
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Debris flow susceptibility mapping using the Rock Engineering System (RES) method: a case study / Vianello, Davide;
Vagnon, Federico; Bonetto, Sabrina; Mosca, Pietro. - In: LANDSLIDES. - ISSN 1612-510X. - ELETTRONICO. - (2023),
pp. 1-22. [10.1007/s10346-022-01985-6]

Original

Debris flow susceptibility mapping using the Rock Engineering System (RES) method: a case study

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10346-022-01985-6

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10346-022-01985-6

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974003 since: 2023-08-29T06:51:47Z

Springer Verlag Germany



Landslides 

Landslides

DOI 10.1007/s10346-022-01985-6

Original Paper

Received: 12 April 2022 
Accepted: 28 October 2022 
© The Author(s) 2022

Davide Vianello   · Federico Vagnon   · Sabrina Bonetto   · Pietro Mosca   

Debris flow susceptibility mapping using 
the Rock Engineering System (RES) method: 
a case study

Abstract  The main purpose of the present study is to develop a 
debris flow susceptibility map of a mountain area (Susa Valley, 
Western Italian Alps) by using an upgraded version of the Bonetto 
et al. (Journal of Mountain Science 18, 2021) approach based on the 
Rock Engineering System (RES) method. In particular, the area 
under investigation was discretized in a 5 × 5-m grid on which GIS-
based analyses were performed. Starting from available databases, 
several geological, geo-structural, morphological and hydrographi-
cal predisposing parameters were identified and codified into two 
interaction matrices (one for outcropping lithologies and one for 
Quaternary deposits), to evaluate their mutual interactions and 
their weight in the susceptibility estimation. The result for each 
grid point is the debris flow propensity index (DfPI), an index that 
estimates the susceptibility of the cell to be a potential debris flow 
source. The debris flow susceptibility map obtained was compared 
with those obtained from two expedited and universally recognized 
susceptibility methods, i.e. the Regional Qualitative Heuristic Sus-
ceptibility Mapping (RQHSM) and the Likelihood Ratio (LR). Each 
map was validated by using the Prediction Rate Curve method. The 
limitations and strong points of the approaches analysed are dis-
cussed, with a focus on the innovativeness and uniqueness of the 
RES. In fact, in the study site, the RES method was the most efficient 
for the detection of potential source areas. These results prove its 
robustness, cost-effectiveness and speed of application in the iden-
tification and mapping of sectors capable of triggering debris flow.

Keywords  Rock Engineering System (RES) · Debris flow 
susceptibility · Susceptibility mapping · Open source data

Introduction
Debris flows are rapid landslides of mixed and unconsolidated  
sediments and water which occur when soil and rock fragments 
become saturated and flow down into a steep channel driven by 
the force of gravity. Debris flow events can be extremely danger-
ous for humans and infrastructures due to their high velocity (up 
to 20 m/s), their large mobilized volumes (even more than 109 m3) 
and their unpredictability (Varnes 1978; Hutchinson 1988; IAEG 
1990; Cruden and Varnes 1996). A careful territorial analysis should 
include the identification of potential debris flow source areas for 
correct land use and risk management, especially in mountain 
regions where these aspects become fundamental for the resilience 
of the rural areas and to tackle the effects of climate change.

Geological, geomorphological, hydrogeological and landslide 
maps (Soeters and Van Westen 1996; Fell et al. 2008; Corominas 
et al. 2014), supported by direct field observations, are fundamen-
tal to detect and delimit zones susceptible to landslide triggering 

(including debris flow). Several models have been proposed in the 
scientific literature for evaluating landslide susceptibility by com-
bining geo-environmental factors and landslide spatial distribution 
(Brabb 1987; Soeters and van Westen 1996; Carrara et al. 1984, 1999, 
2008; Aleotti and Chowdhurry 1999; Guzzetti et al. 1999; Dai and 
Lee 2001; Chacón et al. 2006; Fell et al. 2008; Reichenbach et al. 
2018). In general, these models are based on the identification of 
those factors that contribute to landslide triggering, by distinguish-
ing between predisposing and triggering factors (e.g. Costa and 
Jarrett 1981; Hutchinson 1992; Cruden and Varnes 1996; Jakob and 
Hungr 2005; Hungr 2005; Van Westen et al. 2008; Pereira et al. 2012; 
Corominas et al. 2014; Iverson 2014, 1997; Hungr et al. 2014 and 
references herein). Data related to triggering factors represent an 
important set of input parameters for landslide hazard assessment, 
while the predisposing factors and landslide inventories play a key 
role in landslide susceptibility analysis (Dai and Lee 2001; Clerici 
et al. 2002; Corominas et al. 2003, 2014; Van Westen et al. 2006).

Susceptibility analysis can be assessed through both qualitative 
(inventory-based and knowledge-driven methods) and quantita-
tive (data-driven methods and physically based models) methods 
(Carrara et al. 1995; Soeters and Van Westen 1996; Guzzetti et al. 
1999, 2006a, b; Dai and Lee 2001; Van Westen et al. 2006; Clerici et al. 
2002). Inventory-based methods provide a multitemporal landslide 
distribution (spatial and temporal frequencies) based on historical 
series and represent a key starting point for hazard mapping and 
risk assessment. The analysis of past debris flow events provides 
useful information for forecasting future debris flow, based on 
topographic, geological and geomorphologic characteristics. The 
knowledge-driven approaches, or heuristic methods, are based 
on the expert knowledge of landslide mechanisms that allows the 
degree of instability, combining geomorphological observations 
and thematic geological maps to be determined (Abella and Van 
Westen 2008; Nachbaur and Rohmer 2011). This approach can be 
applied when the landslide inventory is incomplete or when a pre-
liminary and expedited evaluation is needed.

