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Abstract
Objective. The accurate temporal analysis of muscle activations is of great importance in several
research areas spanning from the assessment of altered muscle activation patterns in orthopaedic
and neurological patients to the monitoring of their motor rehabilitation. Several studies have
highlighted the challenge of understanding and interpreting muscle activation patterns due to the
high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results and to
use sEMG signals in clinical practice. To overcome this limitation, this study aims at presenting a
toolbox to help scientists easily characterize and assess muscle activation patterns during cyclical
movements. Approach. CIMAP (Clustering for the Identification of Muscle Activation Patterns) is
an open-source Python toolbox based on agglomerative hierarchical clustering that aims at
characterizing muscle activation patterns during cyclical movements by grouping movement cycles
showing similar muscle activity.Main results. From muscle activation intervals to the graphical
representation of the agglomerative hierarchical clustering dendrograms, the proposed toolbox
offers a complete analysis framework for enabling the assessment of muscle activation patterns. The
toolbox can be flexibly modified to comply with the necessities of the scientist. CIMAP is addressed
to scientists of any programming skill level working in different research areas such as biomedical
engineering, robotics, sports, clinics, biomechanics, and neuroscience. CIMAP is freely available on
GitHub (https://github.com/Biolab-PoliTO/CIMAP). Significance. CIMAP toolbox offers scientists
a standardized method for analyzing muscle activation patterns during cyclical movements.

1. Introduction

Surface electromyography (sEMG) is commonly used, in several research areas, to quantitatively and
non-invasively assess dynamic muscle activity in both physiological and pathological conditions. Among the
most studied sEMG-derived parameters, the identification of the onset and offset instants of muscle activity
plays a fundamental role. The assessment of sEMG activation intervals achieved great interest among
researchers in a wide variety of clinical, robotic, and sports applications. In particular, muscle activation
intervals are used to assess altered sEMG patterns in patients affected by orthopaedic or neurological diseases
(Castagneri et al 2019, Hsu et al 2019), to define rehabilitation protocols tailored to the patient needs (Akef
Khowailed and Abotabl 2019), to study posture control (Labanca et al 2021), to control prostheses and
exoskeletons (Micera et al 2010, Li et al 2023), and to evaluate return-to-sport of athletes after injury (Rocchi
et al 2020).

However, sEMG signals during gait are characterized by high cycle-by-cycle variability that makes it
difficult to interpret the results and to use sEMG data in clinical practice (Winter and Yack 1987, Agostini
et al 2020). For a specific muscle of a subject, different activation patterns are usually assessed during cyclical
movements, each of them characterized by a specific frequency of occurrence (Di Nardo et al 2017).
Considering the walking task, even in healthy subjects, a single muscle does not show a single preferred
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pattern of activation, but up to 4-5 distinct sEMG patterns, each characterized by a different number of
activation intervals occurring within the stride (Agostini et al 2010, 2015). To overcome this limitation,
specific algorithms are needed to help scientists to easily characterize and assess muscle activation patterns
during cyclical movements.

Cluster analysis may represent a useful tool for helping scientists to study the different muscle activation
patterns during cyclical movements. In this perspective, CIMAP (Clustering for the Identification of the
Muscle Activation Patterns) algorithm was proposed and validated in different healthy and pathological
conditions (Rosati et al 2017a, 2017b). The CIMAP algorithm is based on agglomerative hierarchical
clustering and aims at characterizing muscle activation patterns during cyclical movements by grouping
movement cycles showing similar muscle activity. This algorithm requires the muscle activation intervals as
input data, computed through a muscle activity detector (not included in the toolbox). It was specifically
developed to assess muscle activity patterns during walking in both physiological and pathological
conditions and it was successfully applied to the study of gait asymmetry in healthy, orthopaedic, and
neurological patients (Castagneri et al 2019, Rosati et al 2021). Moreover, the study by Ghislieri et al used the
CIMAP algorithm as a pre-processing step before muscle synergy extraction to evaluate human motor
control during locomotion (Ghislieri et al 2019, 2020). Notice that the CIMAP algorithm was originally
proposed for assessing gait in both physiological and pathological conditions. Nevertheless, CIMAP can be
potentially applied to other cyclical movements, as cycling and reach-to-grasp movements.

