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ABSTRACT Human Activity Recognition (HAR) has seen remarkable advances in recent years, driven
by the widespread use of wearable devices and the increasing demand for personalized healthcare and
activity tracking. Federated Learning (FL) is a promising paradigm for HAR that enables the collaborative
training of machine learning models on decentralized devices while preserving data privacy. It improves
not only data privacy but also training efficiency as it utilizes the computing power and data of potentially
millions of smart devices for parallel training. In addition, it helps end-user devices avoid sending users’
private data to the cloud, eliminates the need for a network connection, and saves the latency of back-and-
forth communication. FL also offers significant advantages for communication by reducing the amount of
data transmitted over the network, alleviating network congestion and reducing communication costs. By
distributing the training process across devices, FL minimizes the need for centralized data storage and
processing, leading to more scalable and resilient systems. This paper provides a comprehensive survey
of the integration of FL into HAR applications. Unlike existing reviews, this paper uniquely focuses on
the intersection of FL and HAR, providing an in-depth analysis of recent advances and their practical
implications. We explore key advances in FL-based HAR methodologies, including model architectures,
optimization techniques, and different applications. Furthermore, we highlight the major challenges and
future research questions in this domain, such as model personalization and robustness, privacy concerns,
concept drift, and the limited capacity of edge devices.

INDEX TERMS Federated learning, machine learning, human activity recognition, data privacy.

I. INTRODUCTION

THE SPREAD of wearable technology and Internet
of Medicine (IoMT) sensors is constantly creating

a massive amount of health-related data [1]. These data
have the potential to completely change personalized health
monitoring and intervention. However, there are many
challenges to overcome before these data can be managed
and used in a centralized way, especially when it comes to
privacy, latency, and scalability. Therefore, Human Activity
Recognition (HAR) coupled with Federated Learning (FL)
is a significant advance and holds great promise for our
daily lives [2], [3]. It is essential to model user behavior
in many different applications, including fitness tracking,

fall detection, and ubiquitous health monitoring. HAR is a
key component of smart healthcare applications and involves
classifying and predicting human activities from sensor data.
This finds applicability in the monitoring, rehabilitation, and
early detection of abnormalities in patients [4]. Sensitive per-
sonal data processing is often needed for these applications,
which poses serious privacy issues. FL has been used to
address this problem by enabling several devices/clients to
learn a shared model cooperatively without sharing private
data [5]. Instead of transferring raw, sensitive data to a
central location, FL operates by training machine learning
(ML)/Deep Learning (DL) models on each device, and
then sharing and aggregating the model updates. As shown
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FIGURE 1. Overview of the role of machine learning in human activity recognition.

in Figure 1, FL-based approaches significantly reduce the
risk of sensitive data exposure and mitigate the need for
extensive data transmission, addressing privacy and latency
issues. The figure also shows that centralized learning
involves collecting all data in a single location for training,
which, while enabling fast convergence and centralized
control, poses significant privacy risks and requires extensive
communication resources. In contrast, FL allows for on-
device training, requiring only the transfer of learning
updates. This approach improves privacy by keeping data
local, reduces communication needs, and is better suited
to the decentralized nature of B5G and 6G networks,
despite slower convergence and challenges related to system
heterogeneity. Technologies such as 5G, 6G, and visible light
communication schemes are integral to efficient training and
data transfer in both centralized and FL approaches. The
trained HAR models serve end users or systems and can be
securely stored in a blockchain for future use.
This introduction of FL to HAR applications opens

new avenues for providing more personalized and effective
healthcare solutions [6]. Its decentralized structure makes
it a great fit for future smart healthcare systems, since it
facilitates a more effective, scalable, and private method of
learning from health-related data. Furthermore, the combi-
nation of FL and HAR helps to offer intelligent solutions
anywhere and on any scale. This is reflected in the increasing
number of research papers dedicated to exploring FL’s
potential in this domain [7]. Because of these qualities,
FL can provide several advantages for HAR applications,
as shown in Figure 2, FL can significantly improve HAR
systems by facilitating real-time processing, enhancing pri-
vacy preservation, and leveraging the computational power
of edge devices. These advantages make FL a compelling
solution for advancing HAR technologies, leading to more
accurate and efficient activity recognition systems that are
well-suited for deployment in real-world scenarios.

FIGURE 2. The key benefits of FL-based HAR applications.

A. EXISTING SURVEYS AND TUTORIALS
The article in [8] explores the concept of FL in detail, focus-
ing on critical system components such as data distribution,
the ML model, privacy mechanisms, and communication
architecture. This comprehensive survey offers a founda-
tional understanding of FL and its various facets. Similarly,
the work presented in [9] takes an architectural perspective
on the FL concept, analyzing its basic applications in
business contexts. This survey highlights how FL can be
integrated into business models and the potential benefits
it can bring. Further studies such as [10], [11] examine
the structure of FL, its software, platforms, and protocols,
shedding light on the potential challenges that may arise
during FL deployments. These papers are crucial as they
provide insights into the technical infrastructure required for
effective FL deployment and identify gaps that need to be
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addressed. Although it provides a comprehensive view of
FL software engineering practices, it does not delve into the
specific challenges and solutions related to HAR using FL.
In addition, the use of FL within mobile edge networks was
examined in [12], with an emphasis placed on addressing
challenges in the FL application and understanding FL’s
contributions to optimizing edge networks. This study is
significant in highlighting how FL can be used to improve
network performance. Although it touches on the importance
of FL in edge computing, it lacks a detailed discussion on
its application in HAR.
Meanwhile, the work in [7], [13] presents a survey on

FL within the Internet of Things (IoT) and describes the
technical issues in FL designs, as well as the main application
of FL in the IoT. These surveys underscore the importance of
FL in managing the vast amounts of data generated by IoT
devices while maintaining privacy and efficiency. Although
HAR is mentioned as a potential application, the discussion
is brief and lacks specific examples or detailed analysis.
The study conducted in [14] delves into how FL can offer
a solution for the future of digital healthcare and, at the
same time, highlights the main challenges in this domain.
Reference [15] offers a review of the main structures of FL
models and only briefly introduces the application of FL in
the field of health informatics. In the same direction, the
authors in [1] and [16] provide an extensive survey on FL
in the context of IoMT. These surveys provide a detailed
overview of how FL can be applied to medical devices
and systems, enhancing data sharing and analysis while
protecting patient privacy. Another study in [14] considers
technical issues and prerequisites for the employment of
FL in the future landscape of digital health. Moreover, the
potential of FL to leverage electronic health records (EHR)
data for healthcare applications was proposed in [17]. This
study is critical because it explores how FL can be used
to improve healthcare outcomes by allowing collaborative
analysis of health records without compromising patient
privacy. On the other hand, this survey [18] focused on
transfer learning methods in the application domains of
HAR, where FL-based solutions are partially covered. We
summarize the related work and compare it with our paper
in Table 1.

Although there has been considerable research effort, to
the best of our knowledge, there is a noticeable gap in
comprehensive surveys focusing on the use of FL in the HAR
domain. Furthermore, the existing literature lacks a holistic
taxonomy and a more practical demonstration of the use of
FL in evolving HAR systems. These gaps motivate us to
conduct a comprehensive investigation of FL integration in
the HAR realm. Thus, this paper presents a comprehensive
survey on the integration of FL into HAR applications.
Unlike existing reviews, this paper uniquely focuses on the
intersection of FL and HAR, providing an in-depth analysis
of the recent advancements and their practical implications.
First, we highlight the key motivations and requirements for
the use of FL in HAR. Then we present the design aspects,

the architecture, and the FL frameworks. We also furnish
an up-to-date survey of the burgeoning applications of FL
in HAR. Moreover, we summarize the lessons learned from
the survey to provide the reader with deeper insights into
the practical application of FL in HAR.
Finally, we highlight the research challenges and define

future directions in FL-HAR. In summary, the main contri-
butions of this paper can be summarized below.

• FL for HAR, Key Principles and Categories:We provide
readers with essential insights into the key principles
and categories of FL as applied HAR.

• Motivations and Requirements of using FL for HAR:
We begin by identifying the key motivations and
highlighting the fundamental requirements that make
FL an alternative approach for HAR.

• Design Aspects, Architecture, and FL Frameworks: We
delve into the design aspects, architectural considera-
tions, and the various FL frameworks that are relevant
to HAR applications.

• Survey of Emerging Applications: We provide an up-to-
date survey of emerging applications of FL within the
field of HAR, shedding light on how FL is shaping the
landscape of activity recognition.

• Research Challenges and Future Directions: We con-
clude by highlighting the existing research challenges
and charting potential future directions in the dynamic
field of FL-HAR.

B. STRUCTURE OF THE SURVEY
Figure 3 illustrates the organizational structure of this work,
where the remainder of this paper is organized as follows.
In Section II, we establish the foundational principles and
categories of FL as they pertain to HAR, providing the reader
with a solid understanding of the core concepts. Following
this, in Section III we dive into the motivations behind
adopting FL in HAR and outline the essential benefits and
requirements that make FL an attractive solution for HAR.
Section IV takes a deeper dive into the technical aspects,
including architectural considerations and the FL frameworks
applicable to HAR. Section V provides an up-to-date survey
of FL applications within HAR that includes health-related
activity and daily activity. In Section VI, we discuss the
current research challenges and potential future directions for
the evolving field of FL-HAR. Finally, Section VII concludes
our paper.

II. FL FOR HAR: KEY PRINCIPLES AND CATEGORIES
In this section, we start by presenting the basic principles of
FL, as well as the different FL types that finds application
in HAR, and then we describe several FL aggregation
algorithms.