In data-driven landslide susceptibility methods, statistical and 
quantitative predictions are made using the records of past land-
slide events through three different approaches: bivariate, multivar-
iate and active learning statistical analyses. Landslide distribution 
could define the functional relationships among known or inferred 
instability factors (Malusà and Mosca 2002; Guzzetti et al. 1999; 
Huabin et al. 2005; Chacón et al. 2006; van Westen et al. 2008), but 
results are strongly influenced by the quality and completeness of 
the inventory (Guzzetti et al. 2006a, b; Reichenbach et al. 2018).

The physically based models are based on the mathematical 
modelling of landslide failure and a set of numerical parameters that 
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describe the geometry, and the internal and external slope condition. 
Slope analysis can be done using simple limit equilibrium mod-
els, such as the infinite slope model, or more complex approaches 
like kinematics analysis or numerical modelling (Montgomery and 
Dietrich 1994; Rigon et al. 2006; van Asch et al. 2007; Simoni et al. 
2008; Baum and Godt 2010; Anagnostopoulos and Burlando 2012; 
Alvioli and Baum 2016).

For susceptibility mapping purposes, the choice of the meth-
ods should be driven by the availability of the input parameters 
required for the analyses and their mutual interactions. Recently, 
Bonetto et al. (2021) proposed an application of the Rock Engineer-
ing System (RES; Hudson 1992) to debris flows analysis. The RES 
approach has also been used for other landslide types (Mazzoccola 
and Hudson 1996; Kim et al. 2008; Rozos et al. 2008; Tavoularis 
et al. 2017, 2021; Xiao et al. 2020; Pokharel et al. 2021 and references 
herein) and implemented in neural network approaches (Wang 
et al. 2014; Meten et al. 2015). Bonetto et al. (2021) combined inven-
tory, expert evaluation and data-driven methods for a quantita-
tive evaluation of the debris flow propensity at a basin-scale RES 
methodology were then used to evaluate the Debris flow Propensity 
Index (DfPI) by quantifying and scoring the mutual interaction 
between predisposing parameters. Starting from these assump-
tions and promising results, in this paper, the authors propose an 
upgraded version of the Bonetto et al. (2021) methodology applied 
to debris flow by considering new parameters for the DfPI deter-
mination and by implementing the procedure in GIS environment. 
The predisposing parameters are encoded into two interaction 
matrixces to consider outcropping lithologies and Quaternary 
deposits and the DfPI values are mapped onto a 5 × 5-m grid cell 
resolution. The procedure has been tested on the same sector of the 
western Italian Alps (Upper Susa Valley) as in Bonetto et al. (2021) 
for a direct comparison and validation of the results.

The susceptibility map obtained is compared with those 
obtained by two methods available in the scientific literature: the 
Regional Qualitative Heuristic Susceptibility Mapping (RQHSM) 
method proposed by Soeters and van Westen (1996) and the Like-
lihood Ratio (LR) method (Lee 2004; Regmi et al. 2010; Sujatha 
et al. 2013; Kanungo et al. 2011; Akgun 2012). The limitations and 
strong points of the methodologies are discussed by comparing 
susceptible areas with an available debris flow source area database. 
Furthermore, the differences between the three methods are quan-
titatively assessed by using the “Prediction Rate Curve” method 
(Chung and Fabbri 2003).

Study area: the Upper Susa Valley
The study area is the Upper Susa Valley, in the Western Italian Alps 
(Fig. 1A). Many basins of this valley are affected by recurrent debris 
flow events, which occurred especially during late summer and fall 
seasons (Tiranti et al. 2008, 2014, 2016). These phenomena have 
caused many damages to the crucial infrastructures, which link the 
valley (and more in general Turin) to France, and to the urbanized 
areas, which mainly developed on debris fans.

This valley is drained by the Dora Riparia River, a left-hand tribu-
tary of the Po River, and has been carved by glaciers at the end of 
Pleistocene in units belonging to the Penninic domain of the Western 
Alps.

The Western Alps result from the collision between European and 
Adriatic plates following subduction and closure of their interposed 
Piemonte-Liguria oceanic basin (e.g. Dal Piaz 2010a, b and therein 
references). The upper Susa Valley exposes a tectonic stack of conti-
nental margin (Ambin Massif Auct., Pre-Piedmont and Briançonnais 
units) and oceanic Piemonte-Liguria units (Fig. 1; Polino et al. 2002; 
Piana et al. 2017). The Ambin massif Auct. comprises two pre-alpine 
complexes: the Clarea and the Ambin complexes, resting at lower and  

Fig. 1   A  Location of the Susa Valley in the Italian Western Alps ( © 
Google Maps). B Tectonic sketch map of the Upper Susa Valley (from 
Servizio Geologico d’Italia 2002). Legend: 1—Puys Complex; 2—
Venaus Complex; [Oceanic units] 3—Aigle Unit; 4—Vin Vert Unit; 5—
Cerogne-Ciantiplagna Unit; 6—Lago Nero Unit; 7—Albergian Unit; 