In this contribution, to support researchers interested in the analysis of muscle activation patterns, we
distribute an open-source Python toolbox (CIMAP) that allows for obtaining all the representative muscle
activation patterns of a muscle. The number of clusters identified by the CIMAP toolbox and the cluster size
(i.e., the number of elements belonging to the same cluster), may represent meaningful information in
clinics, since they indicate how many sEMG patterns were found and how frequently they occur during the
analyzed movement (Agostini et al 2014). The proposed toolbox adopts an object-oriented programming
approach that allows a clear definition of a few classes incorporating data structure and data processing
methods, empowering researchers to easily extend and customize the toolbox to meet specific data and
protocol needs. To better describe the processing pipeline and to provide a set of practical guidelines, an
example of CIMAP application is presented considering sEMG signals acquired from a lower-limb muscle of
a representative healthy subject during a 5 minute walking task.

Researchers with little coding experience will find in the Python toolbox CIMAP a complete framework
for the assessment of muscle activation patterns during cyclical movements, from the pre-processing of
muscle activation intervals to the graphical representation of the clustering results.

2. Methods

CIMAP toolbox is implemented in Python and includes all the required steps for performing the analysis of
muscle activation patterns. This toolbox incorporates functions for all the analysis steps, from data
preparation to the graphical representation of the clustering results and data saving.

Figure 1 shows the workflow of the CIMAP algorithm. The following section provides a brief description
of the main functions implemented within the CIMAP, including references to relevant literature:

a) Dataset preparation: CIMAP toolbox requires as input the muscle activation intervals (i.e., the time
intervals characterized by muscle activity). Notice that this toolbox does not include a muscle activation
interval detection step. Therefore, before using this toolbox, researchers should first apply a muscle
activity detector. Input data should be provided in a ∗.csv file containing aM× (N+ 1)matrix
representing muscle activation intervals, withM being the number of muscles acquired and N being the
number of time samples after time-normalization. From the muscle activation intervals, the onset and
offset instants are extracted, representing the beginning and the end of each muscle activation,
respectively. More details about input data format are freely available on the BIOLAB GitHub repository
(https://biolab-polito.github.io/CIMAP/data_requirements.html);

b) Pre-processing: movement cycles characterized by the same number of activation intervals occurring
within the cycle duration are grouped into sub-groups (or ‘modalities’). Modalities characterized by a
small number of movement cycles (num. cycles< Th) are considered as non-representative and thus
discarded from the following analyses. Based on a previous study by Dotti et al (2021), the value of Th
was set equal to 10 movement cycles. Notice that this value of Th was selected and optimized based on
activation intervals acquired from lower-limb muscles during long-lasting walking. More details about
the optimization process can be found in the study by Dotti et al (2021). Th value can be easily adjusted
to meet specific data needs, such as a small number of movement cycles or different motor tasks;
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Figure 1. Schematic representation of the steps implemented within CIMAP algorithm.

c) Agglomerative hierarchical clustering: considering each modality separately, agglomerative hierarchical
clustering is applied. From a number of clusters equal to the number of cycles belonging to the modality
under consideration (i.e., each cluster is characterized by a single movement cycle), agglomerative
hierarchical clustering iteratively merges the two ‘closest’ clusters, until a single cluster is obtained (i.e., a
single cluster containing all the movement cycles belonging to the modality under consideration). The
complete linkage method is used to select the two ‘closest’ clusters to be merged, considering both
Manhattan (L1 norm) and Chebyshev (L∞ norm) as distance metrics (Kaufman and Rousseeuw 1990).
Thus, for each modality, agglomerative hierarchical clustering is applied twice (the first time considering
L1 norm and the second time considering L∞ norm as distance metric). The cutoff points (i.e., the final
number of clusters) are selected applying to each dendrogram the cutoff rule proposed by Rosati et al
(2017b). In particular, three cutoff points are identified to evaluate the difference (∆it) in inter-cluster
distances between consecutive clustering iterations. The first cutoff point is identified as the first iteration
in which the∆it is higher than the∆it average over all the iterations. The second cutoff point is identified
as the first iteration in which the∆it is higher than the∆it average plus one standard deviation of∆it

over all the iterations. The third cutoff point is identified as the point where the moving average of the
∆it series, starting from the last iteration and moving backward, stops decreasing monotonically. Then,
the best cutoff point is chosen as the one showing the lowest value in the index (CUT_IND) defined by
Rosati et al (2017b) as follows:

