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Abstract: Thermodynamics constrains the flow of matter in a reaction network to occur
through routes along which the Gibbs energy decreases, implying that viable steady-state
flux patterns should be void of closed reaction cycles. Identifying and removing cycles in
large reaction networks can unfortunately be a highly challenging task from a computational
viewpoint. We propose here a method that accomplishes it by combining a relaxation
algorithm and a Monte Carlo procedure to detect loops, with ad hoc rules (discussed in
detail) to eliminate them. As test cases, we tackle (a) the problem of identifying infeasible
cycles in the E. coli metabolic network and (b) the problem of correcting thermodynamic
infeasibilities in the Flux-Balance-Analysis solutions for 15 human cell-type-specific
metabolic networks. Results for (a) are compared with previous analyses of the same issue,
while results for (b) are weighed against alternative methods to retrieve thermodynamically
viable flux patterns based on minimizing specific global quantities. Our method, on the
one hand, outperforms previous techniques and, on the other, corrects loopy solutions to
Flux Balance Analysis. As a byproduct, it also turns out to be able to reveal possible
inconsistencies in model reconstructions.
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1. Introduction

Starting from the discovery by Lavoisier concerning the relation between respiration and combustion,
thermodynamics stands as a key physical framework for understanding metabolism and physiology,
from single cell to whole organisms. When applied to a given metabolic reaction network, at the
simplest level, thermodynamics requires that, in non-equilibrium steady states, fluxes of matter proceed
downhill in the underlying Gibbs (free) energy landscape. Violations of this rule (which corresponds
to nothing but the second law of thermodynamics) are signaled by the existence of unphysical cycles
in flux configurations [1]. In the current era of metabolic genome-scale reconstructed networks, the
implementation of such a constraint in computational models of a cell’s metabolism has far-reaching
implications [2], ranging from the physical feasibility of flux configurations [3] to the estimation
of metabolite levels [4], the assignment of directionality for reactions and pathways [5] and the
characterization of the overall chemical energy balance [6]. Accounting for thermodynamics in
genome-scale models, however, poses considerable practical problems both for algorithms and for
CPU costs.

The reference modeling scheme that we shall consider here is given by the so-called constraint-based
models [7], widely employed in the literature to describe the operation of a biochemical reaction network
at steady states with time-independent metabolite levels. While building a detailed model of metabolism
presupposes knowledge of the kinetic parameters and reaction mechanisms [8], and should possibly
take into account stochasticity [9] and spatial diffusion [10,11], constraint-based models focus on
well-mixed non-equilibrium steady states (NESSs) for the reaction fluxes, to recover what fundamental
information comes from the underlying stoichiometry alone. For a given stoichiometric matrix
S = {Smr} that accounts for the stoichiometric coefficient of metabolite m in reaction r (with the
usual sign convention to distinguish products from substrates), a flux vector v = {vr} represents a
non-equilibrium steady state if it enforces the balance of metabolite levels c = {cm}, i.e., if:

ċ ≡ Sv = 0 (1)

In usual applications, physiological aspects constrain fluxes to vary with certain ranges, so that bounds
of the type vr ∈ [vmin

r , vmax
r ] are normally prescribed for every reaction, r. Such bounds may reflect, for

instance, the fact that certain processes are known to be physiologically irreversible (e.g., vr ≥ 0) or are
required to occur at precise rates (as can be the case for maintenance reactions). From a geometric point
of view, under Equation (1) and the bounds on fluxes, the space of possible NESSs is represented by a
convex polytope. If all flux configurations inside this volume could be considered as physically realizable
solutions, one might assess the “typical” productive capabilities of the network by sampling them using
a controlled algorithm [12]. Unluckily, this route often turns out to be computationally too expensive for
large enough systems. Alternatively, one may search for the state(s) that maximize the value of certain
biologically motivated objective functions, which can usually be cast in the form of a linear combination
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of fluxes that represents the selective production of a given set of metabolites. The flux configurations
that maximize such a linear functional can be retrieved with the methods of linear programming [13],
the textbook case being growth yield maximization for bacterial cells in culture. Such a framework,
known as Flux Balance Analysis (FBA) [14], has been shown to be predictive in many instances, even
under genetic and/or environmental perturbations [15] (possibly with small modifications).

Solutions of Equation (1) are in general not guaranteed to be thermodynamically viable. Frameworks,
like FBA, can however be modified to include thermodynamic constraints directly in order to generate
thermodynamically viable flux configurations, for instance, by resorting to empirical data to estimate
the chemical potentials of metabolites [16] and infer reaction reversibility more precisely [17,18].
As a matter of fact, a large part of thermodynamic inconsistencies appear to be due to fallacious direction
assignments. Models of this type, however, require prior biochemical information that is often scarce
or unavailable [19]. To overcome these difficulties, new methods were devised that detect infeasible
loops leveraging only on the constraint based model, i.e., on the structure on the metabolic network
alone [20–22]. Although these methods release the need for experimental knowledge, the direct detection
of infeasible loops is a computationally demanding task that limits their applicability. It is therefore
important to devise algorithms that are able to identify and remove thermodynamic inconsistencies from
solutions of Equation (1) or, more generally, from generic flux patterns.