A. KEY PRINCIPLES
FL represents a distinctive learning paradigm that enables
devices to learn in a collaborative way while preserving data
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TABLE 1. Summary on FL-related topics and our new contributions.

privacy by avoiding data sharing with a central server. It
facilitates the training of ML or DL models across multiple
devices and servers, thus addressing concerns such as privacy
and cost reduction inherent in centralized ML methods [19].
In particular, the FL process consists of two primary steps:
local learning and model transmission [20]. Initially, the
FL server randomly selects some clients for participation,
sending the global model to them. Each client performs local
training using its data and then transmits its updated model
back to the FL server for global aggregation. This iterative
process continues until the performance of the model meets
the predefined criteria [7]. This demonstrates how devices

may use other devices’ data to their advantage through FL
without having to send their own private information.
In fact, several aggregation methods have been devised

for FL, each with its strengths (Section II-C). Among
these, Federated Averaging (FedAvg) stands out due to its
simplicity, effectiveness, and robustness [5]. The FedAvg
algorithm averages the weights of models trained on local
datasets to create a global model. There are also other
algorithms and approaches as well such as FedProx [21], and
Qffedavg [22]. The choice of which one to use may depend
on the specific requirements of the FL scenario, such as
the need for more advanced privacy measures, dealing with
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FIGURE 3. The structure of the paper.

unbalanced or non-independent and identically distributed
(non-IID) data, or constraints on communication efficiency.

B. TYPE OF FL FOR HAR
There are three types of FL: Federated Transfer Learning
(TFL), Vertical Federated Learning (VFL), and Horizontal
Federated Learning (HFL). Each of these FL types has its
own set of advantages and is suitable for different scenarios
depending on the distribution and privacy requirements of
the data.

• Horizontal Federated Learning (HFL): In HFL, several
clients hold different samples of data, but the feature
space of the data is the same. In order to ensure that no
raw data needs to leave the individual clients, the clients
work together to train a global model. For example,
several hospitals may have patient records with the
same feature space (attributes), but the specific patients
(samples) differ from hospital to hospital [16].

• Vertical Federated Learning (VFL): Unlike HFL, VFL
is known as feature-based FL, clients may have different
sets of features for the same or overlapping data
samples. For example, one hospital might have patient
demographics and another has their lab results, but both
sets pertain to the same group of patients. VFL allows
for model training using all available features without
sharing the raw data between clients.

• Federated Transfer Learning (TFL): FTL extends FL’s
capabilities to scenarios where data between clients
may vary both in feature space and sample space.
The concept involves transferring knowledge from one
domain to another, allowing for learning across diverse
datasets. Even when the characteristics or samples are
different, customers with less data can still benefit from
learning from those with more data, which can be
advantageous in certain instances.

According to Google [23] research, FL can be divided into
two categories: cross-silo FL and cross-device FL, depending
on the number of client nodes and data availability.

• Cross-silo FL: Cross-silo FL usually involves a limited
number of clients, 2-100 devices, which are gener-
ally easily identifiable and are readily available for
training. These silos may represent various entities

or departments within a singular organization, each
holding extensive datasets. Training data in this con-
text can be categorized into horizontal or vertical
learning. However, in this context, computation and
communication problems frequently occur. To protect
the confidentiality of each client’s data, encryption
techniques are frequently used, as seen in vertical and
transfer learning implementations. An example of this
is the work in [24], which utilizes the FATE framework
to exhibit cross-silo FL with homomorphic encryption,
proposing a batch encryption algorithm based on gradi-
ent quantization [25] based batch encryption algorithm
to minimize computation and communication overhead
in the FL environment.

• Cross-device FL: Cross-device FL refers to the FL
approach that involves a large pool of clients in the
same domain who share a common interest in the global
model. Clients, typically individual users and their
personal devices, are usually connected via unstable
networks, and their participation in training rounds
is generally random. Compared to the cross-silo FL,
cross-device FL involves more frequent communication
rounds but is more lightweight, and participants, less
trusted, demand more robust privacy-preserving tech-
niques. Resource allocation strategies, such as client
selection/importance [26] and device scheduling [27]
are used to choose updates from more beneficial clients,
much like data partitioning in HFL. To encourage
consumers to participate in FL, incentive systems such
as game theory [28] are developed. Cross-device FL is
especially well suited for use cases with a large number
of clients, such as mobile apps or the cloud Edge IoT
continuum (CEI) [29].

C. FL AGGREGATION ALGORITHMS
Aggregation algorithms are crucial in FL because they
determine how the model updates from the local models
on the client devices. Depending on the specific objectives,
which may include safeguarding user privacy, enhancing
convergence speed, and mitigating the impact of fraudulent
participants, a diverse array of aggregation algorithms is
employed. Each of these strategies comes with its own
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set of advantages and drawbacks, making some more
suitable for particular contexts within the FL realm. In
the following, we start describing the most well-known
aggregation approaches; then we overview the proposed FL
solutions and how they use/combine them.

1) DIFFERENT APPROACHES FOR FL AGGREGATION

• Average Aggregation: This is the original and widely
used approach. In this approach, the server computes
the average value of the updates received to handle
the incoming messages (model updates, parameters, or
gradients). Let the number of participating clients be
N, and their individual updates at time t be wi,t, the
aggregate update wt+1 is determined as follows [5]:

wt+1 = 1

N

N∑

i=1

wt,i. (1)

• Stochastic Gradient Aggregation: Similar to the Average
Aggregation, but it takes an average of the gradients
instead of model updates [30]. Clients compute the
gradients based on their local data and send them to the
server, which updates the global model using a learning
rate, as in:

wt+1 = wt − η

N

N∑

i=1

∇fi(wt), (2)

where η is the learning rate and ∇fi(wt) is the gradient
computed by client i.

• Clipped Average Aggregation: Like in the previous
technique, the messages are averaged, but before cal-
culating the average, the model changes are restricted
to a predefined range. This method helps mitigate
the influence of outliers and potentially malicious
clients that could transmit substantial and malevolent
updates [31]. The parameter update evolves as follows:

wt+1 = 1

N
×

N∑

i=0

clip
(
wi,t, c

)
, (3)

where clip(x, c) is a function that clips the values of
x in a range of [−c, c], and c is the designed clipping
threshold.

• Secure Aggregation: Techniques such as secure
enclaves, secure multiparty computation (SMPC), and
homomorphic encryption can be used to increase the
security of FL. These methods serve to maintain client
data confidentiality throughout the aggregation process,
a crucial consideration in environments where data pri-
vacy is highly prioritized [32]. The secure aggregation
approach consists of the integration of an aggregation
algorithm with security techniques, where the server can
only calculate the aggregate update and cannot access
the individual model updates given by the devices.
Among these secure aggregation algorithms, one of
the most prominent is the Differential Privacy (DP)

aggregation algorithm, which introduces a distinctive
approach to the integration of client results and is
introduced hereafter.

• Differential Privacy Average Aggregation: To protect
the privacy of client data, an additional layer of DP is
added during the aggregation step. Specifically, before
transmitting its model update to the server, each client
adds random noise to it. The server then combines
these updates with random noise to generate the final
model [33]. The level of noise incorporated into each
update is adjusted to strike a balance between preserving
privacy and ensuring model accuracy. If we designate
ni to represent a random noise vector drawn from a
Laplace distribution with a scaling parameter b, and
this parameter b corresponds to the privacy budget, the
aggregated update wt+1 results as follows:

wt+1 = 1

N
×

N∑

i=1

(
wi,t + b · ni

)
, (4)

• Weighted Aggregation: The server evaluates each
client’s input in the global model update, taking into
account factors like client performance, device type,
network connectivity quality, and data similarity to
the global distribution. This approach aims to assign
greater importance to clients who demonstrate greater
reliability or representativeness, thus enhancing the
overall accuracy of the model [34]. The aggregate
update is computed as:

wt+1 =
∑N

i=1 ai × wi,t∑N
i=0 ai

, (5)

where ai is the corresponding weight of the client i and
wi its individual updates.

• Momentum Aggregation: This approach addresses the
issue of slow convergence in FL. Each client maintains
a “momentum” term that characterizes the historical tra-
jectory of the model adjustments. Prior to transmitting
a fresh update to the server, this momentum term is
incorporated into the update. The server accumulates
these augmented updates, complete with the momentum
term, to construct the ultimate model. This procedure
accelerates the convergence of the model [35].

• Bayesian Aggregation: The server combines model
updates from multiple clients using Bayesian inference,
a well-known method that accommodates uncertainty in
model parameters. This approach aids in diminishing
overfitting and enhancing the model’s capacity to
generalize to a broader range of data.

• Adversarial Aggregation: The server uses various meth-
ods to identify and counteract the influence of clients
who submit fraudulent changes to the model. These
methods encompass techniques such as outlier rejection,
model-based anomaly detection, and the use of secure
enclaves [36].
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• Quantization Aggregation: Before transmission to the
server for aggregation, the model updates are quantized
into a lower-bit format. This process aims to reduce
the volume of data to be transferred and improve
communication efficiency [37].

• Hierarchical Aggregation: The aggregation process is
executed across multiple levels of a hierarchical struc-
ture. This strategy minimizes communication overhead
by performing localized aggregations at lower hierarchy
levels before forwarding the results to higher levels [38].

• Personalized Aggregation: Throughout the aggregation
process, this method takes into account the distinct
attributes of each client’s data. This approach ensures
that the global model is updated in a manner that is
best suited to each client’s data while protecting data
privacy [39].

• Ensemble-Based Aggregation: The model is trained on
various groups of clients known as ensembles, and the
resultant models are harmonized to generate the final
model. Each ensemble might involve different subsets
of the data, and these ensemble models are subsequently
combined to form the final model. This approach can
effectively reduce the influence of non-IID data and
improve model accuracy.

These algorithms address various challenges in feder-
ated learning, such as data heterogeneity, communication
efficiency, privacy preservation, and robustness to system
variability. The aggregation algorithm choice depends on
the federated learning scenario’s specific requirements and
constraints. We summarize the main pros and cons of
these approaches in Table 2, highlighting the use cases
recommended for each one. As detailed in the following
subsection, many solutions have been proposed on top of
these algorithms.