[Continental margin units] 8—Re Magi Unit; 9—Chaberton-Grand 
Hoche-Grand Argentier unit; 10—Valfredda Unit; 11—Gad Unit; 12—
Vallonetto Unit; 13—Permo-mesozoic succession of the Ambin Com-
plex; 14—Ambin Complex; 15—Clarea Complex; 16—Gypsum and 
tectonic carbonate breccias; a - alluvial deposits; b - major landslide
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upper structural levels respectively (Polino et al. 2002; Malusà et al. 
 2002; Malusà and Mosca 2002). The Clarea complex consists of micaschist  
and paragneiss embedding metabasite and orthogneiss of dioritic com-
position. The Ambin complex is formed by gneiss and quartz-micaschist  
derived from volcanoclastic protoliths, several types of micaschist and 
bodies of aplitic gneiss. This complex is overlaid by a Permo-Mesozoic 
cover consisting of conglomeratic quartzite with pink quartz clasts 
and levels of sericitic schist (upper Permian), massive quartzite (lower 
Triassic) and a succession of dolomitic marbles and calcareous schists 
with local intercalation of carbonate breccias (Triassic to Cretaceous). 
The Vallonetto unit is characterized by a Briançonnais-type succes-
sion including marble and dolomitic-marble of Triassic age followed  
by Jurassic to Cretaceous calcschist. The Chaberton-Grand Hoche-
Grand Argentier unit, belonging to the Pre-Piedmont zone, is formed 
by a thick dolomitic succession of Norian age followed by Rhaetian-
Hettangian calcareous schists and then unconformable overlaid by 
prevailing calcschists with phyllites and beds of breccias (Jurassic to 
Cretaceous). The Piemonte-Liguria Oceanic units are formed by thick 
sequences of Upper Jurassic (?)-Cretaceous calcschist containing lev-
els of micaschist and phylladic schist and embedding bodies of ophi-
olites (serpentinite, metabasite). Masses of gypsum and of carbonate  
breccias (Carniole Auct.) occur along the main tectonic contacts.

During the Quaternary, the Susa valley was carved with typical 
U-shaped cross section by the action of the glacier and, in its upper 
part, glacial deposits are recognizable on the valley flanks. Follow-
ing the retreat of glaciers, several deep-seated gravitational slope 
deformations (DSGSD) developed on the valley flanks.

Data availability
The data used in this paper can be classified into two main categories: 
(1) landslide inventory and (2) thematic GIS-based maps. Data were 
collected using freely accessible and available datasets in national and 
regional geodatabases. Since the RES approach applied to debris flow 
requires the identification of environmental predisposing factors, the-
matic GIS-based maps were drawn starting from the available spatial 
datasets. Compared to the original version proposed by the authors 
(Bonetto et al. 2021), in this study, ten predisposing factors were con-
sidered for the definition of the DfPI (Table 1): bedrock lithology, qua-
ternary deposits, lineament density, slope angle, curvature, elevation, 
slope aspect, channel network, landslide activity and land use. For the 
sake of simplicity, these factors are grouped into geological, geomor-
phological and hydrogeological parameters and land use.

Data management and analysis were conducted by using the 
QGis software (v. 3.16.14 Bucuresti).

Table 1   Spatial dataset of predisposing factors and type format detail

Source link:

- Piemonte Region Geodatabase — http://​www.​geopo​rtale.​piemo​nte.​it/, last access 2022

- Regional Environmental Agency — ARPA — http://​webgis.​arpa.​piemo​nte.​it/​geopo​rtale/, last access 01/2022

-  Regional Environmental Agency — ARPA — http://​webgis.​arpa.​piemo​nte.​it/​riskn​at/​index.​php/​cat-​news-​nasc/​402-​pubbl​icata-​la-​base-​dati-​
trans​front​aliera-​advit​am-​delle-​frane-​sullo-​spazio-​alcot​ra, last access 10/2021

Spatial dataset Predisposing factor GIS type Scale or 
resolution 
(Px)

Italian Geological Survey (CARG Project, Italian: Progetto Carta  
Geologica) at 1:50,000 scale

Bedrock lithology Raster & Polygon 1:50,000
Px = 5 × 5 m

Quaternary deposits

Digital Elevation Model
DEM

Slope angle Raster Px = 5 × 5 m

Curvature

Elevation

Slope aspect

BDTRE 2018 — Piemonte Channel Network Channel network Raster & Polygon 1:10,000
Px = 5 × 5 m

SIFRAP — Landslide archive of Piemonte Region (Arpa Piemonte) Landslide activity Polygon 1:10,000
Px = 5 × 5 m

Land Use Piemonte Region Land use Raster 1:10,000
Px = 5 × 5 m

Orthophoto (WMS service) (resolution 30 × 30 cm2) Lineament density Raster Px = 5 × 5 m

Detection of source area 
inventory (update)

Point

RiskNat geoportal — Arpa Piemonte Source area inventory Point

http://www.geoportale.piemonte.it/
http://webgis.arpa.piemonte.it/geoportale/
http://webgis.arpa.piemonte.it/risknat/index.php/cat-news-nasc/402-pubblicata-la-base-dati-transfrontaliera-advitam-delle-frane-sullo-spazio-alcotra
http://webgis.arpa.piemonte.it/risknat/index.php/cat-news-nasc/402-pubblicata-la-base-dati-transfrontaliera-advitam-delle-frane-sullo-spazio-alcotra
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Landslide inventory and source area archive

Debris flow source areas were available in the RiskNat–Arpa Piemonte 
inventory that contains events occurred (among other) in the Upper 
Susa Valley from 1990 to 2015. The original source area map was 
updated by manually adding recent events, easily identifiable from 
the analysis of the past aerial photographs between 2017 and 2018. 
An amount of 846 points of debris flow source area were recorded in 
390 km2 in the study area (Fig. 2).

Predisposing factors

Geological parameters: bedrock lithology, quaternary deposits, 
lineament density

The geology of Upper Susa Valley was derived by the Foglio 132–152-
153 Bardonecchia at 1:50,000 scale (Polino et al. 2002) of the official 
Italian Geological Cartography project (Fig. 3). The shapefiles of 
bedrock lithologies, quaternary deposits and landslides were con-
verted into raster formats with 5 × 5-m cell resolution.

Based on the differences in strength and permeability of rocks 
and deposits and the presence of landslides, five classes for bedrock 

lithology and five classes for quaternary deposits were identified 
(Bonetto et al. 2021) (Table 2).