Checking the thermodynamic feasibility of a flux pattern can be made straightforward. Denoting by v′

a flux vector, from which we exclude uptakes and every reaction that cannot be associated directly with a
thermodynamic constraint (like biomass production, “effective” reactions with non-integer stoichiometry
or null fluxes), let us define the matrix Ω = {Ωmr} with elements Ωmr = −sign(v′r)Smr. Note that the
minus sign in the definition of Ω is needed to connect the directions of the reactions to the corresponding
Gibbs energy differences. The thermodynamic feasibility of v′ is easily seen to be guaranteed (see the
Supporting Text for a toy example) if a non-zero vector µ = {µm} (of chemical potentials) exists,
such that [23]:

µΩ > 0 (2)

(Note that, for physiologically realism, one would like the individual µm’s to lie in specific ranges. As we
shall not be concerned here with reconstructing the cellular Gibbs energy landscape [24], this aspect will
be neglected in what follows.) Solving Equation (2) can be done very efficiently, e.g., via relaxation
algorithms [13]. By Gordan’s theorem of the alternatives (see e.g., [25]), if Equation (2) has no solution,
then necessarily its dual system:

Ωk = 0 (3)

with k = {kr} possesses at least one non-zero solution with kr ≥ 0 for each r. It is easy to understand
that such vectors k represent closed cycles of reactions that could in principle be able to perform
work without using free energy, contradicting the laws of thermodynamics (note, however, that the
topology of such cycles may turn out to be remarkably complex; see e.g., [24]). The problem posed
by thermodynamics can then be seen as that of identifying and removing such loops.

Finding all cycles in a directed (bipartite) network is, at the heart, an integer programming problem in
the NP-hard (Non-deterministic Polynomial time class) [26], which suggests that using deterministic
algorithms to find loops in large enough networks may be unwise. However, for networks in
which reliable prior thermodynamic information is available, the complexity of loop counting can be
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significantly reduced, and indeed, in some cases, the problem has already been tackled (although, in our
view, not fully solved) in genome-scale networks with some degree of success [24,27]. By contrast,
in large networks lacking detailed thermodynamic information, like the human metabolic networks, the
implementation of thermodynamic constraints requires the development of algorithms that are able to
handle more difficult instances of the loop counting problem. Luckily, in many hard computational
problems where the use of exact algorithms is prevented by CPU costs, stochastic methods have proven
to be effective. A biologically relevant case is represented by the problem of sampling solutions of
Equation (1), for which Monte Carlo [28,29] and message-passing techniques [30] are being employed
instead of deterministic methods (as the latter presuppose the enumeration of a possibly exponential
number of vertices of the polytope). It is simple to guess that a similar strategy might be employed
(as we shall see, with some care) for the analysis of the solutions of Equation (3), i.e., to identify
reaction cycles.

The strategy we present here combines a relaxation algorithm and a Monte Carlo method to allow
for the thorough analysis of thermodynamic infeasibilities on genome-scale metabolic networks of
unprecedented size. More precisely, loops will be found by applying Monte Carlo to Equation (3) with a
reduced search space obtained by analyzing how relaxation behaves when applied to Equation (2). Once
a loop is found, it can be removed in several ways, provided they do not violate any of the constraints
other than thermodynamic (e.g., mass balance). We shall discuss and compare different approaches:
more precisely, a “local” rule that exploits, in essence, the fact that fluxes in cycles are defined up to a
constant and a “global” rule, based on the minimization of an overall function of the fluxes. The method
will be used to analyze different types of networks of a large size. Specifically, we shall first identify all
loops in the metabolic network of E. coli [31], then focus on amending the FBA solutions of 15 different
human metabolic network models derived from the genome-scale Reactome Recon-2 [32], all bearing a
specified objective function. Such solutions turn out to be rich with infeasible cycles, which we are able
to find and correct.

The structure and rationale of the method we propose are discussed in detail in Section 2, together
with a brief summary of the network reconstructions we shall employ. Section 3 exposes our results,
while our conclusions are reported in Section 4.

2. Materials and Methods

2.1. Materials: Metabolic Network Reconstructions

The human Reactome Recon-2 [32] has been reconstructed by a community that merged and
integrated existing global human metabolic networks and transcriptional information on specific human
cell types. Authors verified the quality of Recon-2 by determining how many tasks the network was
able to perform. A task can be as simple as the transformation of a metabolite by a single enzyme or by
a complex pathway—like fermentation or oxidative phosphorylation—or as complex as the production
of the building blocks, energy, cofactors, etc. required for cell duplication, i.e., biomass. For E. Coli
and, in general, for unicellular organisms, biomass yield is a valuable objective function for the FBA
framework [33], since its maximization essentially equals growth maximization at fixed nutrient intake.
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Although it is unlikely that, in normal circumstances, cells in a multicellular organism maximize the
biomass yield, we stick to it as the FBA objective function, as, for our purposes, the objective function
can be seen merely as a tool to obtain motivated flux patterns for thermodynamic analysis.

In addition to the global reconstruction, [32] provides a collection of 65 drafts of cell-specific
networks, which are derived from Recon-2 by means of an automatic procedure that utilizes proteomic
data [33,34]. We focused on 15 networks with the ability to produce biomass, which we list in the first
column of Table 1 together with the number of reactions (N ) and metabolites (M ) included in each case.
We have used, in particular, the network reconstructions in SBML (System biology Markup Language)
format from [32] and resorted to the COBRA (COnstraints Based Reconstruction Analysis) Toolbox [33]
for the FBA analysis and to produce the stoichiometric matrix and the list of metabolites and reactions
to be used in our analysis.

We have also analyzed the reconstructed metabolic network of the bacterium E. coli derived
in [31], consisting of 2,382 reactions (including 305 uptakes) among 1,668 metabolites. In this model,
548 reactions are putatively reversible.

In each case, the key information we employed is encoded in the stoichiometric matrix S.

2.2. Methods

2.2.1. Algorithm for Thermodynamic Analysis: Structure

Before describing the algorithm in detail, we briefly recall the idea behind the procedure. We do
not directly assess whether the flux configuration is loop free, but we try to compute the chemical
potentials that satisfy Equation (2), which is a computationally easier problem to solve. If such a a
solution exists, we are guaranteed that the flux configuration does not contain infeasible loops. It can
be demonstrated [24] that the relaxation method described below always converges polynomially to
a solution; a lack of convergence signals the presence of infeasible loops. Even when the relaxation
method does not converge, it still provides us with a list of reactions that are likely to contain infeasible
loops. To this limited subset of reactions, we can directly apply algorithms to find loop-free solutions.