CUT_IND=

∑n
i=1INTRA_VARi ∗ n∑n

i=1Ci
(1)

where INTRA_VARi represents the intra-cluster variability of the ith cluster calculated as the mean
pairwise distance between cycles, n represents the number of meaningful clusters (defined as those with
more than one element), and Ci is the number of cycles included in the ith meaningful cluster. Finally,
after comparing the dendrograms obtained considering the L1 norm and L∞ norm metrics, the one
showing the lowest intra-cluster variability is selected for the following analyses;

d) Clustering analysis representation: this toolbox includes several visualization methods that allow for the
examination of data throughout the entire analysis process. In particular, dendrograms showing
clustering results can be represented for each muscle and each modality, separately. An example of
clustering results representation is provided in figure 5;

e) Data saving: to increase the accessibility of results, their interpretability and interoperability, clustering
results can be exported in .csv format. More details about output data format are freely available on the
BIOLAB GitHub repository (https://biolab-polito.github.io/CIMAP/data_requirements.html);

Further details about the implemented Python classes and the default setting parameters are freely
available on the GitHub repository (https://github.com/Biolab-PoliTO/CIMAP).

3. Results

This section describes all the steps involved in the analysis of muscle activation patterns of a sample dataset of
sEMG data acquired from two lower-limb muscles (left and right Lateral Gastrocnemius muscle) of a healthy
subject during a 5-min overground walking task.

The first step is the loading of muscle activation intervals contained in the sample dataset (‘input_file’)
through the ‘data_reading’ function. The ‘data_reading’ function can be called as follows:

s,muscles = CIMAP.data_reading(input_file = input_file)

3
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Figure 2. Example of muscle activation intervals for the left and right Lateral Gastrocnemius muscles (LGS_L and LGS_R,
respectively) of a healthy volunteer during a 5-minute overground walking task. The blue horizontal lines represent muscle
activation intervals expressed as a percentage of the cycle duration (BLUE=muscle active, WHITE=muscle inactive).

where s represents a data structure containing the muscle activation intervals to be processed through the
CIMAP algorithm and muscles represents a data dictionary containing sEMG information (i.e., muscle
labels, side, sensor placement, …).

Then, the ‘remove_add_ints’ function is called to remove (if any) outliers of muscle activation intervals
(i.e., movement cycles characterized by always-ON or always-OFF muscle activation patterns). Further
details about the outlier removal process can be found in the study by Rosati et al (2017b). The outlier
removal process can be performed through the ‘remove_add_ints’ function as follows:

s = CIMAP.remove_add_ints(s)

where s contains the muscle activation intervals after the outlier removal step.
Muscle activation intervals can be graphically represented using the ‘act_plot’ function. In the following,

the ‘act_plot’ function is called to represent all the muscle activation intervals of the left and right Lateral
Gastrocnemius muscles (LGS_L and LGS_R, respectively):

CIMAP.act_plot(s,target = `LGS')

where s represents the data structure containing the pre-processed muscle activation intervals and target is a
variable containing the labels of the muscles to be represented.

Figure 2 shows the output of the ‘act_plot’ function considering data from the sample dataset included in
the toolbox. More specifically, it represents the muscle activation intervals obtained from the left and right
LGS muscles of a healthy volunteer during a 5 minute overground walking. Each horizontal blue line
represents a muscle activation interval extracted from a single gait cycle expressed in percentage of cycle
duration (blue=muscle active, white=muscle inactive). It can be observed that, despite intra-cycle
variability, LGS muscle activity mainly occurs between 20% and 50% of the gait cycle for both the left and
right sides. The muscle activation intervals included in the sample dataset were computed using the
LSTM-MAD algorithm proposed by Ghislieri et al (2021).

Before clustering, muscle activation intervals are divided into modalities (i.e., movement cycles
characterized by the same number of activation intervals occurring within the cycle duration) by using the
‘modality_division’ function as follows:

muscles = CIMAP.modality_division(s,muscles)

where s contains the muscle activation intervals and muscles represents the data dictionary suitable for the
following clustering analysis.

To visualize the modality distribution and to assess the number of movement cycles belonging to each
modality, the ‘modality_distribution’ function can be used as follows:

CIMAP.modality_distribution(s,target = `LGS')

4
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Figure 3. Histograms of movement modalities obtained from the muscle activation intervals of the left and right Lateral
Gastrocnemius muscles (LGS_L and LGS_R, respectively) included in the sample dataset. Each histogram represents the number
of gait cycles belonging to each modality.

where s contains the muscle activation intervals and target is the variable containing the labels of the muscles
to be represented.