Geological discontinuities (i.e. fractures, faults and foliations) 
induce a decrease in the mechanical strength of rock mass and 
increase the capacity to produce loose debris (Ferrero et al. 2016; 
Caselle et al. 2020; Umili et al. 2020). A regional map of the rock 
fracturing degree with a traditional survey is not feasible, and 
consequently, the general condition of the rock masses can be 
described by remote extraction of the main lineaments (Tripathi 
et al. 2000; Jordan et al. 2005; Vaz et al. 2012; Bonetto et al. 2015; 
Umili et al. 2018). Lineament extraction can be realized through 
automatic or manual approach from digital elevation model or 
orthophotos. In the automatic approach, the linear traces are 
detected on a DTM by algorithms based on principal curvature 
values (Bonetto et al. 2015, 2017) while in manual approach the user 
manually detects and tracks the lineaments. In this paper, manual 
lineament extraction was performed from visual interpretation of 
the orthophotos to increase lineament extraction accuracy, only 
focusing on bedrock outcrop areas. The track density map was 
derived (Fig. 3B) by using the Line Density tool on QGis. This tool 
allows the measurement, within a given circular area, of the line 
density for each raster cell. This measure is obtained as the sum 

Fig. 2   Location of the 846 debris flow source areas (red dots) recorded and detected in the Upper Susa Valley
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Fig. 3   A Bedrock lithology and Quaternary deposits (modified from Polino et al. 2002). B The lineaments density maps developed from ortho-
photo analysis
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of all the line segments that intersect the circular area, divide to 
the area.

Geomorphological parameters: slope angle, curvature, elevation, 
slope aspect, landslide activity
The geomorphological layers were obtained from the DEM analysis 
using specific tools freely available in QGis software. The resulting 
maps are shown in Fig. 4.

Slope angle is the result of the combined influence of many agents 
(Huma and Radulescu 1978; Carrara 1983; Maharaja 1993; Rozos et al. 
2008) and is one of the predisposing factors capable of triggering 
debris flows. Slopes ranging between 20 and 45° (Takahashi 1981; 
Hungr et al. 1984; Rickenmann and Zimmermann 1993) are char-
acteristic values for source area location. Five different slope classes 
were selected (Fig. 4A) for the classification of the study areas: (i) 
0–8°, (ii) 8–15°, (iii) 15–25°, (iv) 25–35°, (v) > 35°.

The terrain curvature is the curvature of a line formed by inter-
secting a plane with the terrain surface. Operatively, the curvature 
value is the reciprocal of the radius of curvature of the line. Debris 
flows generally start where curvature is concave (Wieczorek et al. 
1997; Delmonaco et al. 2003) and the flow can be channelled into 
gullies. Consequently, a distinction between concave (negative val-
ues), convex (positive values) and flat surface (values near zero) 
was made (Fig. 4B).

Elevation (Fig. 4C) and slope aspect (exposition) (Fig. 4D) do 
not directly influence the slope failure, but they are the result of 
tectonic activity and erosion process related to climatic condition 
(Rozos et al. 2008). The elevation was distinguished into classes 
with an elevation step of 500 m. In alpine regions, source areas are 
usually located at high elevation where deposits are concentrated.

The slope aspect reflects the exposition that is responsible for 
different local microclimatic conditions and solar exposition dur-
ing the day. The exposition was classified with a step of 60° starting 
from the north (0 value).

The landslide activity map (Fig. 4E) shows the landslide dis-
tribution (not only debris flow but also every landslide type) and 

their state of activity: (i) active, (ii) quiescent, (iii) inactive and 
(iv) not defined. In these areas, the overall rock mass and deposit 
conditions might increase the loose material availability that could 
be mobilized during a flow event.

Hydrological parameter: distance from channel network
Debris flow events require a channel to flow downstream. The flow 
erodes the channel leaves and banks, which are important sources 
of material available during the event. Usually, the areas prone to 
supplying material are located at distances lower than 200 m, while 
beyond these values the probability decrease (Rozos et al. 2008). For 
this reason, five different buffer zones were created to identify the 
distance along the river where material can be mobilized during 
the flow: (i) 0–50 m, (ii) 50–100 m, (iii) 100–150 m, (iv) 150–200 m, 
(v) > 200 m (Fig. 5).

Land use condition: land use
The land use describes the vegetational, mechanical and hydro-
logical characteristics that control the slope stability (Glade 2003; 
Reichenbach et al. 2004). The land use influences the soil behaviour 
during rainfall and the magnitude of potential mobilizable mate-
rial. The dataset, in raster format, provided by the regional archive 
allows five classes to be identified: (i) grassland, (ii) lakes, (iii) high 
forest, (iv) low forest, (v) rock and deposits (Fig. 6). This classifica-
tion reflects the different soil conditions related to erodibility or 
resilience to the impact of rainfall.

The RES methodology
The RES was proposed by Hudson in 1992. The methodology is 
based on a matrix approach that allows the numerical encoding 
of mutual interactions between the predisposing factors arranged 
along the diagonal terms (Pi) of the matrix (Fig. 7). Off-diagonal 
terms (Iij) are scored with values from 0 (no interaction) to 4 (criti-
cal interaction) using the Expert Semi-Quantitative method (ESQ) 
(Harrison and Hudson 2006; Vagnon et al. 2015). The contribution 
of each parameter to the debris flow triggering is described by the 
weighting coefficient ai:

where C is the sum of the values in each row (Cause – C) and it 
represents the influence of the parameter Pi on the system, E is the 
sum of the values in each column (Effect – E) and it represents the 
influence of the system on parameter Pi.

The debris flow susceptibility index (DfPI) is given by:

where ai is the weighting coefficient calculated for each parameter 
using Eq. 1, and PiK corresponds to a specific value between 0 and 4 
attributed to each class of the identified predisposing factors. The  
0 value represents the most stable conditions (lower debris flow  
susceptibility) while the 4 value represents the most favourable con-
ditions for debris flow triggering. The PiK value describes the weight 
assigned to each predisposing factor based on its propensity to  
induce instability (Mazzoccola and Hudson 1996; Rozos et al. 2008, 2011).