2) SOLUTIONS AND IMPLEMENTATIONS FOR FL
AGGREGATION

As numerous implementations of FL aggregation algorithms
are available in the literature, we list some of the most well-
known solutions in FL in Table 3.
Federated Averaging (FedAvg) is among the aggregation

methods in FL that are used most frequently [5], [12].
First proposed by Google, this approach involves training
local models on client devices using their respective data.
Subsequently, the model updates (gradients) from each
client are sent to a central server, which aggregates these
updates by averaging them to update the global model.
From 2020, we can see a boost in FL solutions, for
example, Federated Proximal Gradient Descent (FedProx) is
an extension of FedAvg that includes a regularization term
to encourage similarity between the global and local models
by introducing a proximal term that penalizes divergence
of these terms [44]. This solution can handle heteroge-
neous data and system environments and helps mitigate
issues like model poisoning and non-IID data. Similarly,
the authors of [45] created the FedMA algorithm, which

matches and averages hidden components with comparable
feature extraction signatures to build the global model layer
by layer. FedMA can surpass classical FL algorithms in
handling real-world datasets and simultaneously reduces
the total communication overhead. Furthermore, in [42],
the authors introduced various FL models that incorporate
different adaptive optimization techniques, such as YOGI,
ADAGRAD, and ADAM. They conducted an analysis of
the convergence of these models under the influence of
heterogeneous data within general non-convex scenarios.
The results of their research confirmed the viability of
these models in accelerating convergence in the context
of FL.
In the same context, [46] explored the Analog Gradient

Aggregation (AGA) method as a solution to address the lim-
itations of communication resources in FL applications. The
solution introduces novel communication and learning strate-
gies that aim to improve the quality of gradient aggregation
and accelerate the convergence rate. Furthermore, in [47],
the authors presented a low complexity method designed
to protect user privacy while demanding considerably fewer
computational and communication resources.
The work in [49] devised adaptive communication of

quantized gradients, where clients quantize gradients and
select transmission of more informative quantized gradients
while reusing previous gradient information. This approach
results in a “lazy” worker-server communication for the
Lazily Aggregated Quantized (LAQ) gradient approach. This
model exhibits a substantial reduction in communication
overhead. In [50], the authors introduced a semi-synchronous
FL protocol named SAFA, with the goal of enhanc-
ing the convergence rate in heterogeneous FL scenarios.
The distribution of models, client selection, and global
aggregation have been designed to mitigate the adverse
impacts of stragglers, crashes, and outdated model versions.
SAFA effectively shortens the duration of interconnection
rounds, minimizes the wastage of local resources, and
enhances the accuracy of the global model while maintaining
communication costs acceptable.
FedDist is a new FL aggregation technique that detects

client dissimilarities to alter its architecture [51]. By using
this approach, the model’s generalization skills are preserved,
but its specificity and personalization are improved. As
an alternative, FedHQ [37] speeds up convergence by
dynamically determining the right weight for continuing
aggregation by computing and adding the quantization
error during the local model update. Likewise, FAIR [52]
comprises three key components: learning quality estimation,
which leverages historical data to estimate the quality of
user learning; quality-aware incentive mechanism, which
restructures the auction problem to incentivize user engage-
ment with high learning quality; model aggregation, in
which only the best models are incorporated to enhance
the global model. Federated Particle Swarm Optimization
(FedPSO) [53] exhibits increased robustness under unstable
network conditions by altering the data clients transmit to
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TABLE 2. Comparative analysis of different FL aggregation algorithms.

servers. Instead of sending extensive weights of local models,
FedPSO transmits score values. This can reduce network
overhead and traffic volume.

To withstand attacks in FL, the authors of [57] propose
the Secure and Efficient Aggregation Framework (SEAR),
a Byzantine-robust model. To defend locally learned client
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TABLE 3. State of the art of FL algorithms and their used aggregation approach.

models from Byzantine attacks, this approach makes use of
Intel Software Guard Extensions (SGX). The authors suggest
using two data storage modes to effectively execute the
aggregation methods given the memory limitations inside the
concurrent trustworthy Intel SGX memory.
Efficient privacy-preserving data aggregation

(EPPDA) [59] relies on secret sharing and incorporates
an effective fault tolerance strategy to handle user
disconnections. The authors conducted tests on their model
to demonstrate its resilience against both reverse attacks
and disruptions in user connections. In [60], the authors
introduced a new FL model named Federated Buffered
Asynchronous Aggregation (FedBuff). FedBuff operates
independently of the optimizer choice and combines the
benefits of synchronous and asynchronous FL, being more
efficient than synchronous FL and more efficient than
asynchronous FL. In fact, clients engage in asynchronous
training and communication with the server. However, unlike
typical asynchronous approaches, the server aggregates client
updates within a secure buffer before executing the server

update, utilizing technologies such as Trusted Execution
Environments (TEEs). In order to provide safe aggregation
with heterogeneous quantization, HeteroSAg [61] splits
updates from the client model into segments and groups
the network into segments. Instead of aggregating at the
local model level, aggregation is applied to these particular
segments with coordinated collaboration among users.
By adapting to their available communication resources,
edge users can achieve a more balanced trade-off between
communication time and training accuracy using this
strategy. Furthermore, experiments showed that HeteroSAg
is resistant to Byzantine attacks. LightSecAgg [63] is
a method based on reconstructing the aggregate mask
of active users using “mask coding/decoding” instead
of random-seed reconstruction of the dropped users.
LightSecAgg reduces overhead for resilience against
lost users and offers a modular system design with
optimized parallelization on devices, leading to a scalable
implementation that enhances the speed of concurrent data
exchange.
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P4FL [38] has recently proposed a hierarchical FL tech-
nique that programs P4 switches to calculate intermediate
aggregations of client parameters using the network pro-
grammability paradigm. This approach can greatly minimize
the cost of communication between clients and the server
when used in combination with model quantization. The
authors in [64] provide an asynchronous FL architecture with
periodic aggregation, also to address the straggler effect,
with a similar goal of minimising channel impacts. The
study examines the importance of reducing the bias and
variance of the aggregated model updates in considering
the limited wireless communication resources with HAR
applications. Then it suggests a scheduling policy that takes
into account both channel quality and the user device
representation of the training data. Specifically, learning
performance in an asynchronous FL environment can be
greatly improved by the suggested “age-aware” aggregate
weighting. FairFed [65] attempts to address the fairness
problem in FL in different demographic groups, for example,
in healthcare and recruitment. FairFed is centralized and
agnostic to the applied local debiasing, enabling flexible use
of different local debiasing methods across clients. Clients
work together with the server to adapt the model aggregation
weights. These weights depend on the disparity between
the global fairness evaluation (computed over the complete
dataset) and the local fairness evaluation at each client. They
tend to favor clients whose local measures align with the
global measures.

III. MOTIVATIONS BEHIND FL FOR HAR AND ITS
REQUIREMENTS
This section explains the main motivations and provides
detailed requirements for systems that employ FL in HAR.

A. MOTIVATIONS
We first address the primary drawbacks of the available HAR
solutions and then address the benefits that FL may provide
for HAR to effectively support its use.

1) LIMITATIONS OF CURRENT HAR

• Privacy Concerns: The use of open data sharing with
the cloud or data centers in the deployment of cen-
tralized ML-based techniques enables HAR to expose
data to privacy threats. In fact, external entities such
as cloud service providers could obtain control over
data and change patterns without the need for explicit
consent from the user [66], or criminal actors could
obtain unauthorized access to the central entity to extract
data. These inefficiencies may result in serious problems
with data leaks that compromise user confidentiality.
Although cloud servers have strong computational capa-
bilities that enable effective data training and analysis,
there are significant privacy hazards associated with
such a centralized ML-based solution for HAR [67].

• Data availability: The main challenge to successful
implementation of HAR systems is the scarcity of

extensive and reliable data sets. Large volumes of
diverse, high-quality data are needed to train models
that can accurately recognize and categorize a wide
range of human activities [1]. The process of data
collection can be both time-consuming and expensive,
as it often involves monitoring and recording individuals
as they perform a variety of activities [68]. These
datasets also need to account for the considerable
variation in how several people do the same task.
It can also be challenging to get information about
unusual or rare activities. Finally, privacy concerns
can further complicate the process of collecting HAR
data sets [69]. The quantity and kind of data that
can be gathered for HAR purposes may be severely
limited due to concerns about how these data might
be used, which leads to significant limitations on the
amount and type of data that can be collected for HAR
purposes.

• Limited HAR performance: Large-scale, diversified
dataset availability is critical to the functioning of HAR
systems. The predictive performance of these systems
frequently suffers from the lack of large datasets
that cover a wide range of human activities [16].
HAR systems that have been trained on sparse or
homogeneous datasets, in particular, may not be able to
generalize to a variety of situations in life and may even
have their robustness compromised. This could lead
to reduced accuracy when encountering unrepresented
or underrepresented activities in the collected data.
Predictions may become skewed if certain demographic
groups are not well represented in the dataset. For
instance, if the majority of the data in the dataset comes
from young adults, the HAR system might not be able
to distinguish between tasks carried out by people who
are older or younger, or who have different physical
capacities. Moreover, a HAR system can overfit the
training data [70], [71] if it is trained on a small
dataset. Because the system has effectively memorized
the training data rather than learning to generalize from
it, it will perform well on the training data but badly
on fresh, unknown data.

• High cost of data storage and training: For centralized
ML, data must be processed and kept in one single
location, which is typically a cloud-based system or
a high-capacity server. Numerous expenses and dif-
ficulties are associated with this centralized strategy,
including training and storage costs [72]. In particular,
HAR systems often make use of substantial amounts
of data gathered from several sensors. Large amounts
of storage space are required for the central storage of
this enormous quantity of data, which can be costly.
Furthermore, large computational resources are needed
for ML, particularly DL model training for HAR [73].
The effectiveness and speed of the training process are
directly impacted by the power of these resources. The
requirement for high-performance technology, such as
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strong CPUs or GPUs, can significantly raise expenses
in a centralized paradigm.