The overall structure of the algorithm is reported in Figure 1.
In a few words, and referring to points A, B, C.1, C.2 and D shown explicitly in the flow chart:

(A) Input: the input information includes a stoichiometric matrix, S, a flux vector, v (e.g., a solution
of FBA) and a prior vector, µ, of chemical potentials. Initialize an integer variable, t, at t = 0

(relaxation steps) and an empty list.

(B) Compute the matrix, Ω, and evaluate the thermodynamic constraints (2), i.e., compute µΩ. If they
are satisfied, i.e., if µΩ > 0, go to (D); otherwise, register the least unsatisfied constraint (l.u.c.),
i.e., the value of the index, r, for which the corresponding components of the vector, µΩ, is
smallest (more negative). Insert it into the list, and increase the t variable by 1; if t ≤ T , with T , a
pre-defined large parameter, go to (C.1); otherwise, go to (C.2).

(C.1) Update the vector, µ, by performing a single step of the relaxation algorithm described in
Section 2.2.2. ; update the list by inserting the new l.u.c. and go back to (B).
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(C.2) Perform a Monte Carlo computation, as described in Section 2.2.3. , in order to find a solution
of system Equation (3), namely Ωk = 0, including only the reactions appearing in the list. Once
a solution is found, correct the associated cycle as described in Section 2.2.4. and 2.2.5. ;
re-initialize t, empty the list and go back to (B).

(D) Output: a thermodynamically feasible flux vector.

Figure 1. Flowchart of the algorithm for counting and removing cycles employed in this
study. See text for details.

Input
Stoichiometry, S

Flux vector, v
Prior vector, μ
Initialize t = 0

Compute Ω 
and μΩ

Constraints 
satisfied?

(i.e. μΩ > 0 ?)

Output
thermodynamically
viable flux vector v

Find l.u.c. and 
add to list ; t++

t > T ?

Perform one 
Relaxation step

a) update μ
b) update l.u.c.

l.u.c. : least unsatisfied constraint
MC : Monte Carlo

YN

Y

N

A

D

C.1

B

C.2
Perform MC
a) solve Ωk = 0

for reactions in list
b) remove cycles

c) re-initialize t , list

In the following sections, we shall describe the sub-procedures (relaxation method, Monte Carlo
and cycle removal) of the algorithm in detail. A C++ code, which performs each of the above
steps, is provided as Supporting Material. It is worth pointing out that the present study is not
concerned with the calculation of realistic chemical potentials. Rather, we simply require their
existence in order for the flux configuration to be feasible. In this case, the prior vector of chemical
potentials can be arbitrary, e.g., constant or composed by independent and identically distributed
random variables. If complemented with specific experimentally determined or computationally
estimated priors for the chemical potentials, however, the relaxation method included in the above
algorithm generates, as a by-product, a free energy vector compatible with the final flux configuration
and can, thus, be employed to refine experimental data on the free energy of the formation of
metabolites and/or on their levels [24]. Better priors ultimately allow one to obtain more precise
estimates for the real chemical potentials, but are essentially irrelevant for the convergence of the
relaxation method. In what follows, we shall neglect this aspect, which is discussed in depth in [24],
and focus exclusively on the retrieval of cycles.
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2.2.2. Checking Thermodynamic Viability by Relaxation

This routine, corresponding to point C.1 of the flow chart, allows one to retrieve a solution of
Equation (2) starting from a vector of chemical potentials that is not a solution thereof. For simplicity,
we construct an initial vector made of uniformly distributed random numbers. At any step, t, of the
procedure, given a chemical potential vectorµ(t), the relaxation algorithm corrects the l.u.c. of Equation
(2) through the dynamics defined by:

rt = arg min
r

∑
m

Ωmrµm(t) (4)

µm(t+ 1) = µm(t) + αΩmrt ∀m (5)

where rt is the index of the l.u.c. added to the list at the t-th step and α > 0 is a constant.
As explained in [24], the above step simply shifts chemical potentials in a direction that will improve
the l.u.c. The parameter α can be chosen in different ways, from a suitably small constant (as in
the so-called MinOver (minimum overlap) scheme [35]), to a quantity proportional to the amount
by which the constraint is violated (as in the Motzkin scheme [13]). The Minover scheme returns
a solution that is typically closer to the prior, but here, we utilized the faster Motzkin scheme.
The above algorithm is known to converge to a solution of Equation (2), upon iteration, in polynomial
time, if and only if a solution exists. If convergence fails, instead, by the Gordan theorem, the
reaction pattern contains infeasible cycles. Convergence of relaxation therefore guarantees feasibility
of a flux vector. In the presence of loops, an iteration of the above dynamics typically cycles
among inconsistent constraints. Therefore, by keeping track of the l.u.c. over the iterations, i.e.,
by recording the series {rt} for t ≥ 0 (corresponding to the content of the list described in the
flow chart), one can build a list of reactions that are candidates for being responsible for the failed
convergence. If relaxation does not converge to a solution in a reasonable time (denoted as T

above), we look for infeasible cycles, i.e., for solutions of Equation (3), within such a restricted list.
To this aim, we employ a Monte Carlo method.

