks
are possible. When using a TLS interceptor, a client installs
a new trust anchor for the TLS interceptor certificate or its

issuer. Additionally, the private key corresponding to the TLS
interceptor certificate must be adequately protected. Previous
works observed that the management of the TLS interceptor’s
trust anchor (and keys) is subject to errors [5]. Since the
root certificates of the TLS interceptors might be valid for
a long time (around ten years), the TLS clients may be
vulnerable to impersonation attacks when the private key is
not suitably protected, e.g., when the TLS interceptor reuse the
same public/private key across installations. If the middlebox
stops working, such as due to an expired license, the root CA
certificate remains installed on the client. Consequently, the
applications relying on the (root) certificate trust store will
continue to trust any web content signed by that certificate,
which opens the door to potential MITM attacks. Thus, a side
effect of TLS interceptor installation is that the root certificate
added to the trust CAs store for that interception product has
security implications that impact client applications beyond
the TLS proxy’s lifespan.

b. X.509 certificate validation. A TLS interceptor receiving
a certificate from the server must process the certificate fields
and extensions, as well as the certificate chains. This process is
complex and often mistakenly executed. Even for well-known
and tested TLS libraries and clients, this task is error-prone:
the revocation status checking is often skipped [6] [7], various
desktop and mobile web browsers behave differently when
processing X.509 fields or extensions considered optional [8]
because their interpretation is not mandated by the standard [2]
or by the CA/B baseline requirements [3]. Some applications
(especially the ones for mobiles) may even consider wrongly a
certificate as valid even though mandatory fields contain wrong
or malformed values, like the certificate expiration date [9].

c. Resistance to TLS attacks. The middleboxes might be
subject to TLS attacks exploiting potential vulnerabilities in
the protocol implementation, specification, or configuration on
the end nodes [10] [11]. Outdated TLS proxies lacking support
for safe TLS protocol versions, algorithms, or the ones running
vulnerable software installations undermine the effort spent in
securing the clients (e.g., the web browsers) that might even
be installed properly and continuously updated [5].

In this work, we address the second point above, by defining
firstly crafted sets of certificate profiles aimed to test the
behavior of TLS interceptors when validating certificates. Our
research has been inspired by three related works: Kuo et al.
[9] created automatic tests used for assessing the certificate
validation in the mobile browsers, while [4] specified several
manual tests (in 2019) to check the behavior of some desktop
TLS interception products and web browsers. Highly relevant
for us were also the tests described in [5] that addressed
the testing of some TLS proxy products (in 2015) for trust
anchor management, certificate validation, and resistance to
TLS attacks. Nevertheless, the tests in [5] are manual, while
in our work, we have automatized the creation of tests through
a specific procedure and scripts developed in Python. Next, we
have set up an experimental testbed to apply the defined tests
on selected TLS interceptors, namely, Mitmproxy (a free and

open HTTPS proxy), Squid (a largely used caching proxy for
Web), and two antivirus applications, namely Kaspersky Total
Security, and ESET Smart Security, running on Windows 10,
Ubuntu, and macOS platforms.

Organization. Sect. II presents selected related work,
Sect. III explains background concepts, Sect. IV describes the
tests defined to assess certificate validation in TLS proxies and
the results obtained with the selected TLS interceptors. Finally,
Sect. V concludes the paper and indicates future work.

II. RELATED WORK

D. McLuskie and X. Belleken analyzed in 2018 [12] the
behavior of TLS clients facing certificates whose format(s)
deviate from the X.509v3 specification [2]. They individuated
a set of twelve possible erroneous certificate configurations.
They used mainly “unusual” values for the Distinguished
Name (DN) present in any certificate (referring to the sub-
ject and the issuer of the certificate), the validity period,
certificate serial number, and the digital signature applied
on the certificate. They have run the tests against two TLS
client configurations, namely a Windows 10 machine with
Mozilla Firefox version 60 and a macOS 10 with Safari
version 11.1. They showed that the two different systems
used OpenSSL differently since there were no strict rules
that the programmers had to follow. Moreover, they obtained
different results on the two platforms for a selected set
of tests. As mentioned in [4], “detecting different behavior
between at least two TLS clients is considered an indication
of a certificate validation error.” Moreover, Wazan et al. [4]
studied how some TLS interception products have reacted to
misconfigurations of servers or malformed server certificates
not respecting the standard. They considered proxies and
antivirus tools like Avast antivirus, Kaspersky Total Security,
ESET Internet Security, Squid, or Mitmproxy, measuring their
behavior between 2017 and 2019. They have also extensively
discussed revocation and tested the support for OCSP stapling
in web browsers. Luo et al. [9] undertook a systematic and
large-scale study of certificate validation mechanisms within
highly popular mobile browsers. They evaluated 30 frequent
browsers on two mobile OS versions and compared them with
five representative desktop browsers. They compiled a test
suite containing 157 test cases (divided into five categories) by
understanding the rules of multiple RFC standards and CA/B
requirements [3]. Then, they designed and implemented an
automated and generic testing pipeline for mobile browsers.