(1)ai =
1

4

�

⋅

C + E
∑

C +
∑

E

�

⋅ 100

(2)DfPI =
∑

(

ai ⋅ PiK

)

Table 2   Categories for bedrock lithologies and quaternary deposits 
based on lithological and geotechnical similarities

Bedrock lithology

Quartzite

Quartz micaschist, gneiss

Marble and dolostone

Calcschist and micaschist

Gypsum and carbonate breccias

Quaternary deposits

Talus deposits

Eluvio-colluvial deposits

Glacial deposits

Landslide deposits



Landslides 

In this paper, an upgraded version of the Bonetto et al. (2021) 
approach is proposed to develop a GIS-based debris flow suscepti-
bility map for the whole Upper Susa Valley by using a 5 × 5-m reso-
lution grid. Curvature, land use and landslide activities were con-
sidered as predisposing factors in addition to those of the original 
version: lithology, fracture network, quaternary deposits, slope and 

channel network. Two interaction matrices were created to sepa-
rately analyse the mutual interaction between the bedrock lithology 
(matrix A) or deposits (matrix B) and the other parameters.

The GIS-based DfPI has the same range of values of the original 
DfPI version (from 0 to 100). Five susceptibility classes were defined 
by using a modified version of Brabb’s susceptibility scale: low (0–20), 

Fig. 4   Geomorphological parameter maps of the Upper Susa Valley: A slope angle, B terrain curvature, C elevation, D slope exposition and E 
landslide activity
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medium (20–40), high (40–60), very high (60–80) and extreme 
(80–100).

Result

RES results
The off-diagonal terms of each matrix were coded considering the 
mutual influence between the parameters and ai were calculated 
respectively for matrix A (bedrock lithologies) and matrix B (qua-
ternary deposits) (Tables 3 and 4). By applying Eq. 2 to each grid 
cell and analysing separately bedrock outcrop areas and quaternary 
deposits (Table 5), the map of the whole study area was obtained 
(Fig. 8). The RES method highlights that debris flow susceptibility 
zones are concentrated at high elevation and where talus deposits 
are present. In addition, a large concentration of high susceptibility 
areas near the channel network and along the slope is emphasized. 
The NW sector has the areas with the highest susceptibility values 
compared to the rest of the valley. In fact, these sectors are char-
acterized by the presence of deformed dolomitic rocks affected by 
intense post-metamorphic brittle deformation, as highlighted by 
the presence of the high amount of talus deposits.

The basins analysed in Bonetto et al. (2021) and their correspond-
ent global DfPI are highlighted in Fig. 8. The results highlight that (i) 
qualitatively, there is a good agreement between the global DfPI and 
the grid DfPIs and (ii) the grid DfPI allows the direct identification 
of the areas capable of triggering debris flow events, providing great 
advantages especially for the planning of risk management activities.

Comparison with other susceptibility methods and quantitative 
validation of the RES
Qualitative and preliminary analysis of the proposed RES approach is 
promising for the identification of the areas of the Upper Susa Valley 
most susceptible to debris flow triggering. However, for evaluating the 
reliability of this procedure, highlighting its potentialities and limita-
tions, RES was firstly compared with two well-established susceptibil-
ity methods available in the scientific literature: the Regional Quali-
tative Heuristic Susceptibility Mapping (RQHSM) and the Likelihood 
Ratio (LR). Then, for a quantitative comparison and for evaluating the 
effectiveness of the RES, the RQHSM and the LR, the prediction rate 
approach (Chung and Fabbri 2003) was used. Figure 9 shows the logical 
steps followed for the quantitative comparison between the susceptibil-
ity mapping methods analysed in this work.

Fig. 5   Channel network and buffer with distance from channel
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The RQHSM — regional qualitative heuristic susceptibility 
mapping

The RQHSM is a heuristic method that allows defining a susceptibility 
index (SI) by scoring the predisposing factors using geological and 

geomorphologic criteria (Soeters and van Westen 1996; Riopel et al. 
2006; Blais-Stevens et al. 2010, 2011, 2012, 2014 and references herein). 
For each parameter, different classes were defined, according to the 
propensity of triggering debris flows (Table 6). Following the equation 
proposed by Blais-Stevens and Behnia (2016), SI was calculated as:

Fig. 6   Land use map

Fig. 7   Structure of the inter-
action matrix and principal 
operations. Off-diagonal terms 
and Pik values are reported
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with geology (G), slope angle (S1), slope aspect (S2), drainage sys-
tem (D) and plan curvature (C). The resulting debris flow suscep-
tibility map is shown in Fig. 10. For a direct comparison with DfPI 
values, SIs were multiplied by 100 and classified following the same 
criteria.

The RQHSM highlights the areas near the drainage system with 
a high probability of failure, considering that the onset of debris 
flows is usually triggered in steep streams. In this case, only the 
materials into the stream and along the riverbanks are detected as 
susceptible at triggering phenomena.

The likelihood ratio (LR)

The likelihood ratio (Lee 2004; Lee and Pradhan 2007; Demir et al. 
2015 and references herein) is a statistical method that correlates 

(3)SI = 0.2 ⋅ G + 0.3 ⋅ S1 + 0.05 ⋅ S2 + 0.3 ⋅ D + 0.15 ⋅ C
environmental conditions with landslide areas and extends the 
landslides spatial occurrence in similar setting areas.