• Communication Cost: For HAR systems, a centralized
training method can result in significant communication
costs due to data transfer, bandwidth needs, and energy
use [74]. Specifically, for centralized models, all gath-
ered data must be moved to a single place to be used
for training. Significant data transfer volumes, increased
network utilization, and related expenses can result
from this, depending on the volume and complexity
of the data, as well as the number of devices [75].
Additionally, a large amount of bandwidth is needed to
transfer training data to the central server regularly and
receive updates and results in return. This may lead to
more network congestion and increased communication
expenses, particularly in places where bandwidth is
scarce or the cost per data unit is high. Last but not
least, transmitting data over a network also consumes
energy [20]. This includes not only the energy used by
devices to send and receive data, but also the energy
used by the network infrastructure.

2) POTENTIAL IMPACT OF FL ON FUTURE HAR
APPLICATIONS

By leveraging the presented concepts, FL presents several
advantages that can significantly enhance HAR systems, as
detailed below.

• Data privacy improvement: FL improves the protection
of user data by keeping the original data on the local
device and only sharing changes to the model param-
eters. This is crucial for HAR applications because
user activity data may contain sensitive and private
information. Because FL protects user privacy, more
users can decide to share their data, which will increase
the variety and general quality of the data used for
learning.

• Latency: Since the data must be sent to a central
server for processing, there is generally a delay (latency)
associated with centralized learning [76]. Time-sensitive
applications, such as medical emergency detection in
HAR systems, may have problems due to this latency.
FL drastically lowers latency by processing data locally
on each device. Decisions may be made more quickly
and effectively, improving the HAR system’s real-time
responsiveness, as each device can train the model and
make predictions based on its data without waiting for
the server model.

• Scalability: Because of the volume of data that must be
sent and processed, a centralized ML model may find
it difficult to scale efficiently as the number of devices
increases. On the other hand, FL makes scaling to a
large number of devices much easier by distributing the
learning process among the devices themselves. Due
to this, FL is a desirable choice for extensive HAR
applications, such as those seen in large healthcare
systems or smart cities.

• Less Dependence on Centralized Infrastructure: By
performing learning on the devices themselves or the
edge servers, FL reduces the reliance on powerful
centralized servers for computation. This can be a
significant benefit for HAR systems, particularly in
situations where there may be irregular or restricted
access to such central resources. This benefit contributes
to enhancing the performance and adaptability of HAR
applications in diverse operational scenarios.

B. REQUIREMENTS
To fully leverage the capabilities of FL for HAR within smart
healthcare environments, certain key considerations must be
addressed, as outlined below.

• Data Representation: Interpreting data from different
sensors, such as gyroscopes, accelerometers, and even
vision-based sensors, is part of HAR. To make the
data from these sensors usable for model training, they
must be represented and preprocessed. Data cleaning,
normalization, segmentation, feature extraction, and
data labeling may all be necessary for this. It is critical
to extract complete characteristics from the data in the
setting of HAR. The research by [66] suggests using a
Perceptive Extraction Network (PEN) as a solution to
this problem. For each user, the PEN acts as a feature
extractor, efficiently processing and analyzing the sensor
data to extract relevant information. Nevertheless, an
issue presents itself when local device data is frequently
unlabeled. Accessing devices to label their data can be a
challenging and impractical process due to the nature of
FL, where devices are often outside human reach [77].
Solutions to this challenge are being explored in the
research domain, with studies like [78] focusing on
developing practical methods to handle these kinds of
circumstance in FL. Dealing with non-IID data is a
considerable problem when preparing FL datasets in
HAR. This issue could lead to divergent behavior during
FL training. Several strategies are essential to handle
non-IID issues and ensure effective training in FL-based
smart healthcare. To alleviate the negative effects of
non-IID data, one way to provide more representative
and balanced data for each client’s local model training
is to establish extra subsets of datasets that may be
distributed evenly among clients. By developing a
more comprehensive and resilient global model, this
method can improve FL’s efficacy in smart healthcare
applications. In conclusion, effective data processing
and representation, as well as managing unlabeled and
non-IID data, are essential components of using FL for
HAR. In several real-world applications, more study
and development in these fields can greatly enhance the
overall performance and reliability of HAR systems.

• Trusted Server: In FL processes, a central server is
essential because it aggregates the gradients from clients
to construct the global model during each communica-
tion round. Despite FL’s ability to preserve user privacy
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by allowing them to retain their data locally during
training, research has shown that model updates may
still contain HAR-related information (e.g., resolution
details or particular feature patterns), which could be
reconstructed by a curious global server [79]. As a
result, confidentiality can be compromised throughout
the training process, which may expose FL and dis-
courage health-related organizations from participating
in cooperative training. Therefore, an essential need to
guarantee reliable FL operations in smart healthcare,
especially HAR systems, is to set up a trustworthy
server to manage data training and model aggregation.
This server must provide computation services that
ensure a transparent and reliable model aggregation,
aligning with agreements made between the service
provider and healthcare organizations, e.g., local hospi-
tals. Trust is especially important in thisspace because,
to deliver trustworthy FL-based healthcare services,
computations carried out outside of the data sources
must be trusted. This is because data about human
behavior are extremely sensitive. To bolster trust in the
server, recent research efforts have explored new solu-
tions. These include the development of trustworthy and
decentralized servers with blockchain technology [80],
which can offer an additional degree of security, or
the use of safe aggregation techniques. The objective
of these efforts is to increase the reliability of FL
operations, specifically in the domain of HAR, by
guaranteeing the security and dependability of the server
that manages confidential information.

• Local Computational Capabilities in IoMT devices: One
key consideration in the implementation of FL-based
solutions, which is based on the participation of mobile
medical devices during training, is the computational
capacity of these devices. In fact, to maximize federated
health care to its fullest, devices need participate in
multiple communication rounds to achieve optimal
training performance. However, some medical devices,
such as small smartwatches, may find it difficult to
maintain constant participation in training due to their
limited processing power and short battery life [81].
This is a problem since the final FL model is less
effective due to the lack of several devices used
throughout the training phase. Collective computing
power from several devices is a key factor in improving
the effectiveness of health data training. Consequently,
the need to design specialized computing hardware for
health devices arises. Hardware of this type would
ideally increase computing speed while consuming
less energy, opening the door to an effective and
robust FL-driven HAR system. The difficulty becomes
considerably greater when HAR is taken into account.
For HAR to process sensor input and train models, a
significant amount of computer power is needed. Thus,
within the FL framework, HAR in smart health devices
is made possible by developments in resource allocation

methods and energy-efficient models such as spiking
neural networks (SNN) [82].

IV. FL DESIGN ASPECTS, ARCHITECTURES, AND
FRAMEWORKS
Here, we explore the key design considerations, architectural
components, and the different FL frameworks that form
the backbone of FL-HAR implementations. Through this
exploration, we aim to provide a thorough understanding of
the fundamental structural components necessary for FL to
be successfully integrated into HAR systems.

A. DESIGN ASPECTS FOR FL
This subsection expounds on some recent architectural
paradigms for FL-HAR, with the aim of guiding researchers
during the design of a new system. Namely, we present
advances into privacy-enhanced FL, delineate the contours
of secure FL protocols, explore challenges of constrained
resources, examine the dimensions of model personalization,
and navigate through the complexities of incentive-aware FL.

• Privacy-enhanced FL: The model parameters are trans-
mitted to the server for central aggregation after local
training. However, one essential component of FL for
HAR is secure aggregation, which ensures that model
updates are secretly and securely aggregated on the
server. Secure multiparty computation (SMPC) is one
way to provide secure aggregation [83]. SMPC is a
subfield of cryptography that facilitates collaborative
computation of a function across multiple parties’ inputs
while maintaining the privacy of such data. SMPC may
be used in the FL context to ensure that the server can
only calculate the aggregate update and cannot access
the individual model updates given by the devices.
Protecting the model updates, which may otherwise
reveal details about the local data on each device,
gives FL an extra degree of privacy. Another method
of secure aggregation in FL is Differential Privacy
(DP) [33]. Differential privacy involves introducing
precisely calibrated noise into the data or computation
to give a mathematical assurance of privacy. To intro-
duce differential privacy in FL, one approach involves
injecting noise into model updates before transmitting
them to the server. This guarantees that even while the
update serves to enhance the global model, the server
cannot deduce particular details about the local data on
a device from the model update.

• Secure FL: Strong security measures are necessary for
effective implementation of FL for HAR to prevent a
variety of possible threats, including inference, backdoor
attacks, poisoning,malicious servers, and communication
bottlenecks [84], [85]. Different sources, such as aggre-
gation methods, data manipulation, and communication
protocols, could lead to these attacks [19]. Several
security solutions have been developed in recent years
for scenarios that involve smart healthcare. Using a
reputation-based strategy [86] is one of these strategies
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to discourage wrong updates from devices that are
not trusted. Carefully selecting trusted devices plays a
crucial role in reducing security risks. For instance, a
malicious device might introduce false information into
its local model, compromising the accuracy of the FL
process. Ensuring reliability in device selection becomes
particularly critical when training local FL models with
low-quality or noise-free data. Another viable approach
to protecting federated healthcare is decentralized FL,
which addresses distrust concerns related to centralized
parameter servers [87], [88]. Furthermore, tomaintain the
reputation of FL users, blockchain technology has been
integrated [86]. Specifically, integrating blockchain into
FL settings removes the requirement of a single central
server in model aggregation [89] by decentralizing the
learning process.

• Resource-aware FL: Since the devices used in FL for
HAR, such as smartphones or wearable sensors, usu-
ally have limited computational resources and battery
life [16], effective resource management is crucial.
Effective resource management can be achieved by
using methods such as quantization, model compres-
sion, and asynchronous updates. One typical approach
to reduce FL’s high communication requirements is
to employ asynchronous updates. Devices may deliver
updates to the central server without relying on
other devices due to this technique [90]. In addi-
tion to reducing waiting times and processing power
required for simultaneous updates, this asynchronous
communication takes into account the various com-
putational capacities and network configurations of
various devices. Techniques for model compression
can further lower FL’s transmission and processing
expenses. Reducing the size of the model without
substantially compromising its accuracy can be achieved
by techniques such as quantization, pruning, and knowl-
edge distillation [91]. Pruning removes extra layers
or parameters from the model, whereas knowledge
distillation trains a smaller model to mimic the behavior
of a larger model. One type of model compression
that reduces the accuracy of model parameters is
called quantization [92]. For instance, a parameter
may have been represented in the original model
as a 32-bit floating-point number, but it might have
been represented as an 8-bit integer in the quantized
model. Quantization saves battery life by reducing the
model’s memory footprint and computational demands.
It also minimizes the volume of data that must be sent
during FL. In summary, balancing computational effi-
ciency, communication efficiency, and model accuracy
is necessary while building FL for HAR to minimize
resource utilization. Each of these methods offers a
component that completes the picture in order to reach
this equilibrium.