III. TLS INTERCEPTION AND X.509 PROCESSING

a) TLS interception: The TLS protocol allows to estab-
lish a secure communication channel over a TCP connection
(though variants exists over UDP as well) by guaranteeing
important security features. It is widely exploited in different
contexts or use cases nowadays, such as digital identity
management frameworks [13] [14], time distribution networks
[15] [16], Internet of Things, [17], or in the supply chains.

Since the TLS traffic is encrypted between client and server,
this might create problems in some application contexts or

environments. For example, the intrusion detection systems do
not work properly because they have to analyze the application
payload (which is hidden). Similarly, the application firewalls
cannot apply firewall policies because they cannot inspect
the application-level traffic. Some companies would also need
retain plain traffic to demonstrate later on compliance with
standards, they have to monitor outgoing traffic to prevent data
loss or exfiltration, or could require access to part of the data
(e.g. visited sites) to block access to some sites. Last but not
least, a state government could require access to specific traffic
handled via Internet Service providers.

A theoretical study of the main possible TLS interception
techniques is provided in [18]. In particular, the TLS ses-
sion splitting is the classical man-in-the-middle pattern, when
the middlebox, acting as sever towards the client and as a
client towards the server, is generally trusted by the client
to verify the validity and correctness of the server certificate.
This method is preferred by antivirus tools, parental control,
malware, student or employee monitoring systems, adblocking
software, and enterprise network appliances.

TABLE I
TESTS COVERING THE CERTIFICATE FIELDS (CLASS C1).

Test
no.

Test description

T1 Leaf certificate signed with a randomly generated key instead
of the intermediate CA’s private key.

T2 Values of the notBefore and notAfter fields are swapped,
resulting in an invalid certificate validity period.

T3 Leaf certificate without the notBefore value.
T4 Leaf certificate without the notAfter value.
T5 Leaf certificate with a long validity period (e.g., 50 years).

According to [3], the certificates issued on or after 1 September
2020 should not have a validity period greater than 397 days
and must not have a validity period greater than 398 days.

T6 Leaf certificate with the Subject’s Common Name (SCN) set
to 0x00 (NULL).

T7 Leaf certificate with the SCN set to
www.mydifferentwebsite.com instead of www.mywebsite.com
(i.e., DNS name of the test web server).

T8 Leaf certificate with the SCN set to the 0x09 (tab escape) value.
T9 Leaf certificate with SCN set to 0x08 (backspace escape) value.
T10 The Organization Unit Name, whose use is deprecated accord-

ing to [3], contains 200 ‘A’ characters.
T11 Leaf certificate with a 30 octets serial number, while serial

number should be at most 20 octets [2].
T12 Leaf certificate with an unknown critical extension.

b) X.509 format: An X.509 certificate contains several
fields, like version, serial number, Subject, Issuer, notBefore,
notAfter, and extensions that are very broad in their applicabil-
ity. Next, we provide a brief explanation for the main standard
extensions [2] related to the defined tests.

The Basic Constraints (BC) extension specifies whether the
subject of the certificate is a CA and the certificate chain
length. If this extension is present, the pathLenConstraint
(indicating the maximum number of CA certificates forming
the “certificate chain”), must be greater than or equal to 0.

The Key Usage (KU) extension is used to define the purpose
of the key contained in the certificate, more precisely, to limit

TABLE II
TESTS COVERING THE CERTIFICATE IDENTITY (CLASS C2).

Test
no.