2.2.3. Identifying Loops by Monte Carlo

As said above, cycles generically correspond to solutions of Equation (3) with k ≥ 0. As
the stoichiometric coefficients are typically integers, one can focus on searching solutions with kr

non-negative integers for each r. To this aim, the following method (borrowed from the standard
statistical physics toolbox) can be employed. Starting from Equation (3), note that the function:

E(k) =
∑
m

(∑
r

Ωmrkr

)2

(6)

vanishes when k defines a flux cycle. Because E ≥ 0, then infeasible loops correspond to the minima
of E, and loop finding amounts to locating the minima of E in the search space kr ∈ {0, 1, 2, . . .}
for each r. Monte Carlo methods are ideally suited to tackle this type of problem [36]. In brief, such
methods (the most famous of which is possibly the Metropolis scheme) generically generate vectors k

distributed according to:
P (k) ∝ e−βE(k) (7)
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where β > 0 is an externally fixed parameter. When β →∞, the above measure concentrates around the
minima of E. One possibility to make sure that large enough values of β are reached is to initialize the
Monte Carlo simulation at some small value of β and, then, increase β in a controlled way, initializing
each time from the configuration retrieved at the previous value of β (“simulated annealing”). This
is precisely the approach we have employed here: in order to identify the infeasible loops, we have
performed iterated Metropolis-based annealings to minimize the fictitious “energy” (6). (The increase in
performance warranted by the annealing procedure compared to the simple Metropolis scheme at a fixed
temperature is discussed in the Supporting Text.)

It is worth noting that, based on the above discussion of the relaxation method, the number of reactions
to be included in the above procedure equals the number of distinct reactions appearing in the list, which
is usually much smaller than N . To give an idea, in the study of E. coli, whose results are reported
below, our lists ended up containing at most 50 reactions, to be compared with the over 2,000 that
form the genome-scale reconstruction. Hence, the computational costs of the Monte Carlo step of our
algorithms are overall modest.

2.2.4. Correcting the Flux Configuration: Local Strategy

Once a flux cycle has been identified, there are multiple ways to remove it and re-organize the flux
pattern, while still preserving all constraints and, eventually, the values of objective functions.

To clarify the situation, consider the following simple example with four reactions, pictured
in Figure 2.

Figure 2. Example of a toy reaction network. The black dots are two metabolites, to each
of which corresponds a mass balance constraint. Each line is labeled with the name of the
flux carried by a reaction, and the arrow indicates the conventional forward direction of the
fluxes. Evidently, a thermodynamically infeasible cycle is present if v1 and v2 have the
same sign.

v3

v1

v2

v4
v3 = v4 = 2

v2 ≥ ǫ

v1 and v2 are “internal” fluxes, while v3 and v4 are an intake and an outtake flux, respectively. The
stoichiometric matrix S and the flux vector v reads:

S =

(
−1 1 1 0

1 −1 0 −1

)
, v =


v1

v2

v3

v4

 (8)
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With this formalism, the mass balance constraints (1) are given by the homogeneous equation Sv = 0.
We also fix the value of the uptakes to, for example, v3 = v4 = 2, and add a lower bound on the first
flux, v2 ≥ ε (with ε as a constant).

After the elimination of the uptakes, the internal stoichiometric matrix and flux vector (which, for
clarity, in this section, we denote as Sint and vint) are given by:

Sint =

(
−1 1

1 −1

)
, vint =

(
v1

v2

)
(9)

Since we fixed the values of v3 and v4, we can move them to the right hand side of the mass balance
constraints, obtaining:

Sintvint = u, u =

(
−v3
v4

)
(10)

Equation (10) must be solved together with the constraint v2 ≥ ε, which we will treat separately.
Given a solution v of Equation (10), any linear combination of the form:

v′ ≡ v′(L) = v +
∑
a

Lana (11)

still satisfies the mass balance Equation (10), provided na is in the right null space of the internal
stoichiometric matrix, i.e., it is a solution of Sintna = 0, and L = {La} is a family of real numbers. If
we now recall that loops k are non negative solutions of Equation (3), i.e., of Ωk = 0, where the matrix
Ω is built from Sint as Ωmr = −sign(vr)S

int
mr , we see that, by construction, the relation nar = sign(vr)k

a
r

connects infeasible loops ka (a = 1, 2, . . .) and the solutions of Sintna = 0. In other terms, the presence
of cycles causes a degeneracy in flux patterns, as there are many ways to assign fluxes to reactions
in a cycle.

Equation (11) can be used to correct the infeasible loops, while still satisfying all mass balance
constraints. The simplest possible correction scheme is based on the idea that by properly fixing the
value of the coefficients, La, one can lift the degeneracy and rid the flux configuration of loops. There
is, however, a major caveat. To make it explicit, we note that (a) the signs of the fluxes v′r depend on the
choice of the coefficients L, so that the matrix Ω will also depend on it; and (b) it is not guaranteed that
the new fluxes v′ will vary within the same bounds as v. This means that equation (3) must be solved
together with all other constraints which are not related to the stoichiometry, such as sign constraints.
We will write these constraints in a general fashion as Av′ ≥ b. In our example, this matrix inequality
reduces to v2 ≥ ε.

With this notation, the space of vectors L yielding thermodynamically feasible solutions is given by
C1 ∩ C2, where:

C1 = {L : Av′ ≥ b} (12)

C2 = {L : @k ≥ 0 such that Ω(L)k = 0} (13)

The first set contains all constraints that are not related to stoichiometry, while the second one contains
the thermodynamic ones. Now, unluckily, these two sets may or may not have points in common,
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depending on the properties of the network and on the additional constraints (in other words, it may not
be possible to choose L properly).

Suppose now that, in our example, we are given the flux vector v? = (3, 1) as the solution
to Equation (10). We see that the vector n = (1, 1) is in the null space of Sint and that the new vector
v′ = v? +Ln still satisfies (10). Furthermore, since both v?1 and v?2 are positive, n itself identifies a loop,
i.e., it is a solution of (3) (for, in this case, Ω = −Sint). It can be easily checked that, in this example, as
long as the constraint v2 ≥ ε is not taken into account, we can pick L in the interval [−3,−1] to get rid
of the cycle. The choice is arbitrary and produces a fully directional flux pattern, such that reactions v1
and v2, if both active, operate in the same direction. The constraint v2 ≥ ε, however, implies L ≥ ε− 1.
The sets, C1 and C2, are then given by:

C1 = {L : L ≥ ε− 1} (14)

C2 = {L : −3 ≤ L ≤ −1} (15)

Therefore, we see that if ε < 0, there are infinitely many values of L that remove the cycle, whereas the
cycle cannot be removed if ε > 0. In other words, each time a flux is constrained to keep a pre-defined
sign, there is no guarantee that the loops involving this reaction can be corrected by simply lifting the
flux degeneracy associated with them. The value ε = 0 plays here a particular role, since v2 ≥ 0 is
an irreversibility constraint. In this case, the intersection of the two sets above imposes L = −1. This
is indeed the most common kind of constraint on the fluxes and allows for the simplest unambiguous
loop removal strategy: setting the smallest flux to zero without changing signs to any of the other fluxes
involved (as occurs in the present case upon choosing L = −1).