• Model Personalization: Customizing the global model
to the unique needs of each device can greatly enhance

the HAR performance. It describes how a globally
trained model is modified to better fit the particular
data distribution of a single device or user. In particular,
aggregated data from several devices are the input data
for models in an FL system. However, since multiple
devices have inherent data heterogeneity, it could not
run at its best on a single device. Diverse sensor qualities
or environmental circumstances might result in different
data patterns for every device. Personalization through
model fine-tuning is a popular approach. Through
transfer learning, each device can further train or “fine-
tune” the model on its local data once the global model
has been developed and distributed to devices [93]. As
a result, the model’s performance and accuracy on that
device are enhanced, since it can more effectively adjust
to the unique data distribution of the device. Meta-
learning, also referred to as “learning-to-learn,” provides
an alternative method of personalization [75], [94]. The
model in this framework is taught to quickly adapt to
novel challenges with little more instruction.

• Incentive-aware FL: In traditional FL methods, the
device communicates local model updates to an aggre-
gate server. However, this is not always feasible, as
IoT devices frequently have restrictions on processing
power, bandwidth, privacy difficulties about personal
data, and server trust issues. This unwillingness to
share models may impede FL’s involvement and general
effectiveness in HAR systems. To overcome these
obstacles and encourage more FL users to participate,
incentive mechanisms must be implemented. According
to a recent survey [95], these mechanisms may be
distinguished according to a number of factors, such as
device reputation, contribution to data, and distribution
of resources. The quality and quantity of the data are
both taken into consideration by the incentive model.
The volume of updates and training samples of the
model provided by the device is commonly referred
to as quantity [96]. On the other hand, metrics like
the Shapely value, which measures each member’s
contribution in a group environment, are used to
evaluate quality. However, the reputation of a device
has a big impact on how FL incentive algorithms are
designed. Reputation usually indicates a device’s ability
to provide consistent local updates and high-quality data
for training models. Additionally, the resource allocation
stage of an incentive program is critical since it deals
with allocating computing and communication resources
among participating FL users in an ideal manner to
improve FL’s overall performance.

B. FL ARCHITECTURES
In this subsection, we examine the various FL architectures
that serve as the structural blueprint for HAR systems’
FL environment, managing the training process among
distributed devices and servers.
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1) CENTRALIZED FL (CFL)

Among the most commonly used FL architectures is CFL.
The CFL architecture serves as a robust foundation for HAR,
including a central server and a diverse array of clients, many
of which are smart devices, such as smartphones or wearables
with sensors. During each training cycle, these client devices
interpret their localized data, including accelerometer or
gyroscope readings, to independently update the shared
model. Every client transmits its model parameters to the
central server for aggregation when the local training is
finished. Usually, the server combines these updates into
a single global model using a particular FL aggregation
technique (Section II-C). After a few rounds of local
training, this global model is sent again to all participating
clients, allowing iterative improvement of the global and
personalized (local) models. The CFL architecture plays
a critical role in coordinating this distributed learning
process, ensuring not only efficient training, but also the
security and privacy of sensitive user data. For example, in
HAR applications where user-specific motion data is highly
sensitive, CFL can provide an extra layer of privacy. [6], for
example, uses a CFL approach to train deep learning-based
activity predictors. This approach, which works well when
the data are IID, is also the most common setting in such
environments [97], [98].

2) HIERARCHICAL FL

Given that sensitive data are not disclosed, FL theoretically
provides some privacy; yet, there are significant drawbacks,
such as data that is not distributed identically or indepen-
dently (non-IID). Specifically, the non-IID data may result
in divergence of the final FL model, which means that
the performance of FL-based models in the HAR system
is not always guaranteed [82]. Furthermore, FL expects
that, for model aggregation, the FL server is located in the
cloud. There are several difficulties with using the cloud
server as an FL server, including communication costs and
time delays [82]. For more granular and effective model
aggregation, Hierarchical FL for HAR presents a multi-
layered architecture including edge and cloud servers [99].
The middle layer’s edge servers act as intermediary aggre-
gation points for the local models that have been trained by
wearable smartphones and other client devices. ‘Sub-global’
model aggregations are performed by these edge servers
and forwarded to cloud servers at the top tier for global
model aggregation. Similarly to CFL, hierarchical FL-HAR
allows client devices to participate in the training of a shared
global model without requiring the transmission of raw,
sensitive data. Large-scale deployment for HAR [100], [101]
is especially well suited for hierarchical FL-HAR due
to its hierarchical structure, which offers various benefits
such as scalability, enhanced data privacy, and optimized
network resource utilization. The authors in [102] used
HFL in this situation to optimize the heterogeneous elec-
troencephalography (EEG) signals collected from several
devices. This paradigm eliminates the problems commonly

seen in previous heterogeneous domain adaptation strategies
by having each participant have the roles of both a source
and a target domain. The results reveal that the proposed
approach delivers a significant performance improvement
compared to models trained locally without the benefit of
hierarchical FL.

3) DECENTRALIZED FL (DFL)

Unlike CFL and hierarchical FL, DFL for HAR eliminates
the need for a central server to manage the training process.
In DFL, client devices, such as smartphones or wearables,
are part of a peer-to-peer (P2P) network, where each
device trains local models on their human activity data.
During each round of communication, clients exchange
and aggregate model updates directly with their neighbors
in the P2P network. Without the requirement for central
orchestration, an agreement on the global model update may
be reached using this straightforward, decentralized method.
When a centralized server is undesirable or unfeasible, or
when a highly scalable network topology is required, DFL
is very helpful. It has already shown promise in HAR,
such as in [87], which proposes a fully decentralized FL
framework by leveraging two state-of-the-art non-convex
decentralized optimizations, i.e., decentralized stochastic gra-
dient descent (DSGD) and decentralized stochastic gradient
tracking (DSGT). This approach based on DSGT has the
advantage of dealing with non-IID datasets.
A safe and open system for model update exchanges

may also be established by integrating DFL with decen-
tralized technologies such as blockchain [103]. Blockchain
technology can enhance FL’s resilience against poison-
ing attacks to the model. This integration leads to a
secure and decentralized process within the IoT framework.
Similarly, in [104], distributed agents utilize a combination
of blockchain and homomorphic encryption techniques to
aggregate data obtained from physical IoT systems before
integrating them into the federation model. Clients might
communicate with one another via a blockchain ledger in
the DFL-HAR environment, providing a reliable platform
to safely collect and update models. Reference [105] is an
example of an effective approach to tackle the heterogeneity
challenge in FL and generate customized high-quality models
for each endpoint. Blockchain-based FL enables smarter
simulations, reduces latency, and consumes less power while
preserving privacy. This solution offers another immediate
advantage: in addition to receiving shared model upgrades,
the updated model on the phones is automatically utilized,
providing personalized insights based on individual phone
usage.

C. EXISTING FL PLATFORMS
In this subsection, we analyze several popular FL plat-
forms, including their design principles, use cases for HAR
development, and their limitations and advantages. Table 4
summarizes their description along with their strengths /
weaknesses.
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TABLE 4. A summary of analysis on the applicability of FL platforms for HAR.

• TensorFlow Federated: TensorFlow Federated (TFF),
an open source and user-friendly framework spear-
headed by Google, serves as a specialized platform
for both machine learning and decentralized data oper-
ations [106]. Given its integrated secure aggregation
algorithms and differential privacy safeguards, TFF is
well suited for protecting sensitive user information.
This is especially crucial in the IoT environment, where
a myriad of interconnected devices demand robust
security measures.
Although TFF offers a research-friendly ecosystem for
FL scholars to simulate and test HAR algorithms, it is
worth noting that the framework currently faces limita-
tions in real-world deployment scenarios. Furthermore,
it lacks native support for PyTorch, which restricts its
flexibility for HAR researchers who may prefer to use
PyTorch-based programs.

• PySyft: PySyft, spearheaded by OpenMined, stands
as a pioneering framework designed for FL with
strong privacy-preserving features, as noted in [107].

In particular, PySyft uses cutting-edge command chains
and tensor representations to provide a singular com-
bination of safe data manipulation and data ownership
management. The framework provides a dual approach
to security within the scope of HAR by smoothly
integrating both Multi-Party Computation (MPC) and
Differential Privacy (DP) approaches inside the same
architectural construct. This makes PySyft an especially
appealing option for HAR researchers and developers
who need a high level of data privacy and security when
conducting FL investigations. The work in [66] used the
encryption method provided by the PySyft framework
to securely capture sufficient features from HAR data
with FL.
Although PySyft offers a strong framework for
secure and privacy-preserving FL, it is not without
limitations. For example, implementing PySyft on
resource-constrained devices such as IoT sensors, which
are commonly used in HAR applications, might be
challenging due to its computational requirements.
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• LEAF: LEAF, led by Carnegie Mellon University
(CMU), serves as a specialized benchmarking frame-
work for FL and has made significant contributions
to the field [108]. It provides a comprehensive suite
of open-source federated datasets, rigorous evalua-
tion mechanisms, and reference implementations to
address real-world challenges. Additionally, LEAF
offers ready-made implementations of many FL aggre-
gation techniques, including minibatch SGD, FedAvg,
Federated SGD, and SGD.
However, it is worth noting that LEAF has certain
limitations, particularly when considered for HAR
applications. Currently, LEAF’s support is mostly
restricted to the FedAvg algorithm, limiting its utility
for researchers interested in exploring alternative FL
strategies. In addition, it lacks the built-in capabili-
ties for real-world deployment or intricate simulation
environments, which are crucial for HAR, a domain
requiring real-time analysis and response.