Test description

T13 Leaf certificate with SCN set to a DNS name
(www.mywebsite.com), while the SAN extension is set to
a different DNS name (i.e., www.mydifferentwebsite.com).

T14 Leaf certificate with SCN set to NULL (0x00) and SAN
extension set to DNS name of test web server, i.e.,
www.mywebsite.com.

T15 Leaf certificate with both SCN and the SAN extension set to
NULL (0x00).

T16 Leaf certificate with SCN set to DNS name of test web server
(www.mywebsite.com), while SAN extension is absent.

T17 Leaf certificate with SCN set to 0x00, while the SAN extension
of the same certificate contains two entries, namely the DNS
names www.mywebsite.com and www.mydifferentwebsite.com.

T18 Leaf certificate with the SCN field set to NULL (0x00) char-
acter, while the SAN extension is not set.

T19 Leaf certificate with the SCN field set to NULL (0x00) char-
acter and the SAN extension contains a private IP address (i.e.,
192.168.0.106).

T20 Leaf certificate with the SCN set to the DNS name of test web
server (www.mywebsite.com) and the SAN extension set to a
private IP address (i.e., 192.168.0.106).

T21 Leaf certificate with the SCN field set to NULL (0x00),
while the SAN extension contains two entries: a DNS
name (www.mywebsite.com) and a private IP address (i.e.,
192.168.0.106).

T22 Leaf certificate with the SCN set to NULL (0x00) and the SAN
extension contains a public IP address.

T23 Leaf certificate with the SCN set to the DNS name of the
test web site, while the SAN extension contains its public IP
address.

T24 Leaf certificate with the SCN field set to NULL (0x00), while
the SAN extension contains two entries, namely a DNS name
and a public IP address.

T25 Leaf certificate with SCN set to NULL (0x00), while the SAN
extension contains two entries, namely the NULL (0x00) value
and a public IP address.

the use of a key. In particular, a public key can be exploited
for digital signature, non-repudiation, key encryption, data
encipherment, and key agreement. Moreover, the CA certifi-
cates have keys for certificate signing and CRL signing. The
Extended Key Usage (EKU) extension indicates one or more
purposes for which the public key can be used, in addition
to or instead of the basic ones in the KU extension, such as
code-signing, S/MIME, or document signing.

The Subject Alternative Name (SAN) extension indicates
additional identities for the subject of the certificate. In this
extension, other identification information not entered in the
Subject field can be used, such as a DNS name, an IP Address,
an email address, or a Directory Name or an Uniform Resource
Identifier (URI). The extension is often used when a certificate
belongs to a host with multiple names, referred to as multi-
domain certificate. As indicated in [2], multiple instances of
each name form may be included in this extension.

The CRL Distribution Points (CRLDP) extension specifies
locations from where the CRL (Certificate Revocation List)
for that certificate can be obtained. A CRL is a signed list,
issued periodically by the CAs, which contains the revoked
certificates. The extension value can take multiple forms, it

can be an e-mail address, a URL, or an entry of one directory,
although most of the time is simply an URL. The Authority
Information Access (AIA) extension indicates the URL of the
OCSP responder(s) that can be used to check the revocation
status of a certificate. Moreover, it contains a URI pointing to
the issuer’s CA certificate. Other TLS extensions support the
OCSP stapling mechanism.

TABLE III
TESTS COVERING THE CERTIFICATE REVOCATION AND CERTIFICATE

CHAINS (CLASSES C3 AND C4).

Test
no.

Test description

T26 Leaf certificate does not contain the URI of the intermediate
CA CRL in the CRLDP extension and the OCSP URI in the
AIA extension.

T27 Leaf certificate contains the CRLDP and AIA extensions but
the CRL (URI) is unreachable.

T28 Leaf certificate contains the CRLDP and AIA extensions but
the OCSP server is unreachable.

T29 Leaf certificate contains the CRLDP and AIA extensions. In
the test, the certificate is revoked. The server is configured to
send stapled certificate revocation status.

T30 Leaf certificate contains the CRLDP and AIA extensions. The
test supports TLS Feature extension, a.k.a. OCSP Must-Staple.
The server is configured to not send the stapled status of the
certificate.