From this last observation, we can deduce the following general loop removal strategy (which we
refer to as the “local” correction strategy): for a given loop ka, choose the value of La that sets to zero
the flux of the reaction whose absolute value is the smallest, i.e.,:

La = − min
r : kar>0

|vr|
kar

(16)

With this choice, every constraint of the form vr ≥ 0 will still be satisfied, and at least one loop will be
removed. This strategy tends, in a sense, to minimize the distance between the original flux pattern and
the corrected one. (We will quantify this aspect more precisely below.) On the other hand, if bounds like
vr ≥ ε with ε > 0 are present, a more careful analysis is required. We finish by noting that the most
important instance of a constraint of the latter type in models of metabolism is represented by the ATP
maintenance flux.

2.2.5. Correcting the Flux Configuration: Global Strategy

Other possible loop-removing procedures are based on the minimization of some norm of the fluxes,
as suggested in [37]. Let us elaborate this idea further and consider the function Qp(v) =

∑
r |vr|p

with p ≥ 1, representing, for different p’s, different norms of the flux vector v (Q1 is the so-called
“Taxicab” norm, Q2 is the square of the Euclidean norm, etc.). Suppose we have an FBA solution v?

that minimizes Qp. If {na} is the set of all null space vectors of the stoichiometric matrix, we can
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construct a new solution v′ = v? +
∑

a L
ana and compute the partial derivative of Qp with respect to a

coefficient, La. The derivatives vanish when evaluated at L = 0:

∂

∂La
Qp

(
v? +

∑
b

Lbnb

)∣∣∣∣∣
L=0

=
∑
r

p|v?r |p−1sign(v?r)n
a
r = 0 (17)

We see immediately that the quantities kar = sign(v?r)n
a
r cannot have a definite sign. Restricting the sum

to all terms with nar 6= 0, we have two cases:

• If at least one of the fluxes v?r is zero, this reaction cannot be involved in any cycle. In particular,
na is not associated with a loop.

• If all fluxes are non-zero, the vector ka cannot have a definite sign (positive or negative), since the
sum of its entries, namely Equation (17), weighted with some positive coefficients, is zero.

Therefore, the vector v? that minimizes Qp does not contain cycles.
The argument can be easily extended to include irreversibility constraints. Let v? denote the flux

configuration that minimizes Qp(v) with irreversibility constraints vr ≥ 0 for the reactions, r, belonging
to the set I = {r1, r2, . . . }. We shall instead denote by I0 = {r′1, r′2, . . . } ⊆ I the set of irreversible
reactions for which vr = 0 in v?. Clearly, v? also minimizes Qp subject to the stronger constraints
vr = 0 for r ∈ I0 and vr > 0 for r ∈ I \ I0. Given this, one can now proceed along the same lines as
before, because, for any vector na in the null space of Sint:

• If some reaction, r, for which nar 6= 0 is forced to have zero flux, since r ∈ I0, then na is not
associated with a cycle;

• Otherwise, we can demonstrate that na does not correspond to a cycle by taking the partial
derivative of Qp(v

∗ + Lana) as done above.

Problems may arise, as before, when boundary conditions like vr ≥ ε with ε > 0 have to be
considered. In particular, if the flux of a variable thus bounded is fixed to take the value ε, there is
the possibility that the cycle cannot be removed. In the example discussed above (see Figure 2):

• If ε < −1, then v2 > ε and the Qp minimization yields v? = (1,−1);

• If −1 ≤ ε ≤ 0, then v2 = ε, but the flux configuration v? = (1− ε, ε) is still feasible (in particular,
the configuration is feasible for ε = 0);

• If ε > 0, then v2 = ε, and the optimal flux configuration is not feasible.

In summary, the global minimization of the norm Qp produces thermodynamically feasible flux
patterns, provided they are allowed by the constraints. If not, the minimization can get rid of all loops not
involving reactions constrained to keep the same sign. We shall term the cycle-removal strategy based
on minimizing a norm as the “global” strategy.
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3. Results

3.1. A Test: Identifying Infeasible Loops in the E. Coli Network iAF1260

As a proof of principle, we have applied our method to search and enumerate all independent
infeasible loops of a large metabolic network reconstruction for the bacterium E. Coli, the iAF1260 [31].
Other authors have attempted to solve the same enumeration problem before (see, e.g., [27]). We note,
however, that our method is radically different in that we make use of the theorem of alternatives and do
not directly search for loops on the graph, which is the more standard route [38], or rely on subsequent
optimizations that reduce the search space [27,39]. In the present case, we characterize cycles in an
ensemble of net-flux patterns generated randomly by assigning a specific operating direction to each
reaction according to its reversibility. More precisely, random flux patterns are generated by simply
assigning an operation direction for each reaction as follows: if the reaction is irreversible, we pick the
allowed direction; if the reaction is reversible, we select the forward or the reverse direction randomly
with a probability of 1/2 (note that direction assignments suffice to pose the problem of thermodynamic
feasibility. In this way, all reactions are active, a worst-case scenario with respect to a growth-yield
optimizing state that normally only requires the operation of around 30% of the reactions, implying (in
our case) a much larger number of loops and, in principle, higher computational costs for loop counting.
For each configuration, we look for and eliminate cycles until the material flow is thermodynamically
consistent, recording the cycles that we have detected. Finally, we keep only independent loops by
applying Gaussian elimination (i.e., we exclude from our list loops that can be decomposed as the sum
of, say, two simpler loops).