Figure 3 shows the output of the ‘modality_distribution’ function representing the histogram of the
movement modalities extracted from the muscle activation intervals of the left and right Lateral
Gastrocnemius muscles (LGS_L and LGS_R, respectively) included in the sample dataset. In particular,
figure 3 shows the number of gait cycles belonging to each modality for both the left and right sides. For
example, considering the right side, more than 50 gait cycles are characterized by a single muscle activation
(Modality 1), approximately 15 gait cycles are characterized by 2 muscle activations (Modality 2), and less
than 5 gait cycles are characterized by 3 muscle activations (Modality 3).

The agglomerative hierarchical clustering is then performed using the ‘dendrograms’ function, which
computes two different dendrograms by using the L1 norm and L∞ norm, respectively. To select the optimal
cutting point from the two dendrograms (L1 norm and L∞ norm), the ‘cuts’ function is applied to each
dendrogram. The optimal cutting point is selected based on the rules defined by (Rosati et al 2017b). The
clustering analysis can be performed by calling the ‘dendrograms’ and ‘cuts’ functions as follows:

muscles = CIMAP.dendrograms(muscles)
muscles = CIMAP.cuts(muscles).

The ‘dendrograms’ and ‘cuts’ functions can be easily customized by users to meet specific data and
protocol needs. The toolbox documentation available on GitHub (https://github.com/Biolab-PoliTO/
CIMAP) includes further details on the ‘dendrograms’ and ‘cuts’ functions.

Clustering results can be graphically represented through the ‘dendro_plot’ function as follows:

CIMAP.dendro_plot(muscles,target = `LGS')

where muscles contains the clustering results obtained through the ‘dendrograms’ and ‘cuts’ functions and
target is the variable containing the labels of the muscles to be represented.

Figure 4 represents the output of the ‘dendro_plot’ function. For each movement modality, the
computed dendrograms are represented. Above each dendrogram, the specific metric and cutting point used
are represented, as defined by Rosati et al (2017b). The clusters identified after the cutting point selection are
represented in different colors.

To save the CIMAP output, the ‘algorithm_output’ and ‘result_saver’ functions can be called as follows:

cimap_output = CIMAP.algorithm_output(s,muscles)
CIMAP.result_saver(cimap_output)

where cimap_output is a data dictionary containing the clustering results of each muscle after discarding
non-significant modalities.

CIMAP results are saved in an easy-to-read and open-source format (.csv). More specifically, results are
in aM× (C+ 1) matrix, whereM represents the number of muscles and C the total number of cycles.
Notice that the first column should contain the labels of each muscle as defined in the input file.

5
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Figure 4. Agglomerative hierarchical clustering dendrograms of the sEMG activation intervals displaying a single modality (at the
top) and two modalities (at the bottom). SEMG activation intervals that belong to the same cluster are represented with the same
color. Both dendrograms were created using the L1 norm as the distance metric.

Finally, the sEMG activation intervals clustering computed through CIMAP can be represented using the
‘cluster_plot’ function as follows:

CIMAP.clusters_plot(cimap_output,target = `LGS', color = True)

where cimap_output is a data dictionary containing the clustering results and target is the variable
containing the labels of the muscles to be represented. The toolbox documentation freely available on
GitHub (https://github.com/Biolab-PoliTO/CIMAP) includes further details on the ‘cluster_plot’ function.

Figure 5 shows the clustering of the sEMG activation intervals computed through CIMAP. The sEMG
activation intervals are color-coded according to the colors used in the agglomerative hierarchical clustering
dendrograms (figure 4). In each row, the colored lines depict the sEMG activation intervals within a gait
cycle. The sEMG activation intervals are grouped into clusters, indicated by different colors. The black lines
represent the cluster centroids. Gait cycles belonging to non-representative modalities (i.e., characterized by
a small number of gait cycles) are represented in the ‘Modality under Th= 10’ panel.

4. Discussion and conclusions

CIMAP is an open-source and comprehensive toolbox for the assessment of muscle activation patterns from
surface electromyographic (sEMG) data. The proposed toolbox offers a complete analysis framework for
enhancing the assessment of muscle activation patterns from pre-processing of muscle activation intervals to
the representation of agglomerative hierarchical clustering dendrograms. CIMAP adopts an object-oriented
programming approach allowing scientists of any programming skill level to easily extend and customize the
toolbox to meet specific data and protocol needs. To better explain the toolbox and offer practical guidance,
an example of CIMAP application was presented. This example involved analyzing a sample dataset of sEMG
signals acquired from a lower-limb muscle of a healthy subject during a 5 min walk.