T31 Self-signed leaf certificate received by TLS interceptor.
T32 A new root CA certificate not installed in the trusted CAs store.
T33 The intermediate CA certificate has the Basic Constraints

extension set to CA:False.
T34 Certificate chain with two intermediate CA certificates. The first

one has the Basic Constraints extension set to CA:True and
the maximum path length set to 0, meaning that that specific
CA cert can issue only leaf certificates.

T35 Leaf certificate issued by a revoked intermediate CA certificate.
T36 Leaf certificate not yet valid, the validity period starts in the

future (e.g., after one month).
T37 Intermediate CA certificate not yet valid, the validity period

starts later (e.g., after one month).
T38 Root CA certificate not yet valid, time validity starts in the

future (e.g., after one month).
T39 A chain of certificates containing also the root CA certificate

is received by TLS interceptor.

IV. ANALYSIS OF SELECTED TLS INTERCEPTORS

A. Classification of tests

To assess TLS interceptor’s behavior, we have defined
custom sets of tests divided in the following main classes:

C1) Certificate fields: tests (T1-T12 in Table I) for observing
TLS interceptor’s behavior upon receiving a certificate not
conforming to the X.509 format, or if the value(s) of the X.509
certificate fields are unknown or unrecognized. For example,
a certificate which does not contain the time validity dates or
with a long serial number or containing an unknown extension.

C2) Certificate identity: tests (T13-T25 in Table II) to
observe middlebox behavior while verifying the identity of
the certificate, such as checking whether the identity of the
certificate is represented under the correct field or extension
or (for the certificate belonging to a host registered in DNS)
verifying whether hostname verification runs properly on

TABLE IV
TESTS COVERING CERTIFICATE KEY USAGE (CLASS C5).

Test
no.

Test description

T40 Leaf certificate with Key Agreement (KA) set in KU exten-
sion and no EKU extension set.

T41 Leaf certificate with Data Encipherment (DE) set in KU
extension and no EKU extension set.

T42 Leaf certificate with Key Encipherment (KE) set in KU
extension and no EKU extension set.

T43 Leaf certificate with Digital Signature (DS) set in KU exten-
sion and no EKU extension set.

T44 Leaf certificate with KA set in KU extension and EKU
extension set to server authentication.

T45 Leaf certificate with DE set in KU extension and EKU
extension set to server authentication.

T46 Leaf certificate with KE set in KU extension and EKU
extension set to server authentication.

T47 Leaf certificate with DS set in KU extension and EKU
extension set to server authentication.

T48 Leaf certificate with DS set in KU extension and EKU
extension set to client authentication.

T49 The leaf certificate has no KU extension set and EKU
extension is set to client authentication.

diverse conditions (e.g., wildcard domain names). These tests
exploit malformed or incorrect values for the SAN certificate
extension, used in combination with the Subject field. The
CA/Browser forum states that the SAN extension must be
present and must contain at least one entry that could be a DNS
name or a public IP address. The use of a private IP address is
prohibited. Moreover, the use of the Subject’s Common Name
(SCN) is discouraged. If it is present, then it must contain
exactly one of the entries in the SAN extension.

C3) Certificate revocation: tests (T26-T30 in Table III)
aimed to verify the processing of certificate revocation ex-
tensions (CRLDP, AIA) in the tested middlebox and TLS
interceptor’s behavior if the revocation data is unreachable.

C4) Certificate chains: tests (T31-T39 in Table III) used for
evaluating TLS interceptor’s behavior when processing anoma-
lous certificate chains, e.g., chains containing intermediate CA
or root CA certificates whose validity period starts in the
future, or intermediate CA certificates with the BC extension
set to CA:False, which means they should not be used to
sign other (user) certificates.

C5) Certificate key usage: tests (T40-T49 in Table IV) used
to assess the processing of KU and EKU extensions in TLS
interceptors. These tests aim to identify whether the certificate
follows the scope and purpose indicated in the extensions and
whether there are inconsistencies between the KU field and
the EKU extension.

B. Testbed description and Results

We have used the latest version of the OpenSSL library to
create test certificate chains (composed of a leaf, intermediate,
and root CA certificate) issued by demo CAs that allowed
support for CRL and OCSP revocation mechanisms. We have
set up a testbed with three desktop machines, one for the
client, one for the TLS interceptor, and one for the web server.

TABLE V
SELECTED TLS INTERCEPTION PRODUCTS (TESTED IN 2022).