In Figure 3, we display the number of independent loops that we identify as a function of the number
of random configurations tested.

Figure 3. The number of independent loops identified in the metabolic network of E. Coli
iAF1260 as a function of the number of random configurations tested. Results are obtained
by jackknifing over 10 configurations. The black line represents the average number of loops,
while the blue lines represent the extremes of the error bars at each point.
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We identify 196 loops (189 of which turn out to be of a size of three or more) after having generated
about 80,000 random configurations, and no new loops appear upon enlarging the test ensemble. The
loops thus found are listed in Supporting File 1, and a histogram of the cycle lengths (in terms of the
number of reactions involved) is displayed in Figure 4.

Figure 4. Histogram of the length (number of reactions involved) of the 196 independent
cycles detected in E. Coli iAF1260.
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We note that, in [27], 591 cycles were identified, 564 of which are, however, formed by two reactions,
mostly originating from the fact that reversible reactions were, in that study, split in two separate pro-
cesses (forward and reverse). Therefore, only 27 of those cycles were formed by three reactions or more.
Because we do not split reversible reactions, we find only seven cycles of a length of two and 189 loops of
a length at least equal to three. We note that these 189 cycles span 396 reactions altogether. This suggests
that, for the technique employed in [27], some loops were undetectable once the exhaustive search had
been restricted to 50 reactions. We stress, however, that the procedure discussed in [27] is, in principle,
exact, and once the restriction is removed, it might be able to identify more cycles involving at least
three reactions.

3.2. Inconsistencies in the FBA Solution for the Overall Human Reactome Recon-2

We now move on to the identification of thermodynamic infeasibilities in the human Reactome
Recon-2 [32]. In specific, we have analyzed the feasibility of flux patterns defined by solving FBA
on the entire Reactome, using the “biomass” reaction that comes with the reconstruction as the objective
function. This section provides a concrete example of an inconsistency that is unrecoverable without
correcting basic structural information concerning the network. It should be kept in mind, however,
that the physiologically relevant metabolic networks that can be obtained from Recon-2 are the cell-type
specific ones, which will be discussed in the following section.
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As almost all metabolic objective functions, the biomass reaction of Recon-2 contains ATP hydrolysis,
representing the energetic requirements associated with cell duplication, which are not explicitly
accounted for by the flux organization. As such, requirements are typically large: the stoichiometry
of ATP in the biomass reaction is often two orders of magnitude larger than that of the other chemical
species. Hence, ATP tends to be the limiting factor for biomass production, and FBA solutions will often
organize metabolic fluxes, so as to produce as much ATP as possible. This however turns out to lead, in
Recon-2, to a violation of thermodynamics. In particular, in the FBA solution for Recon-2, we detect a
huge number of cycles involving the active and passive transport of a metabolite through a membrane, as,
e.g., for the transport of stearoyl-CoA (stcoa) from cytosol (c) to peroxisomes (x), namely (see Figure 5).

Figure 5. Typical structure of an infeasible loop created by two reversible transports across a
membrane-enclosed compartment: a passive one (by diffusion) and an active one (requiring
the expenditure of energy). If the active process is allowed to reverse and the cargo re-enters
the cell or compartment via diffusion, an infeasible loop is generated that builds ATP from
ADP without energetic costs.

ATP H20
+

ADP Pi H

cargo

passive transport

active transport

cargo

stcoa[c] � stcoa[x] (18)

adp[c] + h[c] + pi[c] + stcoa[x] � h2o[c] + atp[c] + stcoa[c] (19)

Note that both reactions are listed as reversible. When the chemical potential difference drives stcoa from
peroxisome to cytoplasm, the cell can actively transport stearoyl-CoA to peroxisomes by consuming
ATP. By reverting both reactions, however, the cell could produce ATP at no expense. This is precisely
the type of solution that we obtain when we maximize the biomass yield in Recon-2.

ATP-coupled reactions are a common, though not the only, source of thermodynamic inconsistencies
that can be spotted in Recon-2 (see Supporting File 2 for the complete list of cycles we identified in the
Recon-2-derived cell-type specific networks. It is however important to stress that they are spurious and
may be identified easily by complementing Recon-2 with a maintenance reaction that mimics the energy
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expenditure associated with basal processes (similar to those that are present in bacterial metabolic
networks) and even cured automatically (or with an automated procedure) by fixing the directionality
of active transports directly in the reconstruction (when possible).

3.3. Correcting Infeasible Loops in FBA Solutions for Cell-Type Specific Human Metabolic Networks

In this section, we focus on finding and correcting infeasible loops in FBA solutions of the cell-type
specific human metabolic networks obtained by Recon-2. We have restricted our attention to 15 networks
carrying an objective function, representing, respectively, cerebral cortex neuronal cell, liver bile duct
cell, cervix uterine squamous epithelial cell, kidney tubule cell, gall bladder cell, lung macrophage,
small intestine glandular cell, rectum glandular cell, smooth muscle cell, urinary bladder urothelial cell,
pre- and post-menopause uterus glandular cell, pancreatic exocrine glandular cell, tonsil germinal cell
and squamous epithelial cell. We first computed the FBA solutions for each of the networks via the
COBRA Toolbox [33]. We have computed optimal solutions with respect to the biomass objective
function. The choice is mainly motivated by the fact that maximizing the biomass yield represents a
network-wide goal with respect to the more specific tasks described by other objective functions included
in the reconstructions. We stress however that for our present purposes, the objective function merely
provides a means of obtaining flux patterns; hence, the particular choice we made is immaterial for
the problem we consider. Subsequently, we identified infeasible loops using the method described in
Section 2.2.3. and, finally, corrected thermodynamic inconsistencies using both the local and global
strategies described in Sections 2.2.4. and 2.2.5. (in the latter case, minimizing the Q1 norm, while
fixing sinks, uptakes and objective function to the values of the FBA solution). In particular, with the
local strategy, we eliminate one infeasible loop at a time, making sure that no constraint is violated by
the corrected solutions, including the value of the objective function. We note, however, that the local
strategy does not return a unique thermodynamically consistent network, since the final flux pattern may
depend on the order with which loops are removed. We shall see that, quite generically, this strategy
produces flux patterns that are more similar to the original (infeasible) solutions than those generated by
the global correction strategy.