CIMAP requires as input the muscle activation intervals extracted from the sEMG data of the muscles of
a subject. However, this toolbox does not include a muscle activation interval detection step. Therefore,
researchers who want to analyze muscle activation patterns using CIMAP should first apply a muscle activity
detector before using this toolbox. In the last years, several muscle activity detectors have been proposed,
spanning from approaches based on single- (Hodges and Bui 1996, Solnik et al 2008) or double-threshold
(Bonato et al 1998) to more complex approaches based on machine- (Di Nardo et al 2022) or deep-learning
techniques (Ghislieri et al 2021). In particular, muscle activation intervals included in the sample dataset
were computed using the LSTM-MAD algorithm proposed by Ghislieri et al (2021).

It is well known that muscle activations are characterized by high cycle-to-cycle variability that may
strongly reduce the interpretability of the results. In this perspective, CIMAP represents a first resource to be

6
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Figure 5. Example of clustering of sEMG activation intervals (muscles: left and right lateral gastrocnemius) computed by means
of CIMAP. In each row, the colored lines represent the sEMG activation intervals within a gait cycle. SEMG activation intervals
are grouped in clusters (represented by different colors) based on CIMAP output. Black lines represent cluster centroids. Gait
cycles belonging to non-representative modalities (i.e., characterized by a small number of gait cycles) are represented in the
‘Modality under Th= 10′ panel.

used for dealing with variability in muscle activation patterns analysis during cyclical movements. In the last
years, CIMAP was validated in clinics considering different kinds of disorders affecting gait (such as
orthopedic and neurological diseases). In particular, CIMAP was used by Castagneri et al (2019) for the
evaluation of gait asymmetry in adults with megaprosthesis of the knee after bone tumor resection, in elderly
subjects after total hip arthroplasty, children suffering from hemiplegic cerebral palsy, and in elderly patients
affected by idiopathic normal pressure hydrocephalus. Results demonstrated that gait asymmetry, evaluated
through CIMAP, consistent with the expected impact of the pathologies on the muscle activation during
gait, suggesting the applicability of the method for the objective assessment of asymmetry. Moreover, in the
study by Rosati et al (2021), CIMAP algorithm allows the definition of two quantitative indexes for the
assessment of subject muscle coordination, enabling clinicians to identify muscle activation patterns that
significantly deviate from those of a reference population.

Even if the CIMAP toolbox was originally developed for clinical gait analysis, the clustering approach is
independent from the set of muscles considered, it can be easily extended to the study of other cyclical
movements, and it can be applied to research areas different from clinics and rehabilitation (e.g. ergonomics,
robotics, and sports).

7
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From CIMAP outputs, several parameters can be extracted to deeply understand motor control strategies
during movement. For example, the size and variability of each representative cluster can be easily extracted
to study muscle activation pattern consistency of a subject muscle over the task duration. During walking
tasks, healthy subjects are characterized by an increased cluster size (i.e., gait cycles are described by the same
number of muscle activation intervals within the gait cycle duration) and a reduced within-cluster variability
(i.e., gait cycles are characterized by similar onset and offset timings within gait cycle duration) compared to
pathological conditions. Thus, these parameters can be used to distinguish between physiological and
pathological gait conditions.

Notice that the set of input parameters implemented in the CIMAP toolbox was tested and optimized for
clinical gait analysis. In case of different tasks or different numbers of movement repetitions, we recommend
testing the method and (if necessary) tuning the input parameters. In particular, the input parameters that
may require a tuning step are: (i) the threshold Th used to define representative modalities, (ii) the minimum
number of elements required to define a significant cluster, and (iii) the distance metric used for the
agglomerative hierarchical clustering.

One of the limitations of this toolbox is the absence of a dedicated Graphical User Interface (GUI).
Although a GUI could improve accessibility, custom code may be needed to adapt the assessment of muscle
activation intervals for different movements and datasets, which could be challenging to implement in a
GUI. However, the CIMAP toolbox includes several visualization functions that enable researchers to easily
track each processing step. Another limitation of the toolbox is the absence of a muscle activation interval
detection step. Nevertheless, the main goal of the toolbox is to offer scientists a standardized method for
analyzing muscle activation patterns. This allows researchers the possibility to extract muscle activation
intervals based on the specific requirements of their dataset.

In conclusion, an open-source Python toolbox for the assessment of muscle activation intervals was
presented to help scientists to easily interpret muscle activation patterns during cyclical movements. This
approach might provide a step forward to the understanding of motor control strategies from muscle
activation intervals in different pathological conditions affecting movement.
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