OS TLS interceptor software
Ubuntu 20.04.4 LTS Mitmproxy v8.1.1, Squid v5.5
Microsoft Windows 10 Mitmproxy v8.1.1, Squid v4.14

Kaspersky Total Security, ESET Smart Security
macOS Monterey 12.6 Mitmproxy v8.1.1, Squid v4.17

We exploited Ubuntu 20.04.4 for the server and several OS
platforms (Windows, macOS, and Microsoft Windows 10) to
run the selected TLS interceptors shown in Table V. In some
tests, instead of three physical machines, we have used virtual
machines on two physical machines since this choice does
not impact the test results. In the tests with Mitmproxy, each
client runs the Firefox browser, which is configured to connect
to the server through the (IP address of) machine running the
Mitmproxy (listening on port 8080). In the tests with macOS
the proxy is installed directly on the physical machine acting as
a client too. In the case of Squid, we used a similar testbed as
the one used for Mitmproxy, except for the proxy application
and the port used, i.e., port 3128. As antivirus products, we
installed Kaspersky Total Security and ESET Smart Security
on a Windows 10 machine, acting as a client.

To automate and simplify the generation of all the cer-
tificates together with server configurations for common web
servers, we implemented a set of Python scripts that combine
the use of two Python libraries, namely PyOpenSSL v.221

and cryptography v.392. The testing software is modular and
extendable. It allowed us to build the testing material automati-
cally in a few steps: we configured firstly the certificate profiles
containing the values for certificate fields and extensions
as indicated in the tests’ description. Then, we developed
scripts in Python for creating the corresponding certificates and
chains. Finally, another script created the configuration files
ready to be deployed on the web server used in the testbed,
e.g., Apache, Nginx, or Lighttpd.

Results discussion. By analyzing the results of the tests
T1-T12 in Table VI, we observe that Mitmproxy and Squid
correctly rejected malformed certificates, but considered valid
the certificates in T10 and T11. Kaspersky instead opted for a
soft-fail, i.e., a warning displayed to the user in the majority
test cases, while ESET delegated the validation of certificates
to the client (i.e., to Mozilla Firefox browser) in T2, T6, T7,
T8, and T9. Regarding the processing of the SAN extension,
the behavior of the TLS interceptors diverges, as shown in
the tests T13-T25 in Table V. Mitmproxy blocked all the
TLS connections (on all platforms) except in the tests T14,
T17, T21, and T24 when it generated its own certificates and
delegated the validation to the client resulting in a warning
message shown to the end user. On the contrary, Squid proxy
recognized as valid the certificates in the above tests. It
delegated instead the certificate validation to the client in the

1https://www.pyopenssl.org/en/22.0.0/
2https://pypi.org/project/cryptography/39.0.0/

TABLE VI
TEST RESULTS.

Test
no.

macOS Windows Ubuntu

Mitmproxy Squid Mitmproxy Squid Kasperky ESET Mitmproxy Squid

T1 R R R R W W R R
T2 R R R R W → R R
T3 - - - - - - - -
T4 - - - - - - - -
T5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T6 R R R R W → R R
T7 R R R R W → R R
T8 R R R R W → R R
T9 R R R R W → R R
T10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T12 R R R R W W R R
T13 R → R → W → R →
T14 → ✓ → ✓ ✓ ✓ → ✓
T15 R R R R R → R R
T16 R → R → ✓ → R →
T17 → ✓ → ✓ ✓ ✓ → ✓
T18 R R R R W → R R
T19 R R R R W → R R
T20 R → R → ✓ → R →
T21 → ✓ → ✓ ✓ ✓ → ✓
T22 R R R R W → R R
T23 R → R → ✓ → R →
T24 → ✓ → ✓ ✓ ✓ → ✓
T25 R R R R R → R R
T26 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T27 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T29 ✓ ✓ ✓ ✓ ✓ R ✓ ✓
T30 R R R R W W R R
T31 R R R R W W R R
T32 R R R R W W R R
T33 R R R R R W R R
T34 R R R R R W R R
T35 ✓ ✓ ✓ ✓ ✓ R ✓ ✓
T36 R R R R W → R R
T37 R R R R W W R R
T38 R R R R W W R R
T39 R ✓ ✓ ✓ ✓ ✓ ✓ ✓
T40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T41 R R R R ✓ ✓ R R
T42 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T43 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T44 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T45 R R R R ✓ ✓ R R
T46 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T47 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T48 R R R R W W R R
T49 R R R R R W R R
Legend: ✓: certificate considered valid; W: Warning shown to the user,
connection continued; -: Web server not started (certificate format error);
R: Connection rejected. →: certificate validation delegated to the client.

tests T13, T16, T20, and T23. In all the other tests, it blocked
the connection.