Results are shown in Table 1, where we list different topological quantities (specifically, the overall
number of reactions and metabolites and the number of reactions carrying a non-zero flux and that of
metabolites that are produced and consumed by at least one reaction) for the original (infeasible) FBA
solutions and for the corrected flux patterns, both for the local and global strategies, as well as the
number of loops in the FBA solutions that need to be corrected by the local strategy. One sees that the
local strategy typically needs to resolve several hundreds of inconsistencies in order to obtain viable
solutions and that correction strategies enforce a reduction in the number of active processes, which in
certain cases, can be rather dramatic. Supporting File 2 lists the cycles we identified and corrected in
each of the 15 metabolic networks we have analyzed. To quantify more precisely the similarity between
the solutions thus obtained, we have measured the ‘overlap’ parameter defined as follows: given two flux
configurations, va = {var} and vb = {vbr}, we let:

qab =
2

N

N∑
r=1

varv
b
r

(var )
2 + (vbr)

2
(20)
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Clearly, qab = 1, if va = vb, while the more different fluxes are in the two solutions the smaller qab
gets, until qab = −1, if va = −vb. Larger values of qab, therefore, generically point to the fact that the two
flux vectors are more similar also in terms of their directions. (Note that in computing (20), one should
account for the fact that a flux that is null in both solutions contributes one to the above sum. In this
study, for numerical reasons, a flux, vr, is considered to be null whenever vr < v0, where v0 is a (small)
threshold. Results have been obtained with v0 = 10−6, but they are robust to changes in this value.
Values of the overlaps between the three solutions we consider (original FBA, FBA corrected by the
local strategy, FBA corrected by the global strategy) are also displayed in Table 1, clarifying that the local
strategy applied to our sample always generates flux patterns that are closer to the original (infeasible)
solution than those obtained by the global strategy. Nevertheless, the overlap between the locally- and
globally-corrected solutions can also be rather large in some cases, suggesting that a common physical,
possibly variational, requirement may underlie, to some extent, the two criteria.

The final column of Table 1 shows the sign of the Gibbs energy change of ATP hydrolysis that
is obtained in the solution corrected by the global strategy. This provides an interesting check of
physiologic consistency, as solutions should be compatible with a spontaneous ATP hydrolysis in vivo
(i.e., with a negative Gibbs energy difference). We find that only for five models does Q1 minimization
provide (thermodynamically feasible) flux configurations carrying a negative Gibbs energy difference
for ATP hydrolysis. A possible, simple to obtain improvement of the method we present indeed
includes taking into account physiological aspects when correcting a flux configuration. We stress
once more, however, that these types of infeasibilities are due to inconsistent constraints or wrong
reversibility assignments that prevent the existence of feasible, energetically realistic flux patterns and
can be eliminated already at the stage of network reconstruction. Our main goal here was to show that
our method is capable of identifying and correcting loops. By this type of example, we prove that it can
furthermore point to possible limitations of the current models.

4. Discussions

Accounting for thermodynamic constraints in stoichiometry-based flux models, though potentially
highly rewarding (in terms of the possibility to predict metabolite levels, chemical potentials, reaction
free energies and reversibility), is a generically hard task. Methods that integrate directly with the
constraints defining the space of viable fluxes are often computationally intensive and either presuppose
prior biochemical knowledge or lead to a considerable increase in the number of parameters (or both).
The technique presented here makes use of stoichiometry alone (hence, it is essentially a topological
method) and allows us to accomplish two goals: on the one hand, counting and listing the infeasible
reaction cycles that spur flux configurations derived from thermodynamics-free models; on the other,
correcting such infeasibilities in a physically motivated manner. Indeed, we have first analyzed the
genome scale metabolic network reconstruction iAf1260 of the bacterium E. coli. By simply recording
the cycles found in randomly generated flux patterns we are able to uncover a much larger set of
(much more complex) loops than previously obtained, also involving a much larger overall number
of processes, comparing, in particular, with [27] (in this sense, outperforming previously employed
methods). In passing, we note that our method comes with a certificate of completeness for the set of
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cycles, which was previously unavailable. Secondly, after showing that cycles plague FBA solutions for
the metabolic networks of several different types of human cells (all retrieved from the human Recon-2
Reactome), we have applied our loop-removal strategies in order to obtain thermodynamically viable
flux patterns that both preserve the basic constraints of FBA, as well as the value of the objective
function. In doing so, some inconsistencies in the reconstructions have been identified, which can
easily be eliminated at the level of network building. Quite importantly in our view, we have also
discussed the possibility to employ global variational criteria to generate thermodynamically feasible
flux configurations. In particular, generalizing a previous observation, we have proven that flux patterns
that minimize the p-norms of the fluxes are thermodynamically viable, provided they are allowed by
the constraints. Otherwise, this idea can be used (with some care) to remove cycles that do not involve
reactions that cannot be inverted or silenced.