• PaddleFL: Paddle FL is an FL framework proposed
by Baidu, built on top of its native DL engine,
PaddlePaddle [109]. With a focus on transfer and mul-
titask learning, it provides FL implementations to serve
various industries such as computer vision libraries,
natural language processing, and the Internet of Things.
Paddle enables full-stack development choices, task
scheduling, and Kubernetes-driven large-scale dis-
tributed learning.
When considering its application for HAR, a few
challenges emerge. First, the framework’s inherent com-
plexity can be a barrier to quick and easy deployment,
which is often critical in HAR scenarios that may
involve real-time data analysis on mobile or embedded
systems. Moreover, the lack of comprehensive docu-
mentation and a relatively small developer community
further contribute to its steep learning curve. Lastly,
Paddle FL has a primarily domestic focus, being most
popular among developers in China, which could limit
its applicability and support for global HAR projects.

• IBM FL: IBM’s enterprise grade FL framework provides
engineers with a streamlined setup for rapid deployment
of federated devices and experimentation [110]. IBM FL
provides robust features suitable for distributed machine
learning across devices and data centers.
Although the framework excels at providing rapid
deployment capabilities, it currently falls short in
specific areas of security and privacy that are critical
for HAR applications. In particular, it does not yet
offer advanced security features like DP tailored for
DL models, which could be a significant limitation
for HAR applications requiring stringent privacy and
security measures.

• FATE: The Federated AI Technology Enabler (FATE)
stands as an open-source FL platform, proposed by
Webank’s AI Department, which emphasizes secure and

collaborative machine learning [111]. FATE aims to rev-
olutionize the AI ecosystem by enabling cross-silo data
applications that are both distributed and cooperative,
while maintaining rigorous compliance and security
measures. To this end, FATE incorporates advanced
secure computation protocols such as homomorphic
encryption (HE) and MPC techniques, which can help
enhance the privacy of health state data. In particular,
a series of independent studies have proposed FATE-
compatible deep neural networks [117].
However, when adapting FATE for HAR, there are
some inherent challenges. Given that FATE is an
industrial grade platform, installing and configuring
multiple devices can be a complex task. This might pose
issues for HAR applications that often require quick and
easy deployment on a variety of mobile and embedded
systems. Furthermore, while FATE offers impressive
scalability in general terms, it may still have some
limitations when applied to real-time, large-scale HAR
scenarios, where immediate data analysis and feedback
are crucial.

• FedML: FedML serves as both a benchmark and
a research-oriented FL library, offering an all-
encompassing toolkit to develop new FL algorithms as
well as to compare existing ones [112]. Customized
algorithms in FedML can be easily implemented
using the user-oriented programming interface. The
primary advantage of FedML is a TopologyManager
that can provide support for many network topologies
to implement various FL-based solutions.
Although FedML offers a robust set of features, it
is particularly advantageous for HAR applications that
require high levels of privacy and security. However,
potential users should be aware that FedML’s main
focus is research, which may limit its out-of-the-box
applicability for some commercial HAR applications.

• FedLab: FedLab, developed by the University of
Electronic Science and Technology of China (UESTC),
is a lightweight open-source framework focused on
optimizing FL [113]. It aims to improve both the
communication efficiency during model training and
the performance of standard federated algorithms. The
framework features a user-friendly API and a reliable
benchmarking tool designed to support simulations
and real-world deployments in federated systems with
varying computational and communication constraints.
This makes this platform a good candidate for HAR
applications, where resource limitations are often a
concern.
However, community support might be limited, making
the resolution of specific issues more challenging.

• OpenFed: OpenFed, a comprehensive and novel FL
framework based on PyTorch, serves as an exceptional
toolkit. It also features a rich library and a flexible
topology design, making it different from other FL
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frameworks [114]. OpenFed uniquely supports auto-
matic topology selection, enabling the decomposition
of complex FL scenarios into manageable atomic
units. This is particularly advantageous for HAR,
where varying sensor data and user behaviors can
introduce complexities. The framework is capable of
implementing standard FL algorithms such as SGD and
FedAvg. It offers a variety of configuration options
that are highly relevant for HAR scenarios. These
include partial activation of local client nodes, dataset
partitioning, sampling, and the handling of non-IID data
distributions. These features facilitate the development
of more robust and efficient HAR models.
Although the framework includes standard FL algo-
rithms, it may lack robust measures specifically
designed to address the unique privacy and security
concerns in HAR applications.

• Flamby: FL AMple Benchmark of Your cross-silo
strategies (Flamby) is an open-source FL dataset
suite designed for cross-silo partitions and focused
on healthcare. Flamby serves as a bridge between
theory and practice of cross-silo FL [115]. It com-
prises seven healthcare datasets with natural partitions
covering multiple tasks, modalities, and data volumes,
where each dataset is also accompanied by base-
line training code. In addition, it offers standard FL
benchmark algorithms for all data sets. Because of
the adaptability and modularity of the framework,
researchers can simply download datasets, replicate
findings, and use various components for their study
within HAR.
However, the Flamby framework focuses on cross-silo
FL, which corresponds to the case of a few reliable
clients, each holding a medium to large dataset. This
may not be representative of other FL scenarios, such
as cross-device FL, where there are many unreliable
clients, each holding with small datasets. Therefore, the
framework may not be suitable for testing FL strategies
in different settings.

• Flower: Flower is a FL framework designed to facilitate
scalable and heterogeneous FL research, offering a
distinct advantage in simulating real-world scenarios
typical of cloud environments [116]. Based just on
a pair of top-tier GPUs, Flower is able to conduct
FL experiments with client sizes up to 15 million.
Due to this, Flower is an appropriate choice for HAR
applications that need realistic, scalable, and secure
FL algorithm evaluations. Moreover, it offers higher-
level abstractions and utilities to enable researchers and
practitioners to experiment with and implement new
solutions. For example, the authors in [118] used Flower
to predict the length of stay in the hospital.
However, despite these features, Flower’s limitations lie
in its lack of a comprehensive ecosystem and restricted
support for a broader array of FL algorithms, which
could be crucial for specialized HAR applications.

It is crucial to take into account several variables when
selecting an FL framework to make sure it fits your unique
demands and specifications. The following are some essential
considerations:

• Supported ML Frameworks: Check if the framework
supports the ML libraries and tools that you are familiar
with or prefer to use, such as TensorFlow, PyTorch, or
scikit-learn.

• Aggregation Algorithms: Investigate the aggregation
algorithms provided by the framework. While FedAvg is
widely used, different frameworks may offer variations
or extensions of this algorithm. Understanding the
available aggregation methods is crucial to achieving
your learning objectives.

• Privacy Methods and Security: Assess the frame-
work’s support for privacy-enhancing techniques like
encryption, differential privacy, and secure multi-party
computation (SMPC). Privacy is a critical issue in FL
and the ability to implement robust privacy measures is
essential.

• Supported Devices and Operating Systems: Ensure that
the framework is compatible with the devices and
operating systems that you intend to use. FL can involve
a wide range of devices, from mobile phones to IoT
devices, so compatibility is crucial.

• Scalability: Evaluate the ease of integrating your ML
models or aggregation algorithms into the framework. A
flexible and extensible framework allows you to adapt
to changing requirements and experiment with novel
approaches.

V. SURVEY OF EMERGING APPLICATIONS
In this section, we present a comprehensive overview of
recent surveys on FL-HAR. We categorize the current efforts
into two main groups: activities related to health and
activities related to daily life.

A. FL FOR HEALTH-RELATED ACTIVITIES
In the realm of healthcare, FL for HAR presents a ground-
breaking approach to monitoring and analyzing patient
physical activities, offering vital insights into their health
conditions. As a result, recent solutions have proposed the
integration of FL into health-related activities to offer real-
time medical services, generating some positive results,
summarized in Table 5.

For example, FL for HAR can aid in early detection of
conditions such as Parkinson’s disease or assessing risk of
falls in elderly patients [129]. This application leverages data
from various devices, including smartphones and wearable
technology, to train ML models while preserving the privacy
of individual users. By aggregating diverse and decentralized
data, healthcare providers can gain access to more accurate
and personalized information on patient health behaviors and
patterns. We illustrate in Figure 4 a sample FL architecture
for monitoring health-related activities. The data collected
by each wearable device do not necessarily have to be sent
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TABLE 5. Overview of recent studies on FL for health-related activity.

to a centralized cloud server; instead, they undergo training
via FL across multiple edge servers. What sets FL apart is
that each device uses its own data to train a local model.
Consequently, only the model parameters obtained from the
local model are transmitted to the cloud server to update the
shared global model.
Furthermore, the concept of combining cloud and edge

computing with FL-HAR is stated in [119]. The authors
proposed a cloud-edge-based FL framework for home health
monitoring, called FedHome. It trains individual local
models at each home at the network edge, while assigning to
the cloud the responsibility of global model aggregation. This
training process depends primarily on distributed datasets
that can vary from one home to another. FedHome uses
generative convolutional autoencoders at cloud and edge
sites, outperforming several benchmarks in terms of accuracy
and communication overhead. In the same direction, a

generic FL architecture has been proposed for processing
sensor data in HAR by [97]. The proposed solution is based
on a federated aggregator trained using private data on
edge nodes, demonstrating the versatility and functionality
of the FL architecture. In [126], the authors proposed a
prototype-guided FL framework, ProtoHAR, for handling
non-IID data intended for sensor-based HAR. ProtoHAR
separates the roles of representation and classifiers, corrects
local representations using a global activity prototype, and
optimizes user-specific classifiers for individualized HAR.
This minimizes local model drift and guarantees privacy
throughout tailored training. The study demonstrated that
ProtoHAR outperformed other FL approaches in terms
of accuracy and convergence speed. Furthermore, a semi-
supervised FL for HAR was explored in [70], focusing
on jointly learning deep feature representations of sensor
data using autoencoder models. Subsequently, these acquired
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FIGURE 4. A typical architecture for health-related activity predictions using a
centralized FL setting.