Kaspersky considered valid all the certificates in which just
one among the Subject CN and the SAN entries had a valid
value, and rejected the connection (hard-fail) in the test T25.
ESET Smart Security considered valid only the certificates
that had at least one SAN entry configured properly. In all
the other cases, it generated a certificate with its self-signed
certificate and delegated the validation to the client which
showed a warning message (in each test case). None of the

TLS interception products rejected the connection if they were
not able to retrieve certificate revocation information. All of
them but ESET showed a lack of support for OCSP stapling
since they accepted all revoked certificates. ESET, on the other
hand, correctly recognized when the certificate was revoked
and blocked the connection. All of them did not support OCSP
Must-Staple but rejected the TLS connection since it was
considered an unrecognized X.509 critical extension. The last
set of tests has shown that the TLS interceptors were not able
to recognize that a certificate was issued by a revoked CA
certificate. Except for Kaspersky, the tested TLS interceptors
did not download the CRLs or the CA certificates from the
stores available respectively in the CRLDP and in the AIA
extensions. Even when the CRL was downloaded in T35 this
should have caused the rejection of the connection, but this
did not happen.

In the tests T31-T38 (except T35), Mitmproxy and Squid
blocked all the connections. In the test T39 in which the server
provided the certificate chain plus the root CA certificate
no error occurred, except for Mitmproxy running on macOS
where T39 resulted in a rejection of the connection. Kaspersky
let server certificates pass the validation process in T35 and
T39, while T33 and T34 resulted in a hard-fail (rejection)
of the connection. The remaining tests in the set generated a
soft-fail of the connection. ESET always opted for a soft-fail
of the connection but for T36 when we obtained a delegated
validation, which resulted in a warning message shown by
the client. Also, ESET has also recognized as valid a chain
containing the root CA certificate, and it showed an error
message blocking the connection for T35.

In the tests T40-T49, Mitmproxy and Squid accepted as
valid all the certificates with KU different from Data En-
cipherment (DE) and those in which the EKU was set to
client authentication. Kaspersky and ESET soft-failed the
connection only when the EKU of the certificate was set to
client authentication. There were no differences in the results
obtained with Lighttpd. Nginx showed a different behavior
for ESET when testing OCSP stapling because it considered
valid a revoked certificate or a certificate issued by a revoked
intermediate CA certificate in the tests T29 and T35.

V. CONCLUSIONS AND FUTURE WORK

TLS interceptors act between the client and servers and
could (if wrongly implemented or configured) significantly
degrade or even cancel the security offered by the servers
and supported in client applications, e.g. in web browsers.
Thus, we explain the necessity to test them thoroughly. We
have selected some TLS interceptors and tested certificate
processing via an automatic testing procedure with different
certificate profiles, measuring their behavior. Since the stan-
dards are not very strict for some X.509 fields and extensions,
we obtained indeed different results among the considered
products. This study could be further extended with an analysis
of trust anchor management and testing of the robustness of
TLS interceptors to TLS attacks.

Acknowledgments. Dr. Diana Gratiela Berbecaru carried out this study within the
Ministerial Decree no. 1062/2021 and received funding from the FSE REACT-EU - PON
Ricerca e Innovazione 2014-2020. Matteo Simone performed his work during preparation
of his graduation thesis at Politecnico di Torino. This manuscript reflects only the authors’
views, findings, conclusions, and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

REFERENCES

[1] E. Rescorla, “The Transport Layer Security (TLS) Protocol: Version
1.3,” RFC 8446.

[2] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile,” RFC-5280, May 2008, doi: 10.17487/RFC5280

[3] CA/Browser Forum, “Baseline Requirements for the Issuance and Man-
agement of Publicly-Trusted Certificates”, Version 1.8.6, 14 Dec. 2022.