Based on the assumption that future landslides will occur under 
the same conditions as past landslides, the statistical method allows 
defining which factors, or combination of factors, play a funda-
mental role in the landslide initiation. With the LR, it is possible 
to evaluate the relationship between the dependent parameter 
(landslide occurrence) and the independent parameter (such as 
geological, geomorphological and hydrogeological features) and 
retrieve a ratio between the landslide occurrence probability and 
the non-occurrence probability calculated for each class factor. For 
debris flow analysis, these terms correspond to the ratio between:

where the landslide occurrence ratio is the ratio between the number  
of landslides in i-th class and the total amount of landslide in study 

(4)FR =
Landslide occurrence ratio

Area domain

Table 3   The interaction 
matrix encoded for bedrock 
lithologies outcrop (matrix A)

Matrix A — bedrock lithologies

a/a 1 2 3 4 5 6 C C + E ai

1 Bedrock 
lithology

2 3 0 1 1 7 11 2.70

2 0 Slope 4 2 3 0 9 22 5.39

3 0 3 Channel 
network

2 2 0 7 23 5.64

4 0 2 4 Curvature 2 1 9 16 3.92

5 1 2 1 2 Land use 0 6 15 3.68

6 3 4 4 1 1 Lineament 
density

13 15 3.68

E 4 13 16 7 9 2 51 102

Table 4   The interaction 
matrix encoded for Quaternary 
deposits outcrop (matrix B)

Matrix B — quaternary deposits

a/a 1 2 3 4 5 6 C C + E ai

1 Quaternary 
deposits

2 2 2 1 2 10 25 3.77

2 4 Slope 4 2 3 3 18 33 4.97

3 3 3 Channel 
network

2 2 3 16 31 4.67

4 2 2 4 Curvature 2 1 15 29 4.37

5 1 2 1 2 Land use 1 12 28 4.22

6 4 4 1 2 3 Landslide 
activity

20 20 3.01

E 15 15 15 14 16 16 91 166
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area, the area domain is the ratio between the area of i-th class and 
the total area in our case study. If the FR is greater than 1, it means 
that factor class has a high correlation with the event and vice versa.

Operatively, for evaluating the FR, the landslide inventory 
described in the “Landslide inventory and source area archive” 
section, was randomly divided into two sets in the proportion 70% 
(593)–30% (253): the training and the validation sets (Fig. 11). The 

training set was used to build the statistical model, while the valida-
tion set was used to validate the results.

Using Eq. 4, the FR values were calculated for each layer class 
(Table 7). The susceptibility index for each cell was obtained as the 
sum of all the FRs calculated for each selected parameter:

(5)SI =
∑

FR

Table 5   Classification and scores of the predisposing factors considered in the interaction matrices A and B for the RES application

Matrix A — bedrock lithology Matrix B — Quaternary deposits

Parameter Class PiK PiK x ai Parameter Class PiK PiK x ai

Bedrock lithology Quartzites 0 0 Quaternary deposits No deposit 0 0

Gneiss, quartz micaschist 1 2.7 Talus deposits 1 3.77

Marble and dolostone 2 5.39 Glacial deposits 2 7.53

Calcschist and micaschist 3 8.09 Landslide deposits 3 11.3

Gypsum and carbonate breccias 4 10.78 Eluvio-colluvial deposits 4 15.06

Slope 0–8° 0 0 Slope 0–8° 0 0

8–15° 1 5.39 8–15° 1 4.97

15–25° 2 10.78 15–25° 2 9.94

25–35° 3 16.18 25–35° 3 14.91

 > 35° 4 21.57  > 35° 4 19.88

Channel network 0–50 m 4 22.55 Channel network 0–50 m 4 18.67

50–100 m 3 16.91 50–100 m 3 14.01

100–150 m 2 11.27 100–150 m 2 9.34

150–200 m 1 5.64 150–200 m 1 4.67

 > 200 m 0 0  > 200 m 0 0

Curvature Concave 4 15.69 Curvature Concave 4 17.47

Flat 1 3.92 Flat 1 4.37

Convex 3 11.76 Convex 3 13.1

Land use Villages, urban 0 0 Land use Villages, Urban 0 0

High forests 1 3.68 High forests 1 4.22

Low forests 2 7.35 Low forests 2 8.43

Grassland 3 11.03 Grassland 3 12.65

Rock and deposits 4 14.71 Rock and deposits 4 16.87

Lineament density Weak 0 0 Landslide activity -- 0 0

Moderate 1 3.68 Nd 1 3.01

Strong 2 7.35 Stabilized 2 6.02

Very strong 3 11.03 Quiescent 3 9.04

Intense 4 14.71 Active 4 12.05
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and the resulting debris flow susceptibility map is shown in Fig. 12. 
SI values were scaled up to vary between 0 and 100 for a direct 
comparison with DfPIs and SIs from the RQHSM.

The LR method highlights three areas with high susceptibility 
values (> 80) located in the southwestern and central parts of the 
study area. These areas correspond to the high-altitude zones at 
the peaks and the crests of the mountain chain and to large areas 
occupied by detrital materials and talus deposits. In these areas, the 
structural setting of the rock masses (made of prevailing marble-
dolostone and calcschist) and their mechanical proprieties are 
favourable for producing a huge amount of loose material. Along 
the slope and in presence of the forests, the susceptibility values are 
low while the presence of talus deposits is noted as the most critical 
areas. These low values are attributed to high slope areas and zones 
in proximity to the channel network focusing on the areas with 
coarse deposits and high fractured rocks.

Model validation
In the previous section, a visual and qualitative comparison was 
made between the RES and the other models. In this section, 
quantitative analyses were performed to assess the validity of 

the three susceptibility methods. However, the assessment of the 
model robustness is always a challenging task. Many authors have 
proposed different methodologies for the comparison between 
forecasted results and observed data. In this study, the suscep-
tibility maps were validated by using the Prediction Rate Curve 
(Chung and Fabbri 2003). This approach is based on the direct 
comparison between the source area estimated from susceptibil-
ity maps and the real source area from debris flow inventory. The 
validation set consists of 253 landslide source areas (30% of total 
source areas inventory) previously excluded from the statistical 
model analysis. The source area was overlaid on the susceptibility 
maps (Fig. 13) and the validation phase was performed plotting 
the LSI value in x-axis and the cumulate percentage of landslides 
on y-axis (Fig. 14).