feature representations are employed for activity recognition
within a fully supervised framework using a labeled dataset.
Moreover, another study focused on the utilization of

wearable devices to identify and observe patients’ activities
and movements [121]. FL-based person movement identi-
fication, called FL-PMI uses DRL to automatically label
the unlabeled data and bidirectional long short-term memory
(BiLSTM) to extract features and then classify the data.
In FL-PMI, the unlabeled data are automatically labeled
using the DRL framework. The data were then trained
using FL, where the edge server allowed the parameters to
be sent separately over the cloud rather than transmitting
a substantial quantity of sensor data. Eventually, the data
are categorized for different HAR-related procedures via
FL-PMI’s BiLSTM. The work in [128] addressed the
challenge of data heterogeneity in multimodal fall detection
systems by proposing a novel multimodal data fusion method
within a FL for HAR. Specifically, the method involves the
combination of time series data from wearable sensors and
visual data from cameras at the input level. The data is
transformed into images using the Gramian Angular Field
(GAF) method before fusion. In the FL system, each user
is treated as a private client, and the fall detection model
is trained without sharing user data. On the other hand,
to address security issues in wearable IoT devices, [122]
proposed a fog-based IoT platform using FL and blockchain
technology to preserve patient data privacy and enhance data
security within the network.
Since DFL promises to secure FL-HAR and addresses

the problem of untrusted parameter servers in CFL, a
DFL scheme is proposed in [87], which is a peer-to-peer
interaction between health clients made possible by the DFL
algorithm. It allows local clients to carry out local updates
over multiple iterations. This reduces the time it takes for
clients to communicate and exchange parameters, since the
models do not need to be sent to a central server that is
far away. Federated Graph Neural Networks (GNNs) have
also been explored in HAR from sensor measurements. For

instance, [123] used a Graph Convolution Network (GCN)-
based FL architecture to overcome privacy preservation and
label scarcity issues in HAR tasks, building similarity graphs
for each user to classify activities in a semi-supervised way.
Although FL offers a degree of privacy for HAR, there

are some limitations, particularly when training on low-
power and low-computational resource devices such as
wearable sensors. The authors in [124] proposed a neuro-
morphic FL-based model, called S-LSTM, by integrating the
strengths of both LSTM and SNN in a federated setting.
SNN is an event-driven learning process that significantly
reduces energy consumption. The outcomes of the proposed
S-LSTM show how much better it can recognize the time
patterns within health-related activities while using less
energy. Similarly, the authors in [125] explored knowledge
distillation for distributed training of heterogeneous models
in FL, reducing communication overhead, achieving faster
convergence, and lowering the energy cost of FL models.
Furthermore, [120] proposed a novel heterogeneous stacked
FL architecture supporting heterogeneous architectural client
models to overcome the limitation of heterogeneous archi-
tectural ensembling in the traditional FL approach.
Despite substantial progress in user privacy protection

with FL, challenges persist. GDPR empower users to request
data removal. Federated unlearning (FUL) can address this
challenge by enabling the selective removal of a client’s data
from the trained model without retraining from scratch, thus
maintaining privacy and efficiency [130]. In this context, the
authors in [127] introduced a lightweight FUL method. They
used a third-party dataset and Kullback-Leibler divergence
(KL divergence) as a loss function to fine-tune the FL
model, ensuring the predicted probability distribution on
the data to be forgotten aligns with that of the third-party
dataset. Additionally, a membership inference evaluation is
used to assess the unlearning effectiveness. Experimental
results show that this approach achieves unlearning accuracy
comparable to traditional retraining methods, with significant
computational speedups, thus providing an efficient solution
for handling data removal in FL scenarios.

B. FL FOR DAILY-RELATED ACTIVITIES
In the context of daily life, HAR can be used to understand
and optimize individual behaviors and routines. This could
include tracking fitness routines, detecting driving habits, or
even understanding household activities [129]. By harnessing
the power of FL, data from various users can be aggregated to
create more robust models without compromising individual
privacy [13]. Consequently, recent studies have proposed the
integration of FL into daily activities to improve quality of
life and have achieved some good results, summarized in
Table 6, as follows.

For example, the work in [66] presented an FL system for
wearable sensor-based HAR, which is known as HARFLS.
With the help of HARFLS, each user can safely and coopera-
tively complete their activity recognition job. Addressing the
challenges posed by non-IID data in FL-based HAR, [67]
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TABLE 6. Overview of recent studies on FL for daily-related activity.

conducted a comprehensive investigation, shedding light on
factors such as diverse subsets of activity and data corrup-
tion. To harness valuable features from HAR data while
combating statistical heterogeneity, a perceptive extraction
network (PEN) was designed, as demonstrated by its superior
performance compared to existing methods. Another work
focused on federated feature extraction called FedMAR is
presented in [132]. It treats the HAR problem associated with

each user as a separate learning task. FedMAR framework
leverages multimodal wearable data and exhibits rapid
adaptability to new individuals. This framework uses an
attention module for each client, enabling the learning of
both client-specific features and globally correlated features.
The work in [141] conducted an evaluation of various FL
optimizers, with findings that emphasize the effectiveness
of federated averaging for superior global performance.
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Moreover, the authors in [140] introduced FedCoad, an
innovative approach designed to address skewness between
different clients in real-world settings. FedCoad utilizes
model contrastive learning to align global and local model
representations and applies control variates to regularize
local model updates. This method aims to build a gener-
alized global model that can be adapted by participating
clients without collecting their sensor data. Experimental
results show that FedCoad significantly outperforms other
methods in skewed dataset settings (non-IID) on benchmark
datasets, highlighting its ability to effectively manage data
heterogeneity.
Considering the practical aspects and considerations sur-

rounding FL-based HAR, [72] provided a system-level
perspective, offering insights into the impact of factors such
as sensor location, FL optimizer, and model complexity.
To adapt FL models for heterogeneous devices, [131]

dynamically adapt the model layers and model sizes for
heterogeneous devices to participate in FL. In particular, the
authors proposed FL via Dynamic Layer Sharing, FedDL,
a dynamic layer-sharing scheme that learns the similarity
among users’ model weights to establish the sharing structure
and merges models accordingly in a bottom-up layer-
wise manner. The objective is to facilitate accurate daily
activity recognition by training personalized deep models
for users with limited or unbalanced data. The paper
also presents a new dataset collected using LiDAR and
four real public datasets to evaluate the performance of
FedDL. The authors claim that this scheme can improve
the accuracy of the FL model, the convergence rate, and the
communication overhead of the HAR compared to several
state-of-the-art FL-based solutions. In the same direction,
the authors in [133] addressed challenges such as concept
drift and convergence instability in personalized FL with
FedHAR, employing hierarchical attention architecture and
unsupervised gradient aggregation. They devised an unsuper-
vised gradient aggregation technique to address challenges
related to drift and convergence variability, employing online
learning to enhance the process. In particular, FedHAR
uses a hierarchical attention architecture to align different
level features, employing three main components: a semi-
supervised learning loss function to aggregate gradients
from all labeled and unlabeled clients; a novel algorithm
for computing unsupervised gradients under the consistency
training proposition; and an unsupervised gradient aggre-
gation strategy to address the issues of concept drift and
convergence instability in online learning. Furthermore, the
authors in [2] introduced a hybrid model federated learning
mechanism, called Hydra. Hydra employs BranchyNet to
create a large-small global hybrid model, enabling devices
to train model parts suited to their capabilities. It clus-
ters devices based on model similarity to mitigate data
heterogeneity impacts and introduces a pairing scheme for
effective co-training between high- and low-performance
devices. Additionally, Hydra employs a sample selection
approach to enhance co-training efficacy and proposes a

Large-to-Small knowledge distillation algorithm to optimize
knowledge transfer from large to small models, signifi-
cantly improving model accuracy. Extensive experiments on
three HAR datasets validate Hydra’s superior performance
compared to state-of-the-art schemes. The work in [139]
proposed a personalized Multi-level Federated Learning,
PerMl-Fed has been proposed as an innovative frame-
work. This approach extends the Multi-level FL architecture
with three specialized methods tailored to tackle specific
heterogeneities: statistical, device, and model. The Transfer
Multi-level FL model mitigates statistical heterogeneity
across multiple FL layers, while the Asynchronous Multi-
level FL approach allows asynchronous updates to address
device heterogeneity. Additionally, the Deep Mutual Multi-
level FL method employs deep mutual learning to overcome
model heterogeneity. Evaluations in the WISDM dataset
show that PerMl-Fed significantly improves the average
precision by 7%, achieving an accuracy range of 84% to 92%
in various hierarchical group structures, demonstrating its
effectiveness in improving federated learning performance.
Along the statistical (non-IID data) and model hetero-

geneity, label heterogeneity presents a substantial challenge,
especially when each FL device has its own definition of data
labels, independently from the definitions in other devices or
the central server. This particular type of heterogeneity arises
when diverse devices have disparate understandings or clas-
sifications of data labels, potentially leading to inconsistent
training data across the federated network. Consequently,
several works have been proposed to address the problem of
heterogeneity in labels between users using model distillation
techniques and to demonstrate the validity of the approach
with an average increase of 9.153%–11.01% using daily
activity recognition datasets [142] and [78]. This underscores
the potential for model distillation techniques to not only
navigate but also leverage label heterogeneity, providing a
robust pathway for improved FL even in the face of varied
data definitions across devices.
On the other hand, to build accurate FL-based HAR

models, it is essential to find a balance between general-
ization and personalization. To address this issue, a solution
called FedCLAR has been proposed in [134] to generate
specialized global models (server-side) for groups of similar
users. With FedCLAR, the local models received from
the server are clustered taking into account the similarity
of their weights. While FedCLAR significantly improves
personalization, it relies on the availability of labeled data on
each client. However, collecting a large annotated dataset for
each client is often impractical due to its time-consuming,
costly, and intrusive nature. Furthermore, the work in [135]
proposed FedAR, which is a novel hybrid approach for
HAR that combines semi-supervised and FL to capitalize
on the benefits of both methodologies. Specifically, FedAR
integrates active learning and label propagation to semi-
automatically annotate the local streams of unlabeled sensor
data, while FL is used to build a global activity model in
a scalable and privacy-aware manner. The results indicate
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that the combination of active learning and label propagation
yields recognition rates comparable to fully supervised
methods. In the same vein, [136] has combined FedCLAR
and FedAR to propose Semi-Supervised-FedCLAR Based
HAR, called SS-FedCLAR. The objective is to address
non-IID and data scarcity problems, and the results show
that SS-FedCLAR outperforms FedAR and reaches results
close to those of FedCLAR with a limited amount of labeled
data.
However, the mentioned studies do not consider possible

attacks in the FL setting, which could perturb the training
process, e.g., via data poisoning and model poisoning
attacks. The work in [137] presents a novel integration
of personalized FL with hierarchical clustering, known as
FedCHAR. The proposed FedCHAR not only enhances
the fairness and accuracy of the model by using similar
relationships between users in the benign scenario, but it
also improves the robustness of the system by identifying
malicious nodes through clustering. The work in [138]
proposed a 2D FL framework taking advantage of the
VFL and HFL phases to address concerns about unsafe
data sharing and inadequate training data in cyberphysical
systems. In particular, the solution uses the VFL phase to
improve performance by integrating patient features from
different devices, and then the server uses the HFL phase to
average the global model from different patients.