[4] A. S. Wazan et al., “On the Validation of Web X.509 Certificates by
TLS Interception Products,” in IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 1, pp. 227-242, 1 Jan.-Feb. 2022, doi:
10.1109/TDSC.2020.3000595.

[5] X. de Carné de Carnavalet and M. Mannan, “Killed by Proxy: Analyzing
Client-end TLS Interception Software,” NDSS’16, Feb. 21-24, 2016, San
Diego (CA, USA), doi: 10.14722/ndss.2016.23374

[6] D.G. Berbecaru and A. Lioy, “An Evaluation of X.509 Certificate
Revocation and Related Privacy Issues in the Web PKI Ecosystem,”
in IEEE Access, vol. 11, pp. 79156-79175, 2023, doi: 10.1109/AC-
CESS.2023.3299357.

[7] C. Brubaker et al., “Using Frankencerts for Automated Adversarial
Testing of Certificate Validation in SSL/TLS Implementations,” 2014
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 2014,
pp. 114-129, doi: 10.1109/SP.2014.15.

[8] J. Larisch et al., “Hammurabi: A Framework for Pluggable, Logic-
Based X.509 Certificate Validation Policies,” in Proc. of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’22), pp. 1857-1870, doi: 10.1145/3548606.3560594.

[9] M. Luo et al. “On the Complexity of the Web’s PKI: Evaluating
Certificate Validation of Mobile Browsers,” in IEEE Transactions on
Dependable and Secure Computing, vol. 21, no. 1, pp. 419-433, Jan.-
Feb. 2024, doi: 10.1109/TDSC.2023.3255869.

[10] M. Maehren et al. “TLS-Anvil: Adapting Combinatorial Testing for TLS
Libraries,” 31st USENIX Security Symposium (USENIX Security 22),
USENIX Association, Boston, MA, 2022.

[11] D.G. Berbecaru and G. Petraglia, “TLS-Monitor: A Monitor for TLS
Attacks,” 2023 IEEE 20th Consumer Communications & Network-
ing Conference (CCNC), Las Vegas, NV, USA, 2023, pp. 1-6, doi:
10.1109/CCNC51644.2023.10059989.

[12] D. McLuskie and X. Belleken, “X.509 Certificate Error Testing,” ARES
2018: Proc. of the 13th International Conference on Availability, Relia-
bility and Security, Aug. 2018, pp. 1–8, doi: 10.1145/3230833.3232820.

[13] D.G. Berbecaru, A. Lioy and C. Cameroni, ”Providing Login and Wi-
Fi Access Services With the eIDAS Network: A Practical Approach,”
in IEEE Access, vol. 8, pp. 126186-126200, 2020, doi: 10.1109/AC-
CESS.2020.3007998.

[14] D. G. Berbecaru, A. Lioy and C. Cameroni, “On Enabling Additional
Natural Person and Domain-Specific Attributes in the eIDAS Network,”
in IEEE Access, vol. 9, pp. 134096-134121, 2021, doi: 10.1109/AC-
CESS.2021.3115853.

[15] M. Pini et al., “Satellite-derived Time for Enhanced Telecom Networks
Synchronization: the ROOT Project,” in 2021 IEEE 8th Intl. Workshop
on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 2021, pp.
288-293, doi: 10.1109/MetroAeroSpace51421.2021.9511780.

[16] D.G. Berbecaru et al., “Mitigating Software Integrity Attacks With
Trusted Computing in a Time Distribution Network,” in IEEE Access,
vol. 11, pp. 50510-50527, 2023, doi: 10.1109/ACCESS.2023.3276476.

[17] D.G. Berbecaru and L. Pintaldi, “Exploiting Emercoin Blockchain
and Trusted Computing for IoT Scenarios: A Practical Ap-
proach,” 2023 IEEE Symposium on Computers and Commu-
nications (ISCC), Gammarth, Tunisia, 2023, pp. 771-776, doi:
10.1109/ISCC58397.2023.10217961.

[18] XC. de Carnavalet and P. C. van Oorschot, “A survey and anal-
ysis of TLS interception mechanisms and motivations,” 2020, doi:
10.48550/ARXIV.2010.16388

[19] S. Santesson et al., “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP,” RFC-6960, June 2012.