The use of the same validation dataset for all three methodolo-
gies allows the direct comparison between the curves obtained 
and the evaluation of their robustness. The validation step veri-
fies that the maximum number of landslides was included in the 
highest susceptibility classes. Results show that the landslide areas 
predicted by the RES method in the high-extreme susceptibility 
range (50–100) are 96% while in the same range, the performance 

Fig. 8   Landslide susceptibility maps obtained with the RES method. The basin bounded by black continuous lines refers to the basin studied 
in Bonetto et al. (2021). The black numbers are the global DfPIs evaluated for those basins
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of the RQHSM and LR methods is 82% and 77%. This means that 
in the RES methodology most landslides were predicted in areas 
characterized by high-extreme susceptibility while, in contrast, 

in the other methods more landslides were predicted in areas 
of low–high susceptibility. This fact reflects a lower prediction 
capability.

Fig. 9   Workflow used for the 
comparison and validation of 
the methods analysed Predisposing 

factors 

data preparation 

GIS spatial analysis

RES

Landslide 

susceptibility 
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Table 6   Debris flow parameters and class ratings for the RQHSM method

Geology Distance from channel network

Classes Rating Classes Rating

Eluvio-colluvial and talus deposits
Glacial deposits
Landslide deposits
Bedrock lithology

1
0.7
0.5
0.1

0–50 m
50–100 m
100–150 m
150–200 m
 > 200 m

1
0.75
0.5
0.25
0

Slope angle (°) Slope aspect (°) Curvature (1/m)

Classes [°] Rating Classes [°] Rating Classes [1/m] Rating

0–8
8–15
15–25
25–35
 > 35

0.1
0.5
1
0.5
0.1

0–45
45–135
135–225
225–315
315–360

0.1
0.5
1
0.5
0.1

 <  − 0.02
 − 0.02 to 0.005
0.005 to 0.001
 > 0.001

1
0.8
0.5
0.1
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Discussion
Using predisposing parameters selected from national and regional 
geodatabases, debris flow susceptibility maps were developed using 
the RES, RQHSM and LR methods. Analysis of the prediction 
curves (Fig. 14) shows the trend differences between the analysed 
methodologies: the RES appears to be more accurate in predict-
ing susceptible areas based on debris flow database analysis. To 
compare and evaluate the models, the percentage of the areas clas-
sified as susceptible is reported in Fig. 15. In the RES and RQHSM 
methods, the differences in the percentage of susceptible areas are 
negligible (0.2|0.8 Low, 13.2|17.7 Medium, 47.0|43.8 High, 33.3|32.2 
Very high, 6.3|5.5 Extreme). These two methodologies classify most 
of the territory with high and very high susceptibility while, on the 
other hand, the LR approach identifies a different proportion of 
areas with respect to the other two methods (25.3 Low, 44.2 Medium, 
16.8 High, 10.2 Very high, 3.3 Extreme). In this case, the LR method 
identifies few areas of high susceptibility by concentrating high 
values in a small portion of the area. The difference is also appreci-
able comparing the maps in Fig. 13, which shows the overlay of the 

susceptibility map and the location of the source areas used in the 
validation process.

A common feature of all three methods is that the spatial dis-
tribution of the most susceptible areas corresponds to the zone of 
maximum elevation with the presence of debris along the slope and 
steep sections. The RQHSM and RES methods identify the channel 
network as playing a significant role in the triggering phenomena, 
while the LR method highlights highly fractured outcrop rocks as 
a key factor. The low susceptibility zone was detected in the alluvial 
planes and flat areas, but the same susceptibility class in the LR was 
also detected along the slope and near channels.

The applicability of different methods to debris flow susceptibil-
ity depends on several factors (e.g. amount and quality of the data) 
but established standards and codes of practice are not available for 
the choice of the most appropriate method for landslide susceptibil-
ity evaluation.

The LR method is based on the evaluation of the relationships 
between predisposing factors (thematic layers) and the distribution of 
debris flow source areas collected in the past years (landslide inventory). 

Fig. 10   Landslide susceptibility maps obtained by the RQHSM method
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Thus, a detailed landslide archive is a necessary input to apply the 
methodology. In remote mountain areas, where it is difficult to collect 
information, some events may be missed, and this issue can lead to an 
underestimation of the potential triggering areas with a consequent 
decrease in forecasting quality. The application of remote sensing sur-
vey can redress this problem, but the precise time of occurrence and the 
definition of magnitude remain undetectable. This information is not 
required for landslide susceptibility, but it is fundamental for hazard or 
risk assessment. Moreover, the visual detection of source areas has some 
limitations due to the misclassification of landslide events and under-
estimation of the number of events recorded. The growth of vegetation 
and action of snow and glaciers could partially or totally delete the 
evidence of past events. In addition, the complex terrain morphologies 
may not allow the proper identification of the source area if the quality 
of aerial photography is not sufficiently detailed.

The evaluation of landslide susceptibility requires geological, 
morphological and statistical input data to process the analysis. Much  

effort is required to collect and validate the necessary input data, 
which are not always available from open-access geo-environmental 
databases. Statistical methods need the available spatial–temporal 
datasets of landslide events. The RES and RQHSM methodologies  
are essentially based on predisposing parameters derived from  
geological, morphological and hydrogeological thematic layers.

In the RES methodology proposed, starting from available 
databases, several geological, geo-structural, morphological 
and hydrographic parameters were considered to quantify their 
mutual interaction and to define a debris flow susceptibility map. 
In particular, the parameters for the different lithological classes 
of the bedrock and for their degree of fracturing were quanti-
fied in the regional-scale tectonic setting, and for the Quaternary 
deposits.