VI. RESEARCH CHALLENGES
A. PERSONALIZED FL FOR HAR
How can personalized FL for HAR be enabled that can
perform well for various applications? HAR applications
generate data that is specific for various applications,
groups of users, and geographic areas. Therefore, training
a generalized FL model might not work well for HAR.
For instance, considering gesture recognition, one can see
that ML models trained for a certain geographic location
(i.e., supermarket) will not work well for gesture recognition
of another geographic location (i.e., hospital or special
children’s school) because of their different nature. In
hospitals, the data will mostly have gestures of sadness.
On the other hand, in supermarkets, the gestures of people
will have a mostly different nature than sadness. Therefore,
there is a need to train FL models for HAR that can
perform well in various scenarios. To do so, a personalized
FL is needed. One possible way is to use federated meta-
learning, which involves sharing a meta-learner instead of a
global model [143]. Specifically, the goal of meta-learning
is to enable the training of models to learn how to learn.
This type of learning will enable faster convergence to the
specific HAR scenarios. Another possible solution could be
to use the pre-trained models for specific scenarios. Pre-
training a model on a large and diverse dataset allows it to
capture general patterns of human activity. These pretrained
models can then be fine-tuned on specific datasets to adapt
to the particularities of various HAR environments [144].
Furthermore, several personalized FL algorithms can be

utilized to enhance the performance of HAR models in
various applications. These algorithms can be designed to
incorporate local adaptations while maintaining the benefits
of collaborative learning. For example, MOCHA is an algo-
rithm designed to handle the heterogeneity of data between
clients by solving multiple tasks jointly but allowing task-
specific adaptations [145]. This approach can be particularly
useful for HAR applications where the data of each client
could differ significantly from the others.

B. ROBUST AND FAST CONVERGING FL FOR HAR
How does FL for HAR robust along with fast convergence?
FL is based on a single centralized aggregator that will
suffer from malfunction if the aggregator stops working.
This can happen due to many reasons, such as physical
damage or security attacks. To remedy this, one can use the
concept of distributed aggregations. However, FL based on
distributed aggregation can avoid a single point of failure, but
at the cost of high cost in terms of communication resources
and implementation. Therefore, a trade-off must be made
between robustness and complexity. On the other hand, the
convergence of FL is generally slow. Hierarchical aggrega-
tions, where multiple levels of aggregators are used, can also
speed up convergence by reducing communication latency
and distributing the computational load [146]. Additionally,
heterogeneity-aware clustering groups clients based on data
or computational similarities, optimizing the training process
by treating each cluster as a separate federated learning task.
This method addresses data heterogeneity and ensures that
the model is more robust and better tailored to specific client
groups. For example, FedProx [44], a robust FL algorithm
that adds a proximal term to local objective functions to
handle heterogeneity and improve convergence. Similarly,
hierarchical FL frameworks proposed in [147] for edge
computing environments reduce communication overhead
and accelerate convergence through multilevel aggregations.
By employing these advanced techniques and addressing
the associated challenges, FL for HAR can achieve robust,
fast-converging models that operate efficiently in real-
world environments, ensuring effective and adaptive security
measures.

C. PRIVACY-AWARE, QUANTIZED FL FOR HAR
How do we enable FL for privacy-aware HAR along with
less communication overhead? As the number of devices
is expected to grow exponentially in the foreseeable future,
enabling FL for HAR applications will necessitate substan-
tial communication resources. Given that communication
resources are limited, it is essential to redesign or improve
our systems to accommodate more devices within the FL
framework for HAR. One approach is to enhance resource
management by optimizing the communication protocols and
reducing the size of model updates through quantization
schemes. Quantization reduces the communication overhead
by compressing the model updates, which significantly
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lowers the amount of data transmitted during each communi-
cation round. However, while FL inherently offers a degree
of privacy by keeping data localized on edge devices, it does
not fully protect against privacy breaches. Malicious nodes
or aggregation servers can still infer sensitive information
from model updates shared during the training process.
To mitigate this risk, privacy-preserving techniques such
as differential privacy and homomorphic encryption can be
employed. Differential privacy adds noise to model updates,
making it difficult for adversaries to extract meaningful
information about individual data points. Homomorphic
encryption, on the other hand, allows computations to be
performed on encrypted data, ensuring that the raw data
remains confidential even during the training process. For
example, the work in [148] demonstrated the application
of differential privacy in machine learning by incorporat-
ing noise into the training process to protect individual
data points while maintaining the accuracy of the model.
Similarly, an homomorphic encryption, which enables secure
computations on encrypted data without revealing the under-
lying information is proposed in [149]. These techniques
can be integrated into FL systems to enhance privacy
while minimizing the communication overhead. In addition
to these privacy-preserving methods, advanced resource
management strategies such as adaptive bandwidth allocation
and dynamic compression techniques can further optimize
the communication efficiency. By dynamically adjusting the
communication parameters based on the network conditions
and device capabilities, the FL system can effectively balance
the trade-offs between communication overhead and model
performance.

D. CONCEPT DRIFT-AWARE FL FOR HAR
How do we enable FL to update the model in response
to concept drift in HAR? Concept drift refers to changes
in user behavior (i.e., output). In HAR, the concept drift
can be due to many factors, such as changes in lifestyle,
seasons, or even cultural changes. Therefore, there is a
need to continuously keep the HAR system updated as per
concept drift. Since most of the HAR modules will be
based on FL in the future, therefore, one must propose
concept drift-aware FL algorithms. To address concept drift,
FL models must be continuously updated to reflect new
data and evolving patterns. This continuous updating can
improve the performance of HAR systems, but may also
increase communication overhead. Federated Unlearning
(FUL) offers a solution to this challenge by balancing
performance improvements with communication costs [150].
FUL allows for the selective forgetting of outdated or
irrelevant data, ensuring that the model remains relevant
without excessive communication overhead. Implementing
drift-aware FL concept involves several strategies. An
approach is to incorporate adaptive learning rates that
adjust based on the detected drift, ensuring that the model
quickly adapts to new patterns while minimizing unnecessary
updates. Another strategy is to use ensemble methods, where

multiple models are trained on different data subsets and
combined to provide robust predictions that account for drift.
For example, the work in [151] proposed FUL to address
the need for model updates in response to concept drift. By
selectively removing outdated data and incorporating new
information, FUL maintains the relevance of the model while
managing communication costs. Furthermore, strategies such
as incremental learning [152] can be used to continuously
adapt FL models to new data without starting from scratch,
thus reducing the communication burden.

E. EDGE IMPLEMENTATION OF FL-ENABLED HAR
How does one efficiently implement FL algorithms for HAR
on the network edge? Efficiently implementing FL for HAR
on the network edge requires overcoming several challenges
related to computational resources and power consumption.
The edge, characterized by limited computing and backup
power, requires low-complexity schemes to handle complex
HAR tasks [153], [154]. Model compression techniques such
as quantization, pruning, knowledge distillation, and spiking
neural network (SNN) are essential to reduce the complexity
and size of FL models, making them suitable for deployment
on resource-constrained edge devices. Quantization reduces
the precision of the model parameters, which decreases
the size of the model and the computational resources
required without significantly affecting performance [155].
Pruning involves removing less significant weights from the
model, further reducing the computational burden [156].
Knowledge distillation transfers knowledge from a large,
complex model (teacher) to a smaller, simpler model
(student), thereby retaining performance while reducing the
size of the model [157]. SNN is a new generation of neural
networks. It is an event-driven learning process and, in
turn, significantly reduces energy consumption [158]. These
techniques ensure that FL models can be effectively deployed
on resource-constrained edge devices, enabling robust and
real-time HAR applications.

VII. CONCLUSION
In this paper, we present the role of FL in enabling privacy-
preserving HAR applications. Our findings show that FL
not only enhances privacy by keeping data on local devices
but also improves the accuracy of the model by leveraging
data from diverse sources without sharing raw information.
These contributions are crucial to addressing key challenges
in HAR, such as data heterogeneity, privacy concerns, and the
demand for real-time processing. The practical implications
of this work suggest that FL can be a cornerstone in
developing scalable, secure, and adaptive HAR systems,
especially in environments where data privacy is paramount.
Moreover, as FL continues to evolve, it opens up possibilities
for deploying HAR applications in healthcare, smart cities,
and wearable technologies. However, several challenges
remain to be tackled, such as optimizing FL communication
protocols, handling non-IID data distributions more effec-
tively, and ensuring model robustness against adversarial
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attacks. Future research should focus on refining these areas
while exploring new strategies, like integrating FL with
emerging technologies like edge computing, to create more
efficient and reliable HAR systems. These next steps will
help solidify FL’s role in the future of HAR and other
privacy-critical applications.
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