The work presented here extends and improves over previous studies and takes several steps to suggest
controlled and motivated methods to deal with thermodynamic inconsistencies in large networks of
biochemical reactions. Further improvements along the lines discussed above (requiring, e.g., more
precise physiological constraints) are clearly possible. Most promisingly, however, we believe that
work directed at enhancing the integration of thermodynamic constraints into flux analysis would be
extremely important in light of the current efforts aimed at increasing the scope, reach and predictive
power of computational models of cellular metabolism. In absence of sufficiently detailed biochemical
information about metabolite levels in vivo or chemical potentials, general stoichiometry-based
techniques must be expected to play a key role in this endeavor.
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Table 1. Overview of the results obtained for the human tissue-specific metabolic networks (with the biomass objective function).
Columns are as follows. Cell type: abbreviations for the tissue-specific metabolic networks examined, for the full names please refer
to the text (head of Section 3.2). N and M : overall number of reactions and metabolites appearing in the network. NFBA and MFBA:
number of active reactions and produced/consumed metabolites in the Flux Balance Analysis (FBA) solution. # cycles: number of cycles
that the local strategy needs to correct. Nlocal and Mlocal: number of active reactions and produced/consumed metabolites in the FBA
solution corrected by the local strategy. Nglobal and Mglobal: the number of active reactions and produced/consumed metabolites in the
FBA solution corrected by the global strategy. qFBA,local: overlap between the FBA solution and the solution corrected by the local
strategy. qFBA,global: overlap between the FBA solution and the solution corrected by the global strategy. qlocal,global: overlap between the
FBA solution corrected by the local and global strategies. ∆G sign: sign of the free energy difference obtained for the ATP hydrolysis in
the solution obtained via the global correction strategy.

Cell type N M NFBA MFBA # cycles Nlocal Mlocal Nglobal Mglobal qFBA,local qFBA,global qlocal,global ∆G sign

Bile duct 2,076 1,445 1,009 743 215 516 554 367 476 0.706 0.559 0.781 +
Cer. cortex 2,169 1,494 1,231 898 358 818 767 257 320 0.750 0.448 0.629 +
Cerv. ut. 1,774 1,171 1,046 780 194 562 620 339 380 0.666 0.480 0.735 -
Gall blad. 3,073 2,159 1,666 1,284 385 1,514 1,227 254 356 0.751 0.471 0.521 +

Kidney 3,176 2,212 1,695 1,285 414 1,423 1,196 142 449 0.759 0.469 0.551 +
Lung macroph. . 2,810 1,991 1,313 960 223 817 779 606 587 0.765 0.681 0.849 -

Pancreas 2,821 1,951 1,319 948 409 814 797 225 534 0.756 0.534 0.701 +
Rectum 2,976 2,041 1,328 1,135 406 989 1017 259 399 0.765 0.560 0.670 -

Small int. 3,179 2,213 1,385 1,192 405 836 1023 185 206 0.776 0.578 0.745 +
Smooth muscle 1,806 1,222 1,042 796 184 579 607 314 320 0.677 0.501 0.747 +

Tonsil ger. 2,126 1,421 1,178 884 405 881 764 357 412 0.667 0.503 0.644 -
Tonsil sqam. 2,573 1,718 1,719 1,250 423 1,455 1,188 301 403 0.718 0.334 0.430 +
Urot. blad. 2,874 1,965 1,597 1,308 219 1,111 1,158 148 686 0.760 0.450 0.613 +

Uterus post-m. 2,773 1,973 1,266 1,095 305 736 927 303 389 0.763 0.578 0.757 +
Uterus pre-m. 2,793 1,982 1,376 1,157 208 924 1022 259 582 0.785 0.507 0.658 +



Metabolites 2013, 3 964

Acknowledgments

This work is supported by the DREAM Seed Project of the Italian Institute of Technology (IIT).
The IIT Platform Computation is gratefully acknowledged.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Price, N.; Famili, I.; Beard, D.; Palsson, B. Extreme pathways and kirchhoff’s second law.
Biophys. J. 2002, 83, 2879–2882.

2. Soh, K.; Hatzimanikatis, V. Network thermodynamics in the post-genomic era. Curr. Opin.
Microbiol. 2010, 13, 350–357.

3. Beard, D.; Babson, E.; Curtis, E.; Qian, H. Thermodynamic constraints for biochemical networks.
J. Theor. Biol. 2004, 228, 327–333.

4. Hoppe, A.; Hoffmann, S.; Holzhutter, H. Including metabolite concentrations into flux balance
analysis: Thermodynamic realizability as a constraint on flux distributions in metabolic networks.
BMC Syst. Biol. 2007, 1, 23:1–23:12.

5. Qian, H.; Beard, D. Thermodynamics of stoichiometric biochemical networks in living systems far
from equilibrium. Biophys. Chem. 2005, 114, 213–220.

6. Beard, D.; Liang, S.; Qian, H. Energy balance for analysis of complex metabolic networks.
Biophys. J. 2002, 83, 79–86.

7. Palsson, B.O. Systems Biology: Properties of Reconstructed Networks; Cambridge University
Press: Cambridge, NY, USA, 2006.

8. Bowden, A.C. Fundamentals of Enzyme Kinetics; Wiley-Blackwell: Weinheim, Germany 2013.
9. Ge, H.; Qian, M.; Qian, H. Stochastic theory of nonequilibrium steady states. Part II: Applications

in chemical biophysics. Phys. Rep. 2012, 510, 87–118.
10. Frey, E.; Kroy, K. Brownian motion: A paradigm of soft matter and biological physics. Ann. Phys.

2005, 14, 20–50.
11. Beg, Q.; Vazquez, A.; Ernst, J.; de Menezes, M.; Bar-Joseph, Z.; Barabási, A.L.; Oltvai, Z.N.

Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and
constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 2007, 104, 12663–12668.

12. De Martino, A.; Marinari, E. The solution space of metabolic networks: Producibility, robustness
and fluctuations. J. Phys. Conf. Ser. 2010, 233, 012019.

13. Schrijver, A. Theory of Linear and Integer Programming; Wiley: New York, NY, USA, 1986.
14. Orth, J.; Thiele, I.; Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 2010, 28,

245–248.
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