The RES method, as applied in this study, proved to be low-cost 
and time-saving and allowed sectors with different propensities to 
triggering debris flow to be identified.

Fig. 11   The validation (circles) and the model (yellow triangles) sets in which the landslide inventory was randomly divided
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Table 7   The likelihood values

Parameter Class Area in the 
domain (km2)

% of domain No. of 
landslide

% of landslide* FR

Slope 0–8° 23.11 7.92 3 0.51 0.06

8–15° 33.94 17.44 8 1.35 0.08

15–25° 96.40 31.18 36 6.07 0.19

25–35° 131.84 30.17 169 28.50 0.94

 > 35° 101.48 9.12 377 63.58 6.97

Geology Calcschist 32.16 8.36 152 25.63 3.06

Marble and dolostone 10.69 2.78 61 10.29 3.70

Quartz-micaschist, gneiss 26.40 6.87 39 6.58 0.96

Quartzite 3.95 1.03 1 0.17 0.16

Gypsum and carbonate breccias 0.62 0.16 2 0.34 2.10

Glacial deposits 67.17 17.47 39 6.58 0.38

Talus deposits 30.53 7.94 174 29.34 3.69

Landslide deposits 22.79 5.93 25 4.22 0.71

Eluvio-colluvial deposits 189.05 49.18 92 15.51 0.32

Distance from  
channel network

0–50 m 84.24 21.76 235 39.63 1.82

50–100 m 67.76 17.51 120 20.24 1.16

100–150 m 51.74 13.37 92 15.51 1.16

150–200 m 39.56 10.22 50 8.43 0.82

 > 200 m 143.75 37.14 96 16.19 0.44

Elevation  < 1000 m 11.99 3.10 7 1.18 0.38

1000–1500 m 85.07 21.99 13 2.19 0.10

1500–2000 m 110.02 28.44 90 15.18 0.53

2000–2500 m 107.75 27.86 283 47.72 1.71

2500–3000 m 62.67 16.20 195 32.88 2.03

 > 3000 m 9.34 2.41 5 0.84 0.35

Land use Villages, Urban 17.30 4.49 17 2.87 0.64

Grassland 131.50 34.14 123 20.74 0.61

Low forest 2.12 0.55 6 1.01 1.84

High forest 158.53 41.16 55 9.27 0.23

Rocks and deposits 75.70 19.65 392 66.10 3.36

Slope aspect  < 60° 56.15 14.54 85 14.33 0.99

60–120° 55.59 14.40 154 25.97 1.80

120–180° 80.30 20.80 171 28.84 1.39

180–240° 65.80 17.04 95 16.02 0.94

240–300° 58.14 15.06 41 6.91 0.46

 > 300° 70.08 18.15 47 7.93 0.44
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*Total number of landslides is 593 (training sets)

Table 7   (continued)

Parameter Class Area in the 
domain (km2)

% of domain No. of 
landslide

% of landslide* FR

Landslide activity Active 79.01 33.22 216 52.43 1.58

n. d 122.68 51.58 120 29.13 0.56

Quiescent 35.40 14.88 76 18.45 1.24

Stabilized 0.74 0.31 0 0.00 0.00

Curvature
(m−1)

 <  −0.02 45.28 11.72 28 4.72 0.40

−0.02 to −0.005 84.72 21.93 156 26.31 1.20

−0.005 to −0.001 157.89 40.88 115 19.39 0.47

 >  −0.001 98.36 25.47 294 49.58 1.95

Fig. 12   Landslide susceptibility map obtained by the LR method
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Fig. 13   Overlay among 
susceptibility maps and the 
validation set: a the RES, b the 
RQHSM and c the LR methods
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Fig. 14   Prediction rate curve 
using 253 debris flow source 
areas from the landslide inven-
tory
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Conclusions
Susceptibility analysis in mountain areas is the first step in the risk 
assessment procedure. It is useful for local authorities to define 
potential areas that could be affected by debris flow phenomena. 
Different methodologies for susceptibility analyses are available in 
the scientific literature, but which to choose depends on the scale 
of analysis required and the amount and quality of available data.

In this work, an innovative GIS-based application of Rock Engi-
neering System (RES) was used for debris flow susceptibility map-
ping. Starting from the definition of a global DfPI for a single debris 
flow basin, as suggested by Bonetto et al. 2021, in this paper, a debris 
flow susceptibility map of the Upper Susa Valley (W Alps, Italy) was 
developed with a 5 × 5-m grid resolution. Important updates to the 
Bonetto et al. (2021) approach were proposed: (i) new predisposing 
factors, such as land use, landslide activity and other geomorpho-
logical aspects, were considered; (ii) two interaction matrices were 
proposed for considering the mutual interaction of the bedrock 
lithology or deposits with the other parameters; (iii) GIS-based 
mapping with evaluation of DfPI for each cell of the grid.

The susceptibility map obtained was compared with the RQHSM 
and LR methods. Numerical quantification of the validity of the 
susceptibility forecasting was performed by using the Prediction 
Rate Curve model, comparing the susceptibility model results with 
an available debris flow source inventory. In general, there was a 
good agreement between the forecasted and observed source areas. 
However, the RES-based map appears to be the most efficient and 
robust in the detection of source areas, since it was able to predict 
96% of the source areas that fall into the high-extreme susceptibil-
ity range (50–100).

The study demonstrates that the application of the RES method 
offers an opportunity for initial debris flow susceptibility screening 
at medium and large scale, using available and open-access data, 
and meets the needs of authorities for land use management and 
planning. Further studies will be devoted to a comparison with 
other more sophisticated and complex methodologies (e.g. multi-
variate statistical approach or artificial neural network methods) 
developed in recent years.
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